1 /*
2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/collectedHeap.hpp"
27 #include "opto/machnode.hpp"
28 #include "opto/regalloc.hpp"
29 #include "utilities/vmError.hpp"
30 
31 //=============================================================================
32 // Return the value requested
33 // result register lookup, corresponding to int_format
reg(PhaseRegAlloc * ra_,const Node * node) const34 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node) const {
35   return (int)ra_->get_encode(node);
36 }
37 // input register lookup, corresponding to ext_format
reg(PhaseRegAlloc * ra_,const Node * node,int idx) const38 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {
39   return (int)(ra_->get_encode(node->in(idx)));
40 }
constant() const41 intptr_t  MachOper::constant() const { return 0x00; }
constant_reloc() const42 relocInfo::relocType MachOper::constant_reloc() const { return relocInfo::none; }
constantD() const43 jdouble MachOper::constantD() const { ShouldNotReachHere(); return 0.0; }
constantF() const44 jfloat  MachOper::constantF() const { ShouldNotReachHere(); return 0.0; }
constantL() const45 jlong   MachOper::constantL() const { ShouldNotReachHere(); return CONST64(0) ; }
oop() const46 TypeOopPtr *MachOper::oop() const { return NULL; }
ccode() const47 int MachOper::ccode() const { return 0x00; }
48 // A zero, default, indicates this value is not needed.
49 // May need to lookup the base register, as done in int_ and ext_format
base(PhaseRegAlloc * ra_,const Node * node,int idx) const50 int MachOper::base (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
index(PhaseRegAlloc * ra_,const Node * node,int idx) const51 int MachOper::index(PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
scale() const52 int MachOper::scale()  const { return 0x00; }
disp(PhaseRegAlloc * ra_,const Node * node,int idx) const53 int MachOper::disp (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
constant_disp() const54 int MachOper::constant_disp()  const { return 0; }
base_position() const55 int MachOper::base_position()  const { return -1; }  // no base input
index_position() const56 int MachOper::index_position() const { return -1; }  // no index input
57 // Check for PC-Relative displacement
disp_reloc() const58 relocInfo::relocType MachOper::disp_reloc() const { return relocInfo::none; }
59 // Return the label
label() const60 Label*   MachOper::label()  const { ShouldNotReachHere(); return 0; }
method() const61 intptr_t MachOper::method() const { ShouldNotReachHere(); return 0; }
62 
63 
64 //------------------------------negate-----------------------------------------
65 // Negate conditional branches.  Error for non-branch operands
negate()66 void MachOper::negate() {
67   ShouldNotCallThis();
68 }
69 
70 //-----------------------------type--------------------------------------------
type() const71 const Type *MachOper::type() const {
72   return Type::BOTTOM;
73 }
74 
75 //------------------------------in_RegMask-------------------------------------
in_RegMask(int index) const76 const RegMask *MachOper::in_RegMask(int index) const {
77   ShouldNotReachHere();
78   return NULL;
79 }
80 
81 //------------------------------dump_spec--------------------------------------
82 // Print any per-operand special info
83 #ifndef PRODUCT
dump_spec(outputStream * st) const84 void MachOper::dump_spec(outputStream *st) const { }
85 #endif
86 
87 //------------------------------hash-------------------------------------------
88 // Print any per-operand special info
hash() const89 uint MachOper::hash() const {
90   ShouldNotCallThis();
91   return 5;
92 }
93 
94 //------------------------------cmp--------------------------------------------
95 // Print any per-operand special info
cmp(const MachOper & oper) const96 uint MachOper::cmp( const MachOper &oper ) const {
97   ShouldNotCallThis();
98   return opcode() == oper.opcode();
99 }
100 
101 //------------------------------hash-------------------------------------------
102 // Print any per-operand special info
hash() const103 uint labelOper::hash() const {
104   return _block_num;
105 }
106 
107 //------------------------------cmp--------------------------------------------
108 // Print any per-operand special info
cmp(const MachOper & oper) const109 uint labelOper::cmp( const MachOper &oper ) const {
110   return (opcode() == oper.opcode()) && (_label == oper.label());
111 }
112 
113 //------------------------------hash-------------------------------------------
114 // Print any per-operand special info
hash() const115 uint methodOper::hash() const {
116   return (uint)_method;
117 }
118 
119 //------------------------------cmp--------------------------------------------
120 // Print any per-operand special info
cmp(const MachOper & oper) const121 uint methodOper::cmp( const MachOper &oper ) const {
122   return (opcode() == oper.opcode()) && (_method == oper.method());
123 }
124 
125 
126 //=============================================================================
127 //------------------------------MachNode---------------------------------------
128 
129 //------------------------------emit-------------------------------------------
emit(CodeBuffer & cbuf,PhaseRegAlloc * ra_) const130 void MachNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
131   #ifdef ASSERT
132   tty->print("missing MachNode emit function: ");
133   dump();
134   #endif
135   ShouldNotCallThis();
136 }
137 
138 //---------------------------postalloc_expand----------------------------------
139 // Expand node after register allocation.
postalloc_expand(GrowableArray<Node * > * nodes,PhaseRegAlloc * ra_)140 void MachNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {}
141 
142 //------------------------------size-------------------------------------------
143 // Size of instruction in bytes
size(PhaseRegAlloc * ra_) const144 uint MachNode::size(PhaseRegAlloc *ra_) const {
145   // If a virtual was not defined for this specific instruction,
146   // Call the helper which finds the size by emitting the bits.
147   return MachNode::emit_size(ra_);
148 }
149 
150 //------------------------------size-------------------------------------------
151 // Helper function that computes size by emitting code
emit_size(PhaseRegAlloc * ra_) const152 uint MachNode::emit_size(PhaseRegAlloc *ra_) const {
153   // Emit into a trash buffer and count bytes emitted.
154   assert(ra_ == ra_->C->regalloc(), "sanity");
155   return ra_->C->scratch_emit_size(this);
156 }
157 
158 
159 
160 //------------------------------hash-------------------------------------------
hash() const161 uint MachNode::hash() const {
162   uint no = num_opnds();
163   uint sum = rule();
164   for( uint i=0; i<no; i++ )
165     sum += _opnds[i]->hash();
166   return sum+Node::hash();
167 }
168 
169 //-----------------------------cmp---------------------------------------------
cmp(const Node & node) const170 uint MachNode::cmp( const Node &node ) const {
171   MachNode& n = *((Node&)node).as_Mach();
172   uint no = num_opnds();
173   if( no != n.num_opnds() ) return 0;
174   if( rule() != n.rule() ) return 0;
175   for( uint i=0; i<no; i++ )    // All operands must match
176     if( !_opnds[i]->cmp( *n._opnds[i] ) )
177       return 0;                 // mis-matched operands
178   return 1;                     // match
179 }
180 
181 // Return an equivalent instruction using memory for cisc_operand position
cisc_version(int offset)182 MachNode *MachNode::cisc_version(int offset) {
183   ShouldNotCallThis();
184   return NULL;
185 }
186 
use_cisc_RegMask()187 void MachNode::use_cisc_RegMask() {
188   ShouldNotReachHere();
189 }
190 
191 
192 //-----------------------------in_RegMask--------------------------------------
in_RegMask(uint idx) const193 const RegMask &MachNode::in_RegMask( uint idx ) const {
194   uint numopnds = num_opnds();        // Virtual call for number of operands
195   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
196   if( idx < skipped ) {
197     assert( ideal_Opcode() == Op_AddP, "expected base ptr here" );
198     assert( idx == 1, "expected base ptr here" );
199     // debug info can be anywhere
200     return *Compile::current()->matcher()->idealreg2spillmask[Op_RegP];
201   }
202   uint opcnt     = 1;                 // First operand
203   uint num_edges = _opnds[1]->num_edges(); // leaves for first operand
204   while( idx >= skipped+num_edges ) {
205     skipped += num_edges;
206     opcnt++;                          // Bump operand count
207     assert( opcnt < numopnds, "Accessing non-existent operand" );
208     num_edges = _opnds[opcnt]->num_edges(); // leaves for next operand
209   }
210 
211   const RegMask *rm = cisc_RegMask();
212   if( rm == NULL || (int)opcnt != cisc_operand() ) {
213     rm = _opnds[opcnt]->in_RegMask(idx-skipped);
214   }
215   return *rm;
216 }
217 
218 //-----------------------------memory_inputs--------------------------------
memory_inputs(Node * & base,Node * & index) const219 const MachOper*  MachNode::memory_inputs(Node* &base, Node* &index) const {
220   const MachOper* oper = memory_operand();
221 
222   if (oper == (MachOper*)-1) {
223     base = NodeSentinel;
224     index = NodeSentinel;
225   } else {
226     base = NULL;
227     index = NULL;
228     if (oper != NULL) {
229       // It has a unique memory operand.  Find its index.
230       int oper_idx = num_opnds();
231       while (--oper_idx >= 0) {
232         if (_opnds[oper_idx] == oper)  break;
233       }
234       int oper_pos = operand_index(oper_idx);
235       int base_pos = oper->base_position();
236       if (base_pos >= 0) {
237         base = _in[oper_pos+base_pos];
238       }
239       int index_pos = oper->index_position();
240       if (index_pos >= 0) {
241         index = _in[oper_pos+index_pos];
242       }
243     }
244   }
245 
246   return oper;
247 }
248 
249 //-----------------------------get_base_and_disp----------------------------
get_base_and_disp(intptr_t & offset,const TypePtr * & adr_type) const250 const Node* MachNode::get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const {
251 
252   // Find the memory inputs using our helper function
253   Node* base;
254   Node* index;
255   const MachOper* oper = memory_inputs(base, index);
256 
257   if (oper == NULL) {
258     // Base has been set to NULL
259     offset = 0;
260   } else if (oper == (MachOper*)-1) {
261     // Base has been set to NodeSentinel
262     // There is not a unique memory use here.  We will fall to AliasIdxBot.
263     offset = Type::OffsetBot;
264   } else {
265     // Base may be NULL, even if offset turns out to be != 0
266 
267     intptr_t disp = oper->constant_disp();
268     int scale = oper->scale();
269     // Now we have collected every part of the ADLC MEMORY_INTER.
270     // See if it adds up to a base + offset.
271     if (index != NULL) {
272       const Type* t_index = index->bottom_type();
273       if (t_index->isa_narrowoop() || t_index->isa_narrowklass()) { // EncodeN, LoadN, LoadConN, LoadNKlass,
274                                                                     // EncodeNKlass, LoadConNklass.
275         // Memory references through narrow oops have a
276         // funny base so grab the type from the index:
277         // [R12 + narrow_oop_reg<<3 + offset]
278         assert(base == NULL, "Memory references through narrow oops have no base");
279         offset = disp;
280         adr_type = t_index->make_ptr()->add_offset(offset);
281         return NULL;
282       } else if (!index->is_Con()) {
283         disp = Type::OffsetBot;
284       } else if (disp != Type::OffsetBot) {
285         const TypeX* ti = t_index->isa_intptr_t();
286         if (ti == NULL) {
287           disp = Type::OffsetBot;  // a random constant??
288         } else {
289           disp += ti->get_con() << scale;
290         }
291       }
292     }
293     offset = disp;
294 
295     // In i486.ad, indOffset32X uses base==RegI and disp==RegP,
296     // this will prevent alias analysis without the following support:
297     // Lookup the TypePtr used by indOffset32X, a compile-time constant oop,
298     // Add the offset determined by the "base", or use Type::OffsetBot.
299     if( adr_type == TYPE_PTR_SENTINAL ) {
300       const TypePtr *t_disp = oper->disp_as_type();  // only !NULL for indOffset32X
301       if (t_disp != NULL) {
302         offset = Type::OffsetBot;
303         const Type* t_base = base->bottom_type();
304         if (t_base->isa_intptr_t()) {
305           const TypeX *t_offset = t_base->is_intptr_t();
306           if( t_offset->is_con() ) {
307             offset = t_offset->get_con();
308           }
309         }
310         adr_type = t_disp->add_offset(offset);
311       } else if( base == NULL && offset != 0 && offset != Type::OffsetBot ) {
312         // Use ideal type if it is oop ptr.
313         const TypePtr *tp = oper->type()->isa_ptr();
314         if( tp != NULL) {
315           adr_type = tp;
316         }
317       }
318     }
319 
320   }
321   return base;
322 }
323 
324 
325 //---------------------------------adr_type---------------------------------
adr_type() const326 const class TypePtr *MachNode::adr_type() const {
327   intptr_t offset = 0;
328   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // attempt computing adr_type
329   const Node *base = get_base_and_disp(offset, adr_type);
330   if( adr_type != TYPE_PTR_SENTINAL ) {
331     return adr_type;      // get_base_and_disp has the answer
332   }
333 
334   // Direct addressing modes have no base node, simply an indirect
335   // offset, which is always to raw memory.
336   // %%%%% Someday we'd like to allow constant oop offsets which
337   // would let Intel load from static globals in 1 instruction.
338   // Currently Intel requires 2 instructions and a register temp.
339   if (base == NULL) {
340     // NULL base, zero offset means no memory at all (a null pointer!)
341     if (offset == 0) {
342       return NULL;
343     }
344     // NULL base, any offset means any pointer whatever
345     if (offset == Type::OffsetBot) {
346       return TypePtr::BOTTOM;
347     }
348     // %%% make offset be intptr_t
349     assert(!Universe::heap()->is_in_reserved(cast_to_oop(offset)), "must be a raw ptr");
350     return TypeRawPtr::BOTTOM;
351   }
352 
353   // base of -1 with no particular offset means all of memory
354   if (base == NodeSentinel)  return TypePtr::BOTTOM;
355 
356   const Type* t = base->bottom_type();
357   if (t->isa_narrowoop() && Universe::narrow_oop_shift() == 0) {
358     // 32-bit unscaled narrow oop can be the base of any address expression
359     t = t->make_ptr();
360   }
361   if (t->isa_narrowklass() && Universe::narrow_klass_shift() == 0) {
362     // 32-bit unscaled narrow oop can be the base of any address expression
363     t = t->make_ptr();
364   }
365   if (t->isa_intptr_t() && offset != 0 && offset != Type::OffsetBot) {
366     // We cannot assert that the offset does not look oop-ish here.
367     // Depending on the heap layout the cardmark base could land
368     // inside some oopish region.  It definitely does for Win2K.
369     // The sum of cardmark-base plus shift-by-9-oop lands outside
370     // the oop-ish area but we can't assert for that statically.
371     return TypeRawPtr::BOTTOM;
372   }
373 
374   const TypePtr *tp = t->isa_ptr();
375 
376   // be conservative if we do not recognize the type
377   if (tp == NULL) {
378     assert(false, "this path may produce not optimal code");
379     return TypePtr::BOTTOM;
380   }
381   assert(tp->base() != Type::AnyPtr, "not a bare pointer");
382 
383   return tp->add_offset(offset);
384 }
385 
386 
387 //-----------------------------operand_index---------------------------------
operand_index(uint operand) const388 int MachNode::operand_index( uint operand ) const {
389   if( operand < 1 )  return -1;
390   assert(operand < num_opnds(), "oob");
391   if( _opnds[operand]->num_edges() == 0 )  return -1;
392 
393   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
394   for (uint opcnt = 1; opcnt < operand; opcnt++) {
395     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
396     skipped += num_edges;
397   }
398   return skipped;
399 }
400 
operand_index(const MachOper * oper) const401 int MachNode::operand_index(const MachOper *oper) const {
402   uint skipped = oper_input_base(); // Sum of leaves skipped so far
403   uint opcnt;
404   for (opcnt = 1; opcnt < num_opnds(); opcnt++) {
405     if (_opnds[opcnt] == oper) break;
406     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
407     skipped += num_edges;
408   }
409   if (_opnds[opcnt] != oper) return -1;
410   return skipped;
411 }
412 
413 //------------------------------peephole---------------------------------------
414 // Apply peephole rule(s) to this instruction
peephole(Block * block,int block_index,PhaseRegAlloc * ra_,int & deleted)415 MachNode *MachNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {
416   return NULL;
417 }
418 
419 //------------------------------add_case_label---------------------------------
420 // Adds the label for the case
add_case_label(int index_num,Label * blockLabel)421 void MachNode::add_case_label( int index_num, Label* blockLabel) {
422   ShouldNotCallThis();
423 }
424 
425 //------------------------------method_set-------------------------------------
426 // Set the absolute address of a method
method_set(intptr_t addr)427 void MachNode::method_set( intptr_t addr ) {
428   ShouldNotCallThis();
429 }
430 
431 //------------------------------rematerialize----------------------------------
rematerialize() const432 bool MachNode::rematerialize() const {
433   // Temps are always rematerializable
434   if (is_MachTemp()) return true;
435 
436   uint r = rule();              // Match rule
437   if (r <  Matcher::_begin_rematerialize ||
438       r >= Matcher::_end_rematerialize) {
439     return false;
440   }
441 
442   // For 2-address instructions, the input live range is also the output
443   // live range. Remateralizing does not make progress on the that live range.
444   if (two_adr()) return false;
445 
446   // Check for rematerializing float constants, or not
447   if (!Matcher::rematerialize_float_constants) {
448     int op = ideal_Opcode();
449     if (op == Op_ConF || op == Op_ConD) {
450       return false;
451     }
452   }
453 
454   // Defining flags - can't spill these! Must remateralize.
455   if (ideal_reg() == Op_RegFlags) {
456     return true;
457   }
458 
459   // Stretching lots of inputs - don't do it.
460   if (req() > 2) {
461     return false;
462   }
463 
464   if (req() == 2 && in(1) && in(1)->ideal_reg() == Op_RegFlags) {
465     // In(1) will be rematerialized, too.
466     // Stretching lots of inputs - don't do it.
467     if (in(1)->req() > 2) {
468       return false;
469     }
470   }
471 
472   // Don't remateralize somebody with bound inputs - it stretches a
473   // fixed register lifetime.
474   uint idx = oper_input_base();
475   if (req() > idx) {
476     const RegMask &rm = in_RegMask(idx);
477     if (rm.is_bound(ideal_reg())) {
478       return false;
479     }
480   }
481 
482   return true;
483 }
484 
485 #ifndef PRODUCT
486 //------------------------------dump_spec--------------------------------------
487 // Print any per-operand special info
dump_spec(outputStream * st) const488 void MachNode::dump_spec(outputStream *st) const {
489   uint cnt = num_opnds();
490   for( uint i=0; i<cnt; i++ ) {
491     if (_opnds[i] != NULL) {
492       _opnds[i]->dump_spec(st);
493     } else {
494       st->print(" _");
495     }
496   }
497   const TypePtr *t = adr_type();
498   if( t ) {
499     Compile* C = Compile::current();
500     if( C->alias_type(t)->is_volatile() )
501       st->print(" Volatile!");
502   }
503 }
504 
505 //------------------------------dump_format------------------------------------
506 // access to virtual
dump_format(PhaseRegAlloc * ra,outputStream * st) const507 void MachNode::dump_format(PhaseRegAlloc *ra, outputStream *st) const {
508   format(ra, st); // access to virtual
509 }
510 #endif
511 
512 //=============================================================================
513 #ifndef PRODUCT
dump_spec(outputStream * st) const514 void MachTypeNode::dump_spec(outputStream *st) const {
515   if (_bottom_type != NULL) {
516     _bottom_type->dump_on(st);
517   } else {
518     st->print(" NULL");
519   }
520 }
521 #endif
522 
523 
524 //=============================================================================
constant_offset()525 int MachConstantNode::constant_offset() {
526   // Bind the offset lazily.
527   if (_constant.offset() == -1) {
528     Compile::ConstantTable& constant_table = Compile::current()->constant_table();
529     int offset = constant_table.find_offset(_constant);
530     // If called from Compile::scratch_emit_size return the
531     // pre-calculated offset.
532     // NOTE: If the AD file does some table base offset optimizations
533     // later the AD file needs to take care of this fact.
534     if (Compile::current()->in_scratch_emit_size()) {
535       return constant_table.calculate_table_base_offset() + offset;
536     }
537     _constant.set_offset(constant_table.table_base_offset() + offset);
538   }
539   return _constant.offset();
540 }
541 
constant_offset_unchecked() const542 int MachConstantNode::constant_offset_unchecked() const {
543   return _constant.offset();
544 }
545 
546 //=============================================================================
547 #ifndef PRODUCT
format(PhaseRegAlloc * ra_,outputStream * st) const548 void MachNullCheckNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
549   int reg = ra_->get_reg_first(in(1)->in(_vidx));
550   st->print("%s %s", Name(), Matcher::regName[reg]);
551 }
552 #endif
553 
emit(CodeBuffer & cbuf,PhaseRegAlloc * ra_) const554 void MachNullCheckNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
555   // only emits entries in the null-pointer exception handler table
556 }
label_set(Label * label,uint block_num)557 void MachNullCheckNode::label_set(Label* label, uint block_num) {
558   // Nothing to emit
559 }
save_label(Label ** label,uint * block_num)560 void MachNullCheckNode::save_label( Label** label, uint* block_num ) {
561   // Nothing to emit
562 }
563 
in_RegMask(uint idx) const564 const RegMask &MachNullCheckNode::in_RegMask( uint idx ) const {
565   if( idx == 0 ) return RegMask::Empty;
566   else return in(1)->as_Mach()->out_RegMask();
567 }
568 
569 //=============================================================================
bottom_type() const570 const Type *MachProjNode::bottom_type() const {
571   if( _ideal_reg == fat_proj ) return Type::BOTTOM;
572   // Try the normal mechanism first
573   const Type *t = in(0)->bottom_type();
574   if( t->base() == Type::Tuple ) {
575     const TypeTuple *tt = t->is_tuple();
576     if (_con < tt->cnt())
577       return tt->field_at(_con);
578   }
579   // Else use generic type from ideal register set
580   assert((uint)_ideal_reg < (uint)_last_machine_leaf && Type::mreg2type[_ideal_reg], "in bounds");
581   return Type::mreg2type[_ideal_reg];
582 }
583 
adr_type() const584 const TypePtr *MachProjNode::adr_type() const {
585   if (bottom_type() == Type::MEMORY) {
586     // in(0) might be a narrow MemBar; otherwise we will report TypePtr::BOTTOM
587     Node* ctrl = in(0);
588     if (ctrl == NULL)  return NULL; // node is dead
589     const TypePtr* adr_type = ctrl->adr_type();
590     #ifdef ASSERT
591     if (!VMError::is_error_reported() && !Node::in_dump())
592       assert(adr_type != NULL, "source must have adr_type");
593     #endif
594     return adr_type;
595   }
596   assert(bottom_type()->base() != Type::Memory, "no other memories?");
597   return NULL;
598 }
599 
600 #ifndef PRODUCT
dump_spec(outputStream * st) const601 void MachProjNode::dump_spec(outputStream *st) const {
602   ProjNode::dump_spec(st);
603   switch (_ideal_reg) {
604   case unmatched_proj:  st->print("/unmatched");                           break;
605   case fat_proj:        st->print("/fat"); if (WizardMode) _rout.dump(st); break;
606   }
607 }
608 #endif
609 
610 //=============================================================================
611 #ifndef PRODUCT
dump_spec(outputStream * st) const612 void MachIfNode::dump_spec(outputStream *st) const {
613   st->print("P=%f, C=%f",_prob, _fcnt);
614 }
615 #endif
616 
617 //=============================================================================
size_of() const618 uint MachReturnNode::size_of() const { return sizeof(*this); }
619 
620 //------------------------------Registers--------------------------------------
in_RegMask(uint idx) const621 const RegMask &MachReturnNode::in_RegMask( uint idx ) const {
622   return _in_rms[idx];
623 }
624 
adr_type() const625 const TypePtr *MachReturnNode::adr_type() const {
626   // most returns and calls are assumed to consume & modify all of memory
627   // the matcher will copy non-wide adr_types from ideal originals
628   return _adr_type;
629 }
630 
631 //=============================================================================
bottom_type() const632 const Type *MachSafePointNode::bottom_type() const {  return TypeTuple::MEMBAR; }
633 
634 //------------------------------Registers--------------------------------------
in_RegMask(uint idx) const635 const RegMask &MachSafePointNode::in_RegMask( uint idx ) const {
636   // Values in the domain use the users calling convention, embodied in the
637   // _in_rms array of RegMasks.
638   if( idx < TypeFunc::Parms ) return _in_rms[idx];
639 
640   if (SafePointNode::needs_polling_address_input() &&
641       idx == TypeFunc::Parms &&
642       ideal_Opcode() == Op_SafePoint) {
643     return MachNode::in_RegMask(idx);
644   }
645 
646   // Values outside the domain represent debug info
647   assert(in(idx)->ideal_reg() != Op_RegFlags, "flags register is not spillable");
648   return *Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()];
649 }
650 
651 
652 //=============================================================================
653 
cmp(const Node & n) const654 uint MachCallNode::cmp( const Node &n ) const
655 { return _tf == ((MachCallNode&)n)._tf; }
bottom_type() const656 const Type *MachCallNode::bottom_type() const { return tf()->range(); }
Value(PhaseGVN * phase) const657 const Type* MachCallNode::Value(PhaseGVN* phase) const { return tf()->range(); }
658 
659 #ifndef PRODUCT
dump_spec(outputStream * st) const660 void MachCallNode::dump_spec(outputStream *st) const {
661   st->print("# ");
662   if (tf() != NULL)  tf()->dump_on(st);
663   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
664   if (jvms() != NULL)  jvms()->dump_spec(st);
665 }
666 #endif
667 
return_value_is_used() const668 bool MachCallNode::return_value_is_used() const {
669   if (tf()->range()->cnt() == TypeFunc::Parms) {
670     // void return
671     return false;
672   }
673 
674   // find the projection corresponding to the return value
675   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
676     Node *use = fast_out(i);
677     if (!use->is_Proj()) continue;
678     if (use->as_Proj()->_con == TypeFunc::Parms) {
679       return true;
680     }
681   }
682   return false;
683 }
684 
685 // Similar to cousin class CallNode::returns_pointer
686 // Because this is used in deoptimization, we want the type info, not the data
687 // flow info; the interpreter will "use" things that are dead to the optimizer.
returns_pointer() const688 bool MachCallNode::returns_pointer() const {
689   const TypeTuple *r = tf()->range();
690   return (r->cnt() > TypeFunc::Parms &&
691           r->field_at(TypeFunc::Parms)->isa_ptr());
692 }
693 
694 //------------------------------Registers--------------------------------------
in_RegMask(uint idx) const695 const RegMask &MachCallNode::in_RegMask(uint idx) const {
696   // Values in the domain use the users calling convention, embodied in the
697   // _in_rms array of RegMasks.
698   if (idx < tf()->domain()->cnt()) {
699     return _in_rms[idx];
700   }
701   if (idx == mach_constant_base_node_input()) {
702     return MachConstantBaseNode::static_out_RegMask();
703   }
704   // Values outside the domain represent debug info
705   return *Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()];
706 }
707 
708 //=============================================================================
size_of() const709 uint MachCallJavaNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const710 uint MachCallJavaNode::cmp( const Node &n ) const {
711   MachCallJavaNode &call = (MachCallJavaNode&)n;
712   return MachCallNode::cmp(call) && _method->equals(call._method) &&
713          _override_symbolic_info == call._override_symbolic_info;
714 }
715 #ifndef PRODUCT
dump_spec(outputStream * st) const716 void MachCallJavaNode::dump_spec(outputStream *st) const {
717   if (_method_handle_invoke)
718     st->print("MethodHandle ");
719   if (_method) {
720     _method->print_short_name(st);
721     st->print(" ");
722   }
723   MachCallNode::dump_spec(st);
724 }
725 #endif
726 
727 //------------------------------Registers--------------------------------------
in_RegMask(uint idx) const728 const RegMask &MachCallJavaNode::in_RegMask(uint idx) const {
729   // Values in the domain use the users calling convention, embodied in the
730   // _in_rms array of RegMasks.
731   if (idx < tf()->domain()->cnt()) {
732     return _in_rms[idx];
733   }
734   if (idx == mach_constant_base_node_input()) {
735     return MachConstantBaseNode::static_out_RegMask();
736   }
737   // Values outside the domain represent debug info
738   Matcher* m = Compile::current()->matcher();
739   // If this call is a MethodHandle invoke we have to use a different
740   // debugmask which does not include the register we use to save the
741   // SP over MH invokes.
742   RegMask** debugmask = _method_handle_invoke ? m->idealreg2mhdebugmask : m->idealreg2debugmask;
743   return *debugmask[in(idx)->ideal_reg()];
744 }
745 
746 //=============================================================================
size_of() const747 uint MachCallStaticJavaNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const748 uint MachCallStaticJavaNode::cmp( const Node &n ) const {
749   MachCallStaticJavaNode &call = (MachCallStaticJavaNode&)n;
750   return MachCallJavaNode::cmp(call) && _name == call._name;
751 }
752 
753 //----------------------------uncommon_trap_request----------------------------
754 // If this is an uncommon trap, return the request code, else zero.
uncommon_trap_request() const755 int MachCallStaticJavaNode::uncommon_trap_request() const {
756   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
757     return CallStaticJavaNode::extract_uncommon_trap_request(this);
758   }
759   return 0;
760 }
761 
762 #ifndef PRODUCT
763 // Helper for summarizing uncommon_trap arguments.
dump_trap_args(outputStream * st) const764 void MachCallStaticJavaNode::dump_trap_args(outputStream *st) const {
765   int trap_req = uncommon_trap_request();
766   if (trap_req != 0) {
767     char buf[100];
768     st->print("(%s)",
769                Deoptimization::format_trap_request(buf, sizeof(buf),
770                                                    trap_req));
771   }
772 }
773 
dump_spec(outputStream * st) const774 void MachCallStaticJavaNode::dump_spec(outputStream *st) const {
775   st->print("Static ");
776   if (_name != NULL) {
777     st->print("wrapper for: %s", _name );
778     dump_trap_args(st);
779     st->print(" ");
780   }
781   MachCallJavaNode::dump_spec(st);
782 }
783 #endif
784 
785 //=============================================================================
786 #ifndef PRODUCT
dump_spec(outputStream * st) const787 void MachCallDynamicJavaNode::dump_spec(outputStream *st) const {
788   st->print("Dynamic ");
789   MachCallJavaNode::dump_spec(st);
790 }
791 #endif
792 //=============================================================================
size_of() const793 uint MachCallRuntimeNode::size_of() const { return sizeof(*this); }
cmp(const Node & n) const794 uint MachCallRuntimeNode::cmp( const Node &n ) const {
795   MachCallRuntimeNode &call = (MachCallRuntimeNode&)n;
796   return MachCallNode::cmp(call) && !strcmp(_name,call._name);
797 }
798 #ifndef PRODUCT
dump_spec(outputStream * st) const799 void MachCallRuntimeNode::dump_spec(outputStream *st) const {
800   st->print("%s ",_name);
801   MachCallNode::dump_spec(st);
802 }
803 #endif
804 //=============================================================================
805 // A shared JVMState for all HaltNodes.  Indicates the start of debug info
806 // is at TypeFunc::Parms.  Only required for SOE register spill handling -
807 // to indicate where the stack-slot-only debug info inputs begin.
808 // There is no other JVM state needed here.
809 JVMState jvms_for_throw(0);
jvms() const810 JVMState *MachHaltNode::jvms() const {
811   return &jvms_for_throw;
812 }
813 
size_of() const814 uint MachMemBarNode::size_of() const { return sizeof(*this); }
815 
adr_type() const816 const TypePtr *MachMemBarNode::adr_type() const {
817   return _adr_type;
818 }
819 
820 
821 //=============================================================================
822 #ifndef PRODUCT
int_format(PhaseRegAlloc * ra,const MachNode * node,outputStream * st) const823 void labelOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
824   st->print("B%d", _block_num);
825 }
826 #endif // PRODUCT
827 
828 //=============================================================================
829 #ifndef PRODUCT
int_format(PhaseRegAlloc * ra,const MachNode * node,outputStream * st) const830 void methodOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
831   st->print(INTPTR_FORMAT, _method);
832 }
833 #endif // PRODUCT
834