1 /*
2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "aot/aotLoader.hpp"
27 #include "classfile/classLoaderDataGraph.hpp"
28 #include "classfile/stringTable.hpp"
29 #include "classfile/symbolTable.hpp"
30 #include "classfile/systemDictionary.hpp"
31 #include "code/codeCache.hpp"
32 #include "gc/parallel/parallelScavengeHeap.hpp"
33 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
34 #include "gc/parallel/psMarkSweep.hpp"
35 #include "gc/parallel/psMarkSweepDecorator.hpp"
36 #include "gc/parallel/psOldGen.hpp"
37 #include "gc/parallel/psScavenge.hpp"
38 #include "gc/parallel/psYoungGen.hpp"
39 #include "gc/serial/markSweep.hpp"
40 #include "gc/shared/gcCause.hpp"
41 #include "gc/shared/gcHeapSummary.hpp"
42 #include "gc/shared/gcId.hpp"
43 #include "gc/shared/gcLocker.hpp"
44 #include "gc/shared/gcTimer.hpp"
45 #include "gc/shared/gcTrace.hpp"
46 #include "gc/shared/gcTraceTime.inline.hpp"
47 #include "gc/shared/isGCActiveMark.hpp"
48 #include "gc/shared/referencePolicy.hpp"
49 #include "gc/shared/referenceProcessor.hpp"
50 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
51 #include "gc/shared/spaceDecorator.hpp"
52 #include "gc/shared/weakProcessor.hpp"
53 #include "logging/log.hpp"
54 #include "oops/oop.inline.hpp"
55 #include "runtime/biasedLocking.hpp"
56 #include "runtime/flags/flagSetting.hpp"
57 #include "runtime/handles.inline.hpp"
58 #include "runtime/safepoint.hpp"
59 #include "runtime/vmThread.hpp"
60 #include "services/management.hpp"
61 #include "services/memoryService.hpp"
62 #include "utilities/align.hpp"
63 #include "utilities/events.hpp"
64 #include "utilities/stack.inline.hpp"
65 
66 elapsedTimer        PSMarkSweep::_accumulated_time;
67 jlong               PSMarkSweep::_time_of_last_gc   = 0;
68 CollectorCounters*  PSMarkSweep::_counters = NULL;
69 
70 SpanSubjectToDiscoveryClosure PSMarkSweep::_span_based_discoverer;
71 
initialize()72 void PSMarkSweep::initialize() {
73   _span_based_discoverer.set_span(ParallelScavengeHeap::heap()->reserved_region());
74   set_ref_processor(new ReferenceProcessor(&_span_based_discoverer));     // a vanilla ref proc
75   _counters = new CollectorCounters("PSMarkSweep", 1);
76   MarkSweep::initialize();
77 }
78 
79 // This method contains all heap specific policy for invoking mark sweep.
80 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
81 // the heap. It will do nothing further. If we need to bail out for policy
82 // reasons, scavenge before full gc, or any other specialized behavior, it
83 // needs to be added here.
84 //
85 // Note that this method should only be called from the vm_thread while
86 // at a safepoint!
87 //
88 // Note that the all_soft_refs_clear flag in the collector policy
89 // may be true because this method can be called without intervening
90 // activity.  For example when the heap space is tight and full measure
91 // are being taken to free space.
92 
invoke(bool maximum_heap_compaction)93 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
94   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
95   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
96   assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
97 
98   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
99   GCCause::Cause gc_cause = heap->gc_cause();
100   PSAdaptiveSizePolicy* policy = heap->size_policy();
101   IsGCActiveMark mark;
102 
103   if (ScavengeBeforeFullGC) {
104     PSScavenge::invoke_no_policy();
105   }
106 
107   const bool clear_all_soft_refs =
108     heap->soft_ref_policy()->should_clear_all_soft_refs();
109 
110   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
111   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
112   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
113 }
114 
115 // This method contains no policy. You should probably
116 // be calling invoke() instead.
invoke_no_policy(bool clear_all_softrefs)117 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
118   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
119   assert(ref_processor() != NULL, "Sanity");
120 
121   if (GCLocker::check_active_before_gc()) {
122     return false;
123   }
124 
125   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
126   GCCause::Cause gc_cause = heap->gc_cause();
127 
128   GCIdMark gc_id_mark;
129   _gc_timer->register_gc_start();
130   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
131 
132   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
133 
134   // The scope of casr should end after code that can change
135   // CollectorPolicy::_should_clear_all_soft_refs.
136   ClearedAllSoftRefs casr(clear_all_softrefs, heap->soft_ref_policy());
137 
138   PSYoungGen* young_gen = heap->young_gen();
139   PSOldGen* old_gen = heap->old_gen();
140 
141   // Increment the invocation count
142   heap->increment_total_collections(true /* full */);
143 
144   // Save information needed to minimize mangling
145   heap->record_gen_tops_before_GC();
146 
147   // We need to track unique mark sweep invocations as well.
148   _total_invocations++;
149 
150   heap->print_heap_before_gc();
151   heap->trace_heap_before_gc(_gc_tracer);
152 
153   // Fill in TLABs
154   heap->ensure_parsability(true);  // retire TLABs
155 
156   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
157     HandleMark hm;  // Discard invalid handles created during verification
158     Universe::verify("Before GC");
159   }
160 
161   // Verify object start arrays
162   if (VerifyObjectStartArray &&
163       VerifyBeforeGC) {
164     old_gen->verify_object_start_array();
165   }
166 
167   // Filled in below to track the state of the young gen after the collection.
168   bool eden_empty;
169   bool survivors_empty;
170   bool young_gen_empty;
171 
172   {
173     HandleMark hm;
174 
175     GCTraceCPUTime tcpu;
176     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause, true);
177 
178     heap->pre_full_gc_dump(_gc_timer);
179 
180     TraceCollectorStats tcs(counters());
181     TraceMemoryManagerStats tms(heap->old_gc_manager(),gc_cause);
182 
183     if (log_is_enabled(Debug, gc, heap, exit)) {
184       accumulated_time()->start();
185     }
186 
187     // Let the size policy know we're starting
188     size_policy->major_collection_begin();
189 
190     CodeCache::gc_prologue();
191     BiasedLocking::preserve_marks();
192 
193     // Capture metadata size before collection for sizing.
194     size_t metadata_prev_used = MetaspaceUtils::used_bytes();
195 
196     size_t old_gen_prev_used = old_gen->used_in_bytes();
197     size_t young_gen_prev_used = young_gen->used_in_bytes();
198 
199     allocate_stacks();
200 
201 #if COMPILER2_OR_JVMCI
202     DerivedPointerTable::clear();
203 #endif
204 
205     ref_processor()->enable_discovery();
206     ref_processor()->setup_policy(clear_all_softrefs);
207 
208     mark_sweep_phase1(clear_all_softrefs);
209 
210     mark_sweep_phase2();
211 
212 #if COMPILER2_OR_JVMCI
213     // Don't add any more derived pointers during phase3
214     assert(DerivedPointerTable::is_active(), "Sanity");
215     DerivedPointerTable::set_active(false);
216 #endif
217 
218     mark_sweep_phase3();
219 
220     mark_sweep_phase4();
221 
222     restore_marks();
223 
224     deallocate_stacks();
225 
226     if (ZapUnusedHeapArea) {
227       // Do a complete mangle (top to end) because the usage for
228       // scratch does not maintain a top pointer.
229       young_gen->to_space()->mangle_unused_area_complete();
230     }
231 
232     eden_empty = young_gen->eden_space()->is_empty();
233     if (!eden_empty) {
234       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
235     }
236 
237     // Update heap occupancy information which is used as
238     // input to soft ref clearing policy at the next gc.
239     Universe::update_heap_info_at_gc();
240 
241     survivors_empty = young_gen->from_space()->is_empty() &&
242                       young_gen->to_space()->is_empty();
243     young_gen_empty = eden_empty && survivors_empty;
244 
245     PSCardTable* card_table = heap->card_table();
246     MemRegion old_mr = heap->old_gen()->reserved();
247     if (young_gen_empty) {
248       card_table->clear(MemRegion(old_mr.start(), old_mr.end()));
249     } else {
250       card_table->invalidate(MemRegion(old_mr.start(), old_mr.end()));
251     }
252 
253     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
254     ClassLoaderDataGraph::purge();
255     MetaspaceUtils::verify_metrics();
256 
257     BiasedLocking::restore_marks();
258     CodeCache::gc_epilogue();
259     JvmtiExport::gc_epilogue();
260 
261 #if COMPILER2_OR_JVMCI
262     DerivedPointerTable::update_pointers();
263 #endif
264 
265     assert(!ref_processor()->discovery_enabled(), "Should have been disabled earlier");
266 
267     // Update time of last GC
268     reset_millis_since_last_gc();
269 
270     // Let the size policy know we're done
271     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
272 
273     if (UseAdaptiveSizePolicy) {
274 
275      log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
276      log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
277                          old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
278 
279       // Don't check if the size_policy is ready here.  Let
280       // the size_policy check that internally.
281       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
282           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
283         // Swap the survivor spaces if from_space is empty. The
284         // resize_young_gen() called below is normally used after
285         // a successful young GC and swapping of survivor spaces;
286         // otherwise, it will fail to resize the young gen with
287         // the current implementation.
288         if (young_gen->from_space()->is_empty()) {
289           young_gen->from_space()->clear(SpaceDecorator::Mangle);
290           young_gen->swap_spaces();
291         }
292 
293         // Calculate optimal free space amounts
294         assert(young_gen->max_size() >
295           young_gen->from_space()->capacity_in_bytes() +
296           young_gen->to_space()->capacity_in_bytes(),
297           "Sizes of space in young gen are out of bounds");
298 
299         size_t young_live = young_gen->used_in_bytes();
300         size_t eden_live = young_gen->eden_space()->used_in_bytes();
301         size_t old_live = old_gen->used_in_bytes();
302         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
303         size_t max_old_gen_size = old_gen->max_gen_size();
304         size_t max_eden_size = young_gen->max_size() -
305           young_gen->from_space()->capacity_in_bytes() -
306           young_gen->to_space()->capacity_in_bytes();
307 
308         // Used for diagnostics
309         size_policy->clear_generation_free_space_flags();
310 
311         size_policy->compute_generations_free_space(young_live,
312                                                     eden_live,
313                                                     old_live,
314                                                     cur_eden,
315                                                     max_old_gen_size,
316                                                     max_eden_size,
317                                                     true /* full gc*/);
318 
319         size_policy->check_gc_overhead_limit(young_live,
320                                              eden_live,
321                                              max_old_gen_size,
322                                              max_eden_size,
323                                              true /* full gc*/,
324                                              gc_cause,
325                                              heap->soft_ref_policy());
326 
327         size_policy->decay_supplemental_growth(true /* full gc*/);
328 
329         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
330 
331         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
332                                size_policy->calculated_survivor_size_in_bytes());
333       }
334       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
335     }
336 
337     if (UsePerfData) {
338       heap->gc_policy_counters()->update_counters();
339       heap->gc_policy_counters()->update_old_capacity(
340         old_gen->capacity_in_bytes());
341       heap->gc_policy_counters()->update_young_capacity(
342         young_gen->capacity_in_bytes());
343     }
344 
345     heap->resize_all_tlabs();
346 
347     // We collected the heap, recalculate the metaspace capacity
348     MetaspaceGC::compute_new_size();
349 
350     if (log_is_enabled(Debug, gc, heap, exit)) {
351       accumulated_time()->stop();
352     }
353 
354     young_gen->print_used_change(young_gen_prev_used);
355     old_gen->print_used_change(old_gen_prev_used);
356     MetaspaceUtils::print_metaspace_change(metadata_prev_used);
357 
358     // Track memory usage and detect low memory
359     MemoryService::track_memory_usage();
360     heap->update_counters();
361 
362     heap->post_full_gc_dump(_gc_timer);
363   }
364 
365   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
366     HandleMark hm;  // Discard invalid handles created during verification
367     Universe::verify("After GC");
368   }
369 
370   // Re-verify object start arrays
371   if (VerifyObjectStartArray &&
372       VerifyAfterGC) {
373     old_gen->verify_object_start_array();
374   }
375 
376   if (ZapUnusedHeapArea) {
377     old_gen->object_space()->check_mangled_unused_area_complete();
378   }
379 
380   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
381 
382   heap->print_heap_after_gc();
383   heap->trace_heap_after_gc(_gc_tracer);
384 
385 #ifdef TRACESPINNING
386   ParallelTaskTerminator::print_termination_counts();
387 #endif
388 
389   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
390 
391   _gc_timer->register_gc_end();
392 
393   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
394 
395   return true;
396 }
397 
absorb_live_data_from_eden(PSAdaptiveSizePolicy * size_policy,PSYoungGen * young_gen,PSOldGen * old_gen)398 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
399                                              PSYoungGen* young_gen,
400                                              PSOldGen* old_gen) {
401   MutableSpace* const eden_space = young_gen->eden_space();
402   assert(!eden_space->is_empty(), "eden must be non-empty");
403   assert(young_gen->virtual_space()->alignment() ==
404          old_gen->virtual_space()->alignment(), "alignments do not match");
405 
406   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
407     return false;
408   }
409 
410   // Both generations must be completely committed.
411   if (young_gen->virtual_space()->uncommitted_size() != 0) {
412     return false;
413   }
414   if (old_gen->virtual_space()->uncommitted_size() != 0) {
415     return false;
416   }
417 
418   // Figure out how much to take from eden.  Include the average amount promoted
419   // in the total; otherwise the next young gen GC will simply bail out to a
420   // full GC.
421   const size_t alignment = old_gen->virtual_space()->alignment();
422   const size_t eden_used = eden_space->used_in_bytes();
423   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
424   const size_t absorb_size = align_up(eden_used + promoted, alignment);
425   const size_t eden_capacity = eden_space->capacity_in_bytes();
426 
427   if (absorb_size >= eden_capacity) {
428     return false; // Must leave some space in eden.
429   }
430 
431   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
432   if (new_young_size < young_gen->min_gen_size()) {
433     return false; // Respect young gen minimum size.
434   }
435 
436   log_trace(gc, ergo, heap)(" absorbing " SIZE_FORMAT "K:  "
437                             "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
438                             "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
439                             "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
440                             absorb_size / K,
441                             eden_capacity / K, (eden_capacity - absorb_size) / K,
442                             young_gen->from_space()->used_in_bytes() / K,
443                             young_gen->to_space()->used_in_bytes() / K,
444                             young_gen->capacity_in_bytes() / K, new_young_size / K);
445 
446   // Fill the unused part of the old gen.
447   MutableSpace* const old_space = old_gen->object_space();
448   HeapWord* const unused_start = old_space->top();
449   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
450 
451   if (unused_words > 0) {
452     if (unused_words < CollectedHeap::min_fill_size()) {
453       return false;  // If the old gen cannot be filled, must give up.
454     }
455     CollectedHeap::fill_with_objects(unused_start, unused_words);
456   }
457 
458   // Take the live data from eden and set both top and end in the old gen to
459   // eden top.  (Need to set end because reset_after_change() mangles the region
460   // from end to virtual_space->high() in debug builds).
461   HeapWord* const new_top = eden_space->top();
462   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
463                                         absorb_size);
464   young_gen->reset_after_change();
465   old_space->set_top(new_top);
466   old_space->set_end(new_top);
467   old_gen->reset_after_change();
468 
469   // Update the object start array for the filler object and the data from eden.
470   ObjectStartArray* const start_array = old_gen->start_array();
471   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
472     start_array->allocate_block(p);
473   }
474 
475   // Could update the promoted average here, but it is not typically updated at
476   // full GCs and the value to use is unclear.  Something like
477   //
478   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
479 
480   size_policy->set_bytes_absorbed_from_eden(absorb_size);
481   return true;
482 }
483 
allocate_stacks()484 void PSMarkSweep::allocate_stacks() {
485   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
486   PSYoungGen* young_gen = heap->young_gen();
487 
488   MutableSpace* to_space = young_gen->to_space();
489   _preserved_marks = (PreservedMark*)to_space->top();
490   _preserved_count = 0;
491 
492   // We want to calculate the size in bytes first.
493   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
494   // Now divide by the size of a PreservedMark
495   _preserved_count_max /= sizeof(PreservedMark);
496 }
497 
498 
deallocate_stacks()499 void PSMarkSweep::deallocate_stacks() {
500   _preserved_mark_stack.clear(true);
501   _preserved_oop_stack.clear(true);
502   _marking_stack.clear();
503   _objarray_stack.clear(true);
504 }
505 
mark_sweep_phase1(bool clear_all_softrefs)506 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
507   // Recursively traverse all live objects and mark them
508   GCTraceTime(Info, gc, phases) tm("Phase 1: Mark live objects", _gc_timer);
509 
510   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
511 
512   // Need to clear claim bits before the tracing starts.
513   ClassLoaderDataGraph::clear_claimed_marks();
514 
515   // General strong roots.
516   {
517     ParallelScavengeHeap::ParStrongRootsScope psrs;
518     Universe::oops_do(mark_and_push_closure());
519     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
520     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
521     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
522     ObjectSynchronizer::oops_do(mark_and_push_closure());
523     Management::oops_do(mark_and_push_closure());
524     JvmtiExport::oops_do(mark_and_push_closure());
525     SystemDictionary::oops_do(mark_and_push_closure());
526     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
527     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
528     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
529     AOTLoader::oops_do(mark_and_push_closure());
530   }
531 
532   // Flush marking stack.
533   follow_stack();
534 
535   // Process reference objects found during marking
536   {
537     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer);
538 
539     ref_processor()->setup_policy(clear_all_softrefs);
540     ReferenceProcessorPhaseTimes pt(_gc_timer, ref_processor()->max_num_queues());
541     const ReferenceProcessorStats& stats =
542       ref_processor()->process_discovered_references(
543         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, &pt);
544     gc_tracer()->report_gc_reference_stats(stats);
545     pt.print_all_references();
546   }
547 
548   // This is the point where the entire marking should have completed.
549   assert(_marking_stack.is_empty(), "Marking should have completed");
550 
551   {
552     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer);
553     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
554   }
555 
556   {
557     GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer);
558 
559     // Unload classes and purge the SystemDictionary.
560     bool purged_class = SystemDictionary::do_unloading(_gc_timer);
561 
562     // Unload nmethods.
563     CodeCache::do_unloading(is_alive_closure(), purged_class);
564 
565     // Prune dead klasses from subklass/sibling/implementor lists.
566     Klass::clean_weak_klass_links(purged_class);
567   }
568 
569   {
570     GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer);
571     // Delete entries for dead interned strings.
572     StringTable::unlink(is_alive_closure());
573   }
574 
575   {
576     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer);
577     // Clean up unreferenced symbols in symbol table.
578     SymbolTable::unlink();
579   }
580 
581   _gc_tracer->report_object_count_after_gc(is_alive_closure());
582 }
583 
584 
mark_sweep_phase2()585 void PSMarkSweep::mark_sweep_phase2() {
586   GCTraceTime(Info, gc, phases) tm("Phase 2: Compute new object addresses", _gc_timer);
587 
588   // Now all live objects are marked, compute the new object addresses.
589 
590   // It is not required that we traverse spaces in the same order in
591   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
592   // tracking expects us to do so. See comment under phase4.
593 
594   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
595   PSOldGen* old_gen = heap->old_gen();
596 
597   // Begin compacting into the old gen
598   PSMarkSweepDecorator::set_destination_decorator_tenured();
599 
600   // This will also compact the young gen spaces.
601   old_gen->precompact();
602 }
603 
mark_sweep_phase3()604 void PSMarkSweep::mark_sweep_phase3() {
605   // Adjust the pointers to reflect the new locations
606   GCTraceTime(Info, gc, phases) tm("Phase 3: Adjust pointers", _gc_timer);
607 
608   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
609   PSYoungGen* young_gen = heap->young_gen();
610   PSOldGen* old_gen = heap->old_gen();
611 
612   // Need to clear claim bits before the tracing starts.
613   ClassLoaderDataGraph::clear_claimed_marks();
614 
615   // General strong roots.
616   Universe::oops_do(adjust_pointer_closure());
617   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
618   Threads::oops_do(adjust_pointer_closure(), NULL);
619   ObjectSynchronizer::oops_do(adjust_pointer_closure());
620   Management::oops_do(adjust_pointer_closure());
621   JvmtiExport::oops_do(adjust_pointer_closure());
622   SystemDictionary::oops_do(adjust_pointer_closure());
623   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
624 
625   // Now adjust pointers in remaining weak roots.  (All of which should
626   // have been cleared if they pointed to non-surviving objects.)
627   // Global (weak) JNI handles
628   WeakProcessor::oops_do(adjust_pointer_closure());
629 
630   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
631   CodeCache::blobs_do(&adjust_from_blobs);
632   AOTLoader::oops_do(adjust_pointer_closure());
633   StringTable::oops_do(adjust_pointer_closure());
634   ref_processor()->weak_oops_do(adjust_pointer_closure());
635   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
636 
637   adjust_marks();
638 
639   young_gen->adjust_pointers();
640   old_gen->adjust_pointers();
641 }
642 
mark_sweep_phase4()643 void PSMarkSweep::mark_sweep_phase4() {
644   EventMark m("4 compact heap");
645   GCTraceTime(Info, gc, phases) tm("Phase 4: Move objects", _gc_timer);
646 
647   // All pointers are now adjusted, move objects accordingly
648 
649   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
650   PSYoungGen* young_gen = heap->young_gen();
651   PSOldGen* old_gen = heap->old_gen();
652 
653   old_gen->compact();
654   young_gen->compact();
655 }
656 
millis_since_last_gc()657 jlong PSMarkSweep::millis_since_last_gc() {
658   // We need a monotonically non-decreasing time in ms but
659   // os::javaTimeMillis() does not guarantee monotonicity.
660   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
661   jlong ret_val = now - _time_of_last_gc;
662   // XXX See note in genCollectedHeap::millis_since_last_gc().
663   if (ret_val < 0) {
664     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
665     return 0;
666   }
667   return ret_val;
668 }
669 
reset_millis_since_last_gc()670 void PSMarkSweep::reset_millis_since_last_gc() {
671   // We need a monotonically non-decreasing time in ms but
672   // os::javaTimeMillis() does not guarantee monotonicity.
673   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
674 }
675