1 /*
2  * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/g1/g1Allocator.inline.hpp"
27 #include "gc/g1/g1CollectedHeap.inline.hpp"
28 #include "gc/g1/g1CollectionSet.hpp"
29 #include "gc/g1/g1OopClosures.inline.hpp"
30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
31 #include "gc/g1/g1RootClosures.hpp"
32 #include "gc/g1/g1StringDedup.hpp"
33 #include "gc/shared/gcTrace.hpp"
34 #include "gc/shared/taskqueue.inline.hpp"
35 #include "memory/allocation.inline.hpp"
36 #include "oops/access.inline.hpp"
37 #include "oops/oop.inline.hpp"
38 #include "runtime/prefetch.inline.hpp"
39 
G1ParScanThreadState(G1CollectedHeap * g1h,uint worker_id,size_t young_cset_length,size_t optional_cset_length)40 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
41                                            uint worker_id,
42                                            size_t young_cset_length,
43                                            size_t optional_cset_length)
44   : _g1h(g1h),
45     _refs(g1h->task_queue(worker_id)),
46     _dcq(&g1h->dirty_card_queue_set()),
47     _ct(g1h->card_table()),
48     _closures(NULL),
49     _plab_allocator(NULL),
50     _age_table(false),
51     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
52     _scanner(g1h, this),
53     _worker_id(worker_id),
54     _stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
55     _stack_trim_lower_threshold(GCDrainStackTargetSize),
56     _trim_ticks(),
57     _old_gen_is_full(false),
58     _num_optional_regions(optional_cset_length)
59 {
60   // we allocate G1YoungSurvRateNumRegions plus one entries, since
61   // we "sacrifice" entry 0 to keep track of surviving bytes for
62   // non-young regions (where the age is -1)
63   // We also add a few elements at the beginning and at the end in
64   // an attempt to eliminate cache contention
65   size_t real_length = 1 + young_cset_length;
66   size_t array_length = PADDING_ELEM_NUM +
67                       real_length +
68                       PADDING_ELEM_NUM;
69   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
70   if (_surviving_young_words_base == NULL)
71     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
72                           "Not enough space for young surv histo.");
73   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
74   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
75 
76   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
77 
78   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
79   // The dest for Young is used when the objects are aged enough to
80   // need to be moved to the next space.
81   _dest[InCSetState::Young]        = InCSetState::Old;
82   _dest[InCSetState::Old]          = InCSetState::Old;
83 
84   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
85 
86   _oops_into_optional_regions = new G1OopStarChunkedList[_num_optional_regions];
87 }
88 
89 // Pass locally gathered statistics to global state.
flush(size_t * surviving_young_words)90 void G1ParScanThreadState::flush(size_t* surviving_young_words) {
91   _dcq.flush();
92   // Update allocation statistics.
93   _plab_allocator->flush_and_retire_stats();
94   _g1h->g1_policy()->record_age_table(&_age_table);
95 
96   uint length = _g1h->collection_set()->young_region_length();
97   for (uint region_index = 0; region_index < length; region_index++) {
98     surviving_young_words[region_index] += _surviving_young_words[region_index];
99   }
100 }
101 
~G1ParScanThreadState()102 G1ParScanThreadState::~G1ParScanThreadState() {
103   delete _plab_allocator;
104   delete _closures;
105   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
106   delete[] _oops_into_optional_regions;
107 }
108 
waste(size_t & wasted,size_t & undo_wasted)109 void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
110   _plab_allocator->waste(wasted, undo_wasted);
111 }
112 
113 #ifdef ASSERT
verify_ref(narrowOop * ref) const114 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
115   assert(ref != NULL, "invariant");
116   assert(UseCompressedOops, "sanity");
117   assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
118   oop p = RawAccess<>::oop_load(ref);
119   assert(_g1h->is_in_g1_reserved(p),
120          "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
121   return true;
122 }
123 
verify_ref(oop * ref) const124 bool G1ParScanThreadState::verify_ref(oop* ref) const {
125   assert(ref != NULL, "invariant");
126   if (has_partial_array_mask(ref)) {
127     // Must be in the collection set--it's already been copied.
128     oop p = clear_partial_array_mask(ref);
129     assert(_g1h->is_in_cset(p),
130            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
131   } else {
132     oop p = RawAccess<>::oop_load(ref);
133     assert(_g1h->is_in_g1_reserved(p),
134            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
135   }
136   return true;
137 }
138 
verify_task(StarTask ref) const139 bool G1ParScanThreadState::verify_task(StarTask ref) const {
140   if (ref.is_narrow()) {
141     return verify_ref((narrowOop*) ref);
142   } else {
143     return verify_ref((oop*) ref);
144   }
145 }
146 #endif // ASSERT
147 
trim_queue()148 void G1ParScanThreadState::trim_queue() {
149   StarTask ref;
150   do {
151     // Fully drain the queue.
152     trim_queue_to_threshold(0);
153   } while (!_refs->is_empty());
154 }
155 
allocate_in_next_plab(InCSetState const state,InCSetState * dest,size_t word_sz,bool previous_plab_refill_failed)156 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
157                                                       InCSetState* dest,
158                                                       size_t word_sz,
159                                                       bool previous_plab_refill_failed) {
160   assert(state.is_in_cset_or_humongous(), "Unexpected state: " CSETSTATE_FORMAT, state.value());
161   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
162 
163   // Right now we only have two types of regions (young / old) so
164   // let's keep the logic here simple. We can generalize it when necessary.
165   if (dest->is_young()) {
166     bool plab_refill_in_old_failed = false;
167     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
168                                                         word_sz,
169                                                         &plab_refill_in_old_failed);
170     // Make sure that we won't attempt to copy any other objects out
171     // of a survivor region (given that apparently we cannot allocate
172     // any new ones) to avoid coming into this slow path again and again.
173     // Only consider failed PLAB refill here: failed inline allocations are
174     // typically large, so not indicative of remaining space.
175     if (previous_plab_refill_failed) {
176       _tenuring_threshold = 0;
177     }
178 
179     if (obj_ptr != NULL) {
180       dest->set_old();
181     } else {
182       // We just failed to allocate in old gen. The same idea as explained above
183       // for making survivor gen unavailable for allocation applies for old gen.
184       _old_gen_is_full = plab_refill_in_old_failed;
185     }
186     return obj_ptr;
187   } else {
188     _old_gen_is_full = previous_plab_refill_failed;
189     assert(dest->is_old(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
190     // no other space to try.
191     return NULL;
192   }
193 }
194 
next_state(InCSetState const state,markOop const m,uint & age)195 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
196   if (state.is_young()) {
197     age = !m->has_displaced_mark_helper() ? m->age()
198                                           : m->displaced_mark_helper()->age();
199     if (age < _tenuring_threshold) {
200       return state;
201     }
202   }
203   return dest(state);
204 }
205 
report_promotion_event(InCSetState const dest_state,oop const old,size_t word_sz,uint age,HeapWord * const obj_ptr) const206 void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
207                                                   oop const old, size_t word_sz, uint age,
208                                                   HeapWord * const obj_ptr) const {
209   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_state);
210   if (alloc_buf->contains(obj_ptr)) {
211     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
212                                                              dest_state.value() == InCSetState::Old,
213                                                              alloc_buf->word_sz() * HeapWordSize);
214   } else {
215     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
216                                                               dest_state.value() == InCSetState::Old);
217   }
218 }
219 
copy_to_survivor_space(InCSetState const state,oop const old,markOop const old_mark)220 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
221                                                  oop const old,
222                                                  markOop const old_mark) {
223   const size_t word_sz = old->size();
224   HeapRegion* const from_region = _g1h->heap_region_containing(old);
225   // +1 to make the -1 indexes valid...
226   const int young_index = from_region->young_index_in_cset()+1;
227   assert( (from_region->is_young() && young_index >  0) ||
228          (!from_region->is_young() && young_index == 0), "invariant" );
229 
230   uint age = 0;
231   InCSetState dest_state = next_state(state, old_mark, age);
232   // The second clause is to prevent premature evacuation failure in case there
233   // is still space in survivor, but old gen is full.
234   if (_old_gen_is_full && dest_state.is_old()) {
235     return handle_evacuation_failure_par(old, old_mark);
236   }
237   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz);
238 
239   // PLAB allocations should succeed most of the time, so we'll
240   // normally check against NULL once and that's it.
241   if (obj_ptr == NULL) {
242     bool plab_refill_failed = false;
243     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, &plab_refill_failed);
244     if (obj_ptr == NULL) {
245       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, plab_refill_failed);
246       if (obj_ptr == NULL) {
247         // This will either forward-to-self, or detect that someone else has
248         // installed a forwarding pointer.
249         return handle_evacuation_failure_par(old, old_mark);
250       }
251     }
252     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
253       // The events are checked individually as part of the actual commit
254       report_promotion_event(dest_state, old, word_sz, age, obj_ptr);
255     }
256   }
257 
258   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
259   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
260 
261 #ifndef PRODUCT
262   // Should this evacuation fail?
263   if (_g1h->evacuation_should_fail()) {
264     // Doing this after all the allocation attempts also tests the
265     // undo_allocation() method too.
266     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz);
267     return handle_evacuation_failure_par(old, old_mark);
268   }
269 #endif // !PRODUCT
270 
271   // We're going to allocate linearly, so might as well prefetch ahead.
272   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
273 
274   const oop obj = oop(obj_ptr);
275   const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
276   if (forward_ptr == NULL) {
277     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
278 
279     if (dest_state.is_young()) {
280       if (age < markOopDesc::max_age) {
281         age++;
282       }
283       if (old_mark->has_displaced_mark_helper()) {
284         // In this case, we have to install the mark word first,
285         // otherwise obj looks to be forwarded (the old mark word,
286         // which contains the forward pointer, was copied)
287         obj->set_mark_raw(old_mark);
288         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
289         old_mark->set_displaced_mark_helper(new_mark);
290       } else {
291         obj->set_mark_raw(old_mark->set_age(age));
292       }
293       _age_table.add(age, word_sz);
294     } else {
295       obj->set_mark_raw(old_mark);
296     }
297 
298     if (G1StringDedup::is_enabled()) {
299       const bool is_from_young = state.is_young();
300       const bool is_to_young = dest_state.is_young();
301       assert(is_from_young == _g1h->heap_region_containing(old)->is_young(),
302              "sanity");
303       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
304              "sanity");
305       G1StringDedup::enqueue_from_evacuation(is_from_young,
306                                              is_to_young,
307                                              _worker_id,
308                                              obj);
309     }
310 
311     _surviving_young_words[young_index] += word_sz;
312 
313     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
314       // We keep track of the next start index in the length field of
315       // the to-space object. The actual length can be found in the
316       // length field of the from-space object.
317       arrayOop(obj)->set_length(0);
318       oop* old_p = set_partial_array_mask(old);
319       do_oop_partial_array(old_p);
320     } else {
321       G1ScanInYoungSetter x(&_scanner, dest_state.is_young());
322       obj->oop_iterate_backwards(&_scanner);
323     }
324     return obj;
325   } else {
326     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz);
327     return forward_ptr;
328   }
329 }
330 
state_for_worker(uint worker_id)331 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
332   assert(worker_id < _n_workers, "out of bounds access");
333   if (_states[worker_id] == NULL) {
334     _states[worker_id] =
335       new G1ParScanThreadState(_g1h, worker_id, _young_cset_length, _optional_cset_length);
336   }
337   return _states[worker_id];
338 }
339 
surviving_young_words() const340 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
341   assert(_flushed, "thread local state from the per thread states should have been flushed");
342   return _surviving_young_words_total;
343 }
344 
flush()345 void G1ParScanThreadStateSet::flush() {
346   assert(!_flushed, "thread local state from the per thread states should be flushed once");
347 
348   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
349     G1ParScanThreadState* pss = _states[worker_index];
350 
351     if (pss == NULL) {
352       continue;
353     }
354 
355     pss->flush(_surviving_young_words_total);
356     delete pss;
357     _states[worker_index] = NULL;
358   }
359   _flushed = true;
360 }
361 
record_unused_optional_region(HeapRegion * hr)362 void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
363   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
364     G1ParScanThreadState* pss = _states[worker_index];
365 
366     if (pss == NULL) {
367       continue;
368     }
369 
370     size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
371     _g1h->g1_policy()->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanRS, worker_index, used_memory, G1GCPhaseTimes::OptCSetUsedMemory);
372   }
373 }
374 
handle_evacuation_failure_par(oop old,markOop m)375 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
376   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
377 
378   oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
379   if (forward_ptr == NULL) {
380     // Forward-to-self succeeded. We are the "owner" of the object.
381     HeapRegion* r = _g1h->heap_region_containing(old);
382 
383     if (!r->evacuation_failed()) {
384       r->set_evacuation_failed(true);
385      _g1h->hr_printer()->evac_failure(r);
386     }
387 
388     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
389 
390     G1ScanInYoungSetter x(&_scanner, r->is_young());
391     old->oop_iterate_backwards(&_scanner);
392 
393     return old;
394   } else {
395     // Forward-to-self failed. Either someone else managed to allocate
396     // space for this object (old != forward_ptr) or they beat us in
397     // self-forwarding it (old == forward_ptr).
398     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
399            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
400            "should not be in the CSet",
401            p2i(old), p2i(forward_ptr));
402     return forward_ptr;
403   }
404 }
G1ParScanThreadStateSet(G1CollectedHeap * g1h,uint n_workers,size_t young_cset_length,size_t optional_cset_length)405 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
406                                                  uint n_workers,
407                                                  size_t young_cset_length,
408                                                  size_t optional_cset_length) :
409     _g1h(g1h),
410     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
411     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length, mtGC)),
412     _young_cset_length(young_cset_length),
413     _optional_cset_length(optional_cset_length),
414     _n_workers(n_workers),
415     _flushed(false) {
416   for (uint i = 0; i < n_workers; ++i) {
417     _states[i] = NULL;
418   }
419   memset(_surviving_young_words_total, 0, young_cset_length * sizeof(size_t));
420 }
421 
~G1ParScanThreadStateSet()422 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
423   assert(_flushed, "thread local state from the per thread states should have been flushed");
424   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
425   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
426 }
427