1 /*
2 * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "gc/shared/c2/barrierSetC2.hpp"
27 #include "opto/arraycopynode.hpp"
28 #include "opto/graphKit.hpp"
29 #include "opto/idealKit.hpp"
30 #include "opto/macro.hpp"
31 #include "opto/narrowptrnode.hpp"
32 #include "opto/runtime.hpp"
33 #include "utilities/macros.hpp"
34
35 // By default this is a no-op.
resolve_address(C2Access & access) const36 void BarrierSetC2::resolve_address(C2Access& access) const { }
37
barrier_set_state() const38 void* C2Access::barrier_set_state() const {
39 return _kit->barrier_set_state();
40 }
41
needs_cpu_membar() const42 bool C2Access::needs_cpu_membar() const {
43 bool mismatched = (_decorators & C2_MISMATCHED) != 0;
44 bool is_unordered = (_decorators & MO_UNORDERED) != 0;
45 bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
46 bool in_heap = (_decorators & IN_HEAP) != 0;
47
48 bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
49 bool is_read = (_decorators & C2_READ_ACCESS) != 0;
50 bool is_atomic = is_read && is_write;
51
52 if (is_atomic) {
53 // Atomics always need to be wrapped in CPU membars
54 return true;
55 }
56
57 if (anonymous) {
58 // We will need memory barriers unless we can determine a unique
59 // alias category for this reference. (Note: If for some reason
60 // the barriers get omitted and the unsafe reference begins to "pollute"
61 // the alias analysis of the rest of the graph, either Compile::can_alias
62 // or Compile::must_alias will throw a diagnostic assert.)
63 if (!in_heap || !is_unordered || (mismatched && !_addr.type()->isa_aryptr())) {
64 return true;
65 }
66 }
67
68 return false;
69 }
70
store_at_resolved(C2Access & access,C2AccessValue & val) const71 Node* BarrierSetC2::store_at_resolved(C2Access& access, C2AccessValue& val) const {
72 DecoratorSet decorators = access.decorators();
73 GraphKit* kit = access.kit();
74
75 bool mismatched = (decorators & C2_MISMATCHED) != 0;
76 bool unaligned = (decorators & C2_UNALIGNED) != 0;
77 bool unsafe = (decorators & C2_UNSAFE_ACCESS) != 0;
78 bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
79
80 bool in_native = (decorators & IN_NATIVE) != 0;
81 assert(!in_native, "not supported yet");
82
83 if (access.type() == T_DOUBLE) {
84 Node* new_val = kit->dstore_rounding(val.node());
85 val.set_node(new_val);
86 }
87
88 MemNode::MemOrd mo = access.mem_node_mo();
89
90 Node* store = kit->store_to_memory(kit->control(), access.addr().node(), val.node(), access.type(),
91 access.addr().type(), mo, requires_atomic_access, unaligned, mismatched, unsafe);
92 access.set_raw_access(store);
93 return store;
94 }
95
load_at_resolved(C2Access & access,const Type * val_type) const96 Node* BarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
97 DecoratorSet decorators = access.decorators();
98 GraphKit* kit = access.kit();
99
100 Node* adr = access.addr().node();
101 const TypePtr* adr_type = access.addr().type();
102
103 bool mismatched = (decorators & C2_MISMATCHED) != 0;
104 bool requires_atomic_access = (decorators & MO_UNORDERED) == 0;
105 bool unaligned = (decorators & C2_UNALIGNED) != 0;
106 bool control_dependent = (decorators & C2_CONTROL_DEPENDENT_LOAD) != 0;
107 bool pinned = (decorators & C2_PINNED_LOAD) != 0;
108 bool unsafe = (decorators & C2_UNSAFE_ACCESS) != 0;
109
110 bool in_native = (decorators & IN_NATIVE) != 0;
111
112 MemNode::MemOrd mo = access.mem_node_mo();
113 LoadNode::ControlDependency dep = pinned ? LoadNode::Pinned : LoadNode::DependsOnlyOnTest;
114 Node* control = control_dependent ? kit->control() : NULL;
115
116 Node* load;
117 if (in_native) {
118 load = kit->make_load(control, adr, val_type, access.type(), mo);
119 } else {
120 load = kit->make_load(control, adr, val_type, access.type(), adr_type, mo,
121 dep, requires_atomic_access, unaligned, mismatched, unsafe);
122 }
123
124 access.set_raw_access(load);
125
126 return load;
127 }
128
129 class C2AccessFence: public StackObj {
130 C2Access& _access;
131 Node* _leading_membar;
132
133 public:
C2AccessFence(C2Access & access)134 C2AccessFence(C2Access& access) :
135 _access(access), _leading_membar(NULL) {
136 GraphKit* kit = access.kit();
137 DecoratorSet decorators = access.decorators();
138
139 bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
140 bool is_read = (decorators & C2_READ_ACCESS) != 0;
141 bool is_atomic = is_read && is_write;
142
143 bool is_volatile = (decorators & MO_SEQ_CST) != 0;
144 bool is_release = (decorators & MO_RELEASE) != 0;
145
146 if (is_atomic) {
147 // Memory-model-wise, a LoadStore acts like a little synchronized
148 // block, so needs barriers on each side. These don't translate
149 // into actual barriers on most machines, but we still need rest of
150 // compiler to respect ordering.
151 if (is_release) {
152 _leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
153 } else if (is_volatile) {
154 if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
155 _leading_membar = kit->insert_mem_bar(Op_MemBarVolatile);
156 } else {
157 _leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
158 }
159 }
160 } else if (is_write) {
161 // If reference is volatile, prevent following memory ops from
162 // floating down past the volatile write. Also prevents commoning
163 // another volatile read.
164 if (is_volatile || is_release) {
165 _leading_membar = kit->insert_mem_bar(Op_MemBarRelease);
166 }
167 } else {
168 // Memory barrier to prevent normal and 'unsafe' accesses from
169 // bypassing each other. Happens after null checks, so the
170 // exception paths do not take memory state from the memory barrier,
171 // so there's no problems making a strong assert about mixing users
172 // of safe & unsafe memory.
173 if (is_volatile && support_IRIW_for_not_multiple_copy_atomic_cpu) {
174 _leading_membar = kit->insert_mem_bar(Op_MemBarVolatile);
175 }
176 }
177
178 if (access.needs_cpu_membar()) {
179 kit->insert_mem_bar(Op_MemBarCPUOrder);
180 }
181
182 if (is_atomic) {
183 // 4984716: MemBars must be inserted before this
184 // memory node in order to avoid a false
185 // dependency which will confuse the scheduler.
186 access.set_memory();
187 }
188 }
189
~C2AccessFence()190 ~C2AccessFence() {
191 GraphKit* kit = _access.kit();
192 DecoratorSet decorators = _access.decorators();
193
194 bool is_write = (decorators & C2_WRITE_ACCESS) != 0;
195 bool is_read = (decorators & C2_READ_ACCESS) != 0;
196 bool is_atomic = is_read && is_write;
197
198 bool is_volatile = (decorators & MO_SEQ_CST) != 0;
199 bool is_acquire = (decorators & MO_ACQUIRE) != 0;
200
201 // If reference is volatile, prevent following volatiles ops from
202 // floating up before the volatile access.
203 if (_access.needs_cpu_membar()) {
204 kit->insert_mem_bar(Op_MemBarCPUOrder);
205 }
206
207 if (is_atomic) {
208 if (is_acquire || is_volatile) {
209 Node* n = _access.raw_access();
210 Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n);
211 if (_leading_membar != NULL) {
212 MemBarNode::set_load_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar());
213 }
214 }
215 } else if (is_write) {
216 // If not multiple copy atomic, we do the MemBarVolatile before the load.
217 if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) {
218 Node* n = _access.raw_access();
219 Node* mb = kit->insert_mem_bar(Op_MemBarVolatile, n); // Use fat membar
220 if (_leading_membar != NULL) {
221 MemBarNode::set_store_pair(_leading_membar->as_MemBar(), mb->as_MemBar());
222 }
223 }
224 } else {
225 if (is_volatile || is_acquire) {
226 Node* n = _access.raw_access();
227 assert(_leading_membar == NULL || support_IRIW_for_not_multiple_copy_atomic_cpu, "no leading membar expected");
228 Node* mb = kit->insert_mem_bar(Op_MemBarAcquire, n);
229 mb->as_MemBar()->set_trailing_load();
230 }
231 }
232 }
233 };
234
store_at(C2Access & access,C2AccessValue & val) const235 Node* BarrierSetC2::store_at(C2Access& access, C2AccessValue& val) const {
236 C2AccessFence fence(access);
237 resolve_address(access);
238 return store_at_resolved(access, val);
239 }
240
load_at(C2Access & access,const Type * val_type) const241 Node* BarrierSetC2::load_at(C2Access& access, const Type* val_type) const {
242 C2AccessFence fence(access);
243 resolve_address(access);
244 return load_at_resolved(access, val_type);
245 }
246
mem_node_mo() const247 MemNode::MemOrd C2Access::mem_node_mo() const {
248 bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
249 bool is_read = (_decorators & C2_READ_ACCESS) != 0;
250 if ((_decorators & MO_SEQ_CST) != 0) {
251 if (is_write && is_read) {
252 // For atomic operations
253 return MemNode::seqcst;
254 } else if (is_write) {
255 return MemNode::release;
256 } else {
257 assert(is_read, "what else?");
258 return MemNode::acquire;
259 }
260 } else if ((_decorators & MO_RELEASE) != 0) {
261 return MemNode::release;
262 } else if ((_decorators & MO_ACQUIRE) != 0) {
263 return MemNode::acquire;
264 } else if (is_write) {
265 // Volatile fields need releasing stores.
266 // Non-volatile fields also need releasing stores if they hold an
267 // object reference, because the object reference might point to
268 // a freshly created object.
269 // Conservatively release stores of object references.
270 return StoreNode::release_if_reference(_type);
271 } else {
272 return MemNode::unordered;
273 }
274 }
275
fixup_decorators()276 void C2Access::fixup_decorators() {
277 bool default_mo = (_decorators & MO_DECORATOR_MASK) == 0;
278 bool is_unordered = (_decorators & MO_UNORDERED) != 0 || default_mo;
279 bool anonymous = (_decorators & C2_UNSAFE_ACCESS) != 0;
280
281 bool is_read = (_decorators & C2_READ_ACCESS) != 0;
282 bool is_write = (_decorators & C2_WRITE_ACCESS) != 0;
283
284 if (AlwaysAtomicAccesses && is_unordered) {
285 _decorators &= ~MO_DECORATOR_MASK; // clear the MO bits
286 _decorators |= MO_RELAXED; // Force the MO_RELAXED decorator with AlwaysAtomicAccess
287 }
288
289 _decorators = AccessInternal::decorator_fixup(_decorators);
290
291 if (is_read && !is_write && anonymous) {
292 // To be valid, unsafe loads may depend on other conditions than
293 // the one that guards them: pin the Load node
294 _decorators |= C2_CONTROL_DEPENDENT_LOAD;
295 _decorators |= C2_PINNED_LOAD;
296 const TypePtr* adr_type = _addr.type();
297 Node* adr = _addr.node();
298 if (!needs_cpu_membar() && adr_type->isa_instptr()) {
299 assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
300 intptr_t offset = Type::OffsetBot;
301 AddPNode::Ideal_base_and_offset(adr, &_kit->gvn(), offset);
302 if (offset >= 0) {
303 int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
304 if (offset < s) {
305 // Guaranteed to be a valid access, no need to pin it
306 _decorators ^= C2_CONTROL_DEPENDENT_LOAD;
307 _decorators ^= C2_PINNED_LOAD;
308 }
309 }
310 }
311 }
312 }
313
314 //--------------------------- atomic operations---------------------------------
315
pin_atomic_op(C2AtomicAccess & access)316 static void pin_atomic_op(C2AtomicAccess& access) {
317 if (!access.needs_pinning()) {
318 return;
319 }
320 // SCMemProjNodes represent the memory state of a LoadStore. Their
321 // main role is to prevent LoadStore nodes from being optimized away
322 // when their results aren't used.
323 GraphKit* kit = access.kit();
324 Node* load_store = access.raw_access();
325 assert(load_store != NULL, "must pin atomic op");
326 Node* proj = kit->gvn().transform(new SCMemProjNode(load_store));
327 kit->set_memory(proj, access.alias_idx());
328 }
329
set_memory()330 void C2AtomicAccess::set_memory() {
331 Node *mem = _kit->memory(_alias_idx);
332 _memory = mem;
333 }
334
atomic_cmpxchg_val_at_resolved(C2AtomicAccess & access,Node * expected_val,Node * new_val,const Type * value_type) const335 Node* BarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicAccess& access, Node* expected_val,
336 Node* new_val, const Type* value_type) const {
337 GraphKit* kit = access.kit();
338 MemNode::MemOrd mo = access.mem_node_mo();
339 Node* mem = access.memory();
340
341 Node* adr = access.addr().node();
342 const TypePtr* adr_type = access.addr().type();
343
344 Node* load_store = NULL;
345
346 if (access.is_oop()) {
347 #ifdef _LP64
348 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
349 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
350 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
351 load_store = kit->gvn().transform(new CompareAndExchangeNNode(kit->control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
352 } else
353 #endif
354 {
355 load_store = kit->gvn().transform(new CompareAndExchangePNode(kit->control(), mem, adr, new_val, expected_val, adr_type, value_type->is_oopptr(), mo));
356 }
357 } else {
358 switch (access.type()) {
359 case T_BYTE: {
360 load_store = kit->gvn().transform(new CompareAndExchangeBNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
361 break;
362 }
363 case T_SHORT: {
364 load_store = kit->gvn().transform(new CompareAndExchangeSNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
365 break;
366 }
367 case T_INT: {
368 load_store = kit->gvn().transform(new CompareAndExchangeINode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
369 break;
370 }
371 case T_LONG: {
372 load_store = kit->gvn().transform(new CompareAndExchangeLNode(kit->control(), mem, adr, new_val, expected_val, adr_type, mo));
373 break;
374 }
375 default:
376 ShouldNotReachHere();
377 }
378 }
379
380 access.set_raw_access(load_store);
381 pin_atomic_op(access);
382
383 #ifdef _LP64
384 if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
385 return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
386 }
387 #endif
388
389 return load_store;
390 }
391
atomic_cmpxchg_bool_at_resolved(C2AtomicAccess & access,Node * expected_val,Node * new_val,const Type * value_type) const392 Node* BarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicAccess& access, Node* expected_val,
393 Node* new_val, const Type* value_type) const {
394 GraphKit* kit = access.kit();
395 DecoratorSet decorators = access.decorators();
396 MemNode::MemOrd mo = access.mem_node_mo();
397 Node* mem = access.memory();
398 bool is_weak_cas = (decorators & C2_WEAK_CMPXCHG) != 0;
399 Node* load_store = NULL;
400 Node* adr = access.addr().node();
401
402 if (access.is_oop()) {
403 #ifdef _LP64
404 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
405 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
406 Node *oldval_enc = kit->gvn().transform(new EncodePNode(expected_val, expected_val->bottom_type()->make_narrowoop()));
407 if (is_weak_cas) {
408 load_store = kit->gvn().transform(new WeakCompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
409 } else {
410 load_store = kit->gvn().transform(new CompareAndSwapNNode(kit->control(), mem, adr, newval_enc, oldval_enc, mo));
411 }
412 } else
413 #endif
414 {
415 if (is_weak_cas) {
416 load_store = kit->gvn().transform(new WeakCompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
417 } else {
418 load_store = kit->gvn().transform(new CompareAndSwapPNode(kit->control(), mem, adr, new_val, expected_val, mo));
419 }
420 }
421 } else {
422 switch(access.type()) {
423 case T_BYTE: {
424 if (is_weak_cas) {
425 load_store = kit->gvn().transform(new WeakCompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo));
426 } else {
427 load_store = kit->gvn().transform(new CompareAndSwapBNode(kit->control(), mem, adr, new_val, expected_val, mo));
428 }
429 break;
430 }
431 case T_SHORT: {
432 if (is_weak_cas) {
433 load_store = kit->gvn().transform(new WeakCompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo));
434 } else {
435 load_store = kit->gvn().transform(new CompareAndSwapSNode(kit->control(), mem, adr, new_val, expected_val, mo));
436 }
437 break;
438 }
439 case T_INT: {
440 if (is_weak_cas) {
441 load_store = kit->gvn().transform(new WeakCompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo));
442 } else {
443 load_store = kit->gvn().transform(new CompareAndSwapINode(kit->control(), mem, adr, new_val, expected_val, mo));
444 }
445 break;
446 }
447 case T_LONG: {
448 if (is_weak_cas) {
449 load_store = kit->gvn().transform(new WeakCompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo));
450 } else {
451 load_store = kit->gvn().transform(new CompareAndSwapLNode(kit->control(), mem, adr, new_val, expected_val, mo));
452 }
453 break;
454 }
455 default:
456 ShouldNotReachHere();
457 }
458 }
459
460 access.set_raw_access(load_store);
461 pin_atomic_op(access);
462
463 return load_store;
464 }
465
atomic_xchg_at_resolved(C2AtomicAccess & access,Node * new_val,const Type * value_type) const466 Node* BarrierSetC2::atomic_xchg_at_resolved(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
467 GraphKit* kit = access.kit();
468 Node* mem = access.memory();
469 Node* adr = access.addr().node();
470 const TypePtr* adr_type = access.addr().type();
471 Node* load_store = NULL;
472
473 if (access.is_oop()) {
474 #ifdef _LP64
475 if (adr->bottom_type()->is_ptr_to_narrowoop()) {
476 Node *newval_enc = kit->gvn().transform(new EncodePNode(new_val, new_val->bottom_type()->make_narrowoop()));
477 load_store = kit->gvn().transform(new GetAndSetNNode(kit->control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
478 } else
479 #endif
480 {
481 load_store = kit->gvn().transform(new GetAndSetPNode(kit->control(), mem, adr, new_val, adr_type, value_type->is_oopptr()));
482 }
483 } else {
484 switch (access.type()) {
485 case T_BYTE:
486 load_store = kit->gvn().transform(new GetAndSetBNode(kit->control(), mem, adr, new_val, adr_type));
487 break;
488 case T_SHORT:
489 load_store = kit->gvn().transform(new GetAndSetSNode(kit->control(), mem, adr, new_val, adr_type));
490 break;
491 case T_INT:
492 load_store = kit->gvn().transform(new GetAndSetINode(kit->control(), mem, adr, new_val, adr_type));
493 break;
494 case T_LONG:
495 load_store = kit->gvn().transform(new GetAndSetLNode(kit->control(), mem, adr, new_val, adr_type));
496 break;
497 default:
498 ShouldNotReachHere();
499 }
500 }
501
502 access.set_raw_access(load_store);
503 pin_atomic_op(access);
504
505 #ifdef _LP64
506 if (access.is_oop() && adr->bottom_type()->is_ptr_to_narrowoop()) {
507 return kit->gvn().transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
508 }
509 #endif
510
511 return load_store;
512 }
513
atomic_add_at_resolved(C2AtomicAccess & access,Node * new_val,const Type * value_type) const514 Node* BarrierSetC2::atomic_add_at_resolved(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
515 Node* load_store = NULL;
516 GraphKit* kit = access.kit();
517 Node* adr = access.addr().node();
518 const TypePtr* adr_type = access.addr().type();
519 Node* mem = access.memory();
520
521 switch(access.type()) {
522 case T_BYTE:
523 load_store = kit->gvn().transform(new GetAndAddBNode(kit->control(), mem, adr, new_val, adr_type));
524 break;
525 case T_SHORT:
526 load_store = kit->gvn().transform(new GetAndAddSNode(kit->control(), mem, adr, new_val, adr_type));
527 break;
528 case T_INT:
529 load_store = kit->gvn().transform(new GetAndAddINode(kit->control(), mem, adr, new_val, adr_type));
530 break;
531 case T_LONG:
532 load_store = kit->gvn().transform(new GetAndAddLNode(kit->control(), mem, adr, new_val, adr_type));
533 break;
534 default:
535 ShouldNotReachHere();
536 }
537
538 access.set_raw_access(load_store);
539 pin_atomic_op(access);
540
541 return load_store;
542 }
543
atomic_cmpxchg_val_at(C2AtomicAccess & access,Node * expected_val,Node * new_val,const Type * value_type) const544 Node* BarrierSetC2::atomic_cmpxchg_val_at(C2AtomicAccess& access, Node* expected_val,
545 Node* new_val, const Type* value_type) const {
546 C2AccessFence fence(access);
547 resolve_address(access);
548 return atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, value_type);
549 }
550
atomic_cmpxchg_bool_at(C2AtomicAccess & access,Node * expected_val,Node * new_val,const Type * value_type) const551 Node* BarrierSetC2::atomic_cmpxchg_bool_at(C2AtomicAccess& access, Node* expected_val,
552 Node* new_val, const Type* value_type) const {
553 C2AccessFence fence(access);
554 resolve_address(access);
555 return atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
556 }
557
atomic_xchg_at(C2AtomicAccess & access,Node * new_val,const Type * value_type) const558 Node* BarrierSetC2::atomic_xchg_at(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
559 C2AccessFence fence(access);
560 resolve_address(access);
561 return atomic_xchg_at_resolved(access, new_val, value_type);
562 }
563
atomic_add_at(C2AtomicAccess & access,Node * new_val,const Type * value_type) const564 Node* BarrierSetC2::atomic_add_at(C2AtomicAccess& access, Node* new_val, const Type* value_type) const {
565 C2AccessFence fence(access);
566 resolve_address(access);
567 return atomic_add_at_resolved(access, new_val, value_type);
568 }
569
clone(GraphKit * kit,Node * src,Node * dst,Node * size,bool is_array) const570 void BarrierSetC2::clone(GraphKit* kit, Node* src, Node* dst, Node* size, bool is_array) const {
571 // Exclude the header but include array length to copy by 8 bytes words.
572 // Can't use base_offset_in_bytes(bt) since basic type is unknown.
573 int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
574 instanceOopDesc::base_offset_in_bytes();
575 // base_off:
576 // 8 - 32-bit VM
577 // 12 - 64-bit VM, compressed klass
578 // 16 - 64-bit VM, normal klass
579 if (base_off % BytesPerLong != 0) {
580 assert(UseCompressedClassPointers, "");
581 if (is_array) {
582 // Exclude length to copy by 8 bytes words.
583 base_off += sizeof(int);
584 } else {
585 // Include klass to copy by 8 bytes words.
586 base_off = instanceOopDesc::klass_offset_in_bytes();
587 }
588 assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
589 }
590 Node* src_base = kit->basic_plus_adr(src, base_off);
591 Node* dst_base = kit->basic_plus_adr(dst, base_off);
592
593 // Compute the length also, if needed:
594 Node* countx = size;
595 countx = kit->gvn().transform(new SubXNode(countx, kit->MakeConX(base_off)));
596 countx = kit->gvn().transform(new URShiftXNode(countx, kit->intcon(LogBytesPerLong) ));
597
598 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
599
600 ArrayCopyNode* ac = ArrayCopyNode::make(kit, false, src_base, NULL, dst_base, NULL, countx, false, false);
601 ac->set_clonebasic();
602 Node* n = kit->gvn().transform(ac);
603 if (n == ac) {
604 kit->set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
605 } else {
606 kit->set_all_memory(n);
607 }
608 }
609
610 #define XTOP LP64_ONLY(COMMA phase->top())
611
clone_at_expansion(PhaseMacroExpand * phase,ArrayCopyNode * ac) const612 void BarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
613 Node* ctrl = ac->in(TypeFunc::Control);
614 Node* mem = ac->in(TypeFunc::Memory);
615 Node* src = ac->in(ArrayCopyNode::Src);
616 Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
617 Node* dest = ac->in(ArrayCopyNode::Dest);
618 Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
619 Node* length = ac->in(ArrayCopyNode::Length);
620
621 assert (src_offset == NULL && dest_offset == NULL, "for clone offsets should be null");
622
623 const char* copyfunc_name = "arraycopy";
624 address copyfunc_addr =
625 phase->basictype2arraycopy(T_LONG, NULL, NULL,
626 true, copyfunc_name, true);
627
628 const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
629 const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
630
631 Node* call = phase->make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, src, dest, length XTOP);
632 phase->transform_later(call);
633
634 phase->igvn().replace_node(ac, call);
635 }
636