1 /*
2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "gc/parallel/objectStartArray.hpp"
28 #include "gc/parallel/parallelScavengeHeap.hpp"
29 #include "gc/parallel/parMarkBitMap.inline.hpp"
30 #include "gc/parallel/psMarkSweep.hpp"
31 #include "gc/parallel/psMarkSweepDecorator.hpp"
32 #include "gc/parallel/psParallelCompact.inline.hpp"
33 #include "gc/serial/markSweep.inline.hpp"
34 #include "gc/shared/spaceDecorator.hpp"
35 #include "memory/iterator.inline.hpp"
36 #include "oops/oop.inline.hpp"
37 #include "runtime/prefetch.inline.hpp"
38 
39 PSMarkSweepDecorator* PSMarkSweepDecorator::_destination_decorator = NULL;
40 
41 
set_destination_decorator_tenured()42 void PSMarkSweepDecorator::set_destination_decorator_tenured() {
43   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
44   _destination_decorator = heap->old_gen()->object_mark_sweep();
45 }
46 
advance_destination_decorator()47 void PSMarkSweepDecorator::advance_destination_decorator() {
48   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
49 
50   assert(_destination_decorator != NULL, "Sanity");
51 
52   PSMarkSweepDecorator* first = heap->old_gen()->object_mark_sweep();
53   PSMarkSweepDecorator* second = heap->young_gen()->eden_mark_sweep();
54   PSMarkSweepDecorator* third = heap->young_gen()->from_mark_sweep();
55   PSMarkSweepDecorator* fourth = heap->young_gen()->to_mark_sweep();
56 
57   if ( _destination_decorator == first ) {
58     _destination_decorator = second;
59   } else if ( _destination_decorator == second ) {
60     _destination_decorator = third;
61   } else if ( _destination_decorator == third ) {
62     _destination_decorator = fourth;
63   } else {
64     fatal("PSMarkSweep attempting to advance past last compaction area");
65   }
66 }
67 
destination_decorator()68 PSMarkSweepDecorator* PSMarkSweepDecorator::destination_decorator() {
69   assert(_destination_decorator != NULL, "Sanity");
70 
71   return _destination_decorator;
72 }
73 
74 // FIX ME FIX ME FIX ME FIX ME!!!!!!!!!
75 // The object forwarding code is duplicated. Factor this out!!!!!
76 //
77 // This method "precompacts" objects inside its space to dest. It places forwarding
78 // pointers into markOops for use by adjust_pointers. If "dest" should overflow, we
79 // finish by compacting into our own space.
80 
precompact()81 void PSMarkSweepDecorator::precompact() {
82   // Reset our own compact top.
83   set_compaction_top(space()->bottom());
84 
85   /* We allow some amount of garbage towards the bottom of the space, so
86    * we don't start compacting before there is a significant gain to be made.
87    * Occasionally, we want to ensure a full compaction, which is determined
88    * by the MarkSweepAlwaysCompactCount parameter. This is a significant
89    * performance improvement!
90    */
91   bool skip_dead = ((PSMarkSweep::total_invocations() % MarkSweepAlwaysCompactCount) != 0);
92 
93   size_t allowed_deadspace = 0;
94   if (skip_dead) {
95     const size_t ratio = allowed_dead_ratio();
96     allowed_deadspace = space()->capacity_in_words() * ratio / 100;
97   }
98 
99   // Fetch the current destination decorator
100   PSMarkSweepDecorator* dest = destination_decorator();
101   ObjectStartArray* start_array = dest->start_array();
102 
103   HeapWord* compact_top = dest->compaction_top();
104   HeapWord* compact_end = dest->space()->end();
105 
106   HeapWord* q = space()->bottom();
107   HeapWord* t = space()->top();
108 
109   HeapWord*  end_of_live= q;    /* One byte beyond the last byte of the last
110                                    live object. */
111   HeapWord*  first_dead = space()->end(); /* The first dead object. */
112 
113   const intx interval = PrefetchScanIntervalInBytes;
114 
115   while (q < t) {
116     assert(oop(q)->mark_raw()->is_marked() || oop(q)->mark_raw()->is_unlocked() ||
117            oop(q)->mark_raw()->has_bias_pattern(),
118            "these are the only valid states during a mark sweep");
119     if (oop(q)->is_gc_marked()) {
120       /* prefetch beyond q */
121       Prefetch::write(q, interval);
122       size_t size = oop(q)->size();
123 
124       size_t compaction_max_size = pointer_delta(compact_end, compact_top);
125 
126       // This should only happen if a space in the young gen overflows the
127       // old gen. If that should happen, we null out the start_array, because
128       // the young spaces are not covered by one.
129       while(size > compaction_max_size) {
130         // First record the last compact_top
131         dest->set_compaction_top(compact_top);
132 
133         // Advance to the next compaction decorator
134         advance_destination_decorator();
135         dest = destination_decorator();
136 
137         // Update compaction info
138         start_array = dest->start_array();
139         compact_top = dest->compaction_top();
140         compact_end = dest->space()->end();
141         assert(compact_top == dest->space()->bottom(), "Advanced to space already in use");
142         assert(compact_end > compact_top, "Must always be space remaining");
143         compaction_max_size =
144           pointer_delta(compact_end, compact_top);
145       }
146 
147       // store the forwarding pointer into the mark word
148       if (q != compact_top) {
149         oop(q)->forward_to(oop(compact_top));
150         assert(oop(q)->is_gc_marked(), "encoding the pointer should preserve the mark");
151       } else {
152         // if the object isn't moving we can just set the mark to the default
153         // mark and handle it specially later on.
154         oop(q)->init_mark_raw();
155         assert(oop(q)->forwardee() == NULL, "should be forwarded to NULL");
156       }
157 
158       // Update object start array
159       if (start_array) {
160         start_array->allocate_block(compact_top);
161       }
162 
163       compact_top += size;
164       assert(compact_top <= dest->space()->end(),
165         "Exceeding space in destination");
166 
167       q += size;
168       end_of_live = q;
169     } else {
170       /* run over all the contiguous dead objects */
171       HeapWord* end = q;
172       do {
173         /* prefetch beyond end */
174         Prefetch::write(end, interval);
175         end += oop(end)->size();
176       } while (end < t && (!oop(end)->is_gc_marked()));
177 
178       /* see if we might want to pretend this object is alive so that
179        * we don't have to compact quite as often.
180        */
181       if (allowed_deadspace > 0 && q == compact_top) {
182         size_t sz = pointer_delta(end, q);
183         if (insert_deadspace(allowed_deadspace, q, sz)) {
184           size_t compaction_max_size = pointer_delta(compact_end, compact_top);
185 
186           // This should only happen if a space in the young gen overflows the
187           // old gen. If that should happen, we null out the start_array, because
188           // the young spaces are not covered by one.
189           while (sz > compaction_max_size) {
190             // First record the last compact_top
191             dest->set_compaction_top(compact_top);
192 
193             // Advance to the next compaction decorator
194             advance_destination_decorator();
195             dest = destination_decorator();
196 
197             // Update compaction info
198             start_array = dest->start_array();
199             compact_top = dest->compaction_top();
200             compact_end = dest->space()->end();
201             assert(compact_top == dest->space()->bottom(), "Advanced to space already in use");
202             assert(compact_end > compact_top, "Must always be space remaining");
203             compaction_max_size =
204               pointer_delta(compact_end, compact_top);
205           }
206 
207           // store the forwarding pointer into the mark word
208           if (q != compact_top) {
209             oop(q)->forward_to(oop(compact_top));
210             assert(oop(q)->is_gc_marked(), "encoding the pointer should preserve the mark");
211           } else {
212             // if the object isn't moving we can just set the mark to the default
213             // mark and handle it specially later on.
214             oop(q)->init_mark_raw();
215             assert(oop(q)->forwardee() == NULL, "should be forwarded to NULL");
216           }
217 
218           // Update object start array
219           if (start_array) {
220             start_array->allocate_block(compact_top);
221           }
222 
223           compact_top += sz;
224           assert(compact_top <= dest->space()->end(),
225             "Exceeding space in destination");
226 
227           q = end;
228           end_of_live = end;
229           continue;
230         }
231       }
232 
233       // q is a pointer to a dead object. Use this dead memory to store a pointer to the next live object.
234       (*(HeapWord**)q) = end;
235 
236       /* see if this is the first dead region. */
237       if (q < first_dead) {
238         first_dead = q;
239       }
240 
241       /* move on to the next object */
242       q = end;
243     }
244   }
245 
246   assert(q == t, "just checking");
247   _end_of_live = end_of_live;
248   if (end_of_live < first_dead) {
249     first_dead = end_of_live;
250   }
251   _first_dead = first_dead;
252 
253   // Update compaction top
254   dest->set_compaction_top(compact_top);
255 }
256 
insert_deadspace(size_t & allowed_deadspace_words,HeapWord * q,size_t deadlength)257 bool PSMarkSweepDecorator::insert_deadspace(size_t& allowed_deadspace_words,
258                                             HeapWord* q, size_t deadlength) {
259   if (allowed_deadspace_words >= deadlength) {
260     allowed_deadspace_words -= deadlength;
261     CollectedHeap::fill_with_object(q, deadlength);
262     oop(q)->set_mark_raw(oop(q)->mark_raw()->set_marked());
263     assert((int) deadlength == oop(q)->size(), "bad filler object size");
264     // Recall that we required "q == compaction_top".
265     return true;
266   } else {
267     allowed_deadspace_words = 0;
268     return false;
269   }
270 }
271 
adjust_pointers()272 void PSMarkSweepDecorator::adjust_pointers() {
273   // adjust all the interior pointers to point at the new locations of objects
274   // Used by MarkSweep::mark_sweep_phase3()
275 
276   HeapWord* q = space()->bottom();
277   HeapWord* t = _end_of_live;  // Established by "prepare_for_compaction".
278 
279   assert(_first_dead <= _end_of_live, "Stands to reason, no?");
280 
281   if (q < t && _first_dead > q &&
282       !oop(q)->is_gc_marked()) {
283     // we have a chunk of the space which hasn't moved and we've
284     // reinitialized the mark word during the previous pass, so we can't
285     // use is_gc_marked for the traversal.
286     HeapWord* end = _first_dead;
287 
288     while (q < end) {
289       // point all the oops to the new location
290       size_t size = MarkSweep::adjust_pointers(oop(q));
291       q += size;
292     }
293 
294     if (_first_dead == t) {
295       q = t;
296     } else {
297       // The first dead object should contain a pointer to the first live object
298       q = *(HeapWord**)_first_dead;
299     }
300   }
301   const intx interval = PrefetchScanIntervalInBytes;
302 
303   debug_only(HeapWord* prev_q = NULL);
304   while (q < t) {
305     // prefetch beyond q
306     Prefetch::write(q, interval);
307     if (oop(q)->is_gc_marked()) {
308       // q is alive
309       // point all the oops to the new location
310       size_t size = MarkSweep::adjust_pointers(oop(q));
311       debug_only(prev_q = q);
312       q += size;
313     } else {
314       debug_only(prev_q = q);
315       // The first dead object is no longer an object. At that memory address,
316       // there is a pointer to the first live object that the previous phase found.
317       q = *(HeapWord**)q;
318       assert(q > prev_q, "we should be moving forward through memory, q: " PTR_FORMAT ", prev_q: " PTR_FORMAT, p2i(q), p2i(prev_q));
319     }
320   }
321 
322   assert(q == t, "just checking");
323 }
324 
compact(bool mangle_free_space)325 void PSMarkSweepDecorator::compact(bool mangle_free_space ) {
326   // Copy all live objects to their new location
327   // Used by MarkSweep::mark_sweep_phase4()
328 
329   HeapWord*       q = space()->bottom();
330   HeapWord* const t = _end_of_live;
331   debug_only(HeapWord* prev_q = NULL);
332 
333   if (q < t && _first_dead > q &&
334       !oop(q)->is_gc_marked()) {
335 #ifdef ASSERT
336     // we have a chunk of the space which hasn't moved and we've reinitialized the
337     // mark word during the previous pass, so we can't use is_gc_marked for the
338     // traversal.
339     HeapWord* const end = _first_dead;
340 
341     while (q < end) {
342       size_t size = oop(q)->size();
343       assert(!oop(q)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
344       debug_only(prev_q = q);
345       q += size;
346     }
347 #endif
348 
349     if (_first_dead == t) {
350       q = t;
351     } else {
352       // $$$ Funky
353       q = (HeapWord*) oop(_first_dead)->mark_raw()->decode_pointer();
354     }
355   }
356 
357   const intx scan_interval = PrefetchScanIntervalInBytes;
358   const intx copy_interval = PrefetchCopyIntervalInBytes;
359 
360   while (q < t) {
361     if (!oop(q)->is_gc_marked()) {
362       // mark is pointer to next marked oop
363       debug_only(prev_q = q);
364       q = (HeapWord*) oop(q)->mark_raw()->decode_pointer();
365       assert(q > prev_q, "we should be moving forward through memory");
366     } else {
367       // prefetch beyond q
368       Prefetch::read(q, scan_interval);
369 
370       // size and destination
371       size_t size = oop(q)->size();
372       HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();
373 
374       // prefetch beyond compaction_top
375       Prefetch::write(compaction_top, copy_interval);
376 
377       // copy object and reinit its mark
378       assert(q != compaction_top, "everything in this pass should be moving");
379       Copy::aligned_conjoint_words(q, compaction_top, size);
380       oop(compaction_top)->init_mark_raw();
381       assert(oop(compaction_top)->klass() != NULL, "should have a class");
382 
383       debug_only(prev_q = q);
384       q += size;
385     }
386   }
387 
388   assert(compaction_top() >= space()->bottom() && compaction_top() <= space()->end(),
389          "should point inside space");
390   space()->set_top(compaction_top());
391 
392   if (mangle_free_space) {
393     space()->mangle_unused_area();
394   }
395 }
396