1 /*
2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
3  * Use is subject to license terms.
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with this library; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 /* *********************************************************************
25  *
26  * The Original Code is the elliptic curve math library for prime field curves.
27  *
28  * The Initial Developer of the Original Code is
29  * Sun Microsystems, Inc.
30  * Portions created by the Initial Developer are Copyright (C) 2003
31  * the Initial Developer. All Rights Reserved.
32  *
33  * Contributor(s):
34  *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
35  *   Stephen Fung <fungstep@hotmail.com>, and
36  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
37  *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
38  *   Nils Larsch <nla@trustcenter.de>, and
39  *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
40  *
41  * Last Modified Date from the Original Code: May 2017
42  *********************************************************************** */
43 
44 #include "ecp.h"
45 #include "mplogic.h"
46 #ifndef _KERNEL
47 #include <stdlib.h>
48 #endif
49 
50 /* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
51 mp_err
ec_GFp_pt_is_inf_aff(const mp_int * px,const mp_int * py)52 ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
53 {
54 
55         if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
56                 return MP_YES;
57         } else {
58                 return MP_NO;
59         }
60 
61 }
62 
63 /* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
64 mp_err
ec_GFp_pt_set_inf_aff(mp_int * px,mp_int * py)65 ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
66 {
67         mp_zero(px);
68         mp_zero(py);
69         return MP_OKAY;
70 }
71 
72 /* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
73  * Q, and R can all be identical. Uses affine coordinates. Assumes input
74  * is already field-encoded using field_enc, and returns output that is
75  * still field-encoded. */
76 mp_err
ec_GFp_pt_add_aff(const mp_int * px,const mp_int * py,const mp_int * qx,const mp_int * qy,mp_int * rx,mp_int * ry,const ECGroup * group)77 ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
78                                   const mp_int *qy, mp_int *rx, mp_int *ry,
79                                   const ECGroup *group)
80 {
81         mp_err res = MP_OKAY;
82         mp_int lambda, temp, tempx, tempy;
83 
84         MP_DIGITS(&lambda) = 0;
85         MP_DIGITS(&temp) = 0;
86         MP_DIGITS(&tempx) = 0;
87         MP_DIGITS(&tempy) = 0;
88         MP_CHECKOK(mp_init(&lambda, FLAG(px)));
89         MP_CHECKOK(mp_init(&temp, FLAG(px)));
90         MP_CHECKOK(mp_init(&tempx, FLAG(px)));
91         MP_CHECKOK(mp_init(&tempy, FLAG(px)));
92         /* if P = inf, then R = Q */
93         if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
94                 MP_CHECKOK(mp_copy(qx, rx));
95                 MP_CHECKOK(mp_copy(qy, ry));
96                 res = MP_OKAY;
97                 goto CLEANUP;
98         }
99         /* if Q = inf, then R = P */
100         if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
101                 MP_CHECKOK(mp_copy(px, rx));
102                 MP_CHECKOK(mp_copy(py, ry));
103                 res = MP_OKAY;
104                 goto CLEANUP;
105         }
106         /* if px != qx, then lambda = (py-qy) / (px-qx) */
107         if (mp_cmp(px, qx) != 0) {
108                 MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
109                 MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
110                 MP_CHECKOK(group->meth->
111                                    field_div(&tempy, &tempx, &lambda, group->meth));
112         } else {
113                 /* if py != qy or qy = 0, then R = inf */
114                 if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
115                         mp_zero(rx);
116                         mp_zero(ry);
117                         res = MP_OKAY;
118                         goto CLEANUP;
119                 }
120                 /* lambda = (3qx^2+a) / (2qy) */
121                 MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
122                 MP_CHECKOK(mp_set_int(&temp, 3));
123                 if (group->meth->field_enc) {
124                         MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
125                 }
126                 MP_CHECKOK(group->meth->
127                                    field_mul(&tempx, &temp, &tempx, group->meth));
128                 MP_CHECKOK(group->meth->
129                                    field_add(&tempx, &group->curvea, &tempx, group->meth));
130                 MP_CHECKOK(mp_set_int(&temp, 2));
131                 if (group->meth->field_enc) {
132                         MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
133                 }
134                 MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
135                 MP_CHECKOK(group->meth->
136                                    field_div(&tempx, &tempy, &lambda, group->meth));
137         }
138         /* rx = lambda^2 - px - qx */
139         MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
140         MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
141         MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
142         /* ry = (x1-x2) * lambda - y1 */
143         MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
144         MP_CHECKOK(group->meth->
145                            field_mul(&tempy, &lambda, &tempy, group->meth));
146         MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
147         MP_CHECKOK(mp_copy(&tempx, rx));
148         MP_CHECKOK(mp_copy(&tempy, ry));
149 
150   CLEANUP:
151         mp_clear(&lambda);
152         mp_clear(&temp);
153         mp_clear(&tempx);
154         mp_clear(&tempy);
155         return res;
156 }
157 
158 /* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
159  * identical. Uses affine coordinates. Assumes input is already
160  * field-encoded using field_enc, and returns output that is still
161  * field-encoded. */
162 mp_err
ec_GFp_pt_sub_aff(const mp_int * px,const mp_int * py,const mp_int * qx,const mp_int * qy,mp_int * rx,mp_int * ry,const ECGroup * group)163 ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
164                                   const mp_int *qy, mp_int *rx, mp_int *ry,
165                                   const ECGroup *group)
166 {
167         mp_err res = MP_OKAY;
168         mp_int nqy;
169 
170         MP_DIGITS(&nqy) = 0;
171         MP_CHECKOK(mp_init(&nqy, FLAG(px)));
172         /* nqy = -qy */
173         MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
174         res = group->point_add(px, py, qx, &nqy, rx, ry, group);
175   CLEANUP:
176         mp_clear(&nqy);
177         return res;
178 }
179 
180 /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
181  * affine coordinates. Assumes input is already field-encoded using
182  * field_enc, and returns output that is still field-encoded. */
183 mp_err
ec_GFp_pt_dbl_aff(const mp_int * px,const mp_int * py,mp_int * rx,mp_int * ry,const ECGroup * group)184 ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
185                                   mp_int *ry, const ECGroup *group)
186 {
187         return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
188 }
189 
190 /* by default, this routine is unused and thus doesn't need to be compiled */
191 #ifdef ECL_ENABLE_GFP_PT_MUL_AFF
192 /* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
193  * R can be identical. Uses affine coordinates. Assumes input is already
194  * field-encoded using field_enc, and returns output that is still
195  * field-encoded. */
196 mp_err
ec_GFp_pt_mul_aff(const mp_int * n,const mp_int * px,const mp_int * py,mp_int * rx,mp_int * ry,const ECGroup * group)197 ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
198                                   mp_int *rx, mp_int *ry, const ECGroup *group)
199 {
200         mp_err res = MP_OKAY;
201         mp_int k, k3, qx, qy, sx, sy;
202         int b1, b3, i, l;
203 
204         MP_DIGITS(&k) = 0;
205         MP_DIGITS(&k3) = 0;
206         MP_DIGITS(&qx) = 0;
207         MP_DIGITS(&qy) = 0;
208         MP_DIGITS(&sx) = 0;
209         MP_DIGITS(&sy) = 0;
210         MP_CHECKOK(mp_init(&k));
211         MP_CHECKOK(mp_init(&k3));
212         MP_CHECKOK(mp_init(&qx));
213         MP_CHECKOK(mp_init(&qy));
214         MP_CHECKOK(mp_init(&sx));
215         MP_CHECKOK(mp_init(&sy));
216 
217         /* if n = 0 then r = inf */
218         if (mp_cmp_z(n) == 0) {
219                 mp_zero(rx);
220                 mp_zero(ry);
221                 res = MP_OKAY;
222                 goto CLEANUP;
223         }
224         /* Q = P, k = n */
225         MP_CHECKOK(mp_copy(px, &qx));
226         MP_CHECKOK(mp_copy(py, &qy));
227         MP_CHECKOK(mp_copy(n, &k));
228         /* if n < 0 then Q = -Q, k = -k */
229         if (mp_cmp_z(n) < 0) {
230                 MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
231                 MP_CHECKOK(mp_neg(&k, &k));
232         }
233 #ifdef ECL_DEBUG                                /* basic double and add method */
234         l = mpl_significant_bits(&k) - 1;
235         MP_CHECKOK(mp_copy(&qx, &sx));
236         MP_CHECKOK(mp_copy(&qy, &sy));
237         for (i = l - 1; i >= 0; i--) {
238                 /* S = 2S */
239                 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
240                 /* if k_i = 1, then S = S + Q */
241                 if (mpl_get_bit(&k, i) != 0) {
242                         MP_CHECKOK(group->
243                                            point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
244                 }
245         }
246 #else                                                   /* double and add/subtract method from
247                                                                  * standard */
248         /* k3 = 3 * k */
249         MP_CHECKOK(mp_set_int(&k3, 3));
250         MP_CHECKOK(mp_mul(&k, &k3, &k3));
251         /* S = Q */
252         MP_CHECKOK(mp_copy(&qx, &sx));
253         MP_CHECKOK(mp_copy(&qy, &sy));
254         /* l = index of high order bit in binary representation of 3*k */
255         l = mpl_significant_bits(&k3) - 1;
256         /* for i = l-1 downto 1 */
257         for (i = l - 1; i >= 1; i--) {
258                 /* S = 2S */
259                 MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
260                 b3 = MP_GET_BIT(&k3, i);
261                 b1 = MP_GET_BIT(&k, i);
262                 /* if k3_i = 1 and k_i = 0, then S = S + Q */
263                 if ((b3 == 1) && (b1 == 0)) {
264                         MP_CHECKOK(group->
265                                            point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
266                         /* if k3_i = 0 and k_i = 1, then S = S - Q */
267                 } else if ((b3 == 0) && (b1 == 1)) {
268                         MP_CHECKOK(group->
269                                            point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
270                 }
271         }
272 #endif
273         /* output S */
274         MP_CHECKOK(mp_copy(&sx, rx));
275         MP_CHECKOK(mp_copy(&sy, ry));
276 
277   CLEANUP:
278         mp_clear(&k);
279         mp_clear(&k3);
280         mp_clear(&qx);
281         mp_clear(&qy);
282         mp_clear(&sx);
283         mp_clear(&sy);
284         return res;
285 }
286 #endif
287 
288 /* Validates a point on a GFp curve. */
289 mp_err
ec_GFp_validate_point(const mp_int * px,const mp_int * py,const ECGroup * group)290 ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
291 {
292         mp_err res = MP_NO;
293         mp_int accl, accr, tmp, pxt, pyt;
294 
295         MP_DIGITS(&accl) = 0;
296         MP_DIGITS(&accr) = 0;
297         MP_DIGITS(&tmp) = 0;
298         MP_DIGITS(&pxt) = 0;
299         MP_DIGITS(&pyt) = 0;
300         MP_CHECKOK(mp_init(&accl, FLAG(px)));
301         MP_CHECKOK(mp_init(&accr, FLAG(px)));
302         MP_CHECKOK(mp_init(&tmp, FLAG(px)));
303         MP_CHECKOK(mp_init(&pxt, FLAG(px)));
304         MP_CHECKOK(mp_init(&pyt, FLAG(px)));
305 
306     /* 1: Verify that publicValue is not the point at infinity */
307         if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
308                 res = MP_NO;
309                 goto CLEANUP;
310         }
311     /* 2: Verify that the coordinates of publicValue are elements
312      *    of the field.
313      */
314         if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
315                 (MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
316                 res = MP_NO;
317                 goto CLEANUP;
318         }
319     /* 3: Verify that publicValue is on the curve. */
320         if (group->meth->field_enc) {
321                 group->meth->field_enc(px, &pxt, group->meth);
322                 group->meth->field_enc(py, &pyt, group->meth);
323         } else {
324                 mp_copy(px, &pxt);
325                 mp_copy(py, &pyt);
326         }
327         /* left-hand side: y^2  */
328         MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
329         /* right-hand side: x^3 + a*x + b */
330         MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
331         MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
332         MP_CHECKOK( group->meth->field_mul(&group->curvea, &pxt, &tmp, group->meth) );
333         MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
334         MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
335         /* check LHS - RHS == 0 */
336         MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
337         if (mp_cmp_z(&accr) != 0) {
338                 res = MP_NO;
339                 goto CLEANUP;
340         }
341     /* 4: Verify that the order of the curve times the publicValue
342      *    is the point at infinity.
343      */
344         /* timing mitigation is not supported */
345         MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt, /*timing*/ 0) );
346         if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
347                 res = MP_NO;
348                 goto CLEANUP;
349         }
350 
351         res = MP_YES;
352 
353 CLEANUP:
354         mp_clear(&accl);
355         mp_clear(&accr);
356         mp_clear(&tmp);
357         mp_clear(&pxt);
358         mp_clear(&pyt);
359         return res;
360 }
361