1 /*
2 * Copyright (c) 2013, 2019, Red Hat, Inc. All rights reserved.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.
7 *
8 * This code is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11 * version 2 for more details (a copy is included in the LICENSE file that
12 * accompanied this code).
13 *
14 * You should have received a copy of the GNU General Public License version
15 * 2 along with this work; if not, write to the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
17 *
18 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
19 * or visit www.oracle.com if you need additional information or have any
20 * questions.
21 *
22 */
23
24 #include "precompiled.hpp"
25 #include "memory/allocation.hpp"
26
27 #include "gc/shared/gcTimer.hpp"
28 #include "gc/shared/gcTraceTime.inline.hpp"
29 #include "gc/shared/memAllocator.hpp"
30 #include "gc/shared/parallelCleaning.hpp"
31 #include "gc/shared/plab.hpp"
32
33 #include "gc/shenandoah/shenandoahAllocTracker.hpp"
34 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
35 #include "gc/shenandoah/shenandoahBrooksPointer.hpp"
36 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
37 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
38 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
39 #include "gc/shenandoah/shenandoahConcurrentMark.inline.hpp"
40 #include "gc/shenandoah/shenandoahControlThread.hpp"
41 #include "gc/shenandoah/shenandoahFreeSet.hpp"
42 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
43 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
44 #include "gc/shenandoah/shenandoahHeapRegion.hpp"
45 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
46 #include "gc/shenandoah/shenandoahMarkCompact.hpp"
47 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
48 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
49 #include "gc/shenandoah/shenandoahMetrics.hpp"
50 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
51 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
52 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
53 #include "gc/shenandoah/shenandoahRootProcessor.hpp"
54 #include "gc/shenandoah/shenandoahStringDedup.hpp"
55 #include "gc/shenandoah/shenandoahTaskqueue.hpp"
56 #include "gc/shenandoah/shenandoahUtils.hpp"
57 #include "gc/shenandoah/shenandoahVerifier.hpp"
58 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
59 #include "gc/shenandoah/shenandoahVMOperations.hpp"
60 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
61 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
62 #include "gc/shenandoah/heuristics/shenandoahAdaptiveHeuristics.hpp"
63 #include "gc/shenandoah/heuristics/shenandoahAggressiveHeuristics.hpp"
64 #include "gc/shenandoah/heuristics/shenandoahCompactHeuristics.hpp"
65 #include "gc/shenandoah/heuristics/shenandoahPassiveHeuristics.hpp"
66 #include "gc/shenandoah/heuristics/shenandoahStaticHeuristics.hpp"
67 #include "gc/shenandoah/heuristics/shenandoahTraversalHeuristics.hpp"
68
69 #include "memory/metaspace.hpp"
70 #include "runtime/vmThread.hpp"
71 #include "services/mallocTracker.hpp"
72
73 #ifdef ASSERT
74 template <class T>
do_oop_work(T * p)75 void ShenandoahAssertToSpaceClosure::do_oop_work(T* p) {
76 T o = RawAccess<>::oop_load(p);
77 if (! CompressedOops::is_null(o)) {
78 oop obj = CompressedOops::decode_not_null(o);
79 shenandoah_assert_not_forwarded(p, obj);
80 }
81 }
82
do_oop(narrowOop * p)83 void ShenandoahAssertToSpaceClosure::do_oop(narrowOop* p) { do_oop_work(p); }
do_oop(oop * p)84 void ShenandoahAssertToSpaceClosure::do_oop(oop* p) { do_oop_work(p); }
85 #endif
86
87 class ShenandoahPretouchHeapTask : public AbstractGangTask {
88 private:
89 ShenandoahRegionIterator _regions;
90 const size_t _page_size;
91 public:
ShenandoahPretouchHeapTask(size_t page_size)92 ShenandoahPretouchHeapTask(size_t page_size) :
93 AbstractGangTask("Shenandoah Pretouch Heap"),
94 _page_size(page_size) {}
95
work(uint worker_id)96 virtual void work(uint worker_id) {
97 ShenandoahHeapRegion* r = _regions.next();
98 while (r != NULL) {
99 os::pretouch_memory(r->bottom(), r->end(), _page_size);
100 r = _regions.next();
101 }
102 }
103 };
104
105 class ShenandoahPretouchBitmapTask : public AbstractGangTask {
106 private:
107 ShenandoahRegionIterator _regions;
108 char* _bitmap_base;
109 const size_t _bitmap_size;
110 const size_t _page_size;
111 public:
ShenandoahPretouchBitmapTask(char * bitmap_base,size_t bitmap_size,size_t page_size)112 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
113 AbstractGangTask("Shenandoah Pretouch Bitmap"),
114 _bitmap_base(bitmap_base),
115 _bitmap_size(bitmap_size),
116 _page_size(page_size) {}
117
work(uint worker_id)118 virtual void work(uint worker_id) {
119 ShenandoahHeapRegion* r = _regions.next();
120 while (r != NULL) {
121 size_t start = r->region_number() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
122 size_t end = (r->region_number() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
123 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
124
125 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
126
127 r = _regions.next();
128 }
129 }
130 };
131
initialize()132 jint ShenandoahHeap::initialize() {
133 ShenandoahBrooksPointer::initial_checks();
134
135 initialize_heuristics();
136
137 //
138 // Figure out heap sizing
139 //
140
141 size_t init_byte_size = collector_policy()->initial_heap_byte_size();
142 size_t min_byte_size = collector_policy()->min_heap_byte_size();
143 size_t max_byte_size = collector_policy()->max_heap_byte_size();
144 size_t heap_alignment = collector_policy()->heap_alignment();
145
146 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
147
148 if (ShenandoahAlwaysPreTouch) {
149 // Enabled pre-touch means the entire heap is committed right away.
150 init_byte_size = max_byte_size;
151 }
152
153 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap");
154 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
155
156 _num_regions = ShenandoahHeapRegion::region_count();
157
158 size_t num_committed_regions = init_byte_size / reg_size_bytes;
159 num_committed_regions = MIN2(num_committed_regions, _num_regions);
160 assert(num_committed_regions <= _num_regions, "sanity");
161 _initial_size = num_committed_regions * reg_size_bytes;
162
163 size_t num_min_regions = min_byte_size / reg_size_bytes;
164 num_min_regions = MIN2(num_min_regions, _num_regions);
165 assert(num_min_regions <= _num_regions, "sanity");
166 _minimum_size = num_min_regions * reg_size_bytes;
167
168 _committed = _initial_size;
169
170 size_t heap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
171 size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
172
173 //
174 // Reserve and commit memory for heap
175 //
176
177 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
178 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*) (heap_rs.base() + heap_rs.size()));
179 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
180 _heap_region_special = heap_rs.special();
181
182 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
183 "Misaligned heap: " PTR_FORMAT, p2i(base()));
184
185 #if SHENANDOAH_OPTIMIZED_OBJTASK
186 // The optimized ObjArrayChunkedTask takes some bits away from the full object bits.
187 // Fail if we ever attempt to address more than we can.
188 if ((uintptr_t)heap_rs.end() >= ObjArrayChunkedTask::max_addressable()) {
189 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
190 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
191 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
192 p2i(heap_rs.base()), p2i(heap_rs.end()), ObjArrayChunkedTask::max_addressable());
193 vm_exit_during_initialization("Fatal Error", buf);
194 }
195 #endif
196
197 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
198 if (!_heap_region_special) {
199 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
200 "Cannot commit heap memory");
201 }
202
203 //
204 // Reserve and commit memory for bitmap(s)
205 //
206
207 _bitmap_size = MarkBitMap::compute_size(heap_rs.size());
208 _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
209
210 size_t bitmap_bytes_per_region = reg_size_bytes / MarkBitMap::heap_map_factor();
211
212 guarantee(bitmap_bytes_per_region != 0,
213 "Bitmap bytes per region should not be zero");
214 guarantee(is_power_of_2(bitmap_bytes_per_region),
215 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
216
217 if (bitmap_page_size > bitmap_bytes_per_region) {
218 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
219 _bitmap_bytes_per_slice = bitmap_page_size;
220 } else {
221 _bitmap_regions_per_slice = 1;
222 _bitmap_bytes_per_slice = bitmap_bytes_per_region;
223 }
224
225 guarantee(_bitmap_regions_per_slice >= 1,
226 "Should have at least one region per slice: " SIZE_FORMAT,
227 _bitmap_regions_per_slice);
228
229 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
230 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
231 _bitmap_bytes_per_slice, bitmap_page_size);
232
233 ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
234 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
235 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
236 _bitmap_region_special = bitmap.special();
237
238 size_t bitmap_init_commit = _bitmap_bytes_per_slice *
239 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
240 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
241 if (!_bitmap_region_special) {
242 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
243 "Cannot commit bitmap memory");
244 }
245
246 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
247
248 if (ShenandoahVerify) {
249 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
250 if (!verify_bitmap.special()) {
251 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
252 "Cannot commit verification bitmap memory");
253 }
254 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
255 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
256 _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
257 _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
258 }
259
260 // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
261 ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
262 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
263 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
264 _aux_bitmap_region_special = aux_bitmap.special();
265 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
266
267 //
268 // Create regions and region sets
269 //
270
271 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
272 _free_set = new ShenandoahFreeSet(this, _num_regions);
273 _collection_set = new ShenandoahCollectionSet(this, sh_rs.base(), sh_rs.size());
274
275 {
276 ShenandoahHeapLocker locker(lock());
277
278 size_t size_words = ShenandoahHeapRegion::region_size_words();
279
280 for (size_t i = 0; i < _num_regions; i++) {
281 HeapWord* start = (HeapWord*)sh_rs.base() + size_words * i;
282 bool is_committed = i < num_committed_regions;
283 ShenandoahHeapRegion* r = new ShenandoahHeapRegion(this, start, size_words, i, is_committed);
284
285 _marking_context->initialize_top_at_mark_start(r);
286 _regions[i] = r;
287 assert(!collection_set()->is_in(i), "New region should not be in collection set");
288 }
289
290 // Initialize to complete
291 _marking_context->mark_complete();
292
293 _free_set->rebuild();
294 }
295
296 if (ShenandoahAlwaysPreTouch) {
297 assert(!AlwaysPreTouch, "Should have been overridden");
298
299 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
300 // before initialize() below zeroes it with initializing thread. For any given region,
301 // we touch the region and the corresponding bitmaps from the same thread.
302 ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
303
304 size_t pretouch_heap_page_size = heap_page_size;
305 size_t pretouch_bitmap_page_size = bitmap_page_size;
306
307 #ifdef LINUX
308 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
309 // pages. But, the kernel needs to know that every small page is used, in order to coalesce
310 // them into huge one. Therefore, we need to pretouch with smaller pages.
311 if (UseTransparentHugePages) {
312 pretouch_heap_page_size = (size_t)os::vm_page_size();
313 pretouch_bitmap_page_size = (size_t)os::vm_page_size();
314 }
315 #endif
316
317 // OS memory managers may want to coalesce back-to-back pages. Make their jobs
318 // simpler by pre-touching continuous spaces (heap and bitmap) separately.
319
320 log_info(gc, init)("Pretouch bitmap: " SIZE_FORMAT " regions, " SIZE_FORMAT " bytes page",
321 _num_regions, pretouch_bitmap_page_size);
322 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, pretouch_bitmap_page_size);
323 _workers->run_task(&bcl);
324
325 log_info(gc, init)("Pretouch heap: " SIZE_FORMAT " regions, " SIZE_FORMAT " bytes page",
326 _num_regions, pretouch_heap_page_size);
327 ShenandoahPretouchHeapTask hcl(pretouch_heap_page_size);
328 _workers->run_task(&hcl);
329 }
330
331 //
332 // Initialize the rest of GC subsystems
333 //
334
335 _liveness_cache = NEW_C_HEAP_ARRAY(jushort*, _max_workers, mtGC);
336 for (uint worker = 0; worker < _max_workers; worker++) {
337 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(jushort, _num_regions, mtGC);
338 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(jushort));
339 }
340
341 // The call below uses stuff (the SATB* things) that are in G1, but probably
342 // belong into a shared location.
343 ShenandoahBarrierSet::satb_mark_queue_set().initialize(this,
344 SATB_Q_CBL_mon,
345 20 /*G1SATBProcessCompletedThreshold */,
346 60 /* G1SATBBufferEnqueueingThresholdPercent */,
347 Shared_SATB_Q_lock);
348
349 _monitoring_support = new ShenandoahMonitoringSupport(this);
350 _phase_timings = new ShenandoahPhaseTimings();
351 ShenandoahStringDedup::initialize();
352 ShenandoahCodeRoots::initialize();
353
354 if (ShenandoahAllocationTrace) {
355 _alloc_tracker = new ShenandoahAllocTracker();
356 }
357
358 if (ShenandoahPacing) {
359 _pacer = new ShenandoahPacer(this);
360 _pacer->setup_for_idle();
361 } else {
362 _pacer = NULL;
363 }
364
365 _traversal_gc = heuristics()->can_do_traversal_gc() ?
366 new ShenandoahTraversalGC(this, _num_regions) :
367 NULL;
368
369 _control_thread = new ShenandoahControlThread();
370
371 log_info(gc, init)("Initialize Shenandoah heap: " SIZE_FORMAT "%s initial, " SIZE_FORMAT "%s min, " SIZE_FORMAT "%s max",
372 byte_size_in_proper_unit(_initial_size), proper_unit_for_byte_size(_initial_size),
373 byte_size_in_proper_unit(_minimum_size), proper_unit_for_byte_size(_minimum_size),
374 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity())
375 );
376
377 log_info(gc, init)("Safepointing mechanism: %s",
378 SafepointMechanism::uses_thread_local_poll() ? "thread-local poll" :
379 (SafepointMechanism::uses_global_page_poll() ? "global-page poll" : "unknown"));
380
381 return JNI_OK;
382 }
383
initialize_heuristics()384 void ShenandoahHeap::initialize_heuristics() {
385 if (ShenandoahGCHeuristics != NULL) {
386 if (strcmp(ShenandoahGCHeuristics, "aggressive") == 0) {
387 _heuristics = new ShenandoahAggressiveHeuristics();
388 } else if (strcmp(ShenandoahGCHeuristics, "static") == 0) {
389 _heuristics = new ShenandoahStaticHeuristics();
390 } else if (strcmp(ShenandoahGCHeuristics, "adaptive") == 0) {
391 _heuristics = new ShenandoahAdaptiveHeuristics();
392 } else if (strcmp(ShenandoahGCHeuristics, "passive") == 0) {
393 _heuristics = new ShenandoahPassiveHeuristics();
394 } else if (strcmp(ShenandoahGCHeuristics, "compact") == 0) {
395 _heuristics = new ShenandoahCompactHeuristics();
396 } else if (strcmp(ShenandoahGCHeuristics, "traversal") == 0) {
397 _heuristics = new ShenandoahTraversalHeuristics();
398 } else {
399 vm_exit_during_initialization("Unknown -XX:ShenandoahGCHeuristics option");
400 }
401
402 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
403 vm_exit_during_initialization(
404 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
405 _heuristics->name()));
406 }
407 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
408 vm_exit_during_initialization(
409 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
410 _heuristics->name()));
411 }
412
413 if (ShenandoahStoreValEnqueueBarrier && ShenandoahStoreValReadBarrier) {
414 vm_exit_during_initialization("Cannot use both ShenandoahStoreValEnqueueBarrier and ShenandoahStoreValReadBarrier");
415 }
416 log_info(gc, init)("Shenandoah heuristics: %s",
417 _heuristics->name());
418 } else {
419 ShouldNotReachHere();
420 }
421
422 }
423
424 #ifdef _MSC_VER
425 #pragma warning( push )
426 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
427 #endif
428
ShenandoahHeap(ShenandoahCollectorPolicy * policy)429 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
430 CollectedHeap(),
431 _initial_size(0),
432 _used(0),
433 _committed(0),
434 _bytes_allocated_since_gc_start(0),
435 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
436 _workers(NULL),
437 _safepoint_workers(NULL),
438 _heap_region_special(false),
439 _num_regions(0),
440 _regions(NULL),
441 _update_refs_iterator(this),
442 _control_thread(NULL),
443 _shenandoah_policy(policy),
444 _heuristics(NULL),
445 _free_set(NULL),
446 _scm(new ShenandoahConcurrentMark()),
447 _traversal_gc(NULL),
448 _full_gc(new ShenandoahMarkCompact()),
449 _pacer(NULL),
450 _verifier(NULL),
451 _alloc_tracker(NULL),
452 _phase_timings(NULL),
453 _monitoring_support(NULL),
454 _memory_pool(NULL),
455 _stw_memory_manager("Shenandoah Pauses", "end of GC pause"),
456 _cycle_memory_manager("Shenandoah Cycles", "end of GC cycle"),
457 _gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
458 _soft_ref_policy(),
459 _ref_processor(NULL),
460 _marking_context(NULL),
461 _bitmap_size(0),
462 _bitmap_regions_per_slice(0),
463 _bitmap_bytes_per_slice(0),
464 _bitmap_region_special(false),
465 _aux_bitmap_region_special(false),
466 _liveness_cache(NULL),
467 _collection_set(NULL)
468 {
469 log_info(gc, init)("GC threads: " UINT32_FORMAT " parallel, " UINT32_FORMAT " concurrent", ParallelGCThreads, ConcGCThreads);
470 log_info(gc, init)("Reference processing: %s", ParallelRefProcEnabled ? "parallel" : "serial");
471
472 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
473
474 _max_workers = MAX2(_max_workers, 1U);
475 _workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers,
476 /* are_GC_task_threads */true,
477 /* are_ConcurrentGC_threads */false);
478 if (_workers == NULL) {
479 vm_exit_during_initialization("Failed necessary allocation.");
480 } else {
481 _workers->initialize_workers();
482 }
483
484 if (ShenandoahParallelSafepointThreads > 1) {
485 _safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread",
486 ShenandoahParallelSafepointThreads,
487 false, false);
488 _safepoint_workers->initialize_workers();
489 }
490 }
491
492 #ifdef _MSC_VER
493 #pragma warning( pop )
494 #endif
495
496 class ShenandoahResetBitmapTask : public AbstractGangTask {
497 private:
498 ShenandoahRegionIterator _regions;
499
500 public:
ShenandoahResetBitmapTask()501 ShenandoahResetBitmapTask() :
502 AbstractGangTask("Parallel Reset Bitmap Task") {}
503
work(uint worker_id)504 void work(uint worker_id) {
505 ShenandoahHeapRegion* region = _regions.next();
506 ShenandoahHeap* heap = ShenandoahHeap::heap();
507 ShenandoahMarkingContext* const ctx = heap->marking_context();
508 while (region != NULL) {
509 if (heap->is_bitmap_slice_committed(region)) {
510 ctx->clear_bitmap(region);
511 }
512 region = _regions.next();
513 }
514 }
515 };
516
reset_mark_bitmap()517 void ShenandoahHeap::reset_mark_bitmap() {
518 assert_gc_workers(_workers->active_workers());
519 mark_incomplete_marking_context();
520
521 ShenandoahResetBitmapTask task;
522 _workers->run_task(&task);
523 }
524
print_on(outputStream * st) const525 void ShenandoahHeap::print_on(outputStream* st) const {
526 st->print_cr("Shenandoah Heap");
527 st->print_cr(" " SIZE_FORMAT "K total, " SIZE_FORMAT "K committed, " SIZE_FORMAT "K used",
528 max_capacity() / K, committed() / K, used() / K);
529 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"K regions",
530 num_regions(), ShenandoahHeapRegion::region_size_bytes() / K);
531
532 st->print("Status: ");
533 if (has_forwarded_objects()) st->print("has forwarded objects, ");
534 if (is_concurrent_mark_in_progress()) st->print("marking, ");
535 if (is_evacuation_in_progress()) st->print("evacuating, ");
536 if (is_update_refs_in_progress()) st->print("updating refs, ");
537 if (is_concurrent_traversal_in_progress()) st->print("traversal, ");
538 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, ");
539 if (is_full_gc_in_progress()) st->print("full gc, ");
540 if (is_full_gc_move_in_progress()) st->print("full gc move, ");
541
542 if (cancelled_gc()) {
543 st->print("cancelled");
544 } else {
545 st->print("not cancelled");
546 }
547 st->cr();
548
549 st->print_cr("Reserved region:");
550 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
551 p2i(reserved_region().start()),
552 p2i(reserved_region().end()));
553
554 ShenandoahCollectionSet* cset = collection_set();
555 st->print_cr("Collection set:");
556 if (cset != NULL) {
557 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
558 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address()));
559 } else {
560 st->print_cr(" (NULL)");
561 }
562
563 st->cr();
564 MetaspaceUtils::print_on(st);
565
566 if (Verbose) {
567 print_heap_regions_on(st);
568 }
569 }
570
571 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
572 public:
do_thread(Thread * thread)573 void do_thread(Thread* thread) {
574 assert(thread != NULL, "Sanity");
575 assert(thread->is_Worker_thread(), "Only worker thread expected");
576 ShenandoahThreadLocalData::initialize_gclab(thread);
577 }
578 };
579
post_initialize()580 void ShenandoahHeap::post_initialize() {
581 CollectedHeap::post_initialize();
582 MutexLocker ml(Threads_lock);
583
584 ShenandoahInitWorkerGCLABClosure init_gclabs;
585 _workers->threads_do(&init_gclabs);
586
587 // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
588 // Now, we will let WorkGang to initialize gclab when new worker is created.
589 _workers->set_initialize_gclab();
590
591 _scm->initialize(_max_workers);
592 _full_gc->initialize(_gc_timer);
593
594 ref_processing_init();
595
596 _heuristics->initialize();
597 }
598
used() const599 size_t ShenandoahHeap::used() const {
600 return OrderAccess::load_acquire(&_used);
601 }
602
committed() const603 size_t ShenandoahHeap::committed() const {
604 OrderAccess::acquire();
605 return _committed;
606 }
607
increase_committed(size_t bytes)608 void ShenandoahHeap::increase_committed(size_t bytes) {
609 assert_heaplock_or_safepoint();
610 _committed += bytes;
611 }
612
decrease_committed(size_t bytes)613 void ShenandoahHeap::decrease_committed(size_t bytes) {
614 assert_heaplock_or_safepoint();
615 _committed -= bytes;
616 }
617
increase_used(size_t bytes)618 void ShenandoahHeap::increase_used(size_t bytes) {
619 Atomic::add(bytes, &_used);
620 }
621
set_used(size_t bytes)622 void ShenandoahHeap::set_used(size_t bytes) {
623 OrderAccess::release_store_fence(&_used, bytes);
624 }
625
decrease_used(size_t bytes)626 void ShenandoahHeap::decrease_used(size_t bytes) {
627 assert(used() >= bytes, "never decrease heap size by more than we've left");
628 Atomic::sub(bytes, &_used);
629 }
630
increase_allocated(size_t bytes)631 void ShenandoahHeap::increase_allocated(size_t bytes) {
632 Atomic::add(bytes, &_bytes_allocated_since_gc_start);
633 }
634
notify_mutator_alloc_words(size_t words,bool waste)635 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
636 size_t bytes = words * HeapWordSize;
637 if (!waste) {
638 increase_used(bytes);
639 }
640 increase_allocated(bytes);
641 if (ShenandoahPacing) {
642 control_thread()->pacing_notify_alloc(words);
643 if (waste) {
644 pacer()->claim_for_alloc(words, true);
645 }
646 }
647 }
648
capacity() const649 size_t ShenandoahHeap::capacity() const {
650 return committed();
651 }
652
max_capacity() const653 size_t ShenandoahHeap::max_capacity() const {
654 return _num_regions * ShenandoahHeapRegion::region_size_bytes();
655 }
656
min_capacity() const657 size_t ShenandoahHeap::min_capacity() const {
658 return _minimum_size;
659 }
660
initial_capacity() const661 size_t ShenandoahHeap::initial_capacity() const {
662 return _initial_size;
663 }
664
is_in(const void * p) const665 bool ShenandoahHeap::is_in(const void* p) const {
666 HeapWord* heap_base = (HeapWord*) base();
667 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
668 return p >= heap_base && p < last_region_end;
669 }
670
op_uncommit(double shrink_before)671 void ShenandoahHeap::op_uncommit(double shrink_before) {
672 assert (ShenandoahUncommit, "should be enabled");
673
674 // Application allocates from the beginning of the heap, and GC allocates at
675 // the end of it. It is more efficient to uncommit from the end, so that applications
676 // could enjoy the near committed regions. GC allocations are much less frequent,
677 // and therefore can accept the committing costs.
678
679 size_t count = 0;
680 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
681 ShenandoahHeapRegion* r = get_region(i - 1);
682 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
683 ShenandoahHeapLocker locker(lock());
684 if (r->is_empty_committed()) {
685 // Do not uncommit below minimal capacity
686 if (committed() < min_capacity() + ShenandoahHeapRegion::region_size_bytes()) {
687 break;
688 }
689
690 r->make_uncommitted();
691 count++;
692 }
693 }
694 SpinPause(); // allow allocators to take the lock
695 }
696
697 if (count > 0) {
698 control_thread()->notify_heap_changed();
699 }
700 }
701
allocate_from_gclab_slow(Thread * thread,size_t size)702 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
703 // New object should fit the GCLAB size
704 size_t min_size = MAX2(size, PLAB::min_size());
705
706 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
707 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
708 new_size = MIN2(new_size, PLAB::max_size());
709 new_size = MAX2(new_size, PLAB::min_size());
710
711 // Record new heuristic value even if we take any shortcut. This captures
712 // the case when moderately-sized objects always take a shortcut. At some point,
713 // heuristics should catch up with them.
714 ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
715
716 if (new_size < size) {
717 // New size still does not fit the object. Fall back to shared allocation.
718 // This avoids retiring perfectly good GCLABs, when we encounter a large object.
719 return NULL;
720 }
721
722 // Retire current GCLAB, and allocate a new one.
723 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
724 gclab->retire();
725
726 size_t actual_size = 0;
727 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
728 if (gclab_buf == NULL) {
729 return NULL;
730 }
731
732 assert (size <= actual_size, "allocation should fit");
733
734 if (ZeroTLAB) {
735 // ..and clear it.
736 Copy::zero_to_words(gclab_buf, actual_size);
737 } else {
738 // ...and zap just allocated object.
739 #ifdef ASSERT
740 // Skip mangling the space corresponding to the object header to
741 // ensure that the returned space is not considered parsable by
742 // any concurrent GC thread.
743 size_t hdr_size = oopDesc::header_size();
744 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
745 #endif // ASSERT
746 }
747 gclab->set_buf(gclab_buf, actual_size);
748 return gclab->allocate(size);
749 }
750
allocate_new_tlab(size_t min_size,size_t requested_size,size_t * actual_size)751 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
752 size_t requested_size,
753 size_t* actual_size) {
754 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
755 HeapWord* res = allocate_memory(req);
756 if (res != NULL) {
757 *actual_size = req.actual_size();
758 } else {
759 *actual_size = 0;
760 }
761 return res;
762 }
763
allocate_new_gclab(size_t min_size,size_t word_size,size_t * actual_size)764 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
765 size_t word_size,
766 size_t* actual_size) {
767 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
768 HeapWord* res = allocate_memory(req);
769 if (res != NULL) {
770 *actual_size = req.actual_size();
771 } else {
772 *actual_size = 0;
773 }
774 return res;
775 }
776
heap()777 ShenandoahHeap* ShenandoahHeap::heap() {
778 CollectedHeap* heap = Universe::heap();
779 assert(heap != NULL, "Unitialized access to ShenandoahHeap::heap()");
780 assert(heap->kind() == CollectedHeap::Shenandoah, "not a shenandoah heap");
781 return (ShenandoahHeap*) heap;
782 }
783
heap_no_check()784 ShenandoahHeap* ShenandoahHeap::heap_no_check() {
785 CollectedHeap* heap = Universe::heap();
786 return (ShenandoahHeap*) heap;
787 }
788
allocate_memory(ShenandoahAllocRequest & req)789 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
790 ShenandoahAllocTrace trace_alloc(req.size(), req.type());
791
792 intptr_t pacer_epoch = 0;
793 bool in_new_region = false;
794 HeapWord* result = NULL;
795
796 if (req.is_mutator_alloc()) {
797 if (ShenandoahPacing) {
798 pacer()->pace_for_alloc(req.size());
799 pacer_epoch = pacer()->epoch();
800 }
801
802 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
803 result = allocate_memory_under_lock(req, in_new_region);
804 }
805
806 // Allocation failed, block until control thread reacted, then retry allocation.
807 //
808 // It might happen that one of the threads requesting allocation would unblock
809 // way later after GC happened, only to fail the second allocation, because
810 // other threads have already depleted the free storage. In this case, a better
811 // strategy is to try again, as long as GC makes progress.
812 //
813 // Then, we need to make sure the allocation was retried after at least one
814 // Full GC, which means we want to try more than ShenandoahFullGCThreshold times.
815
816 size_t tries = 0;
817
818 while (result == NULL && _progress_last_gc.is_set()) {
819 tries++;
820 control_thread()->handle_alloc_failure(req.size());
821 result = allocate_memory_under_lock(req, in_new_region);
822 }
823
824 while (result == NULL && tries <= ShenandoahFullGCThreshold) {
825 tries++;
826 control_thread()->handle_alloc_failure(req.size());
827 result = allocate_memory_under_lock(req, in_new_region);
828 }
829
830 } else {
831 assert(req.is_gc_alloc(), "Can only accept GC allocs here");
832 result = allocate_memory_under_lock(req, in_new_region);
833 // Do not call handle_alloc_failure() here, because we cannot block.
834 // The allocation failure would be handled by the WB slowpath with handle_alloc_failure_evac().
835 }
836
837 if (in_new_region) {
838 control_thread()->notify_heap_changed();
839 }
840
841 if (result != NULL) {
842 size_t requested = req.size();
843 size_t actual = req.actual_size();
844
845 assert (req.is_lab_alloc() || (requested == actual),
846 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
847 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
848
849 if (req.is_mutator_alloc()) {
850 notify_mutator_alloc_words(actual, false);
851
852 // If we requested more than we were granted, give the rest back to pacer.
853 // This only matters if we are in the same pacing epoch: do not try to unpace
854 // over the budget for the other phase.
855 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
856 pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
857 }
858 } else {
859 increase_used(actual*HeapWordSize);
860 }
861 }
862
863 return result;
864 }
865
allocate_memory_under_lock(ShenandoahAllocRequest & req,bool & in_new_region)866 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
867 ShenandoahHeapLocker locker(lock());
868 return _free_set->allocate(req, in_new_region);
869 }
870
871 class ShenandoahMemAllocator : public MemAllocator {
872 private:
873 MemAllocator& _initializer;
874 public:
ShenandoahMemAllocator(MemAllocator & initializer,Klass * klass,size_t word_size,Thread * thread)875 ShenandoahMemAllocator(MemAllocator& initializer, Klass* klass, size_t word_size, Thread* thread) :
876 MemAllocator(klass, word_size + ShenandoahBrooksPointer::word_size(), thread),
877 _initializer(initializer) {}
878
879 protected:
mem_allocate(Allocation & allocation) const880 virtual HeapWord* mem_allocate(Allocation& allocation) const {
881 HeapWord* result = MemAllocator::mem_allocate(allocation);
882 // Initialize brooks-pointer
883 if (result != NULL) {
884 result += ShenandoahBrooksPointer::word_size();
885 ShenandoahBrooksPointer::initialize(oop(result));
886 assert(! ShenandoahHeap::heap()->in_collection_set(result), "never allocate in targetted region");
887 }
888 return result;
889 }
890
initialize(HeapWord * mem) const891 virtual oop initialize(HeapWord* mem) const {
892 return _initializer.initialize(mem);
893 }
894 };
895
obj_allocate(Klass * klass,int size,TRAPS)896 oop ShenandoahHeap::obj_allocate(Klass* klass, int size, TRAPS) {
897 ObjAllocator initializer(klass, size, THREAD);
898 ShenandoahMemAllocator allocator(initializer, klass, size, THREAD);
899 return allocator.allocate();
900 }
901
array_allocate(Klass * klass,int size,int length,bool do_zero,TRAPS)902 oop ShenandoahHeap::array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS) {
903 ObjArrayAllocator initializer(klass, size, length, do_zero, THREAD);
904 ShenandoahMemAllocator allocator(initializer, klass, size, THREAD);
905 return allocator.allocate();
906 }
907
class_allocate(Klass * klass,int size,TRAPS)908 oop ShenandoahHeap::class_allocate(Klass* klass, int size, TRAPS) {
909 ClassAllocator initializer(klass, size, THREAD);
910 ShenandoahMemAllocator allocator(initializer, klass, size, THREAD);
911 return allocator.allocate();
912 }
913
mem_allocate(size_t size,bool * gc_overhead_limit_was_exceeded)914 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
915 bool* gc_overhead_limit_was_exceeded) {
916 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
917 return allocate_memory(req);
918 }
919
satisfy_failed_metadata_allocation(ClassLoaderData * loader_data,size_t size,Metaspace::MetadataType mdtype)920 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
921 size_t size,
922 Metaspace::MetadataType mdtype) {
923 MetaWord* result;
924
925 // Inform metaspace OOM to GC heuristics if class unloading is possible.
926 if (heuristics()->can_unload_classes()) {
927 ShenandoahHeuristics* h = heuristics();
928 h->record_metaspace_oom();
929 }
930
931 // Expand and retry allocation
932 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
933 if (result != NULL) {
934 return result;
935 }
936
937 // Start full GC
938 collect(GCCause::_metadata_GC_clear_soft_refs);
939
940 // Retry allocation
941 result = loader_data->metaspace_non_null()->allocate(size, mdtype);
942 if (result != NULL) {
943 return result;
944 }
945
946 // Expand and retry allocation
947 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
948 if (result != NULL) {
949 return result;
950 }
951
952 // Out of memory
953 return NULL;
954 }
955
fill_with_dummy_object(HeapWord * start,HeapWord * end,bool zap)956 void ShenandoahHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
957 HeapWord* obj = tlab_post_allocation_setup(start);
958 CollectedHeap::fill_with_object(obj, end);
959 }
960
min_dummy_object_size() const961 size_t ShenandoahHeap::min_dummy_object_size() const {
962 return CollectedHeap::min_dummy_object_size() + ShenandoahBrooksPointer::word_size();
963 }
964
965 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
966 private:
967 ShenandoahHeap* const _heap;
968 Thread* const _thread;
969 public:
ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap * heap)970 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
971 _heap(heap), _thread(Thread::current()) {}
972
do_object(oop p)973 void do_object(oop p) {
974 shenandoah_assert_marked(NULL, p);
975 if (oopDesc::equals_raw(p, ShenandoahBarrierSet::resolve_forwarded_not_null(p))) {
976 _heap->evacuate_object(p, _thread);
977 }
978 }
979 };
980
981 class ShenandoahEvacuationTask : public AbstractGangTask {
982 private:
983 ShenandoahHeap* const _sh;
984 ShenandoahCollectionSet* const _cs;
985 bool _concurrent;
986 public:
ShenandoahEvacuationTask(ShenandoahHeap * sh,ShenandoahCollectionSet * cs,bool concurrent)987 ShenandoahEvacuationTask(ShenandoahHeap* sh,
988 ShenandoahCollectionSet* cs,
989 bool concurrent) :
990 AbstractGangTask("Parallel Evacuation Task"),
991 _sh(sh),
992 _cs(cs),
993 _concurrent(concurrent)
994 {}
995
work(uint worker_id)996 void work(uint worker_id) {
997 if (_concurrent) {
998 ShenandoahConcurrentWorkerSession worker_session(worker_id);
999 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
1000 ShenandoahEvacOOMScope oom_evac_scope;
1001 do_work();
1002 } else {
1003 ShenandoahParallelWorkerSession worker_session(worker_id);
1004 ShenandoahEvacOOMScope oom_evac_scope;
1005 do_work();
1006 }
1007 }
1008
1009 private:
do_work()1010 void do_work() {
1011 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
1012 ShenandoahHeapRegion* r;
1013 while ((r =_cs->claim_next()) != NULL) {
1014 assert(r->has_live(), "all-garbage regions are reclaimed early");
1015 _sh->marked_object_iterate(r, &cl);
1016
1017 if (ShenandoahPacing) {
1018 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
1019 }
1020
1021 if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
1022 break;
1023 }
1024 }
1025 }
1026 };
1027
trash_cset_regions()1028 void ShenandoahHeap::trash_cset_regions() {
1029 ShenandoahHeapLocker locker(lock());
1030
1031 ShenandoahCollectionSet* set = collection_set();
1032 ShenandoahHeapRegion* r;
1033 set->clear_current_index();
1034 while ((r = set->next()) != NULL) {
1035 r->make_trash();
1036 }
1037 collection_set()->clear();
1038 }
1039
print_heap_regions_on(outputStream * st) const1040 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
1041 st->print_cr("Heap Regions:");
1042 st->print_cr("EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HC=humongous continuation, CS=collection set, T=trash, P=pinned");
1043 st->print_cr("BTE=bottom/top/end, U=used, T=TLAB allocs, G=GCLAB allocs, S=shared allocs, L=live data");
1044 st->print_cr("R=root, CP=critical pins, TAMS=top-at-mark-start (previous, next)");
1045 st->print_cr("SN=alloc sequence numbers (first mutator, last mutator, first gc, last gc)");
1046
1047 for (size_t i = 0; i < num_regions(); i++) {
1048 get_region(i)->print_on(st);
1049 }
1050 }
1051
trash_humongous_region_at(ShenandoahHeapRegion * start)1052 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1053 assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1054
1055 oop humongous_obj = oop(start->bottom() + ShenandoahBrooksPointer::word_size());
1056 size_t size = humongous_obj->size() + ShenandoahBrooksPointer::word_size();
1057 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1058 size_t index = start->region_number() + required_regions - 1;
1059
1060 assert(!start->has_live(), "liveness must be zero");
1061
1062 for(size_t i = 0; i < required_regions; i++) {
1063 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1064 // as it expects that every region belongs to a humongous region starting with a humongous start region.
1065 ShenandoahHeapRegion* region = get_region(index --);
1066
1067 assert(region->is_humongous(), "expect correct humongous start or continuation");
1068 assert(!region->is_cset(), "Humongous region should not be in collection set");
1069
1070 region->make_trash_immediate();
1071 }
1072 }
1073
1074 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1075 public:
do_thread(Thread * thread)1076 void do_thread(Thread* thread) {
1077 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1078 assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1079 gclab->retire();
1080 }
1081 };
1082
make_parsable(bool retire_tlabs)1083 void ShenandoahHeap::make_parsable(bool retire_tlabs) {
1084 if (UseTLAB) {
1085 CollectedHeap::ensure_parsability(retire_tlabs);
1086 }
1087 ShenandoahRetireGCLABClosure cl;
1088 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1089 cl.do_thread(t);
1090 }
1091 workers()->threads_do(&cl);
1092 }
1093
resize_tlabs()1094 void ShenandoahHeap::resize_tlabs() {
1095 CollectedHeap::resize_all_tlabs();
1096 }
1097
1098 class ShenandoahEvacuateUpdateRootsTask : public AbstractGangTask {
1099 private:
1100 ShenandoahRootEvacuator* _rp;
1101
1102 public:
ShenandoahEvacuateUpdateRootsTask(ShenandoahRootEvacuator * rp)1103 ShenandoahEvacuateUpdateRootsTask(ShenandoahRootEvacuator* rp) :
1104 AbstractGangTask("Shenandoah evacuate and update roots"),
1105 _rp(rp) {}
1106
work(uint worker_id)1107 void work(uint worker_id) {
1108 ShenandoahParallelWorkerSession worker_session(worker_id);
1109 ShenandoahEvacOOMScope oom_evac_scope;
1110 ShenandoahEvacuateUpdateRootsClosure cl;
1111
1112 MarkingCodeBlobClosure blobsCl(&cl, CodeBlobToOopClosure::FixRelocations);
1113 _rp->process_evacuate_roots(&cl, &blobsCl, worker_id);
1114 }
1115 };
1116
evacuate_and_update_roots()1117 void ShenandoahHeap::evacuate_and_update_roots() {
1118 #if defined(COMPILER2) || INCLUDE_JVMCI
1119 DerivedPointerTable::clear();
1120 #endif
1121 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only iterate roots while world is stopped");
1122
1123 {
1124 ShenandoahRootEvacuator rp(this, workers()->active_workers(), ShenandoahPhaseTimings::init_evac);
1125 ShenandoahEvacuateUpdateRootsTask roots_task(&rp);
1126 workers()->run_task(&roots_task);
1127 }
1128
1129 #if defined(COMPILER2) || INCLUDE_JVMCI
1130 DerivedPointerTable::update_pointers();
1131 #endif
1132 }
1133
roots_iterate(OopClosure * cl)1134 void ShenandoahHeap::roots_iterate(OopClosure* cl) {
1135 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only iterate roots while world is stopped");
1136
1137 CodeBlobToOopClosure blobsCl(cl, false);
1138 CLDToOopClosure cldCl(cl, ClassLoaderData::_claim_strong);
1139
1140 ShenandoahRootProcessor rp(this, 1, ShenandoahPhaseTimings::_num_phases);
1141 rp.process_all_roots(cl, NULL, &cldCl, &blobsCl, NULL, 0);
1142 }
1143
1144 // Returns size in bytes
unsafe_max_tlab_alloc(Thread * thread) const1145 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1146 if (ShenandoahElasticTLAB) {
1147 // With Elastic TLABs, return the max allowed size, and let the allocation path
1148 // figure out the safe size for current allocation.
1149 return ShenandoahHeapRegion::max_tlab_size_bytes();
1150 } else {
1151 return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes());
1152 }
1153 }
1154
max_tlab_size() const1155 size_t ShenandoahHeap::max_tlab_size() const {
1156 // Returns size in words
1157 return ShenandoahHeapRegion::max_tlab_size_words();
1158 }
1159
1160 class ShenandoahRetireAndResetGCLABClosure : public ThreadClosure {
1161 public:
do_thread(Thread * thread)1162 void do_thread(Thread* thread) {
1163 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1164 gclab->retire();
1165 if (ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1166 ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1167 }
1168 }
1169 };
1170
retire_and_reset_gclabs()1171 void ShenandoahHeap::retire_and_reset_gclabs() {
1172 ShenandoahRetireAndResetGCLABClosure cl;
1173 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1174 cl.do_thread(t);
1175 }
1176 workers()->threads_do(&cl);
1177 }
1178
collect(GCCause::Cause cause)1179 void ShenandoahHeap::collect(GCCause::Cause cause) {
1180 control_thread()->request_gc(cause);
1181 }
1182
do_full_collection(bool clear_all_soft_refs)1183 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1184 //assert(false, "Shouldn't need to do full collections");
1185 }
1186
collector_policy() const1187 CollectorPolicy* ShenandoahHeap::collector_policy() const {
1188 return _shenandoah_policy;
1189 }
1190
block_start(const void * addr) const1191 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1192 Space* sp = heap_region_containing(addr);
1193 if (sp != NULL) {
1194 return sp->block_start(addr);
1195 }
1196 return NULL;
1197 }
1198
block_size(const HeapWord * addr) const1199 size_t ShenandoahHeap::block_size(const HeapWord* addr) const {
1200 Space* sp = heap_region_containing(addr);
1201 assert(sp != NULL, "block_size of address outside of heap");
1202 return sp->block_size(addr);
1203 }
1204
block_is_obj(const HeapWord * addr) const1205 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1206 Space* sp = heap_region_containing(addr);
1207 return sp->block_is_obj(addr);
1208 }
1209
millis_since_last_gc()1210 jlong ShenandoahHeap::millis_since_last_gc() {
1211 double v = heuristics()->time_since_last_gc() * 1000;
1212 assert(0 <= v && v <= max_jlong, "value should fit: %f", v);
1213 return (jlong)v;
1214 }
1215
prepare_for_verify()1216 void ShenandoahHeap::prepare_for_verify() {
1217 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
1218 make_parsable(false);
1219 }
1220 }
1221
print_gc_threads_on(outputStream * st) const1222 void ShenandoahHeap::print_gc_threads_on(outputStream* st) const {
1223 workers()->print_worker_threads_on(st);
1224 if (ShenandoahStringDedup::is_enabled()) {
1225 ShenandoahStringDedup::print_worker_threads_on(st);
1226 }
1227 }
1228
gc_threads_do(ThreadClosure * tcl) const1229 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1230 workers()->threads_do(tcl);
1231 if (_safepoint_workers != NULL) {
1232 _safepoint_workers->threads_do(tcl);
1233 }
1234 if (ShenandoahStringDedup::is_enabled()) {
1235 ShenandoahStringDedup::threads_do(tcl);
1236 }
1237 }
1238
print_tracing_info() const1239 void ShenandoahHeap::print_tracing_info() const {
1240 LogTarget(Info, gc, stats) lt;
1241 if (lt.is_enabled()) {
1242 ResourceMark rm;
1243 LogStream ls(lt);
1244
1245 phase_timings()->print_on(&ls);
1246
1247 ls.cr();
1248 ls.cr();
1249
1250 shenandoah_policy()->print_gc_stats(&ls);
1251
1252 ls.cr();
1253 ls.cr();
1254
1255 if (ShenandoahPacing) {
1256 pacer()->print_on(&ls);
1257 }
1258
1259 ls.cr();
1260 ls.cr();
1261
1262 if (ShenandoahAllocationTrace) {
1263 assert(alloc_tracker() != NULL, "Must be");
1264 alloc_tracker()->print_on(&ls);
1265 } else {
1266 ls.print_cr(" Allocation tracing is disabled, use -XX:+ShenandoahAllocationTrace to enable.");
1267 }
1268 }
1269 }
1270
verify(VerifyOption vo)1271 void ShenandoahHeap::verify(VerifyOption vo) {
1272 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1273 if (ShenandoahVerify) {
1274 verifier()->verify_generic(vo);
1275 } else {
1276 // TODO: Consider allocating verification bitmaps on demand,
1277 // and turn this on unconditionally.
1278 }
1279 }
1280 }
tlab_capacity(Thread * thr) const1281 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1282 return _free_set->capacity();
1283 }
1284
1285 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1286 private:
1287 MarkBitMap* _bitmap;
1288 Stack<oop,mtGC>* _oop_stack;
1289
1290 template <class T>
do_oop_work(T * p)1291 void do_oop_work(T* p) {
1292 T o = RawAccess<>::oop_load(p);
1293 if (!CompressedOops::is_null(o)) {
1294 oop obj = CompressedOops::decode_not_null(o);
1295 obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
1296 assert(oopDesc::is_oop(obj), "must be a valid oop");
1297 if (!_bitmap->is_marked((HeapWord*) obj)) {
1298 _bitmap->mark((HeapWord*) obj);
1299 _oop_stack->push(obj);
1300 }
1301 }
1302 }
1303 public:
ObjectIterateScanRootClosure(MarkBitMap * bitmap,Stack<oop,mtGC> * oop_stack)1304 ObjectIterateScanRootClosure(MarkBitMap* bitmap, Stack<oop,mtGC>* oop_stack) :
1305 _bitmap(bitmap), _oop_stack(oop_stack) {}
do_oop(oop * p)1306 void do_oop(oop* p) { do_oop_work(p); }
do_oop(narrowOop * p)1307 void do_oop(narrowOop* p) { do_oop_work(p); }
1308 };
1309
1310 /*
1311 * This is public API, used in preparation of object_iterate().
1312 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1313 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1314 * control, we call SH::make_tlabs_parsable().
1315 */
ensure_parsability(bool retire_tlabs)1316 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1317 // No-op.
1318 }
1319
1320 /*
1321 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1322 *
1323 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1324 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1325 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1326 * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1327 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1328 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1329 * wiped the bitmap in preparation for next marking).
1330 *
1331 * For all those reasons, we implement object iteration as a single marking traversal, reporting
1332 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1333 * is allowed to report dead objects, but is not required to do so.
1334 */
object_iterate(ObjectClosure * cl)1335 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1336 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1337 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1338 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1339 return;
1340 }
1341
1342 // Reset bitmap
1343 _aux_bit_map.clear();
1344
1345 Stack<oop,mtGC> oop_stack;
1346
1347 // First, we process all GC roots. This populates the work stack with initial objects.
1348 ShenandoahRootProcessor rp(this, 1, ShenandoahPhaseTimings::_num_phases);
1349 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1350 CLDToOopClosure clds(&oops, ClassLoaderData::_claim_none);
1351 CodeBlobToOopClosure blobs(&oops, false);
1352 rp.process_all_roots(&oops, &oops, &clds, &blobs, NULL, 0);
1353
1354 // Work through the oop stack to traverse heap.
1355 while (! oop_stack.is_empty()) {
1356 oop obj = oop_stack.pop();
1357 assert(oopDesc::is_oop(obj), "must be a valid oop");
1358 cl->do_object(obj);
1359 obj->oop_iterate(&oops);
1360 }
1361
1362 assert(oop_stack.is_empty(), "should be empty");
1363
1364 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1365 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1366 }
1367 }
1368
safe_object_iterate(ObjectClosure * cl)1369 void ShenandoahHeap::safe_object_iterate(ObjectClosure* cl) {
1370 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1371 object_iterate(cl);
1372 }
1373
heap_region_iterate(ShenandoahHeapRegionClosure * blk) const1374 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1375 for (size_t i = 0; i < num_regions(); i++) {
1376 ShenandoahHeapRegion* current = get_region(i);
1377 blk->heap_region_do(current);
1378 }
1379 }
1380
1381 class ShenandoahParallelHeapRegionTask : public AbstractGangTask {
1382 private:
1383 ShenandoahHeap* const _heap;
1384 ShenandoahHeapRegionClosure* const _blk;
1385
1386 DEFINE_PAD_MINUS_SIZE(0, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile size_t));
1387 volatile size_t _index;
1388 DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, 0);
1389
1390 public:
ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure * blk)1391 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1392 AbstractGangTask("Parallel Region Task"),
1393 _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1394
work(uint worker_id)1395 void work(uint worker_id) {
1396 size_t stride = ShenandoahParallelRegionStride;
1397
1398 size_t max = _heap->num_regions();
1399 while (_index < max) {
1400 size_t cur = Atomic::add(stride, &_index) - stride;
1401 size_t start = cur;
1402 size_t end = MIN2(cur + stride, max);
1403 if (start >= max) break;
1404
1405 for (size_t i = cur; i < end; i++) {
1406 ShenandoahHeapRegion* current = _heap->get_region(i);
1407 _blk->heap_region_do(current);
1408 }
1409 }
1410 }
1411 };
1412
parallel_heap_region_iterate(ShenandoahHeapRegionClosure * blk) const1413 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1414 assert(blk->is_thread_safe(), "Only thread-safe closures here");
1415 if (num_regions() > ShenandoahParallelRegionStride) {
1416 ShenandoahParallelHeapRegionTask task(blk);
1417 workers()->run_task(&task);
1418 } else {
1419 heap_region_iterate(blk);
1420 }
1421 }
1422
1423 class ShenandoahClearLivenessClosure : public ShenandoahHeapRegionClosure {
1424 private:
1425 ShenandoahMarkingContext* const _ctx;
1426 public:
ShenandoahClearLivenessClosure()1427 ShenandoahClearLivenessClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1428
heap_region_do(ShenandoahHeapRegion * r)1429 void heap_region_do(ShenandoahHeapRegion* r) {
1430 if (r->is_active()) {
1431 r->clear_live_data();
1432 _ctx->capture_top_at_mark_start(r);
1433 } else {
1434 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->region_number());
1435 assert(_ctx->top_at_mark_start(r) == r->top(),
1436 "Region " SIZE_FORMAT " should already have correct TAMS", r->region_number());
1437 }
1438 }
1439
is_thread_safe()1440 bool is_thread_safe() { return true; }
1441 };
1442
op_init_mark()1443 void ShenandoahHeap::op_init_mark() {
1444 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1445 assert(Thread::current()->is_VM_thread(), "can only do this in VMThread");
1446
1447 assert(marking_context()->is_bitmap_clear(), "need clear marking bitmap");
1448 assert(!marking_context()->is_complete(), "should not be complete");
1449
1450 if (ShenandoahVerify) {
1451 verifier()->verify_before_concmark();
1452 }
1453
1454 if (VerifyBeforeGC) {
1455 Universe::verify();
1456 }
1457
1458 set_concurrent_mark_in_progress(true);
1459 // We need to reset all TLABs because we'd lose marks on all objects allocated in them.
1460 {
1461 ShenandoahGCPhase phase(ShenandoahPhaseTimings::make_parsable);
1462 make_parsable(true);
1463 }
1464
1465 {
1466 ShenandoahGCPhase phase(ShenandoahPhaseTimings::clear_liveness);
1467 ShenandoahClearLivenessClosure clc;
1468 parallel_heap_region_iterate(&clc);
1469 }
1470
1471 // Make above changes visible to worker threads
1472 OrderAccess::fence();
1473
1474 concurrent_mark()->mark_roots(ShenandoahPhaseTimings::scan_roots);
1475
1476 if (UseTLAB) {
1477 ShenandoahGCPhase phase(ShenandoahPhaseTimings::resize_tlabs);
1478 resize_tlabs();
1479 }
1480
1481 if (ShenandoahPacing) {
1482 pacer()->setup_for_mark();
1483 }
1484 }
1485
op_mark()1486 void ShenandoahHeap::op_mark() {
1487 concurrent_mark()->mark_from_roots();
1488 }
1489
1490 class ShenandoahCompleteLivenessClosure : public ShenandoahHeapRegionClosure {
1491 private:
1492 ShenandoahMarkingContext* const _ctx;
1493 public:
ShenandoahCompleteLivenessClosure()1494 ShenandoahCompleteLivenessClosure() : _ctx(ShenandoahHeap::heap()->complete_marking_context()) {}
1495
heap_region_do(ShenandoahHeapRegion * r)1496 void heap_region_do(ShenandoahHeapRegion* r) {
1497 if (r->is_active()) {
1498 HeapWord *tams = _ctx->top_at_mark_start(r);
1499 HeapWord *top = r->top();
1500 if (top > tams) {
1501 r->increase_live_data_alloc_words(pointer_delta(top, tams));
1502 }
1503 } else {
1504 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->region_number());
1505 assert(_ctx->top_at_mark_start(r) == r->top(),
1506 "Region " SIZE_FORMAT " should have correct TAMS", r->region_number());
1507 }
1508 }
1509
is_thread_safe()1510 bool is_thread_safe() { return true; }
1511 };
1512
op_final_mark()1513 void ShenandoahHeap::op_final_mark() {
1514 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1515
1516 // It is critical that we
1517 // evacuate roots right after finishing marking, so that we don't
1518 // get unmarked objects in the roots.
1519
1520 if (!cancelled_gc()) {
1521 concurrent_mark()->finish_mark_from_roots(/* full_gc = */ false);
1522
1523 if (has_forwarded_objects()) {
1524 concurrent_mark()->update_roots(ShenandoahPhaseTimings::update_roots);
1525 }
1526
1527 stop_concurrent_marking();
1528
1529 {
1530 ShenandoahGCPhase phase(ShenandoahPhaseTimings::complete_liveness);
1531
1532 // All allocations past TAMS are implicitly live, adjust the region data.
1533 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1534 ShenandoahCompleteLivenessClosure cl;
1535 parallel_heap_region_iterate(&cl);
1536 }
1537
1538 {
1539 ShenandoahGCPhase prepare_evac(ShenandoahPhaseTimings::prepare_evac);
1540
1541 make_parsable(true);
1542
1543 trash_cset_regions();
1544
1545 {
1546 ShenandoahHeapLocker locker(lock());
1547 _collection_set->clear();
1548 _free_set->clear();
1549
1550 heuristics()->choose_collection_set(_collection_set);
1551
1552 _free_set->rebuild();
1553 }
1554 }
1555
1556 // If collection set has candidates, start evacuation.
1557 // Otherwise, bypass the rest of the cycle.
1558 if (!collection_set()->is_empty()) {
1559 ShenandoahGCPhase init_evac(ShenandoahPhaseTimings::init_evac);
1560
1561 if (ShenandoahVerify) {
1562 verifier()->verify_before_evacuation();
1563 }
1564
1565 set_evacuation_in_progress(true);
1566 // From here on, we need to update references.
1567 set_has_forwarded_objects(true);
1568
1569 evacuate_and_update_roots();
1570
1571 if (ShenandoahPacing) {
1572 pacer()->setup_for_evac();
1573 }
1574
1575 if (ShenandoahVerify) {
1576 verifier()->verify_during_evacuation();
1577 }
1578 } else {
1579 if (ShenandoahVerify) {
1580 verifier()->verify_after_concmark();
1581 }
1582
1583 if (VerifyAfterGC) {
1584 Universe::verify();
1585 }
1586 }
1587
1588 } else {
1589 concurrent_mark()->cancel();
1590 stop_concurrent_marking();
1591
1592 if (process_references()) {
1593 // Abandon reference processing right away: pre-cleaning must have failed.
1594 ReferenceProcessor *rp = ref_processor();
1595 rp->disable_discovery();
1596 rp->abandon_partial_discovery();
1597 rp->verify_no_references_recorded();
1598 }
1599 }
1600 }
1601
op_final_evac()1602 void ShenandoahHeap::op_final_evac() {
1603 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1604
1605 set_evacuation_in_progress(false);
1606
1607 retire_and_reset_gclabs();
1608
1609 if (ShenandoahVerify) {
1610 verifier()->verify_after_evacuation();
1611 }
1612
1613 if (VerifyAfterGC) {
1614 Universe::verify();
1615 }
1616 }
1617
op_conc_evac()1618 void ShenandoahHeap::op_conc_evac() {
1619 ShenandoahEvacuationTask task(this, _collection_set, true);
1620 workers()->run_task(&task);
1621 }
1622
op_stw_evac()1623 void ShenandoahHeap::op_stw_evac() {
1624 ShenandoahEvacuationTask task(this, _collection_set, false);
1625 workers()->run_task(&task);
1626 }
1627
op_updaterefs()1628 void ShenandoahHeap::op_updaterefs() {
1629 update_heap_references(true);
1630 }
1631
op_cleanup()1632 void ShenandoahHeap::op_cleanup() {
1633 free_set()->recycle_trash();
1634 }
1635
op_reset()1636 void ShenandoahHeap::op_reset() {
1637 reset_mark_bitmap();
1638 }
1639
op_preclean()1640 void ShenandoahHeap::op_preclean() {
1641 concurrent_mark()->preclean_weak_refs();
1642 }
1643
op_init_traversal()1644 void ShenandoahHeap::op_init_traversal() {
1645 traversal_gc()->init_traversal_collection();
1646 }
1647
op_traversal()1648 void ShenandoahHeap::op_traversal() {
1649 traversal_gc()->concurrent_traversal_collection();
1650 }
1651
op_final_traversal()1652 void ShenandoahHeap::op_final_traversal() {
1653 traversal_gc()->final_traversal_collection();
1654 }
1655
op_full(GCCause::Cause cause)1656 void ShenandoahHeap::op_full(GCCause::Cause cause) {
1657 ShenandoahMetricsSnapshot metrics;
1658 metrics.snap_before();
1659
1660 full_gc()->do_it(cause);
1661 if (UseTLAB) {
1662 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_resize_tlabs);
1663 resize_all_tlabs();
1664 }
1665
1666 metrics.snap_after();
1667 metrics.print();
1668
1669 if (metrics.is_good_progress("Full GC")) {
1670 _progress_last_gc.set();
1671 } else {
1672 // Nothing to do. Tell the allocation path that we have failed to make
1673 // progress, and it can finally fail.
1674 _progress_last_gc.unset();
1675 }
1676 }
1677
op_degenerated(ShenandoahDegenPoint point)1678 void ShenandoahHeap::op_degenerated(ShenandoahDegenPoint point) {
1679 // Degenerated GC is STW, but it can also fail. Current mechanics communicates
1680 // GC failure via cancelled_concgc() flag. So, if we detect the failure after
1681 // some phase, we have to upgrade the Degenerate GC to Full GC.
1682
1683 clear_cancelled_gc();
1684
1685 ShenandoahMetricsSnapshot metrics;
1686 metrics.snap_before();
1687
1688 switch (point) {
1689 case _degenerated_traversal:
1690 {
1691 // Drop the collection set. Note: this leaves some already forwarded objects
1692 // behind, which may be problematic, see comments for ShenandoahEvacAssist
1693 // workarounds in ShenandoahTraversalHeuristics.
1694
1695 ShenandoahHeapLocker locker(lock());
1696 collection_set()->clear_current_index();
1697 for (size_t i = 0; i < collection_set()->count(); i++) {
1698 ShenandoahHeapRegion* r = collection_set()->next();
1699 r->make_regular_bypass();
1700 }
1701 collection_set()->clear();
1702 }
1703 op_final_traversal();
1704 op_cleanup();
1705 return;
1706
1707 // The cases below form the Duff's-like device: it describes the actual GC cycle,
1708 // but enters it at different points, depending on which concurrent phase had
1709 // degenerated.
1710
1711 case _degenerated_outside_cycle:
1712 // We have degenerated from outside the cycle, which means something is bad with
1713 // the heap, most probably heavy humongous fragmentation, or we are very low on free
1714 // space. It makes little sense to wait for Full GC to reclaim as much as it can, when
1715 // we can do the most aggressive degen cycle, which includes processing references and
1716 // class unloading, unless those features are explicitly disabled.
1717 //
1718 // Note that we can only do this for "outside-cycle" degens, otherwise we would risk
1719 // changing the cycle parameters mid-cycle during concurrent -> degenerated handover.
1720 set_process_references(heuristics()->can_process_references());
1721 set_unload_classes(heuristics()->can_unload_classes());
1722
1723 if (heuristics()->can_do_traversal_gc()) {
1724 // Not possible to degenerate from here, upgrade to Full GC right away.
1725 cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc);
1726 op_degenerated_fail();
1727 return;
1728 }
1729
1730 op_reset();
1731
1732 op_init_mark();
1733 if (cancelled_gc()) {
1734 op_degenerated_fail();
1735 return;
1736 }
1737
1738 case _degenerated_mark:
1739 op_final_mark();
1740 if (cancelled_gc()) {
1741 op_degenerated_fail();
1742 return;
1743 }
1744
1745 op_cleanup();
1746
1747 case _degenerated_evac:
1748 // If heuristics thinks we should do the cycle, this flag would be set,
1749 // and we can do evacuation. Otherwise, it would be the shortcut cycle.
1750 if (is_evacuation_in_progress()) {
1751
1752 // Degeneration under oom-evac protocol might have left some objects in
1753 // collection set un-evacuated. Restart evacuation from the beginning to
1754 // capture all objects. For all the objects that are already evacuated,
1755 // it would be a simple check, which is supposed to be fast. This is also
1756 // safe to do even without degeneration, as CSet iterator is at beginning
1757 // in preparation for evacuation anyway.
1758 collection_set()->clear_current_index();
1759
1760 op_stw_evac();
1761 if (cancelled_gc()) {
1762 op_degenerated_fail();
1763 return;
1764 }
1765 }
1766
1767 // If heuristics thinks we should do the cycle, this flag would be set,
1768 // and we need to do update-refs. Otherwise, it would be the shortcut cycle.
1769 if (has_forwarded_objects()) {
1770 op_init_updaterefs();
1771 if (cancelled_gc()) {
1772 op_degenerated_fail();
1773 return;
1774 }
1775 }
1776
1777 case _degenerated_updaterefs:
1778 if (has_forwarded_objects()) {
1779 op_final_updaterefs();
1780 if (cancelled_gc()) {
1781 op_degenerated_fail();
1782 return;
1783 }
1784 }
1785
1786 op_cleanup();
1787 break;
1788
1789 default:
1790 ShouldNotReachHere();
1791 }
1792
1793 if (ShenandoahVerify) {
1794 verifier()->verify_after_degenerated();
1795 }
1796
1797 if (VerifyAfterGC) {
1798 Universe::verify();
1799 }
1800
1801 metrics.snap_after();
1802 metrics.print();
1803
1804 // Check for futility and fail. There is no reason to do several back-to-back Degenerated cycles,
1805 // because that probably means the heap is overloaded and/or fragmented.
1806 if (!metrics.is_good_progress("Degenerated GC")) {
1807 _progress_last_gc.unset();
1808 cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc);
1809 op_degenerated_futile();
1810 } else {
1811 _progress_last_gc.set();
1812 }
1813 }
1814
op_degenerated_fail()1815 void ShenandoahHeap::op_degenerated_fail() {
1816 log_info(gc)("Cannot finish degeneration, upgrading to Full GC");
1817 shenandoah_policy()->record_degenerated_upgrade_to_full();
1818 op_full(GCCause::_shenandoah_upgrade_to_full_gc);
1819 }
1820
op_degenerated_futile()1821 void ShenandoahHeap::op_degenerated_futile() {
1822 shenandoah_policy()->record_degenerated_upgrade_to_full();
1823 op_full(GCCause::_shenandoah_upgrade_to_full_gc);
1824 }
1825
stop_concurrent_marking()1826 void ShenandoahHeap::stop_concurrent_marking() {
1827 assert(is_concurrent_mark_in_progress(), "How else could we get here?");
1828 if (!cancelled_gc()) {
1829 // If we needed to update refs, and concurrent marking has been cancelled,
1830 // we need to finish updating references.
1831 set_has_forwarded_objects(false);
1832 mark_complete_marking_context();
1833 }
1834 set_concurrent_mark_in_progress(false);
1835 }
1836
force_satb_flush_all_threads()1837 void ShenandoahHeap::force_satb_flush_all_threads() {
1838 if (!is_concurrent_mark_in_progress() && !is_concurrent_traversal_in_progress()) {
1839 // No need to flush SATBs
1840 return;
1841 }
1842
1843 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1844 ShenandoahThreadLocalData::set_force_satb_flush(t, true);
1845 }
1846 // The threads are not "acquiring" their thread-local data, but it does not
1847 // hurt to "release" the updates here anyway.
1848 OrderAccess::fence();
1849 }
1850
set_gc_state_all_threads(char state)1851 void ShenandoahHeap::set_gc_state_all_threads(char state) {
1852 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1853 ShenandoahThreadLocalData::set_gc_state(t, state);
1854 }
1855 }
1856
set_gc_state_mask(uint mask,bool value)1857 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) {
1858 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should really be Shenandoah safepoint");
1859 _gc_state.set_cond(mask, value);
1860 set_gc_state_all_threads(_gc_state.raw_value());
1861 }
1862
set_concurrent_mark_in_progress(bool in_progress)1863 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
1864 set_gc_state_mask(MARKING, in_progress);
1865 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1866 }
1867
set_concurrent_traversal_in_progress(bool in_progress)1868 void ShenandoahHeap::set_concurrent_traversal_in_progress(bool in_progress) {
1869 set_gc_state_mask(TRAVERSAL | HAS_FORWARDED, in_progress);
1870 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
1871 }
1872
set_evacuation_in_progress(bool in_progress)1873 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
1874 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
1875 set_gc_state_mask(EVACUATION, in_progress);
1876 }
1877
tlab_post_allocation_setup(HeapWord * obj)1878 HeapWord* ShenandoahHeap::tlab_post_allocation_setup(HeapWord* obj) {
1879 // Initialize Brooks pointer for the next object
1880 HeapWord* result = obj + ShenandoahBrooksPointer::word_size();
1881 ShenandoahBrooksPointer::initialize(oop(result));
1882 return result;
1883 }
1884
ref_processing_init()1885 void ShenandoahHeap::ref_processing_init() {
1886 assert(_max_workers > 0, "Sanity");
1887
1888 _ref_processor =
1889 new ReferenceProcessor(&_subject_to_discovery, // is_subject_to_discovery
1890 ParallelRefProcEnabled, // MT processing
1891 _max_workers, // Degree of MT processing
1892 true, // MT discovery
1893 _max_workers, // Degree of MT discovery
1894 false, // Reference discovery is not atomic
1895 NULL, // No closure, should be installed before use
1896 true); // Scale worker threads
1897
1898 shenandoah_assert_rp_isalive_not_installed();
1899 }
1900
tracer()1901 GCTracer* ShenandoahHeap::tracer() {
1902 return shenandoah_policy()->tracer();
1903 }
1904
tlab_used(Thread * thread) const1905 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
1906 return _free_set->used();
1907 }
1908
cancel_gc(GCCause::Cause cause)1909 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
1910 if (try_cancel_gc()) {
1911 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
1912 log_info(gc)("%s", msg.buffer());
1913 Events::log(Thread::current(), "%s", msg.buffer());
1914 }
1915 }
1916
max_workers()1917 uint ShenandoahHeap::max_workers() {
1918 return _max_workers;
1919 }
1920
stop()1921 void ShenandoahHeap::stop() {
1922 // The shutdown sequence should be able to terminate when GC is running.
1923
1924 // Step 0. Notify policy to disable event recording.
1925 _shenandoah_policy->record_shutdown();
1926
1927 // Step 1. Notify control thread that we are in shutdown.
1928 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
1929 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
1930 control_thread()->prepare_for_graceful_shutdown();
1931
1932 // Step 2. Notify GC workers that we are cancelling GC.
1933 cancel_gc(GCCause::_shenandoah_stop_vm);
1934
1935 // Step 3. Wait until GC worker exits normally.
1936 control_thread()->stop();
1937
1938 // Step 4. Stop String Dedup thread if it is active
1939 if (ShenandoahStringDedup::is_enabled()) {
1940 ShenandoahStringDedup::stop();
1941 }
1942 }
1943
unload_classes_and_cleanup_tables(bool full_gc)1944 void ShenandoahHeap::unload_classes_and_cleanup_tables(bool full_gc) {
1945 assert(heuristics()->can_unload_classes(), "Class unloading should be enabled");
1946
1947 ShenandoahGCPhase root_phase(full_gc ?
1948 ShenandoahPhaseTimings::full_gc_purge :
1949 ShenandoahPhaseTimings::purge);
1950
1951 ShenandoahIsAliveSelector alive;
1952 BoolObjectClosure* is_alive = alive.is_alive_closure();
1953
1954 bool purged_class;
1955
1956 // Unload classes and purge SystemDictionary.
1957 {
1958 ShenandoahGCPhase phase(full_gc ?
1959 ShenandoahPhaseTimings::full_gc_purge_class_unload :
1960 ShenandoahPhaseTimings::purge_class_unload);
1961 purged_class = SystemDictionary::do_unloading(gc_timer());
1962 }
1963
1964 {
1965 ShenandoahGCPhase phase(full_gc ?
1966 ShenandoahPhaseTimings::full_gc_purge_par :
1967 ShenandoahPhaseTimings::purge_par);
1968 uint active = _workers->active_workers();
1969 StringDedupUnlinkOrOopsDoClosure dedup_cl(is_alive, NULL);
1970 ParallelCleaningTask unlink_task(is_alive, &dedup_cl, active, purged_class);
1971 _workers->run_task(&unlink_task);
1972 }
1973
1974 {
1975 ShenandoahGCPhase phase(full_gc ?
1976 ShenandoahPhaseTimings::full_gc_purge_cldg :
1977 ShenandoahPhaseTimings::purge_cldg);
1978 ClassLoaderDataGraph::purge();
1979 }
1980 }
1981
set_has_forwarded_objects(bool cond)1982 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
1983 set_gc_state_mask(HAS_FORWARDED, cond);
1984 }
1985
set_process_references(bool pr)1986 void ShenandoahHeap::set_process_references(bool pr) {
1987 _process_references.set_cond(pr);
1988 }
1989
set_unload_classes(bool uc)1990 void ShenandoahHeap::set_unload_classes(bool uc) {
1991 _unload_classes.set_cond(uc);
1992 }
1993
process_references() const1994 bool ShenandoahHeap::process_references() const {
1995 return _process_references.is_set();
1996 }
1997
unload_classes() const1998 bool ShenandoahHeap::unload_classes() const {
1999 return _unload_classes.is_set();
2000 }
2001
in_cset_fast_test_addr()2002 address ShenandoahHeap::in_cset_fast_test_addr() {
2003 ShenandoahHeap* heap = ShenandoahHeap::heap();
2004 assert(heap->collection_set() != NULL, "Sanity");
2005 return (address) heap->collection_set()->biased_map_address();
2006 }
2007
cancelled_gc_addr()2008 address ShenandoahHeap::cancelled_gc_addr() {
2009 return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of();
2010 }
2011
gc_state_addr()2012 address ShenandoahHeap::gc_state_addr() {
2013 return (address) ShenandoahHeap::heap()->_gc_state.addr_of();
2014 }
2015
bytes_allocated_since_gc_start()2016 size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
2017 return OrderAccess::load_acquire(&_bytes_allocated_since_gc_start);
2018 }
2019
reset_bytes_allocated_since_gc_start()2020 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2021 OrderAccess::release_store_fence(&_bytes_allocated_since_gc_start, (size_t)0);
2022 }
2023
set_degenerated_gc_in_progress(bool in_progress)2024 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2025 _degenerated_gc_in_progress.set_cond(in_progress);
2026 }
2027
set_full_gc_in_progress(bool in_progress)2028 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2029 _full_gc_in_progress.set_cond(in_progress);
2030 }
2031
set_full_gc_move_in_progress(bool in_progress)2032 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2033 assert (is_full_gc_in_progress(), "should be");
2034 _full_gc_move_in_progress.set_cond(in_progress);
2035 }
2036
set_update_refs_in_progress(bool in_progress)2037 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2038 set_gc_state_mask(UPDATEREFS, in_progress);
2039 }
2040
register_nmethod(nmethod * nm)2041 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2042 ShenandoahCodeRoots::add_nmethod(nm);
2043 }
2044
unregister_nmethod(nmethod * nm)2045 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2046 ShenandoahCodeRoots::remove_nmethod(nm);
2047 }
2048
pin_object(JavaThread * thr,oop o)2049 oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2050 o = ShenandoahBarrierSet::barrier_set()->write_barrier(o);
2051 ShenandoahHeapLocker locker(lock());
2052 heap_region_containing(o)->make_pinned();
2053 return o;
2054 }
2055
unpin_object(JavaThread * thr,oop o)2056 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2057 o = ShenandoahBarrierSet::barrier_set()->read_barrier(o);
2058 ShenandoahHeapLocker locker(lock());
2059 heap_region_containing(o)->make_unpinned();
2060 }
2061
gc_timer() const2062 GCTimer* ShenandoahHeap::gc_timer() const {
2063 return _gc_timer;
2064 }
2065
2066 #ifdef ASSERT
assert_gc_workers(uint nworkers)2067 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2068 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2069
2070 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2071 if (UseDynamicNumberOfGCThreads ||
2072 (FLAG_IS_DEFAULT(ParallelGCThreads) && ForceDynamicNumberOfGCThreads)) {
2073 assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
2074 } else {
2075 // Use ParallelGCThreads inside safepoints
2076 assert(nworkers == ParallelGCThreads, "Use ParalleGCThreads within safepoints");
2077 }
2078 } else {
2079 if (UseDynamicNumberOfGCThreads ||
2080 (FLAG_IS_DEFAULT(ConcGCThreads) && ForceDynamicNumberOfGCThreads)) {
2081 assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
2082 } else {
2083 // Use ConcGCThreads outside safepoints
2084 assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2085 }
2086 }
2087 }
2088 #endif
2089
verifier()2090 ShenandoahVerifier* ShenandoahHeap::verifier() {
2091 guarantee(ShenandoahVerify, "Should be enabled");
2092 assert (_verifier != NULL, "sanity");
2093 return _verifier;
2094 }
2095
2096 template<class T>
2097 class ShenandoahUpdateHeapRefsTask : public AbstractGangTask {
2098 private:
2099 T cl;
2100 ShenandoahHeap* _heap;
2101 ShenandoahRegionIterator* _regions;
2102 bool _concurrent;
2103 public:
ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator * regions,bool concurrent)2104 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions, bool concurrent) :
2105 AbstractGangTask("Concurrent Update References Task"),
2106 cl(T()),
2107 _heap(ShenandoahHeap::heap()),
2108 _regions(regions),
2109 _concurrent(concurrent) {
2110 }
2111
work(uint worker_id)2112 void work(uint worker_id) {
2113 if (_concurrent) {
2114 ShenandoahConcurrentWorkerSession worker_session(worker_id);
2115 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
2116 do_work();
2117 } else {
2118 ShenandoahParallelWorkerSession worker_session(worker_id);
2119 do_work();
2120 }
2121 }
2122
2123 private:
do_work()2124 void do_work() {
2125 ShenandoahHeapRegion* r = _regions->next();
2126 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2127 while (r != NULL) {
2128 HeapWord* top_at_start_ur = r->concurrent_iteration_safe_limit();
2129 assert (top_at_start_ur >= r->bottom(), "sanity");
2130 if (r->is_active() && !r->is_cset()) {
2131 _heap->marked_object_oop_iterate(r, &cl, top_at_start_ur);
2132 }
2133 if (ShenandoahPacing) {
2134 _heap->pacer()->report_updaterefs(pointer_delta(top_at_start_ur, r->bottom()));
2135 }
2136 if (_heap->check_cancelled_gc_and_yield(_concurrent)) {
2137 return;
2138 }
2139 r = _regions->next();
2140 }
2141 }
2142 };
2143
update_heap_references(bool concurrent)2144 void ShenandoahHeap::update_heap_references(bool concurrent) {
2145 ShenandoahUpdateHeapRefsTask<ShenandoahUpdateHeapRefsClosure> task(&_update_refs_iterator, concurrent);
2146 workers()->run_task(&task);
2147 }
2148
op_init_updaterefs()2149 void ShenandoahHeap::op_init_updaterefs() {
2150 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2151
2152 set_evacuation_in_progress(false);
2153
2154 retire_and_reset_gclabs();
2155
2156 if (ShenandoahVerify) {
2157 verifier()->verify_before_updaterefs();
2158 }
2159
2160 set_update_refs_in_progress(true);
2161 make_parsable(true);
2162 for (uint i = 0; i < num_regions(); i++) {
2163 ShenandoahHeapRegion* r = get_region(i);
2164 r->set_concurrent_iteration_safe_limit(r->top());
2165 }
2166
2167 // Reset iterator.
2168 _update_refs_iterator.reset();
2169
2170 if (ShenandoahPacing) {
2171 pacer()->setup_for_updaterefs();
2172 }
2173 }
2174
op_final_updaterefs()2175 void ShenandoahHeap::op_final_updaterefs() {
2176 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2177
2178 // Check if there is left-over work, and finish it
2179 if (_update_refs_iterator.has_next()) {
2180 ShenandoahGCPhase final_work(ShenandoahPhaseTimings::final_update_refs_finish_work);
2181
2182 // Finish updating references where we left off.
2183 clear_cancelled_gc();
2184 update_heap_references(false);
2185 }
2186
2187 // Clear cancelled GC, if set. On cancellation path, the block before would handle
2188 // everything. On degenerated paths, cancelled gc would not be set anyway.
2189 if (cancelled_gc()) {
2190 clear_cancelled_gc();
2191 }
2192 assert(!cancelled_gc(), "Should have been done right before");
2193
2194 concurrent_mark()->update_roots(is_degenerated_gc_in_progress() ?
2195 ShenandoahPhaseTimings::degen_gc_update_roots:
2196 ShenandoahPhaseTimings::final_update_refs_roots);
2197
2198 ShenandoahGCPhase final_update_refs(ShenandoahPhaseTimings::final_update_refs_recycle);
2199
2200 trash_cset_regions();
2201 set_has_forwarded_objects(false);
2202 set_update_refs_in_progress(false);
2203
2204 if (ShenandoahVerify) {
2205 verifier()->verify_after_updaterefs();
2206 }
2207
2208 if (VerifyAfterGC) {
2209 Universe::verify();
2210 }
2211
2212 {
2213 ShenandoahHeapLocker locker(lock());
2214 _free_set->rebuild();
2215 }
2216 }
2217
2218 #ifdef ASSERT
assert_heaplock_owned_by_current_thread()2219 void ShenandoahHeap::assert_heaplock_owned_by_current_thread() {
2220 _lock.assert_owned_by_current_thread();
2221 }
2222
assert_heaplock_not_owned_by_current_thread()2223 void ShenandoahHeap::assert_heaplock_not_owned_by_current_thread() {
2224 _lock.assert_not_owned_by_current_thread();
2225 }
2226
assert_heaplock_or_safepoint()2227 void ShenandoahHeap::assert_heaplock_or_safepoint() {
2228 _lock.assert_owned_by_current_thread_or_safepoint();
2229 }
2230 #endif
2231
print_extended_on(outputStream * st) const2232 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2233 print_on(st);
2234 print_heap_regions_on(st);
2235 }
2236
is_bitmap_slice_committed(ShenandoahHeapRegion * r,bool skip_self)2237 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2238 size_t slice = r->region_number() / _bitmap_regions_per_slice;
2239
2240 size_t regions_from = _bitmap_regions_per_slice * slice;
2241 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2242 for (size_t g = regions_from; g < regions_to; g++) {
2243 assert (g / _bitmap_regions_per_slice == slice, "same slice");
2244 if (skip_self && g == r->region_number()) continue;
2245 if (get_region(g)->is_committed()) {
2246 return true;
2247 }
2248 }
2249 return false;
2250 }
2251
commit_bitmap_slice(ShenandoahHeapRegion * r)2252 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2253 assert_heaplock_owned_by_current_thread();
2254
2255 // Bitmaps in special regions do not need commits
2256 if (_bitmap_region_special) {
2257 return true;
2258 }
2259
2260 if (is_bitmap_slice_committed(r, true)) {
2261 // Some other region from the group is already committed, meaning the bitmap
2262 // slice is already committed, we exit right away.
2263 return true;
2264 }
2265
2266 // Commit the bitmap slice:
2267 size_t slice = r->region_number() / _bitmap_regions_per_slice;
2268 size_t off = _bitmap_bytes_per_slice * slice;
2269 size_t len = _bitmap_bytes_per_slice;
2270 if (!os::commit_memory((char*)_bitmap_region.start() + off, len, false)) {
2271 return false;
2272 }
2273 return true;
2274 }
2275
uncommit_bitmap_slice(ShenandoahHeapRegion * r)2276 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2277 assert_heaplock_owned_by_current_thread();
2278
2279 // Bitmaps in special regions do not need uncommits
2280 if (_bitmap_region_special) {
2281 return true;
2282 }
2283
2284 if (is_bitmap_slice_committed(r, true)) {
2285 // Some other region from the group is still committed, meaning the bitmap
2286 // slice is should stay committed, exit right away.
2287 return true;
2288 }
2289
2290 // Uncommit the bitmap slice:
2291 size_t slice = r->region_number() / _bitmap_regions_per_slice;
2292 size_t off = _bitmap_bytes_per_slice * slice;
2293 size_t len = _bitmap_bytes_per_slice;
2294 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2295 return false;
2296 }
2297 return true;
2298 }
2299
safepoint_synchronize_begin()2300 void ShenandoahHeap::safepoint_synchronize_begin() {
2301 if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2302 SuspendibleThreadSet::synchronize();
2303 }
2304 }
2305
safepoint_synchronize_end()2306 void ShenandoahHeap::safepoint_synchronize_end() {
2307 if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2308 SuspendibleThreadSet::desynchronize();
2309 }
2310 }
2311
vmop_entry_init_mark()2312 void ShenandoahHeap::vmop_entry_init_mark() {
2313 TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2314 ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2315 ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_mark_gross);
2316
2317 try_inject_alloc_failure();
2318 VM_ShenandoahInitMark op;
2319 VMThread::execute(&op); // jump to entry_init_mark() under safepoint
2320 }
2321
vmop_entry_final_mark()2322 void ShenandoahHeap::vmop_entry_final_mark() {
2323 TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2324 ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2325 ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_mark_gross);
2326
2327 try_inject_alloc_failure();
2328 VM_ShenandoahFinalMarkStartEvac op;
2329 VMThread::execute(&op); // jump to entry_final_mark under safepoint
2330 }
2331
vmop_entry_final_evac()2332 void ShenandoahHeap::vmop_entry_final_evac() {
2333 TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2334 ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2335 ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_evac_gross);
2336
2337 VM_ShenandoahFinalEvac op;
2338 VMThread::execute(&op); // jump to entry_final_evac under safepoint
2339 }
2340
vmop_entry_init_updaterefs()2341 void ShenandoahHeap::vmop_entry_init_updaterefs() {
2342 TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2343 ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2344 ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_update_refs_gross);
2345
2346 try_inject_alloc_failure();
2347 VM_ShenandoahInitUpdateRefs op;
2348 VMThread::execute(&op);
2349 }
2350
vmop_entry_final_updaterefs()2351 void ShenandoahHeap::vmop_entry_final_updaterefs() {
2352 TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2353 ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2354 ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs_gross);
2355
2356 try_inject_alloc_failure();
2357 VM_ShenandoahFinalUpdateRefs op;
2358 VMThread::execute(&op);
2359 }
2360
vmop_entry_init_traversal()2361 void ShenandoahHeap::vmop_entry_init_traversal() {
2362 TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2363 ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2364 ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_traversal_gc_gross);
2365
2366 try_inject_alloc_failure();
2367 VM_ShenandoahInitTraversalGC op;
2368 VMThread::execute(&op);
2369 }
2370
vmop_entry_final_traversal()2371 void ShenandoahHeap::vmop_entry_final_traversal() {
2372 TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2373 ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2374 ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_traversal_gc_gross);
2375
2376 try_inject_alloc_failure();
2377 VM_ShenandoahFinalTraversalGC op;
2378 VMThread::execute(&op);
2379 }
2380
vmop_entry_full(GCCause::Cause cause)2381 void ShenandoahHeap::vmop_entry_full(GCCause::Cause cause) {
2382 TraceCollectorStats tcs(monitoring_support()->full_stw_collection_counters());
2383 ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2384 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc_gross);
2385
2386 try_inject_alloc_failure();
2387 VM_ShenandoahFullGC op(cause);
2388 VMThread::execute(&op);
2389 }
2390
vmop_degenerated(ShenandoahDegenPoint point)2391 void ShenandoahHeap::vmop_degenerated(ShenandoahDegenPoint point) {
2392 TraceCollectorStats tcs(monitoring_support()->full_stw_collection_counters());
2393 ShenandoahGCPhase total(ShenandoahPhaseTimings::total_pause_gross);
2394 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc_gross);
2395
2396 VM_ShenandoahDegeneratedGC degenerated_gc((int)point);
2397 VMThread::execute(°enerated_gc);
2398 }
2399
entry_init_mark()2400 void ShenandoahHeap::entry_init_mark() {
2401 ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2402 ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_mark);
2403 const char* msg = init_mark_event_message();
2404 GCTraceTime(Info, gc) time(msg, gc_timer());
2405 EventMark em("%s", msg);
2406
2407 ShenandoahWorkerScope scope(workers(),
2408 ShenandoahWorkerPolicy::calc_workers_for_init_marking(),
2409 "init marking");
2410
2411 op_init_mark();
2412 }
2413
entry_final_mark()2414 void ShenandoahHeap::entry_final_mark() {
2415 ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2416 ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_mark);
2417 const char* msg = final_mark_event_message();
2418 GCTraceTime(Info, gc) time(msg, gc_timer());
2419 EventMark em("%s", msg);
2420
2421 ShenandoahWorkerScope scope(workers(),
2422 ShenandoahWorkerPolicy::calc_workers_for_final_marking(),
2423 "final marking");
2424
2425 op_final_mark();
2426 }
2427
entry_final_evac()2428 void ShenandoahHeap::entry_final_evac() {
2429 ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2430 ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_evac);
2431 static const char* msg = "Pause Final Evac";
2432 GCTraceTime(Info, gc) time(msg, gc_timer());
2433 EventMark em("%s", msg);
2434
2435 op_final_evac();
2436 }
2437
entry_init_updaterefs()2438 void ShenandoahHeap::entry_init_updaterefs() {
2439 ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2440 ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_update_refs);
2441
2442 static const char* msg = "Pause Init Update Refs";
2443 GCTraceTime(Info, gc) time(msg, gc_timer());
2444 EventMark em("%s", msg);
2445
2446 // No workers used in this phase, no setup required
2447
2448 op_init_updaterefs();
2449 }
2450
entry_final_updaterefs()2451 void ShenandoahHeap::entry_final_updaterefs() {
2452 ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2453 ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs);
2454
2455 static const char* msg = "Pause Final Update Refs";
2456 GCTraceTime(Info, gc) time(msg, gc_timer());
2457 EventMark em("%s", msg);
2458
2459 ShenandoahWorkerScope scope(workers(),
2460 ShenandoahWorkerPolicy::calc_workers_for_final_update_ref(),
2461 "final reference update");
2462
2463 op_final_updaterefs();
2464 }
2465
entry_init_traversal()2466 void ShenandoahHeap::entry_init_traversal() {
2467 ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2468 ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_traversal_gc);
2469
2470 static const char* msg = "Pause Init Traversal";
2471 GCTraceTime(Info, gc) time(msg, gc_timer());
2472 EventMark em("%s", msg);
2473
2474 ShenandoahWorkerScope scope(workers(),
2475 ShenandoahWorkerPolicy::calc_workers_for_stw_traversal(),
2476 "init traversal");
2477
2478 op_init_traversal();
2479 }
2480
entry_final_traversal()2481 void ShenandoahHeap::entry_final_traversal() {
2482 ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2483 ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_traversal_gc);
2484
2485 static const char* msg = "Pause Final Traversal";
2486 GCTraceTime(Info, gc) time(msg, gc_timer());
2487 EventMark em("%s", msg);
2488
2489 ShenandoahWorkerScope scope(workers(),
2490 ShenandoahWorkerPolicy::calc_workers_for_stw_traversal(),
2491 "final traversal");
2492
2493 op_final_traversal();
2494 }
2495
entry_full(GCCause::Cause cause)2496 void ShenandoahHeap::entry_full(GCCause::Cause cause) {
2497 ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2498 ShenandoahGCPhase phase(ShenandoahPhaseTimings::full_gc);
2499
2500 static const char* msg = "Pause Full";
2501 GCTraceTime(Info, gc) time(msg, gc_timer(), cause, true);
2502 EventMark em("%s", msg);
2503
2504 ShenandoahWorkerScope scope(workers(),
2505 ShenandoahWorkerPolicy::calc_workers_for_fullgc(),
2506 "full gc");
2507
2508 op_full(cause);
2509 }
2510
entry_degenerated(int point)2511 void ShenandoahHeap::entry_degenerated(int point) {
2512 ShenandoahGCPhase total_phase(ShenandoahPhaseTimings::total_pause);
2513 ShenandoahGCPhase phase(ShenandoahPhaseTimings::degen_gc);
2514
2515 ShenandoahDegenPoint dpoint = (ShenandoahDegenPoint)point;
2516 const char* msg = degen_event_message(dpoint);
2517 GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2518 EventMark em("%s", msg);
2519
2520 ShenandoahWorkerScope scope(workers(),
2521 ShenandoahWorkerPolicy::calc_workers_for_stw_degenerated(),
2522 "stw degenerated gc");
2523
2524 set_degenerated_gc_in_progress(true);
2525 op_degenerated(dpoint);
2526 set_degenerated_gc_in_progress(false);
2527 }
2528
entry_mark()2529 void ShenandoahHeap::entry_mark() {
2530 TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2531
2532 const char* msg = conc_mark_event_message();
2533 GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2534 EventMark em("%s", msg);
2535
2536 ShenandoahWorkerScope scope(workers(),
2537 ShenandoahWorkerPolicy::calc_workers_for_conc_marking(),
2538 "concurrent marking");
2539
2540 try_inject_alloc_failure();
2541 op_mark();
2542 }
2543
entry_evac()2544 void ShenandoahHeap::entry_evac() {
2545 ShenandoahGCPhase conc_evac_phase(ShenandoahPhaseTimings::conc_evac);
2546 TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2547
2548 static const char* msg = "Concurrent evacuation";
2549 GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2550 EventMark em("%s", msg);
2551
2552 ShenandoahWorkerScope scope(workers(),
2553 ShenandoahWorkerPolicy::calc_workers_for_conc_evac(),
2554 "concurrent evacuation");
2555
2556 try_inject_alloc_failure();
2557 op_conc_evac();
2558 }
2559
entry_updaterefs()2560 void ShenandoahHeap::entry_updaterefs() {
2561 ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_update_refs);
2562
2563 static const char* msg = "Concurrent update references";
2564 GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2565 EventMark em("%s", msg);
2566
2567 ShenandoahWorkerScope scope(workers(),
2568 ShenandoahWorkerPolicy::calc_workers_for_conc_update_ref(),
2569 "concurrent reference update");
2570
2571 try_inject_alloc_failure();
2572 op_updaterefs();
2573 }
entry_cleanup()2574 void ShenandoahHeap::entry_cleanup() {
2575 ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_cleanup);
2576
2577 static const char* msg = "Concurrent cleanup";
2578 GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2579 EventMark em("%s", msg);
2580
2581 // This phase does not use workers, no need for setup
2582
2583 try_inject_alloc_failure();
2584 op_cleanup();
2585 }
2586
entry_reset()2587 void ShenandoahHeap::entry_reset() {
2588 ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_reset);
2589
2590 static const char* msg = "Concurrent reset";
2591 GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2592 EventMark em("%s", msg);
2593
2594 ShenandoahWorkerScope scope(workers(),
2595 ShenandoahWorkerPolicy::calc_workers_for_conc_reset(),
2596 "concurrent reset");
2597
2598 try_inject_alloc_failure();
2599 op_reset();
2600 }
2601
entry_preclean()2602 void ShenandoahHeap::entry_preclean() {
2603 if (ShenandoahPreclean && process_references()) {
2604 static const char* msg = "Concurrent precleaning";
2605 GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2606 EventMark em("%s", msg);
2607
2608 ShenandoahGCPhase conc_preclean(ShenandoahPhaseTimings::conc_preclean);
2609
2610 ShenandoahWorkerScope scope(workers(),
2611 ShenandoahWorkerPolicy::calc_workers_for_conc_preclean(),
2612 "concurrent preclean",
2613 /* check_workers = */ false);
2614
2615 try_inject_alloc_failure();
2616 op_preclean();
2617 }
2618 }
2619
entry_traversal()2620 void ShenandoahHeap::entry_traversal() {
2621 static const char* msg = "Concurrent traversal";
2622 GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2623 EventMark em("%s", msg);
2624
2625 TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2626
2627 ShenandoahWorkerScope scope(workers(),
2628 ShenandoahWorkerPolicy::calc_workers_for_conc_traversal(),
2629 "concurrent traversal");
2630
2631 try_inject_alloc_failure();
2632 op_traversal();
2633 }
2634
entry_uncommit(double shrink_before)2635 void ShenandoahHeap::entry_uncommit(double shrink_before) {
2636 static const char *msg = "Concurrent uncommit";
2637 GCTraceTime(Info, gc) time(msg, NULL, GCCause::_no_gc, true);
2638 EventMark em("%s", msg);
2639
2640 ShenandoahGCPhase phase(ShenandoahPhaseTimings::conc_uncommit);
2641
2642 op_uncommit(shrink_before);
2643 }
2644
try_inject_alloc_failure()2645 void ShenandoahHeap::try_inject_alloc_failure() {
2646 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2647 _inject_alloc_failure.set();
2648 os::naked_short_sleep(1);
2649 if (cancelled_gc()) {
2650 log_info(gc)("Allocation failure was successfully injected");
2651 }
2652 }
2653 }
2654
should_inject_alloc_failure()2655 bool ShenandoahHeap::should_inject_alloc_failure() {
2656 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2657 }
2658
initialize_serviceability()2659 void ShenandoahHeap::initialize_serviceability() {
2660 _memory_pool = new ShenandoahMemoryPool(this);
2661 _cycle_memory_manager.add_pool(_memory_pool);
2662 _stw_memory_manager.add_pool(_memory_pool);
2663 }
2664
memory_managers()2665 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2666 GrowableArray<GCMemoryManager*> memory_managers(2);
2667 memory_managers.append(&_cycle_memory_manager);
2668 memory_managers.append(&_stw_memory_manager);
2669 return memory_managers;
2670 }
2671
memory_pools()2672 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2673 GrowableArray<MemoryPool*> memory_pools(1);
2674 memory_pools.append(_memory_pool);
2675 return memory_pools;
2676 }
2677
memory_usage()2678 MemoryUsage ShenandoahHeap::memory_usage() {
2679 return _memory_pool->get_memory_usage();
2680 }
2681
enter_evacuation()2682 void ShenandoahHeap::enter_evacuation() {
2683 _oom_evac_handler.enter_evacuation();
2684 }
2685
leave_evacuation()2686 void ShenandoahHeap::leave_evacuation() {
2687 _oom_evac_handler.leave_evacuation();
2688 }
2689
ShenandoahRegionIterator()2690 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2691 _heap(ShenandoahHeap::heap()),
2692 _index(0) {}
2693
ShenandoahRegionIterator(ShenandoahHeap * heap)2694 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2695 _heap(heap),
2696 _index(0) {}
2697
reset()2698 void ShenandoahRegionIterator::reset() {
2699 _index = 0;
2700 }
2701
has_next() const2702 bool ShenandoahRegionIterator::has_next() const {
2703 return _index < _heap->num_regions();
2704 }
2705
gc_state() const2706 char ShenandoahHeap::gc_state() const {
2707 return _gc_state.raw_value();
2708 }
2709
deduplicate_string(oop str)2710 void ShenandoahHeap::deduplicate_string(oop str) {
2711 assert(java_lang_String::is_instance(str), "invariant");
2712
2713 if (ShenandoahStringDedup::is_enabled()) {
2714 ShenandoahStringDedup::deduplicate(str);
2715 }
2716 }
2717
init_mark_event_message() const2718 const char* ShenandoahHeap::init_mark_event_message() const {
2719 bool update_refs = has_forwarded_objects();
2720 bool proc_refs = process_references();
2721 bool unload_cls = unload_classes();
2722
2723 if (update_refs && proc_refs && unload_cls) {
2724 return "Pause Init Mark (update refs) (process weakrefs) (unload classes)";
2725 } else if (update_refs && proc_refs) {
2726 return "Pause Init Mark (update refs) (process weakrefs)";
2727 } else if (update_refs && unload_cls) {
2728 return "Pause Init Mark (update refs) (unload classes)";
2729 } else if (proc_refs && unload_cls) {
2730 return "Pause Init Mark (process weakrefs) (unload classes)";
2731 } else if (update_refs) {
2732 return "Pause Init Mark (update refs)";
2733 } else if (proc_refs) {
2734 return "Pause Init Mark (process weakrefs)";
2735 } else if (unload_cls) {
2736 return "Pause Init Mark (unload classes)";
2737 } else {
2738 return "Pause Init Mark";
2739 }
2740 }
2741
final_mark_event_message() const2742 const char* ShenandoahHeap::final_mark_event_message() const {
2743 bool update_refs = has_forwarded_objects();
2744 bool proc_refs = process_references();
2745 bool unload_cls = unload_classes();
2746
2747 if (update_refs && proc_refs && unload_cls) {
2748 return "Pause Final Mark (update refs) (process weakrefs) (unload classes)";
2749 } else if (update_refs && proc_refs) {
2750 return "Pause Final Mark (update refs) (process weakrefs)";
2751 } else if (update_refs && unload_cls) {
2752 return "Pause Final Mark (update refs) (unload classes)";
2753 } else if (proc_refs && unload_cls) {
2754 return "Pause Final Mark (process weakrefs) (unload classes)";
2755 } else if (update_refs) {
2756 return "Pause Final Mark (update refs)";
2757 } else if (proc_refs) {
2758 return "Pause Final Mark (process weakrefs)";
2759 } else if (unload_cls) {
2760 return "Pause Final Mark (unload classes)";
2761 } else {
2762 return "Pause Final Mark";
2763 }
2764 }
2765
conc_mark_event_message() const2766 const char* ShenandoahHeap::conc_mark_event_message() const {
2767 bool update_refs = has_forwarded_objects();
2768 bool proc_refs = process_references();
2769 bool unload_cls = unload_classes();
2770
2771 if (update_refs && proc_refs && unload_cls) {
2772 return "Concurrent marking (update refs) (process weakrefs) (unload classes)";
2773 } else if (update_refs && proc_refs) {
2774 return "Concurrent marking (update refs) (process weakrefs)";
2775 } else if (update_refs && unload_cls) {
2776 return "Concurrent marking (update refs) (unload classes)";
2777 } else if (proc_refs && unload_cls) {
2778 return "Concurrent marking (process weakrefs) (unload classes)";
2779 } else if (update_refs) {
2780 return "Concurrent marking (update refs)";
2781 } else if (proc_refs) {
2782 return "Concurrent marking (process weakrefs)";
2783 } else if (unload_cls) {
2784 return "Concurrent marking (unload classes)";
2785 } else {
2786 return "Concurrent marking";
2787 }
2788 }
2789
degen_event_message(ShenandoahDegenPoint point) const2790 const char* ShenandoahHeap::degen_event_message(ShenandoahDegenPoint point) const {
2791 switch (point) {
2792 case _degenerated_unset:
2793 return "Pause Degenerated GC (<UNSET>)";
2794 case _degenerated_traversal:
2795 return "Pause Degenerated GC (Traversal)";
2796 case _degenerated_outside_cycle:
2797 return "Pause Degenerated GC (Outside of Cycle)";
2798 case _degenerated_mark:
2799 return "Pause Degenerated GC (Mark)";
2800 case _degenerated_evac:
2801 return "Pause Degenerated GC (Evacuation)";
2802 case _degenerated_updaterefs:
2803 return "Pause Degenerated GC (Update Refs)";
2804 default:
2805 ShouldNotReachHere();
2806 return "ERROR";
2807 }
2808 }
2809
get_liveness_cache(uint worker_id)2810 jushort* ShenandoahHeap::get_liveness_cache(uint worker_id) {
2811 #ifdef ASSERT
2812 assert(_liveness_cache != NULL, "sanity");
2813 assert(worker_id < _max_workers, "sanity");
2814 for (uint i = 0; i < num_regions(); i++) {
2815 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
2816 }
2817 #endif
2818 return _liveness_cache[worker_id];
2819 }
2820
flush_liveness_cache(uint worker_id)2821 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
2822 assert(worker_id < _max_workers, "sanity");
2823 assert(_liveness_cache != NULL, "sanity");
2824 jushort* ld = _liveness_cache[worker_id];
2825 for (uint i = 0; i < num_regions(); i++) {
2826 ShenandoahHeapRegion* r = get_region(i);
2827 jushort live = ld[i];
2828 if (live > 0) {
2829 r->increase_live_data_gc_words(live);
2830 ld[i] = 0;
2831 }
2832 }
2833 }
2834
obj_size(oop obj) const2835 size_t ShenandoahHeap::obj_size(oop obj) const {
2836 return CollectedHeap::obj_size(obj) + ShenandoahBrooksPointer::word_size();
2837 }
2838
cell_header_size() const2839 ptrdiff_t ShenandoahHeap::cell_header_size() const {
2840 return ShenandoahBrooksPointer::byte_size();
2841 }
2842