1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_OPTO_CHAITIN_HPP
26 #define SHARE_VM_OPTO_CHAITIN_HPP
27 
28 #include "code/vmreg.hpp"
29 #include "memory/resourceArea.hpp"
30 #include "opto/connode.hpp"
31 #include "opto/live.hpp"
32 #include "opto/matcher.hpp"
33 #include "opto/phase.hpp"
34 #include "opto/regalloc.hpp"
35 #include "opto/regmask.hpp"
36 #include "opto/machnode.hpp"
37 
38 class LoopTree;
39 class Matcher;
40 class PhaseCFG;
41 class PhaseLive;
42 class PhaseRegAlloc;
43 class   PhaseChaitin;
44 
45 #define OPTO_DEBUG_SPLIT_FREQ  BLOCK_FREQUENCY(0.001)
46 #define OPTO_LRG_HIGH_FREQ     BLOCK_FREQUENCY(0.25)
47 
48 //------------------------------LRG--------------------------------------------
49 // Live-RanGe structure.
50 class LRG : public ResourceObj {
51   friend class VMStructs;
52 public:
53   static const uint AllStack_size = 0xFFFFF; // This mask size is used to tell that the mask of this LRG supports stack positions
54   enum { SPILL_REG=29999 };     // Register number of a spilled LRG
55 
56   double _cost;                 // 2 for loads/1 for stores times block freq
57   double _area;                 // Sum of all simultaneously live values
58   double score() const;         // Compute score from cost and area
59   double _maxfreq;              // Maximum frequency of any def or use
60 
61   Node *_def;                   // Check for multi-def live ranges
62 #ifndef PRODUCT
63   GrowableArray<Node*>* _defs;
64 #endif
65 
66   uint _risk_bias;              // Index of LRG which we want to avoid color
67   uint _copy_bias;              // Index of LRG which we want to share color
68 
69   uint _next;                   // Index of next LRG in linked list
70   uint _prev;                   // Index of prev LRG in linked list
71 private:
72   uint _reg;                    // Chosen register; undefined if mask is plural
73 public:
74   // Return chosen register for this LRG.  Error if the LRG is not bound to
75   // a single register.
reg() const76   OptoReg::Name reg() const { return OptoReg::Name(_reg); }
set_reg(OptoReg::Name r)77   void set_reg( OptoReg::Name r ) { _reg = r; }
78 
79 private:
80   uint _eff_degree;             // Effective degree: Sum of neighbors _num_regs
81 public:
degree() const82   int degree() const { assert( _degree_valid , "" ); return _eff_degree; }
83   // Degree starts not valid and any change to the IFG neighbor
84   // set makes it not valid.
set_degree(uint degree)85   void set_degree( uint degree ) {
86     _eff_degree = degree;
87     debug_only(_degree_valid = 1;)
88     assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
89   }
90   // Made a change that hammered degree
invalid_degree()91   void invalid_degree() { debug_only(_degree_valid=0;) }
92   // Incrementally modify degree.  If it was correct, it should remain correct
inc_degree(uint mod)93   void inc_degree( uint mod ) {
94     _eff_degree += mod;
95     assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
96   }
97   // Compute the degree between 2 live ranges
98   int compute_degree( LRG &l ) const;
mask_is_nonempty_and_up() const99   bool mask_is_nonempty_and_up() const {
100     return mask().is_UP() && mask_size();
101   }
is_float_or_vector() const102   bool is_float_or_vector() const {
103     return _is_float || _is_vector;
104   }
105 
106 private:
107   RegMask _mask;                // Allowed registers for this LRG
108   uint _mask_size;              // cache of _mask.Size();
109 public:
compute_mask_size() const110   int compute_mask_size() const { return _mask.is_AllStack() ? AllStack_size : _mask.Size(); }
set_mask_size(int size)111   void set_mask_size( int size ) {
112     assert((size == (int)AllStack_size) || (size == (int)_mask.Size()), "");
113     _mask_size = size;
114 #ifdef ASSERT
115     _msize_valid=1;
116     if (_is_vector) {
117       assert(!_fat_proj, "sanity");
118       _mask.verify_sets(_num_regs);
119     } else if (_num_regs == 2 && !_fat_proj) {
120       _mask.verify_pairs();
121     }
122 #endif
123   }
compute_set_mask_size()124   void compute_set_mask_size() { set_mask_size(compute_mask_size()); }
mask_size() const125   int mask_size() const { assert( _msize_valid, "mask size not valid" );
126                           return _mask_size; }
127   // Get the last mask size computed, even if it does not match the
128   // count of bits in the current mask.
get_invalid_mask_size() const129   int get_invalid_mask_size() const { return _mask_size; }
mask() const130   const RegMask &mask() const { return _mask; }
set_mask(const RegMask & rm)131   void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)}
AND(const RegMask & rm)132   void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)}
SUBTRACT(const RegMask & rm)133   void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
Clear()134   void Clear()   { _mask.Clear()  ; debug_only(_msize_valid=1); _mask_size = 0; }
Set_All()135   void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
136 
Insert(OptoReg::Name reg)137   void Insert( OptoReg::Name reg ) { _mask.Insert(reg);  debug_only(_msize_valid=0;) }
Remove(OptoReg::Name reg)138   void Remove( OptoReg::Name reg ) { _mask.Remove(reg);  debug_only(_msize_valid=0;) }
clear_to_pairs()139   void clear_to_pairs() { _mask.clear_to_pairs(); debug_only(_msize_valid=0;) }
clear_to_sets()140   void clear_to_sets()  { _mask.clear_to_sets(_num_regs); debug_only(_msize_valid=0;) }
141 
142   // Number of registers this live range uses when it colors
143 private:
144   uint16_t _num_regs;           // 2 for Longs and Doubles, 1 for all else
145                                 // except _num_regs is kill count for fat_proj
146 public:
num_regs() const147   int num_regs() const { return _num_regs; }
set_num_regs(int reg)148   void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; }
149 
150 private:
151   // Number of physical registers this live range uses when it colors
152   // Architecture and register-set dependent
153   uint16_t _reg_pressure;
154 public:
set_reg_pressure(int i)155   void set_reg_pressure(int i)  { _reg_pressure = i; }
reg_pressure() const156   int      reg_pressure() const { return _reg_pressure; }
157 
158   // How much 'wiggle room' does this live range have?
159   // How many color choices can it make (scaled by _num_regs)?
degrees_of_freedom() const160   int degrees_of_freedom() const { return mask_size() - _num_regs; }
161   // Bound LRGs have ZERO degrees of freedom.  We also count
162   // must_spill as bound.
is_bound() const163   bool is_bound  () const { return _is_bound; }
164   // Negative degrees-of-freedom; even with no neighbors this
165   // live range must spill.
not_free() const166   bool not_free() const { return degrees_of_freedom() <  0; }
167   // Is this live range of "low-degree"?  Trivially colorable?
lo_degree() const168   bool lo_degree () const { return degree() <= degrees_of_freedom(); }
169   // Is this live range just barely "low-degree"?  Trivially colorable?
just_lo_degree() const170   bool just_lo_degree () const { return degree() == degrees_of_freedom(); }
171 
172   uint   _is_oop:1,             // Live-range holds an oop
173          _is_float:1,           // True if in float registers
174          _is_vector:1,          // True if in vector registers
175          _was_spilled1:1,       // True if prior spilling on def
176          _was_spilled2:1,       // True if twice prior spilling on def
177          _is_bound:1,           // live range starts life with no
178                                 // degrees of freedom.
179          _direct_conflict:1,    // True if def and use registers in conflict
180          _must_spill:1,         // live range has lost all degrees of freedom
181     // If _fat_proj is set, live range does NOT require aligned, adjacent
182     // registers and has NO interferences.
183     // If _fat_proj is clear, live range requires num_regs() to be a power of
184     // 2, and it requires registers to form an aligned, adjacent set.
185          _fat_proj:1,           //
186          _was_lo:1,             // Was lo-degree prior to coalesce
187          _msize_valid:1,        // _mask_size cache valid
188          _degree_valid:1,       // _degree cache valid
189          _has_copy:1,           // Adjacent to some copy instruction
190          _at_risk:1;            // Simplify says this guy is at risk to spill
191 
192 
193   // Alive if non-zero, dead if zero
alive() const194   bool alive() const { return _def != NULL; }
is_multidef() const195   bool is_multidef() const { return _def == NodeSentinel; }
is_singledef() const196   bool is_singledef() const { return _def != NodeSentinel; }
197 
198 #ifndef PRODUCT
199   void dump( ) const;
200 #endif
201 };
202 
203 //------------------------------IFG--------------------------------------------
204 //                         InterFerence Graph
205 // An undirected graph implementation.  Created with a fixed number of
206 // vertices.  Edges can be added & tested.  Vertices can be removed, then
207 // added back later with all edges intact.  Can add edges between one vertex
208 // and a list of other vertices.  Can union vertices (and their edges)
209 // together.  The IFG needs to be really really fast, and also fairly
210 // abstract!  It needs abstraction so I can fiddle with the implementation to
211 // get even more speed.
212 class PhaseIFG : public Phase {
213   friend class VMStructs;
214   // Current implementation: a triangular adjacency list.
215 
216   // Array of adjacency-lists, indexed by live-range number
217   IndexSet *_adjs;
218 
219   // Assertion bit for proper use of Squaring
220   bool _is_square;
221 
222   // Live range structure goes here
223   LRG *_lrgs;                   // Array of LRG structures
224 
225 public:
226   // Largest live-range number
227   uint _maxlrg;
228 
229   Arena *_arena;
230 
231   // Keep track of inserted and deleted Nodes
232   VectorSet *_yanked;
233 
234   PhaseIFG( Arena *arena );
235   void init( uint maxlrg );
236 
237   // Add edge between a and b.  Returns true if actually addded.
238   int add_edge( uint a, uint b );
239 
240   // Add edge between a and everything in the vector
241   void add_vector( uint a, IndexSet *vec );
242 
243   // Test for edge existance
244   int test_edge( uint a, uint b ) const;
245 
246   // Square-up matrix for faster Union
247   void SquareUp();
248 
249   // Return number of LRG neighbors
neighbor_cnt(uint a) const250   uint neighbor_cnt( uint a ) const { return _adjs[a].count(); }
251   // Union edges of b into a on Squared-up matrix
252   void Union( uint a, uint b );
253   // Test for edge in Squared-up matrix
254   int test_edge_sq( uint a, uint b ) const;
255   // Yank a Node and all connected edges from the IFG.  Be prepared to
256   // re-insert the yanked Node in reverse order of yanking.  Return a
257   // list of neighbors (edges) yanked.
258   IndexSet *remove_node( uint a );
259   // Reinsert a yanked Node
260   void re_insert( uint a );
261   // Return set of neighbors
neighbors(uint a) const262   IndexSet *neighbors( uint a ) const { return &_adjs[a]; }
263 
264 #ifndef PRODUCT
265   // Dump the IFG
266   void dump() const;
267   void stats() const;
268   void verify( const PhaseChaitin * ) const;
269 #endif
270 
271   //--------------- Live Range Accessors
lrgs(uint idx) const272   LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; }
273 
274   // Compute and set effective degree.  Might be folded into SquareUp().
275   void Compute_Effective_Degree();
276 
277   // Compute effective degree as the sum of neighbors' _sizes.
278   int effective_degree( uint lidx ) const;
279 };
280 
281 // The LiveRangeMap class is responsible for storing node to live range id mapping.
282 // Each node is mapped to a live range id (a virtual register). Nodes that are
283 // not considered for register allocation are given live range id 0.
284 class LiveRangeMap {
285 
286 private:
287 
288   uint _max_lrg_id;
289 
290   // Union-find map.  Declared as a short for speed.
291   // Indexed by live-range number, it returns the compacted live-range number
292   LRG_List _uf_map;
293 
294   // Map from Nodes to live ranges
295   LRG_List _names;
296 
297   // Straight out of Tarjan's union-find algorithm
find_compress(const Node * node)298   uint find_compress(const Node *node) {
299     uint lrg_id = find_compress(_names.at(node->_idx));
300     _names.at_put(node->_idx, lrg_id);
301     return lrg_id;
302   }
303 
304   uint find_compress(uint lrg);
305 
306 public:
307 
names()308   const LRG_List& names() {
309     return _names;
310   }
311 
max_lrg_id() const312   uint max_lrg_id() const {
313     return _max_lrg_id;
314   }
315 
set_max_lrg_id(uint max_lrg_id)316   void set_max_lrg_id(uint max_lrg_id) {
317     _max_lrg_id = max_lrg_id;
318   }
319 
size() const320   uint size() const {
321     return _names.length();
322   }
323 
live_range_id(uint idx) const324   uint live_range_id(uint idx) const {
325     return _names.at(idx);
326   }
327 
live_range_id(const Node * node) const328   uint live_range_id(const Node *node) const {
329     return _names.at(node->_idx);
330   }
331 
uf_live_range_id(uint lrg_id) const332   uint uf_live_range_id(uint lrg_id) const {
333     return _uf_map.at(lrg_id);
334   }
335 
map(uint idx,uint lrg_id)336   void map(uint idx, uint lrg_id) {
337     _names.at_put(idx, lrg_id);
338   }
339 
uf_map(uint dst_lrg_id,uint src_lrg_id)340   void uf_map(uint dst_lrg_id, uint src_lrg_id) {
341     _uf_map.at_put(dst_lrg_id, src_lrg_id);
342   }
343 
extend(uint idx,uint lrg_id)344   void extend(uint idx, uint lrg_id) {
345     _names.at_put_grow(idx, lrg_id);
346   }
347 
uf_extend(uint dst_lrg_id,uint src_lrg_id)348   void uf_extend(uint dst_lrg_id, uint src_lrg_id) {
349     _uf_map.at_put_grow(dst_lrg_id, src_lrg_id);
350   }
351 
LiveRangeMap(Arena * arena,uint unique)352   LiveRangeMap(Arena* arena, uint unique)
353   :  _max_lrg_id(0)
354   , _uf_map(arena, unique, unique, 0)
355   , _names(arena, unique, unique, 0) {}
356 
find_id(const Node * n)357   uint find_id( const Node *n ) {
358     uint retval = live_range_id(n);
359     assert(retval == find(n),"Invalid node to lidx mapping");
360     return retval;
361   }
362 
363   // Reset the Union-Find map to identity
364   void reset_uf_map(uint max_lrg_id);
365 
366   // Make all Nodes map directly to their final live range; no need for
367   // the Union-Find mapping after this call.
368   void compress_uf_map_for_nodes();
369 
find(uint lidx)370   uint find(uint lidx) {
371     uint uf_lidx = _uf_map.at(lidx);
372     return (uf_lidx == lidx) ? uf_lidx : find_compress(lidx);
373   }
374 
375   // Convert a Node into a Live Range Index - a lidx
find(const Node * node)376   uint find(const Node *node) {
377     uint lidx = live_range_id(node);
378     uint uf_lidx = _uf_map.at(lidx);
379     return (uf_lidx == lidx) ? uf_lidx : find_compress(node);
380   }
381 
382   // Like Find above, but no path compress, so bad asymptotic behavior
383   uint find_const(uint lrg) const;
384 
385   // Like Find above, but no path compress, so bad asymptotic behavior
find_const(const Node * node) const386   uint find_const(const Node *node) const {
387     if(node->_idx >= (uint)_names.length()) {
388       return 0; // not mapped, usual for debug dump
389     }
390     return find_const(_names.at(node->_idx));
391   }
392 };
393 
394 //------------------------------Chaitin----------------------------------------
395 // Briggs-Chaitin style allocation, mostly.
396 class PhaseChaitin : public PhaseRegAlloc {
397   friend class VMStructs;
398 
399   int _trip_cnt;
400   int _alternate;
401 
402   PhaseLive *_live;             // Liveness, used in the interference graph
403   PhaseIFG *_ifg;               // Interference graph (for original chunk)
404   Node_List **_lrg_nodes;       // Array of node; lists for lrgs which spill
405   VectorSet _spilled_once;      // Nodes that have been spilled
406   VectorSet _spilled_twice;     // Nodes that have been spilled twice
407 
408   // Combine the Live Range Indices for these 2 Nodes into a single live
409   // range.  Future requests for any Node in either live range will
410   // return the live range index for the combined live range.
411   void Union( const Node *src, const Node *dst );
412 
413   void new_lrg( const Node *x, uint lrg );
414 
415   // Compact live ranges, removing unused ones.  Return new maxlrg.
416   void compact();
417 
418   uint _lo_degree;              // Head of lo-degree LRGs list
419   uint _lo_stk_degree;          // Head of lo-stk-degree LRGs list
420   uint _hi_degree;              // Head of hi-degree LRGs list
421   uint _simplified;             // Linked list head of simplified LRGs
422 
423   // Helper functions for Split()
424   uint split_DEF(Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
425   uint split_USE(MachSpillCopyNode::SpillType spill_type, Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
426 
427   //------------------------------clone_projs------------------------------------
428   // After cloning some rematerialized instruction, clone any MachProj's that
429   // follow it.  Example: Intel zero is XOR, kills flags.  Sparc FP constants
430   // use G3 as an address temp.
431   int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id);
432 
clone_projs(Block * b,uint idx,Node * orig,Node * copy,LiveRangeMap & lrg_map)433   int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) {
434     uint max_lrg_id = lrg_map.max_lrg_id();
435     int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id);
436     if (found_projs > 0) {
437       // max_lrg_id is updated during call above
438       lrg_map.set_max_lrg_id(max_lrg_id);
439     }
440     return found_projs;
441   }
442 
443   Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
444                             int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
445   // True if lidx is used before any real register is def'd in the block
446   bool prompt_use( Block *b, uint lidx );
447   Node *get_spillcopy_wide(MachSpillCopyNode::SpillType spill_type, Node *def, Node *use, uint uidx );
448   // Insert the spill at chosen location.  Skip over any intervening Proj's or
449   // Phis.  Skip over a CatchNode and projs, inserting in the fall-through block
450   // instead.  Update high-pressure indices.  Create a new live range.
451   void insert_proj( Block *b, uint i, Node *spill, uint maxlrg );
452 
453   bool is_high_pressure( Block *b, LRG *lrg, uint insidx );
454 
455   uint _oldphi;                 // Node index which separates pre-allocation nodes
456 
457   Block **_blks;                // Array of blocks sorted by frequency for coalescing
458 
459   float _high_frequency_lrg;    // Frequency at which LRG will be spilled for debug info
460 
461 #ifndef PRODUCT
462   bool _trace_spilling;
463 #endif
464 
465 public:
466   PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool track_liveout_pressure);
~PhaseChaitin()467   ~PhaseChaitin() {}
468 
469   LiveRangeMap _lrg_map;
470 
lrgs(uint idx) const471   LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); }
472 
473   // Do all the real work of allocate
474   void Register_Allocate();
475 
high_frequency_lrg() const476   float high_frequency_lrg() const { return _high_frequency_lrg; }
477 
478   // Used when scheduling info generated, not in general register allocation
479   bool _scheduling_info_generated;
480 
set_ifg(PhaseIFG & ifg)481   void set_ifg(PhaseIFG &ifg) { _ifg = &ifg;  }
set_live(PhaseLive & live)482   void set_live(PhaseLive &live) { _live = &live; }
get_live()483   PhaseLive* get_live() { return _live; }
484 
485   // Populate the live range maps with ssa info for scheduling
486   void mark_ssa();
487 
488 #ifndef PRODUCT
trace_spilling() const489   bool trace_spilling() const { return _trace_spilling; }
490 #endif
491 
492 private:
493   // De-SSA the world.  Assign registers to Nodes.  Use the same register for
494   // all inputs to a PhiNode, effectively coalescing live ranges.  Insert
495   // copies as needed.
496   void de_ssa();
497 
498   // Add edge between reg and everything in the vector.
499   // Same as _ifg->add_vector(reg,live) EXCEPT use the RegMask
500   // information to trim the set of interferences.  Return the
501   // count of edges added.
502   void interfere_with_live(uint lid, IndexSet* liveout);
503 #ifdef ASSERT
504   // Count register pressure for asserts
505   uint count_int_pressure(IndexSet* liveout);
506   uint count_float_pressure(IndexSet* liveout);
507 #endif
508 
509   // Build the interference graph using virtual registers only.
510   // Used for aggressive coalescing.
511   void build_ifg_virtual( );
512 
513   // used when computing the register pressure for each block in the CFG. This
514   // is done during IFG creation.
515   class Pressure {
516       // keeps track of the register pressure at the current
517       // instruction (used when stepping backwards in the block)
518       uint _current_pressure;
519 
520       // keeps track of the instruction index of the first low to high register pressure
521       // transition (starting from the top) in the block
522       // if high_pressure_index == 0 then the whole block is high pressure
523       // if high_pressure_index = b.end_idx() + 1 then the whole block is low pressure
524       uint _high_pressure_index;
525 
526       // stores the highest pressure we find
527       uint _final_pressure;
528 
529       // number of live ranges that constitute high register pressure
530       uint _high_pressure_limit;
531 
532       // initial pressure observed
533       uint _start_pressure;
534 
535     public:
536 
537       // lower the register pressure and look for a low to high pressure
538       // transition
lower(LRG & lrg,uint & location)539       void lower(LRG& lrg, uint& location) {
540         _current_pressure -= lrg.reg_pressure();
541         if (_current_pressure == _high_pressure_limit) {
542           _high_pressure_index = location;
543         }
544       }
545 
546       // raise the pressure and store the pressure if it's the biggest
547       // pressure so far
raise(LRG & lrg)548       void raise(LRG &lrg) {
549         _current_pressure += lrg.reg_pressure();
550         if (_current_pressure > _final_pressure) {
551           _final_pressure = _current_pressure;
552         }
553       }
554 
init(int limit)555       void init(int limit) {
556         _current_pressure = 0;
557         _high_pressure_index = 0;
558         _final_pressure = 0;
559         _high_pressure_limit = limit;
560         _start_pressure = 0;
561       }
562 
high_pressure_index() const563       uint high_pressure_index() const {
564         return _high_pressure_index;
565       }
566 
final_pressure() const567       uint final_pressure() const {
568         return _final_pressure;
569       }
570 
start_pressure() const571       uint start_pressure() const {
572         return _start_pressure;
573       }
574 
current_pressure() const575       uint current_pressure() const {
576         return _current_pressure;
577       }
578 
high_pressure_limit() const579       uint high_pressure_limit() const {
580         return _high_pressure_limit;
581       }
582 
lower_high_pressure_index()583       void lower_high_pressure_index() {
584         _high_pressure_index--;
585       }
586 
set_high_pressure_index_to_block_start()587       void set_high_pressure_index_to_block_start() {
588         _high_pressure_index = 0;
589       }
590 
set_start_pressure(int value)591       void set_start_pressure(int value) {
592         _start_pressure = value;
593         _final_pressure = value;
594       }
595 
set_current_pressure(int value)596       void set_current_pressure(int value) {
597         _current_pressure = value;
598       }
599 
check_pressure_at_fatproj(uint fatproj_location,RegMask & fatproj_mask)600       void check_pressure_at_fatproj(uint fatproj_location, RegMask& fatproj_mask) {
601         // this pressure is only valid at this instruction, i.e. we don't need to lower
602         // the register pressure since the fat proj was never live before (going backwards)
603         uint new_pressure = current_pressure() + fatproj_mask.Size();
604         if (new_pressure > final_pressure()) {
605           _final_pressure = new_pressure;
606         }
607 
608         // if we were at a low pressure and now and the fat proj is at high pressure, record the fat proj location
609         // as coming from a low to high (to low again)
610         if (current_pressure() <= high_pressure_limit() && new_pressure > high_pressure_limit()) {
611           _high_pressure_index = fatproj_location;
612         }
613       }
614 
Pressure(uint high_pressure_index,uint high_pressure_limit)615       Pressure(uint high_pressure_index, uint high_pressure_limit)
616         : _current_pressure(0)
617         , _high_pressure_index(high_pressure_index)
618         , _final_pressure(0)
619         , _high_pressure_limit(high_pressure_limit)
620         , _start_pressure(0) {}
621   };
622 
623   void check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype);
624   void add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
625   void compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost);
626   bool remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout);
627   void assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst);
628   void remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
629   void remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill);
630   void check_for_high_pressure_block(Pressure& pressure);
631   void adjust_high_pressure_index(Block* b, uint& hrp_index, Pressure& pressure);
632 
633   // Build the interference graph using physical registers when available.
634   // That is, if 2 live ranges are simultaneously alive but in their
635   // acceptable register sets do not overlap, then they do not interfere.
636   uint build_ifg_physical( ResourceArea *a );
637 
638 public:
639   // Gather LiveRanGe information, including register masks and base pointer/
640   // derived pointer relationships.
641   void gather_lrg_masks( bool mod_cisc_masks );
642 
643   // user visible pressure variables for scheduling
644   Pressure _sched_int_pressure;
645   Pressure _sched_float_pressure;
646   Pressure _scratch_int_pressure;
647   Pressure _scratch_float_pressure;
648 
649   // Pressure functions for user context
650   void lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure);
651   void raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure);
652   void compute_entry_block_pressure(Block* b);
653   void compute_exit_block_pressure(Block* b);
654   void print_pressure_info(Pressure& pressure, const char *str);
655 
656 private:
657   // Force the bases of derived pointers to be alive at GC points.
658   bool stretch_base_pointer_live_ranges( ResourceArea *a );
659   // Helper to stretch above; recursively discover the base Node for
660   // a given derived Node.  Easy for AddP-related machine nodes, but
661   // needs to be recursive for derived Phis.
662   Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg );
663 
664   // Set the was-lo-degree bit.  Conservative coalescing should not change the
665   // colorability of the graph.  If any live range was of low-degree before
666   // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
667   void set_was_low();
668 
669   // Split live-ranges that must spill due to register conflicts (as opposed
670   // to capacity spills).  Typically these are things def'd in a register
671   // and used on the stack or vice-versa.
672   void pre_spill();
673 
674   // Init LRG caching of degree, numregs.  Init lo_degree list.
675   void cache_lrg_info( );
676 
677   // Simplify the IFG by removing LRGs of low degree with no copies
678   void Pre_Simplify();
679 
680   // Simplify the IFG by removing LRGs of low degree
681   void Simplify();
682 
683   // Select colors by re-inserting edges into the IFG.
684   // Return TRUE if any spills occurred.
685   uint Select( );
686   // Helper function for select which allows biased coloring
687   OptoReg::Name choose_color( LRG &lrg, int chunk );
688   // Helper function which implements biasing heuristic
689   OptoReg::Name bias_color( LRG &lrg, int chunk );
690 
691   // Split uncolorable live ranges
692   // Return new number of live ranges
693   uint Split(uint maxlrg, ResourceArea* split_arena);
694 
695   // Copy 'was_spilled'-edness from one Node to another.
696   void copy_was_spilled( Node *src, Node *dst );
697   // Set the 'spilled_once' or 'spilled_twice' flag on a node.
698   void set_was_spilled( Node *n );
699 
700   // Convert ideal spill-nodes into machine loads & stores
701   // Set C->failing when fixup spills could not complete, node limit exceeded.
702   void fixup_spills();
703 
704   // Post-Allocation peephole copy removal
705   void post_allocate_copy_removal();
706   Node *skip_copies( Node *c );
707   // Replace the old node with the current live version of that value
708   // and yank the old value if it's dead.
replace_and_yank_if_dead(Node * old,OptoReg::Name nreg,Block * current_block,Node_List & value,Node_List & regnd)709   int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg,
710       Block *current_block, Node_List& value, Node_List& regnd ) {
711     Node* v = regnd[nreg];
712     assert(v->outcnt() != 0, "no dead values");
713     old->replace_by(v);
714     return yank_if_dead(old, current_block, &value, &regnd);
715   }
716 
yank_if_dead(Node * old,Block * current_block,Node_List * value,Node_List * regnd)717   int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
718     return yank_if_dead_recurse(old, old, current_block, value, regnd);
719   }
720   int yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
721       Node_List *value, Node_List *regnd);
722   int yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd );
723   int elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs );
724   int use_prior_register( Node *copy, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd );
725   bool may_be_copy_of_callee( Node *def ) const;
726 
727   // If nreg already contains the same constant as val then eliminate it
728   bool eliminate_copy_of_constant(Node* val, Node* n,
729       Block *current_block, Node_List& value, Node_List &regnd,
730       OptoReg::Name nreg, OptoReg::Name nreg2);
731   // Extend the node to LRG mapping
732   void add_reference( const Node *node, const Node *old_node);
733 
734   // Record the first use of a def in the block for a register.
735   class RegDefUse {
736     Node* _def;
737     Node* _first_use;
738   public:
RegDefUse()739     RegDefUse() : _def(NULL), _first_use(NULL) { }
def() const740     Node* def() const       { return _def;       }
first_use() const741     Node* first_use() const { return _first_use; }
742 
update(Node * def,Node * use)743     void update(Node* def, Node* use) {
744       if (_def != def) {
745         _def = def;
746         _first_use = use;
747       }
748     }
clear()749     void clear() {
750       _def = NULL;
751       _first_use = NULL;
752     }
753   };
754   typedef GrowableArray<RegDefUse> RegToDefUseMap;
755   int possibly_merge_multidef(Node *n, uint k, Block *block, RegToDefUseMap& reg2defuse);
756 
757   // Merge nodes that are a part of a multidef lrg and produce the same value within a block.
758   void merge_multidefs();
759 
760 private:
761 
762   static int _final_loads, _final_stores, _final_copies, _final_memoves;
763   static double _final_load_cost, _final_store_cost, _final_copy_cost, _final_memove_cost;
764   static int _conserv_coalesce, _conserv_coalesce_pair;
765   static int _conserv_coalesce_trie, _conserv_coalesce_quad;
766   static int _post_alloc;
767   static int _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce;
768   static int _used_cisc_instructions, _unused_cisc_instructions;
769   static int _allocator_attempts, _allocator_successes;
770 
771 #ifndef PRODUCT
772   static uint _high_pressure, _low_pressure;
773 
774   void dump() const;
775   void dump( const Node *n ) const;
776   void dump( const Block * b ) const;
777   void dump_degree_lists() const;
778   void dump_simplified() const;
779   void dump_lrg( uint lidx, bool defs_only) const;
dump_lrg(uint lidx) const780   void dump_lrg( uint lidx) const {
781     // dump defs and uses by default
782     dump_lrg(lidx, false);
783   }
784   void dump_bb( uint pre_order ) const;
785 
786   // Verify that base pointers and derived pointers are still sane
787   void verify_base_ptrs( ResourceArea *a ) const;
788 
789   void verify( ResourceArea *a, bool verify_ifg = false ) const;
790 
791   void dump_for_spill_split_recycle() const;
792 
793 public:
794   void dump_frame() const;
795   char *dump_register( const Node *n, char *buf  ) const;
796 private:
797   static void print_chaitin_statistics();
798 #endif
799   friend class PhaseCoalesce;
800   friend class PhaseAggressiveCoalesce;
801   friend class PhaseConservativeCoalesce;
802 };
803 
804 #endif // SHARE_VM_OPTO_CHAITIN_HPP
805