1 /*
2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/shared/barrierSet.hpp"
27 #include "gc/shared/c2/barrierSetC2.hpp"
28 #include "memory/allocation.inline.hpp"
29 #include "memory/resourceArea.hpp"
30 #include "opto/ad.hpp"
31 #include "opto/addnode.hpp"
32 #include "opto/callnode.hpp"
33 #include "opto/idealGraphPrinter.hpp"
34 #include "opto/matcher.hpp"
35 #include "opto/memnode.hpp"
36 #include "opto/movenode.hpp"
37 #include "opto/opcodes.hpp"
38 #include "opto/regmask.hpp"
39 #include "opto/rootnode.hpp"
40 #include "opto/runtime.hpp"
41 #include "opto/type.hpp"
42 #include "opto/vectornode.hpp"
43 #include "runtime/os.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "utilities/align.hpp"
46 
47 OptoReg::Name OptoReg::c_frame_pointer;
48 
49 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
50 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
51 RegMask Matcher::STACK_ONLY_mask;
52 RegMask Matcher::c_frame_ptr_mask;
53 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
54 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
55 
56 //---------------------------Matcher-------------------------------------------
Matcher()57 Matcher::Matcher()
58 : PhaseTransform( Phase::Ins_Select ),
59   _states_arena(Chunk::medium_size, mtCompiler),
60   _visited(&_states_arena),
61   _shared(&_states_arena),
62   _dontcare(&_states_arena),
63   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
64   _swallowed(swallowed),
65   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
66   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
67   _must_clone(must_clone),
68   _shared_nodes(C->comp_arena()),
69 #ifdef ASSERT
70   _old2new_map(C->comp_arena()),
71   _new2old_map(C->comp_arena()),
72 #endif
73   _allocation_started(false),
74   _ruleName(ruleName),
75   _register_save_policy(register_save_policy),
76   _c_reg_save_policy(c_reg_save_policy),
77   _register_save_type(register_save_type) {
78   C->set_matcher(this);
79 
80   idealreg2spillmask  [Op_RegI] = NULL;
81   idealreg2spillmask  [Op_RegN] = NULL;
82   idealreg2spillmask  [Op_RegL] = NULL;
83   idealreg2spillmask  [Op_RegF] = NULL;
84   idealreg2spillmask  [Op_RegD] = NULL;
85   idealreg2spillmask  [Op_RegP] = NULL;
86   idealreg2spillmask  [Op_VecS] = NULL;
87   idealreg2spillmask  [Op_VecD] = NULL;
88   idealreg2spillmask  [Op_VecX] = NULL;
89   idealreg2spillmask  [Op_VecY] = NULL;
90   idealreg2spillmask  [Op_VecZ] = NULL;
91   idealreg2spillmask  [Op_RegFlags] = NULL;
92 
93   idealreg2debugmask  [Op_RegI] = NULL;
94   idealreg2debugmask  [Op_RegN] = NULL;
95   idealreg2debugmask  [Op_RegL] = NULL;
96   idealreg2debugmask  [Op_RegF] = NULL;
97   idealreg2debugmask  [Op_RegD] = NULL;
98   idealreg2debugmask  [Op_RegP] = NULL;
99   idealreg2debugmask  [Op_VecS] = NULL;
100   idealreg2debugmask  [Op_VecD] = NULL;
101   idealreg2debugmask  [Op_VecX] = NULL;
102   idealreg2debugmask  [Op_VecY] = NULL;
103   idealreg2debugmask  [Op_VecZ] = NULL;
104   idealreg2debugmask  [Op_RegFlags] = NULL;
105 
106   idealreg2mhdebugmask[Op_RegI] = NULL;
107   idealreg2mhdebugmask[Op_RegN] = NULL;
108   idealreg2mhdebugmask[Op_RegL] = NULL;
109   idealreg2mhdebugmask[Op_RegF] = NULL;
110   idealreg2mhdebugmask[Op_RegD] = NULL;
111   idealreg2mhdebugmask[Op_RegP] = NULL;
112   idealreg2mhdebugmask[Op_VecS] = NULL;
113   idealreg2mhdebugmask[Op_VecD] = NULL;
114   idealreg2mhdebugmask[Op_VecX] = NULL;
115   idealreg2mhdebugmask[Op_VecY] = NULL;
116   idealreg2mhdebugmask[Op_VecZ] = NULL;
117   idealreg2mhdebugmask[Op_RegFlags] = NULL;
118 
119   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
120 }
121 
122 //------------------------------warp_incoming_stk_arg------------------------
123 // This warps a VMReg into an OptoReg::Name
warp_incoming_stk_arg(VMReg reg)124 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
125   OptoReg::Name warped;
126   if( reg->is_stack() ) {  // Stack slot argument?
127     warped = OptoReg::add(_old_SP, reg->reg2stack() );
128     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
129     if( warped >= _in_arg_limit )
130       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
131     if (!RegMask::can_represent_arg(warped)) {
132       // the compiler cannot represent this method's calling sequence
133       C->record_method_not_compilable("unsupported incoming calling sequence");
134       return OptoReg::Bad;
135     }
136     return warped;
137   }
138   return OptoReg::as_OptoReg(reg);
139 }
140 
141 //---------------------------compute_old_SP------------------------------------
compute_old_SP()142 OptoReg::Name Compile::compute_old_SP() {
143   int fixed    = fixed_slots();
144   int preserve = in_preserve_stack_slots();
145   return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
146 }
147 
148 
149 
150 #ifdef ASSERT
verify_new_nodes_only(Node * xroot)151 void Matcher::verify_new_nodes_only(Node* xroot) {
152   // Make sure that the new graph only references new nodes
153   ResourceMark rm;
154   Unique_Node_List worklist;
155   VectorSet visited(Thread::current()->resource_area());
156   worklist.push(xroot);
157   while (worklist.size() > 0) {
158     Node* n = worklist.pop();
159     visited <<= n->_idx;
160     assert(C->node_arena()->contains(n), "dead node");
161     for (uint j = 0; j < n->req(); j++) {
162       Node* in = n->in(j);
163       if (in != NULL) {
164         assert(C->node_arena()->contains(in), "dead node");
165         if (!visited.test(in->_idx)) {
166           worklist.push(in);
167         }
168       }
169     }
170   }
171 }
172 #endif
173 
174 
175 //---------------------------match---------------------------------------------
match()176 void Matcher::match( ) {
177   if( MaxLabelRootDepth < 100 ) { // Too small?
178     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
179     MaxLabelRootDepth = 100;
180   }
181   // One-time initialization of some register masks.
182   init_spill_mask( C->root()->in(1) );
183   _return_addr_mask = return_addr();
184 #ifdef _LP64
185   // Pointers take 2 slots in 64-bit land
186   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
187 #endif
188 
189   // Map a Java-signature return type into return register-value
190   // machine registers for 0, 1 and 2 returned values.
191   const TypeTuple *range = C->tf()->range();
192   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
193     // Get ideal-register return type
194     uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
195     // Get machine return register
196     uint sop = C->start()->Opcode();
197     OptoRegPair regs = return_value(ireg, false);
198 
199     // And mask for same
200     _return_value_mask = RegMask(regs.first());
201     if( OptoReg::is_valid(regs.second()) )
202       _return_value_mask.Insert(regs.second());
203   }
204 
205   // ---------------
206   // Frame Layout
207 
208   // Need the method signature to determine the incoming argument types,
209   // because the types determine which registers the incoming arguments are
210   // in, and this affects the matched code.
211   const TypeTuple *domain = C->tf()->domain();
212   uint             argcnt = domain->cnt() - TypeFunc::Parms;
213   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
214   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
215   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
216   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
217   uint i;
218   for( i = 0; i<argcnt; i++ ) {
219     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
220   }
221 
222   // Pass array of ideal registers and length to USER code (from the AD file)
223   // that will convert this to an array of register numbers.
224   const StartNode *start = C->start();
225   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
226 #ifdef ASSERT
227   // Sanity check users' calling convention.  Real handy while trying to
228   // get the initial port correct.
229   { for (uint i = 0; i<argcnt; i++) {
230       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
231         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
232         _parm_regs[i].set_bad();
233         continue;
234       }
235       VMReg parm_reg = vm_parm_regs[i].first();
236       assert(parm_reg->is_valid(), "invalid arg?");
237       if (parm_reg->is_reg()) {
238         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
239         assert(can_be_java_arg(opto_parm_reg) ||
240                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
241                opto_parm_reg == inline_cache_reg(),
242                "parameters in register must be preserved by runtime stubs");
243       }
244       for (uint j = 0; j < i; j++) {
245         assert(parm_reg != vm_parm_regs[j].first(),
246                "calling conv. must produce distinct regs");
247       }
248     }
249   }
250 #endif
251 
252   // Do some initial frame layout.
253 
254   // Compute the old incoming SP (may be called FP) as
255   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
256   _old_SP = C->compute_old_SP();
257   assert( is_even(_old_SP), "must be even" );
258 
259   // Compute highest incoming stack argument as
260   //   _old_SP + out_preserve_stack_slots + incoming argument size.
261   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
262   assert( is_even(_in_arg_limit), "out_preserve must be even" );
263   for( i = 0; i < argcnt; i++ ) {
264     // Permit args to have no register
265     _calling_convention_mask[i].Clear();
266     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
267       continue;
268     }
269     // calling_convention returns stack arguments as a count of
270     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
271     // the allocators point of view, taking into account all the
272     // preserve area, locks & pad2.
273 
274     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
275     if( OptoReg::is_valid(reg1))
276       _calling_convention_mask[i].Insert(reg1);
277 
278     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
279     if( OptoReg::is_valid(reg2))
280       _calling_convention_mask[i].Insert(reg2);
281 
282     // Saved biased stack-slot register number
283     _parm_regs[i].set_pair(reg2, reg1);
284   }
285 
286   // Finally, make sure the incoming arguments take up an even number of
287   // words, in case the arguments or locals need to contain doubleword stack
288   // slots.  The rest of the system assumes that stack slot pairs (in
289   // particular, in the spill area) which look aligned will in fact be
290   // aligned relative to the stack pointer in the target machine.  Double
291   // stack slots will always be allocated aligned.
292   _new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
293 
294   // Compute highest outgoing stack argument as
295   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
296   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
297   assert( is_even(_out_arg_limit), "out_preserve must be even" );
298 
299   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
300     // the compiler cannot represent this method's calling sequence
301     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
302   }
303 
304   if (C->failing())  return;  // bailed out on incoming arg failure
305 
306   // ---------------
307   // Collect roots of matcher trees.  Every node for which
308   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
309   // can be a valid interior of some tree.
310   find_shared( C->root() );
311   find_shared( C->top() );
312 
313   C->print_method(PHASE_BEFORE_MATCHING);
314 
315   // Create new ideal node ConP #NULL even if it does exist in old space
316   // to avoid false sharing if the corresponding mach node is not used.
317   // The corresponding mach node is only used in rare cases for derived
318   // pointers.
319   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
320 
321   // Swap out to old-space; emptying new-space
322   Arena *old = C->node_arena()->move_contents(C->old_arena());
323 
324   // Save debug and profile information for nodes in old space:
325   _old_node_note_array = C->node_note_array();
326   if (_old_node_note_array != NULL) {
327     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
328                            (C->comp_arena(), _old_node_note_array->length(),
329                             0, NULL));
330   }
331 
332   // Pre-size the new_node table to avoid the need for range checks.
333   grow_new_node_array(C->unique());
334 
335   // Reset node counter so MachNodes start with _idx at 0
336   int live_nodes = C->live_nodes();
337   C->set_unique(0);
338   C->reset_dead_node_list();
339 
340   // Recursively match trees from old space into new space.
341   // Correct leaves of new-space Nodes; they point to old-space.
342   _visited.Clear();             // Clear visit bits for xform call
343   C->set_cached_top_node(xform( C->top(), live_nodes ));
344   if (!C->failing()) {
345     Node* xroot =        xform( C->root(), 1 );
346     if (xroot == NULL) {
347       Matcher::soft_match_failure();  // recursive matching process failed
348       C->record_method_not_compilable("instruction match failed");
349     } else {
350       // During matching shared constants were attached to C->root()
351       // because xroot wasn't available yet, so transfer the uses to
352       // the xroot.
353       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
354         Node* n = C->root()->fast_out(j);
355         if (C->node_arena()->contains(n)) {
356           assert(n->in(0) == C->root(), "should be control user");
357           n->set_req(0, xroot);
358           --j;
359           --jmax;
360         }
361       }
362 
363       // Generate new mach node for ConP #NULL
364       assert(new_ideal_null != NULL, "sanity");
365       _mach_null = match_tree(new_ideal_null);
366       // Don't set control, it will confuse GCM since there are no uses.
367       // The control will be set when this node is used first time
368       // in find_base_for_derived().
369       assert(_mach_null != NULL, "");
370 
371       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
372 
373 #ifdef ASSERT
374       verify_new_nodes_only(xroot);
375 #endif
376     }
377   }
378   if (C->top() == NULL || C->root() == NULL) {
379     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
380   }
381   if (C->failing()) {
382     // delete old;
383     old->destruct_contents();
384     return;
385   }
386   assert( C->top(), "" );
387   assert( C->root(), "" );
388   validate_null_checks();
389 
390   // Now smoke old-space
391   NOT_DEBUG( old->destruct_contents() );
392 
393   // ------------------------
394   // Set up save-on-entry registers
395   Fixup_Save_On_Entry( );
396 }
397 
398 
399 //------------------------------Fixup_Save_On_Entry----------------------------
400 // The stated purpose of this routine is to take care of save-on-entry
401 // registers.  However, the overall goal of the Match phase is to convert into
402 // machine-specific instructions which have RegMasks to guide allocation.
403 // So what this procedure really does is put a valid RegMask on each input
404 // to the machine-specific variations of all Return, TailCall and Halt
405 // instructions.  It also adds edgs to define the save-on-entry values (and of
406 // course gives them a mask).
407 
init_input_masks(uint size,RegMask & ret_adr,RegMask & fp)408 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
409   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
410   // Do all the pre-defined register masks
411   rms[TypeFunc::Control  ] = RegMask::Empty;
412   rms[TypeFunc::I_O      ] = RegMask::Empty;
413   rms[TypeFunc::Memory   ] = RegMask::Empty;
414   rms[TypeFunc::ReturnAdr] = ret_adr;
415   rms[TypeFunc::FramePtr ] = fp;
416   return rms;
417 }
418 
419 //---------------------------init_first_stack_mask-----------------------------
420 // Create the initial stack mask used by values spilling to the stack.
421 // Disallow any debug info in outgoing argument areas by setting the
422 // initial mask accordingly.
init_first_stack_mask()423 void Matcher::init_first_stack_mask() {
424 
425   // Allocate storage for spill masks as masks for the appropriate load type.
426   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
427 
428   idealreg2spillmask  [Op_RegN] = &rms[0];
429   idealreg2spillmask  [Op_RegI] = &rms[1];
430   idealreg2spillmask  [Op_RegL] = &rms[2];
431   idealreg2spillmask  [Op_RegF] = &rms[3];
432   idealreg2spillmask  [Op_RegD] = &rms[4];
433   idealreg2spillmask  [Op_RegP] = &rms[5];
434 
435   idealreg2debugmask  [Op_RegN] = &rms[6];
436   idealreg2debugmask  [Op_RegI] = &rms[7];
437   idealreg2debugmask  [Op_RegL] = &rms[8];
438   idealreg2debugmask  [Op_RegF] = &rms[9];
439   idealreg2debugmask  [Op_RegD] = &rms[10];
440   idealreg2debugmask  [Op_RegP] = &rms[11];
441 
442   idealreg2mhdebugmask[Op_RegN] = &rms[12];
443   idealreg2mhdebugmask[Op_RegI] = &rms[13];
444   idealreg2mhdebugmask[Op_RegL] = &rms[14];
445   idealreg2mhdebugmask[Op_RegF] = &rms[15];
446   idealreg2mhdebugmask[Op_RegD] = &rms[16];
447   idealreg2mhdebugmask[Op_RegP] = &rms[17];
448 
449   idealreg2spillmask  [Op_VecS] = &rms[18];
450   idealreg2spillmask  [Op_VecD] = &rms[19];
451   idealreg2spillmask  [Op_VecX] = &rms[20];
452   idealreg2spillmask  [Op_VecY] = &rms[21];
453   idealreg2spillmask  [Op_VecZ] = &rms[22];
454 
455   OptoReg::Name i;
456 
457   // At first, start with the empty mask
458   C->FIRST_STACK_mask().Clear();
459 
460   // Add in the incoming argument area
461   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
462   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
463     C->FIRST_STACK_mask().Insert(i);
464   }
465   // Add in all bits past the outgoing argument area
466   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
467             "must be able to represent all call arguments in reg mask");
468   OptoReg::Name init = _out_arg_limit;
469   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
470     C->FIRST_STACK_mask().Insert(i);
471   }
472   // Finally, set the "infinite stack" bit.
473   C->FIRST_STACK_mask().set_AllStack();
474 
475   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
476   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
477   // Keep spill masks aligned.
478   aligned_stack_mask.clear_to_pairs();
479   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
480 
481   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
482 #ifdef _LP64
483   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
484    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
485    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
486 #else
487    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
488 #endif
489   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
490    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
491   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
492    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
493   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
494    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
495   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
496    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
497 
498   if (Matcher::vector_size_supported(T_BYTE,4)) {
499     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
500      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
501   }
502   if (Matcher::vector_size_supported(T_FLOAT,2)) {
503     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
504     // RA guarantees such alignment since it is needed for Double and Long values.
505     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
506      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
507   }
508   if (Matcher::vector_size_supported(T_FLOAT,4)) {
509     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
510     //
511     // RA can use input arguments stack slots for spills but until RA
512     // we don't know frame size and offset of input arg stack slots.
513     //
514     // Exclude last input arg stack slots to avoid spilling vectors there
515     // otherwise vector spills could stomp over stack slots in caller frame.
516     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
517     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
518       aligned_stack_mask.Remove(in);
519       in = OptoReg::add(in, -1);
520     }
521      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
522      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
523     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
524      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
525   }
526   if (Matcher::vector_size_supported(T_FLOAT,8)) {
527     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
528     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
529     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
530       aligned_stack_mask.Remove(in);
531       in = OptoReg::add(in, -1);
532     }
533      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
534      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
535     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
536      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
537   }
538   if (Matcher::vector_size_supported(T_FLOAT,16)) {
539     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
540     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
541     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
542       aligned_stack_mask.Remove(in);
543       in = OptoReg::add(in, -1);
544     }
545      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
546      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
547     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
548      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
549   }
550    if (UseFPUForSpilling) {
551      // This mask logic assumes that the spill operations are
552      // symmetric and that the registers involved are the same size.
553      // On sparc for instance we may have to use 64 bit moves will
554      // kill 2 registers when used with F0-F31.
555      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
556      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
557 #ifdef _LP64
558      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
559      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
560      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
561      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
562 #else
563      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
564 #ifdef ARM
565      // ARM has support for moving 64bit values between a pair of
566      // integer registers and a double register
567      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
568      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
569 #endif
570 #endif
571    }
572 
573   // Make up debug masks.  Any spill slot plus callee-save registers.
574   // Caller-save registers are assumed to be trashable by the various
575   // inline-cache fixup routines.
576   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
577   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
578   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
579   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
580   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
581   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
582 
583   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
584   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
585   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
586   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
587   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
588   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
589 
590   // Prevent stub compilations from attempting to reference
591   // callee-saved registers from debug info
592   bool exclude_soe = !Compile::current()->is_method_compilation();
593 
594   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
595     // registers the caller has to save do not work
596     if( _register_save_policy[i] == 'C' ||
597         _register_save_policy[i] == 'A' ||
598         (_register_save_policy[i] == 'E' && exclude_soe) ) {
599       idealreg2debugmask  [Op_RegN]->Remove(i);
600       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
601       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
602       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
603       idealreg2debugmask  [Op_RegD]->Remove(i);
604       idealreg2debugmask  [Op_RegP]->Remove(i);
605 
606       idealreg2mhdebugmask[Op_RegN]->Remove(i);
607       idealreg2mhdebugmask[Op_RegI]->Remove(i);
608       idealreg2mhdebugmask[Op_RegL]->Remove(i);
609       idealreg2mhdebugmask[Op_RegF]->Remove(i);
610       idealreg2mhdebugmask[Op_RegD]->Remove(i);
611       idealreg2mhdebugmask[Op_RegP]->Remove(i);
612     }
613   }
614 
615   // Subtract the register we use to save the SP for MethodHandle
616   // invokes to from the debug mask.
617   const RegMask save_mask = method_handle_invoke_SP_save_mask();
618   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
619   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
620   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
621   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
622   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
623   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
624 }
625 
626 //---------------------------is_save_on_entry----------------------------------
is_save_on_entry(int reg)627 bool Matcher::is_save_on_entry( int reg ) {
628   return
629     _register_save_policy[reg] == 'E' ||
630     _register_save_policy[reg] == 'A' || // Save-on-entry register?
631     // Also save argument registers in the trampolining stubs
632     (C->save_argument_registers() && is_spillable_arg(reg));
633 }
634 
635 //---------------------------Fixup_Save_On_Entry-------------------------------
Fixup_Save_On_Entry()636 void Matcher::Fixup_Save_On_Entry( ) {
637   init_first_stack_mask();
638 
639   Node *root = C->root();       // Short name for root
640   // Count number of save-on-entry registers.
641   uint soe_cnt = number_of_saved_registers();
642   uint i;
643 
644   // Find the procedure Start Node
645   StartNode *start = C->start();
646   assert( start, "Expect a start node" );
647 
648   // Save argument registers in the trampolining stubs
649   if( C->save_argument_registers() )
650     for( i = 0; i < _last_Mach_Reg; i++ )
651       if( is_spillable_arg(i) )
652         soe_cnt++;
653 
654   // Input RegMask array shared by all Returns.
655   // The type for doubles and longs has a count of 2, but
656   // there is only 1 returned value
657   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
658   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
659   // Returns have 0 or 1 returned values depending on call signature.
660   // Return register is specified by return_value in the AD file.
661   if (ret_edge_cnt > TypeFunc::Parms)
662     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
663 
664   // Input RegMask array shared by all Rethrows.
665   uint reth_edge_cnt = TypeFunc::Parms+1;
666   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
667   // Rethrow takes exception oop only, but in the argument 0 slot.
668   OptoReg::Name reg = find_receiver(false);
669   if (reg >= 0) {
670     reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
671 #ifdef _LP64
672     // Need two slots for ptrs in 64-bit land
673     reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
674 #endif
675   }
676 
677   // Input RegMask array shared by all TailCalls
678   uint tail_call_edge_cnt = TypeFunc::Parms+2;
679   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
680 
681   // Input RegMask array shared by all TailJumps
682   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
683   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
684 
685   // TailCalls have 2 returned values (target & moop), whose masks come
686   // from the usual MachNode/MachOper mechanism.  Find a sample
687   // TailCall to extract these masks and put the correct masks into
688   // the tail_call_rms array.
689   for( i=1; i < root->req(); i++ ) {
690     MachReturnNode *m = root->in(i)->as_MachReturn();
691     if( m->ideal_Opcode() == Op_TailCall ) {
692       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
693       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
694       break;
695     }
696   }
697 
698   // TailJumps have 2 returned values (target & ex_oop), whose masks come
699   // from the usual MachNode/MachOper mechanism.  Find a sample
700   // TailJump to extract these masks and put the correct masks into
701   // the tail_jump_rms array.
702   for( i=1; i < root->req(); i++ ) {
703     MachReturnNode *m = root->in(i)->as_MachReturn();
704     if( m->ideal_Opcode() == Op_TailJump ) {
705       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
706       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
707       break;
708     }
709   }
710 
711   // Input RegMask array shared by all Halts
712   uint halt_edge_cnt = TypeFunc::Parms;
713   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
714 
715   // Capture the return input masks into each exit flavor
716   for( i=1; i < root->req(); i++ ) {
717     MachReturnNode *exit = root->in(i)->as_MachReturn();
718     switch( exit->ideal_Opcode() ) {
719       case Op_Return   : exit->_in_rms = ret_rms;  break;
720       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
721       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
722       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
723       case Op_Halt     : exit->_in_rms = halt_rms; break;
724       default          : ShouldNotReachHere();
725     }
726   }
727 
728   // Next unused projection number from Start.
729   int proj_cnt = C->tf()->domain()->cnt();
730 
731   // Do all the save-on-entry registers.  Make projections from Start for
732   // them, and give them a use at the exit points.  To the allocator, they
733   // look like incoming register arguments.
734   for( i = 0; i < _last_Mach_Reg; i++ ) {
735     if( is_save_on_entry(i) ) {
736 
737       // Add the save-on-entry to the mask array
738       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
739       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
740       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
741       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
742       // Halts need the SOE registers, but only in the stack as debug info.
743       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
744       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
745 
746       Node *mproj;
747 
748       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
749       // into a single RegD.
750       if( (i&1) == 0 &&
751           _register_save_type[i  ] == Op_RegF &&
752           _register_save_type[i+1] == Op_RegF &&
753           is_save_on_entry(i+1) ) {
754         // Add other bit for double
755         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
756         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
757         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
758         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
759         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
760         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
761         proj_cnt += 2;          // Skip 2 for doubles
762       }
763       else if( (i&1) == 1 &&    // Else check for high half of double
764                _register_save_type[i-1] == Op_RegF &&
765                _register_save_type[i  ] == Op_RegF &&
766                is_save_on_entry(i-1) ) {
767         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
768         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
769         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
770         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
771         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
772         mproj = C->top();
773       }
774       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
775       // into a single RegL.
776       else if( (i&1) == 0 &&
777           _register_save_type[i  ] == Op_RegI &&
778           _register_save_type[i+1] == Op_RegI &&
779         is_save_on_entry(i+1) ) {
780         // Add other bit for long
781         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
782         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
783         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
784         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
785         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
786         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
787         proj_cnt += 2;          // Skip 2 for longs
788       }
789       else if( (i&1) == 1 &&    // Else check for high half of long
790                _register_save_type[i-1] == Op_RegI &&
791                _register_save_type[i  ] == Op_RegI &&
792                is_save_on_entry(i-1) ) {
793         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
794         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
795         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
796         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
797         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
798         mproj = C->top();
799       } else {
800         // Make a projection for it off the Start
801         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
802       }
803 
804       ret_edge_cnt ++;
805       reth_edge_cnt ++;
806       tail_call_edge_cnt ++;
807       tail_jump_edge_cnt ++;
808       halt_edge_cnt ++;
809 
810       // Add a use of the SOE register to all exit paths
811       for( uint j=1; j < root->req(); j++ )
812         root->in(j)->add_req(mproj);
813     } // End of if a save-on-entry register
814   } // End of for all machine registers
815 }
816 
817 //------------------------------init_spill_mask--------------------------------
init_spill_mask(Node * ret)818 void Matcher::init_spill_mask( Node *ret ) {
819   if( idealreg2regmask[Op_RegI] ) return; // One time only init
820 
821   OptoReg::c_frame_pointer = c_frame_pointer();
822   c_frame_ptr_mask = c_frame_pointer();
823 #ifdef _LP64
824   // pointers are twice as big
825   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
826 #endif
827 
828   // Start at OptoReg::stack0()
829   STACK_ONLY_mask.Clear();
830   OptoReg::Name init = OptoReg::stack2reg(0);
831   // STACK_ONLY_mask is all stack bits
832   OptoReg::Name i;
833   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
834     STACK_ONLY_mask.Insert(i);
835   // Also set the "infinite stack" bit.
836   STACK_ONLY_mask.set_AllStack();
837 
838   // Copy the register names over into the shared world
839   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
840     // SharedInfo::regName[i] = regName[i];
841     // Handy RegMasks per machine register
842     mreg2regmask[i].Insert(i);
843   }
844 
845   // Grab the Frame Pointer
846   Node *fp  = ret->in(TypeFunc::FramePtr);
847   Node *mem = ret->in(TypeFunc::Memory);
848   const TypePtr* atp = TypePtr::BOTTOM;
849   // Share frame pointer while making spill ops
850   set_shared(fp);
851 
852   // Compute generic short-offset Loads
853 #ifdef _LP64
854   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
855 #endif
856   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
857   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
858   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
859   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
860   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
861   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
862          spillD != NULL && spillP != NULL, "");
863   // Get the ADLC notion of the right regmask, for each basic type.
864 #ifdef _LP64
865   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
866 #endif
867   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
868   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
869   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
870   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
871   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
872 
873   // Vector regmasks.
874   if (Matcher::vector_size_supported(T_BYTE,4)) {
875     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
876     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
877     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
878   }
879   if (Matcher::vector_size_supported(T_FLOAT,2)) {
880     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
881     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
882   }
883   if (Matcher::vector_size_supported(T_FLOAT,4)) {
884     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
885     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
886   }
887   if (Matcher::vector_size_supported(T_FLOAT,8)) {
888     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
889     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
890   }
891   if (Matcher::vector_size_supported(T_FLOAT,16)) {
892     MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
893     idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask();
894   }
895 }
896 
897 #ifdef ASSERT
match_alias_type(Compile * C,Node * n,Node * m)898 static void match_alias_type(Compile* C, Node* n, Node* m) {
899   if (!VerifyAliases)  return;  // do not go looking for trouble by default
900   const TypePtr* nat = n->adr_type();
901   const TypePtr* mat = m->adr_type();
902   int nidx = C->get_alias_index(nat);
903   int midx = C->get_alias_index(mat);
904   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
905   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
906     for (uint i = 1; i < n->req(); i++) {
907       Node* n1 = n->in(i);
908       const TypePtr* n1at = n1->adr_type();
909       if (n1at != NULL) {
910         nat = n1at;
911         nidx = C->get_alias_index(n1at);
912       }
913     }
914   }
915   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
916   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
917     switch (n->Opcode()) {
918     case Op_PrefetchAllocation:
919       nidx = Compile::AliasIdxRaw;
920       nat = TypeRawPtr::BOTTOM;
921       break;
922     }
923   }
924   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
925     switch (n->Opcode()) {
926     case Op_ClearArray:
927       midx = Compile::AliasIdxRaw;
928       mat = TypeRawPtr::BOTTOM;
929       break;
930     }
931   }
932   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
933     switch (n->Opcode()) {
934     case Op_Return:
935     case Op_Rethrow:
936     case Op_Halt:
937     case Op_TailCall:
938     case Op_TailJump:
939       nidx = Compile::AliasIdxBot;
940       nat = TypePtr::BOTTOM;
941       break;
942     }
943   }
944   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
945     switch (n->Opcode()) {
946     case Op_StrComp:
947     case Op_StrEquals:
948     case Op_StrIndexOf:
949     case Op_StrIndexOfChar:
950     case Op_AryEq:
951     case Op_HasNegatives:
952     case Op_MemBarVolatile:
953     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
954     case Op_StrInflatedCopy:
955     case Op_StrCompressedCopy:
956     case Op_OnSpinWait:
957     case Op_EncodeISOArray:
958       nidx = Compile::AliasIdxTop;
959       nat = NULL;
960       break;
961     }
962   }
963   if (nidx != midx) {
964     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
965       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
966       n->dump();
967       m->dump();
968     }
969     assert(C->subsume_loads() && C->must_alias(nat, midx),
970            "must not lose alias info when matching");
971   }
972 }
973 #endif
974 
975 //------------------------------xform------------------------------------------
976 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
977 // Node in new-space.  Given a new-space Node, recursively walk his children.
transform(Node * n)978 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
xform(Node * n,int max_stack)979 Node *Matcher::xform( Node *n, int max_stack ) {
980   // Use one stack to keep both: child's node/state and parent's node/index
981   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
982   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
983   while (mstack.is_nonempty()) {
984     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
985     if (C->failing()) return NULL;
986     n = mstack.node();          // Leave node on stack
987     Node_State nstate = mstack.state();
988     if (nstate == Visit) {
989       mstack.set_state(Post_Visit);
990       Node *oldn = n;
991       // Old-space or new-space check
992       if (!C->node_arena()->contains(n)) {
993         // Old space!
994         Node* m;
995         if (has_new_node(n)) {  // Not yet Label/Reduced
996           m = new_node(n);
997         } else {
998           if (!is_dontcare(n)) { // Matcher can match this guy
999             // Calls match special.  They match alone with no children.
1000             // Their children, the incoming arguments, match normally.
1001             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1002             if (C->failing())  return NULL;
1003             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1004             if (n->is_MemBar()) {
1005               m->as_MachMemBar()->set_adr_type(n->adr_type());
1006             }
1007           } else {                  // Nothing the matcher cares about
1008             if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) {       // Projections?
1009               // Convert to machine-dependent projection
1010               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1011 #ifdef ASSERT
1012               _new2old_map.map(m->_idx, n);
1013 #endif
1014               if (m->in(0) != NULL) // m might be top
1015                 collect_null_checks(m, n);
1016             } else {                // Else just a regular 'ol guy
1017               m = n->clone();       // So just clone into new-space
1018 #ifdef ASSERT
1019               _new2old_map.map(m->_idx, n);
1020 #endif
1021               // Def-Use edges will be added incrementally as Uses
1022               // of this node are matched.
1023               assert(m->outcnt() == 0, "no Uses of this clone yet");
1024             }
1025           }
1026 
1027           set_new_node(n, m);       // Map old to new
1028           if (_old_node_note_array != NULL) {
1029             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1030                                                   n->_idx);
1031             C->set_node_notes_at(m->_idx, nn);
1032           }
1033           debug_only(match_alias_type(C, n, m));
1034         }
1035         n = m;    // n is now a new-space node
1036         mstack.set_node(n);
1037       }
1038 
1039       // New space!
1040       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1041 
1042       int i;
1043       // Put precedence edges on stack first (match them last).
1044       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1045         Node *m = oldn->in(i);
1046         if (m == NULL) break;
1047         // set -1 to call add_prec() instead of set_req() during Step1
1048         mstack.push(m, Visit, n, -1);
1049       }
1050 
1051       // Handle precedence edges for interior nodes
1052       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1053         Node *m = n->in(i);
1054         if (m == NULL || C->node_arena()->contains(m)) continue;
1055         n->rm_prec(i);
1056         // set -1 to call add_prec() instead of set_req() during Step1
1057         mstack.push(m, Visit, n, -1);
1058       }
1059 
1060       // For constant debug info, I'd rather have unmatched constants.
1061       int cnt = n->req();
1062       JVMState* jvms = n->jvms();
1063       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1064 
1065       // Now do only debug info.  Clone constants rather than matching.
1066       // Constants are represented directly in the debug info without
1067       // the need for executable machine instructions.
1068       // Monitor boxes are also represented directly.
1069       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1070         Node *m = n->in(i);          // Get input
1071         int op = m->Opcode();
1072         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1073         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1074             op == Op_ConF || op == Op_ConD || op == Op_ConL
1075             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1076             ) {
1077           m = m->clone();
1078 #ifdef ASSERT
1079           _new2old_map.map(m->_idx, n);
1080 #endif
1081           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1082           mstack.push(m->in(0), Visit, m, 0);
1083         } else {
1084           mstack.push(m, Visit, n, i);
1085         }
1086       }
1087 
1088       // And now walk his children, and convert his inputs to new-space.
1089       for( ; i >= 0; --i ) { // For all normal inputs do
1090         Node *m = n->in(i);  // Get input
1091         if(m != NULL)
1092           mstack.push(m, Visit, n, i);
1093       }
1094 
1095     }
1096     else if (nstate == Post_Visit) {
1097       // Set xformed input
1098       Node *p = mstack.parent();
1099       if (p != NULL) { // root doesn't have parent
1100         int i = (int)mstack.index();
1101         if (i >= 0)
1102           p->set_req(i, n); // required input
1103         else if (i == -1)
1104           p->add_prec(n);   // precedence input
1105         else
1106           ShouldNotReachHere();
1107       }
1108       mstack.pop(); // remove processed node from stack
1109     }
1110     else {
1111       ShouldNotReachHere();
1112     }
1113   } // while (mstack.is_nonempty())
1114   return n; // Return new-space Node
1115 }
1116 
1117 //------------------------------warp_outgoing_stk_arg------------------------
warp_outgoing_stk_arg(VMReg reg,OptoReg::Name begin_out_arg_area,OptoReg::Name & out_arg_limit_per_call)1118 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1119   // Convert outgoing argument location to a pre-biased stack offset
1120   if (reg->is_stack()) {
1121     OptoReg::Name warped = reg->reg2stack();
1122     // Adjust the stack slot offset to be the register number used
1123     // by the allocator.
1124     warped = OptoReg::add(begin_out_arg_area, warped);
1125     // Keep track of the largest numbered stack slot used for an arg.
1126     // Largest used slot per call-site indicates the amount of stack
1127     // that is killed by the call.
1128     if( warped >= out_arg_limit_per_call )
1129       out_arg_limit_per_call = OptoReg::add(warped,1);
1130     if (!RegMask::can_represent_arg(warped)) {
1131       C->record_method_not_compilable("unsupported calling sequence");
1132       return OptoReg::Bad;
1133     }
1134     return warped;
1135   }
1136   return OptoReg::as_OptoReg(reg);
1137 }
1138 
1139 
1140 //------------------------------match_sfpt-------------------------------------
1141 // Helper function to match call instructions.  Calls match special.
1142 // They match alone with no children.  Their children, the incoming
1143 // arguments, match normally.
match_sfpt(SafePointNode * sfpt)1144 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1145   MachSafePointNode *msfpt = NULL;
1146   MachCallNode      *mcall = NULL;
1147   uint               cnt;
1148   // Split out case for SafePoint vs Call
1149   CallNode *call;
1150   const TypeTuple *domain;
1151   ciMethod*        method = NULL;
1152   bool             is_method_handle_invoke = false;  // for special kill effects
1153   if( sfpt->is_Call() ) {
1154     call = sfpt->as_Call();
1155     domain = call->tf()->domain();
1156     cnt = domain->cnt();
1157 
1158     // Match just the call, nothing else
1159     MachNode *m = match_tree(call);
1160     if (C->failing())  return NULL;
1161     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1162 
1163     // Copy data from the Ideal SafePoint to the machine version
1164     mcall = m->as_MachCall();
1165 
1166     mcall->set_tf(         call->tf());
1167     mcall->set_entry_point(call->entry_point());
1168     mcall->set_cnt(        call->cnt());
1169 
1170     if( mcall->is_MachCallJava() ) {
1171       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1172       const CallJavaNode *call_java =  call->as_CallJava();
1173       method = call_java->method();
1174       mcall_java->_method = method;
1175       mcall_java->_bci = call_java->_bci;
1176       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1177       is_method_handle_invoke = call_java->is_method_handle_invoke();
1178       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1179       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1180       if (is_method_handle_invoke) {
1181         C->set_has_method_handle_invokes(true);
1182       }
1183       if( mcall_java->is_MachCallStaticJava() )
1184         mcall_java->as_MachCallStaticJava()->_name =
1185          call_java->as_CallStaticJava()->_name;
1186       if( mcall_java->is_MachCallDynamicJava() )
1187         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1188          call_java->as_CallDynamicJava()->_vtable_index;
1189     }
1190     else if( mcall->is_MachCallRuntime() ) {
1191       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1192     }
1193     msfpt = mcall;
1194   }
1195   // This is a non-call safepoint
1196   else {
1197     call = NULL;
1198     domain = NULL;
1199     MachNode *mn = match_tree(sfpt);
1200     if (C->failing())  return NULL;
1201     msfpt = mn->as_MachSafePoint();
1202     cnt = TypeFunc::Parms;
1203   }
1204 
1205   // Advertise the correct memory effects (for anti-dependence computation).
1206   msfpt->set_adr_type(sfpt->adr_type());
1207 
1208   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1209   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1210   // Empty them all.
1211   for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
1212 
1213   // Do all the pre-defined non-Empty register masks
1214   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1215   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1216 
1217   // Place first outgoing argument can possibly be put.
1218   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1219   assert( is_even(begin_out_arg_area), "" );
1220   // Compute max outgoing register number per call site.
1221   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1222   // Calls to C may hammer extra stack slots above and beyond any arguments.
1223   // These are usually backing store for register arguments for varargs.
1224   if( call != NULL && call->is_CallRuntime() )
1225     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1226 
1227 
1228   // Do the normal argument list (parameters) register masks
1229   int argcnt = cnt - TypeFunc::Parms;
1230   if( argcnt > 0 ) {          // Skip it all if we have no args
1231     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1232     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1233     int i;
1234     for( i = 0; i < argcnt; i++ ) {
1235       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1236     }
1237     // V-call to pick proper calling convention
1238     call->calling_convention( sig_bt, parm_regs, argcnt );
1239 
1240 #ifdef ASSERT
1241     // Sanity check users' calling convention.  Really handy during
1242     // the initial porting effort.  Fairly expensive otherwise.
1243     { for (int i = 0; i<argcnt; i++) {
1244       if( !parm_regs[i].first()->is_valid() &&
1245           !parm_regs[i].second()->is_valid() ) continue;
1246       VMReg reg1 = parm_regs[i].first();
1247       VMReg reg2 = parm_regs[i].second();
1248       for (int j = 0; j < i; j++) {
1249         if( !parm_regs[j].first()->is_valid() &&
1250             !parm_regs[j].second()->is_valid() ) continue;
1251         VMReg reg3 = parm_regs[j].first();
1252         VMReg reg4 = parm_regs[j].second();
1253         if( !reg1->is_valid() ) {
1254           assert( !reg2->is_valid(), "valid halvsies" );
1255         } else if( !reg3->is_valid() ) {
1256           assert( !reg4->is_valid(), "valid halvsies" );
1257         } else {
1258           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1259           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1260           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1261           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1262           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1263           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1264         }
1265       }
1266     }
1267     }
1268 #endif
1269 
1270     // Visit each argument.  Compute its outgoing register mask.
1271     // Return results now can have 2 bits returned.
1272     // Compute max over all outgoing arguments both per call-site
1273     // and over the entire method.
1274     for( i = 0; i < argcnt; i++ ) {
1275       // Address of incoming argument mask to fill in
1276       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1277       if( !parm_regs[i].first()->is_valid() &&
1278           !parm_regs[i].second()->is_valid() ) {
1279         continue;               // Avoid Halves
1280       }
1281       // Grab first register, adjust stack slots and insert in mask.
1282       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1283       if (OptoReg::is_valid(reg1))
1284         rm->Insert( reg1 );
1285       // Grab second register (if any), adjust stack slots and insert in mask.
1286       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1287       if (OptoReg::is_valid(reg2))
1288         rm->Insert( reg2 );
1289     } // End of for all arguments
1290 
1291     // Compute number of stack slots needed to restore stack in case of
1292     // Pascal-style argument popping.
1293     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1294   }
1295 
1296   // Compute the max stack slot killed by any call.  These will not be
1297   // available for debug info, and will be used to adjust FIRST_STACK_mask
1298   // after all call sites have been visited.
1299   if( _out_arg_limit < out_arg_limit_per_call)
1300     _out_arg_limit = out_arg_limit_per_call;
1301 
1302   if (mcall) {
1303     // Kill the outgoing argument area, including any non-argument holes and
1304     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1305     // Since the max-per-method covers the max-per-call-site and debug info
1306     // is excluded on the max-per-method basis, debug info cannot land in
1307     // this killed area.
1308     uint r_cnt = mcall->tf()->range()->cnt();
1309     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1310     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1311       C->record_method_not_compilable("unsupported outgoing calling sequence");
1312     } else {
1313       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1314         proj->_rout.Insert(OptoReg::Name(i));
1315     }
1316     if (proj->_rout.is_NotEmpty()) {
1317       push_projection(proj);
1318     }
1319   }
1320   // Transfer the safepoint information from the call to the mcall
1321   // Move the JVMState list
1322   msfpt->set_jvms(sfpt->jvms());
1323   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1324     jvms->set_map(sfpt);
1325   }
1326 
1327   // Debug inputs begin just after the last incoming parameter
1328   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1329          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1330 
1331   // Move the OopMap
1332   msfpt->_oop_map = sfpt->_oop_map;
1333 
1334   // Add additional edges.
1335   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1336     // For these calls we can not add MachConstantBase in expand(), as the
1337     // ins are not complete then.
1338     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1339     if (msfpt->jvms() &&
1340         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1341       // We added an edge before jvms, so we must adapt the position of the ins.
1342       msfpt->jvms()->adapt_position(+1);
1343     }
1344   }
1345 
1346   // Registers killed by the call are set in the local scheduling pass
1347   // of Global Code Motion.
1348   return msfpt;
1349 }
1350 
1351 //---------------------------match_tree----------------------------------------
1352 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1353 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1354 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1355 // a Load's result RegMask for memoization in idealreg2regmask[]
match_tree(const Node * n)1356 MachNode *Matcher::match_tree( const Node *n ) {
1357   assert( n->Opcode() != Op_Phi, "cannot match" );
1358   assert( !n->is_block_start(), "cannot match" );
1359   // Set the mark for all locally allocated State objects.
1360   // When this call returns, the _states_arena arena will be reset
1361   // freeing all State objects.
1362   ResourceMark rm( &_states_arena );
1363 
1364   LabelRootDepth = 0;
1365 
1366   // StoreNodes require their Memory input to match any LoadNodes
1367   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1368 #ifdef ASSERT
1369   Node* save_mem_node = _mem_node;
1370   _mem_node = n->is_Store() ? (Node*)n : NULL;
1371 #endif
1372   // State object for root node of match tree
1373   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1374   State *s = new (&_states_arena) State;
1375   s->_kids[0] = NULL;
1376   s->_kids[1] = NULL;
1377   s->_leaf = (Node*)n;
1378   // Label the input tree, allocating labels from top-level arena
1379   Label_Root( n, s, n->in(0), mem );
1380   if (C->failing())  return NULL;
1381 
1382   // The minimum cost match for the whole tree is found at the root State
1383   uint mincost = max_juint;
1384   uint cost = max_juint;
1385   uint i;
1386   for( i = 0; i < NUM_OPERANDS; i++ ) {
1387     if( s->valid(i) &&                // valid entry and
1388         s->_cost[i] < cost &&         // low cost and
1389         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1390       cost = s->_cost[mincost=i];
1391   }
1392   if (mincost == max_juint) {
1393 #ifndef PRODUCT
1394     tty->print("No matching rule for:");
1395     s->dump();
1396 #endif
1397     Matcher::soft_match_failure();
1398     return NULL;
1399   }
1400   // Reduce input tree based upon the state labels to machine Nodes
1401   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1402 #ifdef ASSERT
1403   _old2new_map.map(n->_idx, m);
1404   _new2old_map.map(m->_idx, (Node*)n);
1405 #endif
1406 
1407   // Add any Matcher-ignored edges
1408   uint cnt = n->req();
1409   uint start = 1;
1410   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1411   if( n->is_AddP() ) {
1412     assert( mem == (Node*)1, "" );
1413     start = AddPNode::Base+1;
1414   }
1415   for( i = start; i < cnt; i++ ) {
1416     if( !n->match_edge(i) ) {
1417       if( i < m->req() )
1418         m->ins_req( i, n->in(i) );
1419       else
1420         m->add_req( n->in(i) );
1421     }
1422   }
1423 
1424   debug_only( _mem_node = save_mem_node; )
1425   return m;
1426 }
1427 
1428 
1429 //------------------------------match_into_reg---------------------------------
1430 // Choose to either match this Node in a register or part of the current
1431 // match tree.  Return true for requiring a register and false for matching
1432 // as part of the current match tree.
match_into_reg(const Node * n,Node * m,Node * control,int i,bool shared)1433 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1434 
1435   const Type *t = m->bottom_type();
1436 
1437   if (t->singleton()) {
1438     // Never force constants into registers.  Allow them to match as
1439     // constants or registers.  Copies of the same value will share
1440     // the same register.  See find_shared_node.
1441     return false;
1442   } else {                      // Not a constant
1443     // Stop recursion if they have different Controls.
1444     Node* m_control = m->in(0);
1445     // Control of load's memory can post-dominates load's control.
1446     // So use it since load can't float above its memory.
1447     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1448     if (control && m_control && control != m_control && control != mem_control) {
1449 
1450       // Actually, we can live with the most conservative control we
1451       // find, if it post-dominates the others.  This allows us to
1452       // pick up load/op/store trees where the load can float a little
1453       // above the store.
1454       Node *x = control;
1455       const uint max_scan = 6;  // Arbitrary scan cutoff
1456       uint j;
1457       for (j=0; j<max_scan; j++) {
1458         if (x->is_Region())     // Bail out at merge points
1459           return true;
1460         x = x->in(0);
1461         if (x == m_control)     // Does 'control' post-dominate
1462           break;                // m->in(0)?  If so, we can use it
1463         if (x == mem_control)   // Does 'control' post-dominate
1464           break;                // mem_control?  If so, we can use it
1465       }
1466       if (j == max_scan)        // No post-domination before scan end?
1467         return true;            // Then break the match tree up
1468     }
1469     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1470         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1471       // These are commonly used in address expressions and can
1472       // efficiently fold into them on X64 in some cases.
1473       return false;
1474     }
1475   }
1476 
1477   // Not forceable cloning.  If shared, put it into a register.
1478   return shared;
1479 }
1480 
1481 
1482 //------------------------------Instruction Selection--------------------------
1483 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1484 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1485 // things the Matcher does not match (e.g., Memory), and things with different
1486 // Controls (hence forced into different blocks).  We pass in the Control
1487 // selected for this entire State tree.
1488 
1489 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1490 // Store and the Load must have identical Memories (as well as identical
1491 // pointers).  Since the Matcher does not have anything for Memory (and
1492 // does not handle DAGs), I have to match the Memory input myself.  If the
1493 // Tree root is a Store, I require all Loads to have the identical memory.
Label_Root(const Node * n,State * svec,Node * control,const Node * mem)1494 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1495   // Since Label_Root is a recursive function, its possible that we might run
1496   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1497   LabelRootDepth++;
1498   if (LabelRootDepth > MaxLabelRootDepth) {
1499     C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
1500     return NULL;
1501   }
1502   uint care = 0;                // Edges matcher cares about
1503   uint cnt = n->req();
1504   uint i = 0;
1505 
1506   // Examine children for memory state
1507   // Can only subsume a child into your match-tree if that child's memory state
1508   // is not modified along the path to another input.
1509   // It is unsafe even if the other inputs are separate roots.
1510   Node *input_mem = NULL;
1511   for( i = 1; i < cnt; i++ ) {
1512     if( !n->match_edge(i) ) continue;
1513     Node *m = n->in(i);         // Get ith input
1514     assert( m, "expect non-null children" );
1515     if( m->is_Load() ) {
1516       if( input_mem == NULL ) {
1517         input_mem = m->in(MemNode::Memory);
1518       } else if( input_mem != m->in(MemNode::Memory) ) {
1519         input_mem = NodeSentinel;
1520       }
1521     }
1522   }
1523 
1524   for( i = 1; i < cnt; i++ ){// For my children
1525     if( !n->match_edge(i) ) continue;
1526     Node *m = n->in(i);         // Get ith input
1527     // Allocate states out of a private arena
1528     State *s = new (&_states_arena) State;
1529     svec->_kids[care++] = s;
1530     assert( care <= 2, "binary only for now" );
1531 
1532     // Recursively label the State tree.
1533     s->_kids[0] = NULL;
1534     s->_kids[1] = NULL;
1535     s->_leaf = m;
1536 
1537     // Check for leaves of the State Tree; things that cannot be a part of
1538     // the current tree.  If it finds any, that value is matched as a
1539     // register operand.  If not, then the normal matching is used.
1540     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1541         //
1542         // Stop recursion if this is LoadNode and the root of this tree is a
1543         // StoreNode and the load & store have different memories.
1544         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1545         // Can NOT include the match of a subtree when its memory state
1546         // is used by any of the other subtrees
1547         (input_mem == NodeSentinel) ) {
1548       // Print when we exclude matching due to different memory states at input-loads
1549       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1550         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1551         tty->print_cr("invalid input_mem");
1552       }
1553       // Switch to a register-only opcode; this value must be in a register
1554       // and cannot be subsumed as part of a larger instruction.
1555       s->DFA( m->ideal_reg(), m );
1556 
1557     } else {
1558       // If match tree has no control and we do, adopt it for entire tree
1559       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1560         control = m->in(0);         // Pick up control
1561       // Else match as a normal part of the match tree.
1562       control = Label_Root(m,s,control,mem);
1563       if (C->failing()) return NULL;
1564     }
1565   }
1566 
1567 
1568   // Call DFA to match this node, and return
1569   svec->DFA( n->Opcode(), n );
1570 
1571 #ifdef ASSERT
1572   uint x;
1573   for( x = 0; x < _LAST_MACH_OPER; x++ )
1574     if( svec->valid(x) )
1575       break;
1576 
1577   if (x >= _LAST_MACH_OPER) {
1578     n->dump();
1579     svec->dump();
1580     assert( false, "bad AD file" );
1581   }
1582 #endif
1583   return control;
1584 }
1585 
1586 
1587 // Con nodes reduced using the same rule can share their MachNode
1588 // which reduces the number of copies of a constant in the final
1589 // program.  The register allocator is free to split uses later to
1590 // split live ranges.
find_shared_node(Node * leaf,uint rule)1591 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1592   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1593 
1594   // See if this Con has already been reduced using this rule.
1595   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1596   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1597   if (last != NULL && rule == last->rule()) {
1598     // Don't expect control change for DecodeN
1599     if (leaf->is_DecodeNarrowPtr())
1600       return last;
1601     // Get the new space root.
1602     Node* xroot = new_node(C->root());
1603     if (xroot == NULL) {
1604       // This shouldn't happen give the order of matching.
1605       return NULL;
1606     }
1607 
1608     // Shared constants need to have their control be root so they
1609     // can be scheduled properly.
1610     Node* control = last->in(0);
1611     if (control != xroot) {
1612       if (control == NULL || control == C->root()) {
1613         last->set_req(0, xroot);
1614       } else {
1615         assert(false, "unexpected control");
1616         return NULL;
1617       }
1618     }
1619     return last;
1620   }
1621   return NULL;
1622 }
1623 
1624 
1625 //------------------------------ReduceInst-------------------------------------
1626 // Reduce a State tree (with given Control) into a tree of MachNodes.
1627 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1628 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1629 // Each MachNode has a number of complicated MachOper operands; each
1630 // MachOper also covers a further tree of Ideal Nodes.
1631 
1632 // The root of the Ideal match tree is always an instruction, so we enter
1633 // the recursion here.  After building the MachNode, we need to recurse
1634 // the tree checking for these cases:
1635 // (1) Child is an instruction -
1636 //     Build the instruction (recursively), add it as an edge.
1637 //     Build a simple operand (register) to hold the result of the instruction.
1638 // (2) Child is an interior part of an instruction -
1639 //     Skip over it (do nothing)
1640 // (3) Child is the start of a operand -
1641 //     Build the operand, place it inside the instruction
1642 //     Call ReduceOper.
ReduceInst(State * s,int rule,Node * & mem)1643 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1644   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1645 
1646   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1647   if (shared_node != NULL) {
1648     return shared_node;
1649   }
1650 
1651   // Build the object to represent this state & prepare for recursive calls
1652   MachNode *mach = s->MachNodeGenerator(rule);
1653   guarantee(mach != NULL, "Missing MachNode");
1654   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1655   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1656   Node *leaf = s->_leaf;
1657   // Check for instruction or instruction chain rule
1658   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1659     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1660            "duplicating node that's already been matched");
1661     // Instruction
1662     mach->add_req( leaf->in(0) ); // Set initial control
1663     // Reduce interior of complex instruction
1664     ReduceInst_Interior( s, rule, mem, mach, 1 );
1665   } else {
1666     // Instruction chain rules are data-dependent on their inputs
1667     mach->add_req(0);             // Set initial control to none
1668     ReduceInst_Chain_Rule( s, rule, mem, mach );
1669   }
1670 
1671   // If a Memory was used, insert a Memory edge
1672   if( mem != (Node*)1 ) {
1673     mach->ins_req(MemNode::Memory,mem);
1674 #ifdef ASSERT
1675     // Verify adr type after matching memory operation
1676     const MachOper* oper = mach->memory_operand();
1677     if (oper != NULL && oper != (MachOper*)-1) {
1678       // It has a unique memory operand.  Find corresponding ideal mem node.
1679       Node* m = NULL;
1680       if (leaf->is_Mem()) {
1681         m = leaf;
1682       } else {
1683         m = _mem_node;
1684         assert(m != NULL && m->is_Mem(), "expecting memory node");
1685       }
1686       const Type* mach_at = mach->adr_type();
1687       // DecodeN node consumed by an address may have different type
1688       // than its input. Don't compare types for such case.
1689       if (m->adr_type() != mach_at &&
1690           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1691            (m->in(MemNode::Address)->is_AddP() &&
1692             m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) ||
1693            (m->in(MemNode::Address)->is_AddP() &&
1694             m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1695             m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) {
1696         mach_at = m->adr_type();
1697       }
1698       if (m->adr_type() != mach_at) {
1699         m->dump();
1700         tty->print_cr("mach:");
1701         mach->dump(1);
1702       }
1703       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1704     }
1705 #endif
1706   }
1707 
1708   // If the _leaf is an AddP, insert the base edge
1709   if (leaf->is_AddP()) {
1710     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1711   }
1712 
1713   uint number_of_projections_prior = number_of_projections();
1714 
1715   // Perform any 1-to-many expansions required
1716   MachNode *ex = mach->Expand(s, _projection_list, mem);
1717   if (ex != mach) {
1718     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1719     if( ex->in(1)->is_Con() )
1720       ex->in(1)->set_req(0, C->root());
1721     // Remove old node from the graph
1722     for( uint i=0; i<mach->req(); i++ ) {
1723       mach->set_req(i,NULL);
1724     }
1725 #ifdef ASSERT
1726     _new2old_map.map(ex->_idx, s->_leaf);
1727 #endif
1728   }
1729 
1730   // PhaseChaitin::fixup_spills will sometimes generate spill code
1731   // via the matcher.  By the time, nodes have been wired into the CFG,
1732   // and any further nodes generated by expand rules will be left hanging
1733   // in space, and will not get emitted as output code.  Catch this.
1734   // Also, catch any new register allocation constraints ("projections")
1735   // generated belatedly during spill code generation.
1736   if (_allocation_started) {
1737     guarantee(ex == mach, "no expand rules during spill generation");
1738     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1739   }
1740 
1741   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1742     // Record the con for sharing
1743     _shared_nodes.map(leaf->_idx, ex);
1744   }
1745 
1746   return ex;
1747 }
1748 
handle_precedence_edges(Node * n,MachNode * mach)1749 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1750   for (uint i = n->req(); i < n->len(); i++) {
1751     if (n->in(i) != NULL) {
1752       mach->add_prec(n->in(i));
1753     }
1754   }
1755 }
1756 
ReduceInst_Chain_Rule(State * s,int rule,Node * & mem,MachNode * mach)1757 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1758   // 'op' is what I am expecting to receive
1759   int op = _leftOp[rule];
1760   // Operand type to catch childs result
1761   // This is what my child will give me.
1762   int opnd_class_instance = s->_rule[op];
1763   // Choose between operand class or not.
1764   // This is what I will receive.
1765   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1766   // New rule for child.  Chase operand classes to get the actual rule.
1767   int newrule = s->_rule[catch_op];
1768 
1769   if( newrule < NUM_OPERANDS ) {
1770     // Chain from operand or operand class, may be output of shared node
1771     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1772             "Bad AD file: Instruction chain rule must chain from operand");
1773     // Insert operand into array of operands for this instruction
1774     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1775 
1776     ReduceOper( s, newrule, mem, mach );
1777   } else {
1778     // Chain from the result of an instruction
1779     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1780     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1781     Node *mem1 = (Node*)1;
1782     debug_only(Node *save_mem_node = _mem_node;)
1783     mach->add_req( ReduceInst(s, newrule, mem1) );
1784     debug_only(_mem_node = save_mem_node;)
1785   }
1786   return;
1787 }
1788 
1789 
ReduceInst_Interior(State * s,int rule,Node * & mem,MachNode * mach,uint num_opnds)1790 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1791   handle_precedence_edges(s->_leaf, mach);
1792 
1793   if( s->_leaf->is_Load() ) {
1794     Node *mem2 = s->_leaf->in(MemNode::Memory);
1795     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1796     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1797     mem = mem2;
1798   }
1799   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1800     if( mach->in(0) == NULL )
1801       mach->set_req(0, s->_leaf->in(0));
1802   }
1803 
1804   // Now recursively walk the state tree & add operand list.
1805   for( uint i=0; i<2; i++ ) {   // binary tree
1806     State *newstate = s->_kids[i];
1807     if( newstate == NULL ) break;      // Might only have 1 child
1808     // 'op' is what I am expecting to receive
1809     int op;
1810     if( i == 0 ) {
1811       op = _leftOp[rule];
1812     } else {
1813       op = _rightOp[rule];
1814     }
1815     // Operand type to catch childs result
1816     // This is what my child will give me.
1817     int opnd_class_instance = newstate->_rule[op];
1818     // Choose between operand class or not.
1819     // This is what I will receive.
1820     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1821     // New rule for child.  Chase operand classes to get the actual rule.
1822     int newrule = newstate->_rule[catch_op];
1823 
1824     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1825       // Operand/operandClass
1826       // Insert operand into array of operands for this instruction
1827       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1828       ReduceOper( newstate, newrule, mem, mach );
1829 
1830     } else {                    // Child is internal operand or new instruction
1831       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1832         // internal operand --> call ReduceInst_Interior
1833         // Interior of complex instruction.  Do nothing but recurse.
1834         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1835       } else {
1836         // instruction --> call build operand(  ) to catch result
1837         //             --> ReduceInst( newrule )
1838         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1839         Node *mem1 = (Node*)1;
1840         debug_only(Node *save_mem_node = _mem_node;)
1841         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1842         debug_only(_mem_node = save_mem_node;)
1843       }
1844     }
1845     assert( mach->_opnds[num_opnds-1], "" );
1846   }
1847   return num_opnds;
1848 }
1849 
1850 // This routine walks the interior of possible complex operands.
1851 // At each point we check our children in the match tree:
1852 // (1) No children -
1853 //     We are a leaf; add _leaf field as an input to the MachNode
1854 // (2) Child is an internal operand -
1855 //     Skip over it ( do nothing )
1856 // (3) Child is an instruction -
1857 //     Call ReduceInst recursively and
1858 //     and instruction as an input to the MachNode
ReduceOper(State * s,int rule,Node * & mem,MachNode * mach)1859 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1860   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1861   State *kid = s->_kids[0];
1862   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1863 
1864   // Leaf?  And not subsumed?
1865   if( kid == NULL && !_swallowed[rule] ) {
1866     mach->add_req( s->_leaf );  // Add leaf pointer
1867     return;                     // Bail out
1868   }
1869 
1870   if( s->_leaf->is_Load() ) {
1871     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1872     mem = s->_leaf->in(MemNode::Memory);
1873     debug_only(_mem_node = s->_leaf;)
1874   }
1875 
1876   handle_precedence_edges(s->_leaf, mach);
1877 
1878   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1879     if( !mach->in(0) )
1880       mach->set_req(0,s->_leaf->in(0));
1881     else {
1882       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1883     }
1884   }
1885 
1886   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1887     int newrule;
1888     if( i == 0)
1889       newrule = kid->_rule[_leftOp[rule]];
1890     else
1891       newrule = kid->_rule[_rightOp[rule]];
1892 
1893     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1894       // Internal operand; recurse but do nothing else
1895       ReduceOper( kid, newrule, mem, mach );
1896 
1897     } else {                    // Child is a new instruction
1898       // Reduce the instruction, and add a direct pointer from this
1899       // machine instruction to the newly reduced one.
1900       Node *mem1 = (Node*)1;
1901       debug_only(Node *save_mem_node = _mem_node;)
1902       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1903       debug_only(_mem_node = save_mem_node;)
1904     }
1905   }
1906 }
1907 
1908 
1909 // -------------------------------------------------------------------------
1910 // Java-Java calling convention
1911 // (what you use when Java calls Java)
1912 
1913 //------------------------------find_receiver----------------------------------
1914 // For a given signature, return the OptoReg for parameter 0.
find_receiver(bool is_outgoing)1915 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1916   VMRegPair regs;
1917   BasicType sig_bt = T_OBJECT;
1918   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1919   // Return argument 0 register.  In the LP64 build pointers
1920   // take 2 registers, but the VM wants only the 'main' name.
1921   return OptoReg::as_OptoReg(regs.first());
1922 }
1923 
1924 // This function identifies sub-graphs in which a 'load' node is
1925 // input to two different nodes, and such that it can be matched
1926 // with BMI instructions like blsi, blsr, etc.
1927 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1928 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1929 // refers to the same node.
1930 #ifdef X86
1931 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1932 // This is a temporary solution until we make DAGs expressible in ADL.
1933 template<typename ConType>
1934 class FusedPatternMatcher {
1935   Node* _op1_node;
1936   Node* _mop_node;
1937   int _con_op;
1938 
match_next(Node * n,int next_op,int next_op_idx)1939   static int match_next(Node* n, int next_op, int next_op_idx) {
1940     if (n->in(1) == NULL || n->in(2) == NULL) {
1941       return -1;
1942     }
1943 
1944     if (next_op_idx == -1) { // n is commutative, try rotations
1945       if (n->in(1)->Opcode() == next_op) {
1946         return 1;
1947       } else if (n->in(2)->Opcode() == next_op) {
1948         return 2;
1949       }
1950     } else {
1951       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1952       if (n->in(next_op_idx)->Opcode() == next_op) {
1953         return next_op_idx;
1954       }
1955     }
1956     return -1;
1957   }
1958 public:
FusedPatternMatcher(Node * op1_node,Node * mop_node,int con_op)1959   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1960     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1961 
match(int op1,int op1_op2_idx,int op2,int op2_con_idx,typename ConType::NativeType con_value)1962   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1963              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1964              typename ConType::NativeType con_value) {
1965     if (_op1_node->Opcode() != op1) {
1966       return false;
1967     }
1968     if (_mop_node->outcnt() > 2) {
1969       return false;
1970     }
1971     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1972     if (op1_op2_idx == -1) {
1973       return false;
1974     }
1975     // Memory operation must be the other edge
1976     int op1_mop_idx = (op1_op2_idx & 1) + 1;
1977 
1978     // Check that the mop node is really what we want
1979     if (_op1_node->in(op1_mop_idx) == _mop_node) {
1980       Node *op2_node = _op1_node->in(op1_op2_idx);
1981       if (op2_node->outcnt() > 1) {
1982         return false;
1983       }
1984       assert(op2_node->Opcode() == op2, "Should be");
1985       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
1986       if (op2_con_idx == -1) {
1987         return false;
1988       }
1989       // Memory operation must be the other edge
1990       int op2_mop_idx = (op2_con_idx & 1) + 1;
1991       // Check that the memory operation is the same node
1992       if (op2_node->in(op2_mop_idx) == _mop_node) {
1993         // Now check the constant
1994         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
1995         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
1996           return true;
1997         }
1998       }
1999     }
2000     return false;
2001   }
2002 };
2003 
2004 
is_bmi_pattern(Node * n,Node * m)2005 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2006   if (n != NULL && m != NULL) {
2007     if (m->Opcode() == Op_LoadI) {
2008       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2009       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2010              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2011              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2012     } else if (m->Opcode() == Op_LoadL) {
2013       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2014       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2015              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2016              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2017     }
2018   }
2019   return false;
2020 }
2021 #endif // X86
2022 
clone_base_plus_offset_address(AddPNode * m,Matcher::MStack & mstack,VectorSet & address_visited)2023 bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
2024   Node *off = m->in(AddPNode::Offset);
2025   if (off->is_Con()) {
2026     address_visited.test_set(m->_idx); // Flag as address_visited
2027     mstack.push(m->in(AddPNode::Address), Pre_Visit);
2028     // Clone X+offset as it also folds into most addressing expressions
2029     mstack.push(off, Visit);
2030     mstack.push(m->in(AddPNode::Base), Pre_Visit);
2031     return true;
2032   }
2033   return false;
2034 }
2035 
2036 // A method-klass-holder may be passed in the inline_cache_reg
2037 // and then expanded into the inline_cache_reg and a method_oop register
2038 //   defined in ad_<arch>.cpp
2039 
2040 //------------------------------find_shared------------------------------------
2041 // Set bits if Node is shared or otherwise a root
find_shared(Node * n)2042 void Matcher::find_shared( Node *n ) {
2043   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2044   MStack mstack(C->live_nodes() * 2);
2045   // Mark nodes as address_visited if they are inputs to an address expression
2046   VectorSet address_visited(Thread::current()->resource_area());
2047   mstack.push(n, Visit);     // Don't need to pre-visit root node
2048   while (mstack.is_nonempty()) {
2049     n = mstack.node();       // Leave node on stack
2050     Node_State nstate = mstack.state();
2051     uint nop = n->Opcode();
2052     if (nstate == Pre_Visit) {
2053       if (address_visited.test(n->_idx)) { // Visited in address already?
2054         // Flag as visited and shared now.
2055         set_visited(n);
2056       }
2057       if (is_visited(n)) {   // Visited already?
2058         // Node is shared and has no reason to clone.  Flag it as shared.
2059         // This causes it to match into a register for the sharing.
2060         set_shared(n);       // Flag as shared and
2061         mstack.pop();        // remove node from stack
2062         continue;
2063       }
2064       nstate = Visit; // Not already visited; so visit now
2065     }
2066     if (nstate == Visit) {
2067       mstack.set_state(Post_Visit);
2068       set_visited(n);   // Flag as visited now
2069       bool mem_op = false;
2070       int mem_addr_idx = MemNode::Address;
2071       bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_visit(this, mstack, n, nop, mem_op, mem_addr_idx);
2072       if (!gc_handled) {
2073         if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
2074           continue;
2075         }
2076       }
2077       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2078         Node *m = n->in(i); // Get ith input
2079         if (m == NULL) continue;  // Ignore NULLs
2080         uint mop = m->Opcode();
2081 
2082         // Must clone all producers of flags, or we will not match correctly.
2083         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2084         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2085         // are also there, so we may match a float-branch to int-flags and
2086         // expect the allocator to haul the flags from the int-side to the
2087         // fp-side.  No can do.
2088         if( _must_clone[mop] ) {
2089           mstack.push(m, Visit);
2090           continue; // for(int i = ...)
2091         }
2092 
2093         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2094           // Bases used in addresses must be shared but since
2095           // they are shared through a DecodeN they may appear
2096           // to have a single use so force sharing here.
2097           set_shared(m->in(AddPNode::Base)->in(1));
2098         }
2099 
2100         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2101 #ifdef X86
2102         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2103           mstack.push(m, Visit);
2104           continue;
2105         }
2106 #endif
2107 
2108         // Clone addressing expressions as they are "free" in memory access instructions
2109         if (mem_op && i == mem_addr_idx && mop == Op_AddP &&
2110             // When there are other uses besides address expressions
2111             // put it on stack and mark as shared.
2112             !is_visited(m)) {
2113           // Some inputs for address expression are not put on stack
2114           // to avoid marking them as shared and forcing them into register
2115           // if they are used only in address expressions.
2116           // But they should be marked as shared if there are other uses
2117           // besides address expressions.
2118 
2119           if (clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
2120             continue;
2121           }
2122         }   // if( mem_op &&
2123         mstack.push(m, Pre_Visit);
2124       }     // for(int i = ...)
2125     }
2126     else if (nstate == Alt_Post_Visit) {
2127       mstack.pop(); // Remove node from stack
2128       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2129       // shared and all users of the Bool need to move the Cmp in parallel.
2130       // This leaves both the Bool and the If pointing at the Cmp.  To
2131       // prevent the Matcher from trying to Match the Cmp along both paths
2132       // BoolNode::match_edge always returns a zero.
2133 
2134       // We reorder the Op_If in a pre-order manner, so we can visit without
2135       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2136       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2137     }
2138     else if (nstate == Post_Visit) {
2139       mstack.pop(); // Remove node from stack
2140 
2141       // Now hack a few special opcodes
2142       uint opcode = n->Opcode();
2143       bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode);
2144       if (!gc_handled) {
2145         find_shared_post_visit(n, opcode);
2146       }
2147     }
2148     else {
2149       ShouldNotReachHere();
2150     }
2151   } // end of while (mstack.is_nonempty())
2152 }
2153 
find_shared_visit(MStack & mstack,Node * n,uint opcode,bool & mem_op,int & mem_addr_idx)2154 bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) {
2155   switch(opcode) {  // Handle some opcodes special
2156     case Op_Phi:             // Treat Phis as shared roots
2157     case Op_Parm:
2158     case Op_Proj:            // All handled specially during matching
2159     case Op_SafePointScalarObject:
2160       set_shared(n);
2161       set_dontcare(n);
2162       break;
2163     case Op_If:
2164     case Op_CountedLoopEnd:
2165       mstack.set_state(Alt_Post_Visit); // Alternative way
2166       // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2167       // with matching cmp/branch in 1 instruction.  The Matcher needs the
2168       // Bool and CmpX side-by-side, because it can only get at constants
2169       // that are at the leaves of Match trees, and the Bool's condition acts
2170       // as a constant here.
2171       mstack.push(n->in(1), Visit);         // Clone the Bool
2172       mstack.push(n->in(0), Pre_Visit);     // Visit control input
2173       return true; // while (mstack.is_nonempty())
2174     case Op_ConvI2D:         // These forms efficiently match with a prior
2175     case Op_ConvI2F:         //   Load but not a following Store
2176       if( n->in(1)->is_Load() &&        // Prior load
2177           n->outcnt() == 1 &&           // Not already shared
2178           n->unique_out()->is_Store() ) // Following store
2179         set_shared(n);       // Force it to be a root
2180       break;
2181     case Op_ReverseBytesI:
2182     case Op_ReverseBytesL:
2183       if( n->in(1)->is_Load() &&        // Prior load
2184           n->outcnt() == 1 )            // Not already shared
2185         set_shared(n);                  // Force it to be a root
2186       break;
2187     case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2188     case Op_IfFalse:
2189     case Op_IfTrue:
2190     case Op_MachProj:
2191     case Op_MergeMem:
2192     case Op_Catch:
2193     case Op_CatchProj:
2194     case Op_CProj:
2195     case Op_JumpProj:
2196     case Op_JProj:
2197     case Op_NeverBranch:
2198       set_dontcare(n);
2199       break;
2200     case Op_Jump:
2201       mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2202       mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2203       return true;                             // while (mstack.is_nonempty())
2204     case Op_StrComp:
2205     case Op_StrEquals:
2206     case Op_StrIndexOf:
2207     case Op_StrIndexOfChar:
2208     case Op_AryEq:
2209     case Op_HasNegatives:
2210     case Op_StrInflatedCopy:
2211     case Op_StrCompressedCopy:
2212     case Op_EncodeISOArray:
2213     case Op_FmaD:
2214     case Op_FmaF:
2215     case Op_FmaVD:
2216     case Op_FmaVF:
2217       set_shared(n); // Force result into register (it will be anyways)
2218       break;
2219     case Op_ConP: {  // Convert pointers above the centerline to NUL
2220       TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2221       const TypePtr* tp = tn->type()->is_ptr();
2222       if (tp->_ptr == TypePtr::AnyNull) {
2223         tn->set_type(TypePtr::NULL_PTR);
2224       }
2225       break;
2226     }
2227     case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2228       TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2229       const TypePtr* tp = tn->type()->make_ptr();
2230       if (tp && tp->_ptr == TypePtr::AnyNull) {
2231         tn->set_type(TypeNarrowOop::NULL_PTR);
2232       }
2233       break;
2234     }
2235     case Op_Binary:         // These are introduced in the Post_Visit state.
2236       ShouldNotReachHere();
2237       break;
2238     case Op_ClearArray:
2239     case Op_SafePoint:
2240       mem_op = true;
2241       break;
2242     default:
2243       if( n->is_Store() ) {
2244         // Do match stores, despite no ideal reg
2245         mem_op = true;
2246         break;
2247       }
2248       if( n->is_Mem() ) { // Loads and LoadStores
2249         mem_op = true;
2250         // Loads must be root of match tree due to prior load conflict
2251         if( C->subsume_loads() == false )
2252           set_shared(n);
2253       }
2254       // Fall into default case
2255       if( !n->ideal_reg() )
2256         set_dontcare(n);  // Unmatchable Nodes
2257   } // end_switch
2258   return false;
2259 }
2260 
find_shared_post_visit(Node * n,uint opcode)2261 void Matcher::find_shared_post_visit(Node* n, uint opcode) {
2262   switch(opcode) {       // Handle some opcodes special
2263     case Op_StorePConditional:
2264     case Op_StoreIConditional:
2265     case Op_StoreLConditional:
2266     case Op_CompareAndExchangeB:
2267     case Op_CompareAndExchangeS:
2268     case Op_CompareAndExchangeI:
2269     case Op_CompareAndExchangeL:
2270     case Op_CompareAndExchangeP:
2271     case Op_CompareAndExchangeN:
2272     case Op_WeakCompareAndSwapB:
2273     case Op_WeakCompareAndSwapS:
2274     case Op_WeakCompareAndSwapI:
2275     case Op_WeakCompareAndSwapL:
2276     case Op_WeakCompareAndSwapP:
2277     case Op_WeakCompareAndSwapN:
2278     case Op_CompareAndSwapB:
2279     case Op_CompareAndSwapS:
2280     case Op_CompareAndSwapI:
2281     case Op_CompareAndSwapL:
2282     case Op_CompareAndSwapP:
2283     case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2284       Node* newval = n->in(MemNode::ValueIn);
2285       Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
2286       Node* pair = new BinaryNode(oldval, newval);
2287       n->set_req(MemNode::ValueIn, pair);
2288       n->del_req(LoadStoreConditionalNode::ExpectedIn);
2289       break;
2290     }
2291     case Op_CMoveD:              // Convert trinary to binary-tree
2292     case Op_CMoveF:
2293     case Op_CMoveI:
2294     case Op_CMoveL:
2295     case Op_CMoveN:
2296     case Op_CMoveP:
2297     case Op_CMoveVF:
2298     case Op_CMoveVD:  {
2299       // Restructure into a binary tree for Matching.  It's possible that
2300       // we could move this code up next to the graph reshaping for IfNodes
2301       // or vice-versa, but I do not want to debug this for Ladybird.
2302       // 10/2/2000 CNC.
2303       Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1));
2304       n->set_req(1, pair1);
2305       Node* pair2 = new BinaryNode(n->in(2), n->in(3));
2306       n->set_req(2, pair2);
2307       n->del_req(3);
2308       break;
2309     }
2310     case Op_LoopLimit: {
2311       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2312       n->set_req(1, pair1);
2313       n->set_req(2, n->in(3));
2314       n->del_req(3);
2315       break;
2316     }
2317     case Op_StrEquals:
2318     case Op_StrIndexOfChar: {
2319       Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2320       n->set_req(2, pair1);
2321       n->set_req(3, n->in(4));
2322       n->del_req(4);
2323       break;
2324     }
2325     case Op_StrComp:
2326     case Op_StrIndexOf: {
2327       Node* pair1 = new BinaryNode(n->in(2), n->in(3));
2328       n->set_req(2, pair1);
2329       Node* pair2 = new BinaryNode(n->in(4),n->in(5));
2330       n->set_req(3, pair2);
2331       n->del_req(5);
2332       n->del_req(4);
2333       break;
2334     }
2335     case Op_StrCompressedCopy:
2336     case Op_StrInflatedCopy:
2337     case Op_EncodeISOArray: {
2338       // Restructure into a binary tree for Matching.
2339       Node* pair = new BinaryNode(n->in(3), n->in(4));
2340       n->set_req(3, pair);
2341       n->del_req(4);
2342       break;
2343     }
2344     case Op_FmaD:
2345     case Op_FmaF:
2346     case Op_FmaVD:
2347     case Op_FmaVF: {
2348       // Restructure into a binary tree for Matching.
2349       Node* pair = new BinaryNode(n->in(1), n->in(2));
2350       n->set_req(2, pair);
2351       n->set_req(1, n->in(3));
2352       n->del_req(3);
2353       break;
2354     }
2355     case Op_MulAddS2I: {
2356       Node* pair1 = new BinaryNode(n->in(1), n->in(2));
2357       Node* pair2 = new BinaryNode(n->in(3), n->in(4));
2358       n->set_req(1, pair1);
2359       n->set_req(2, pair2);
2360       n->del_req(4);
2361       n->del_req(3);
2362       break;
2363     }
2364     default:
2365       break;
2366   }
2367 }
2368 
2369 #ifdef ASSERT
2370 // machine-independent root to machine-dependent root
dump_old2new_map()2371 void Matcher::dump_old2new_map() {
2372   _old2new_map.dump();
2373 }
2374 #endif
2375 
2376 //---------------------------collect_null_checks-------------------------------
2377 // Find null checks in the ideal graph; write a machine-specific node for
2378 // it.  Used by later implicit-null-check handling.  Actually collects
2379 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2380 // value being tested.
collect_null_checks(Node * proj,Node * orig_proj)2381 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2382   Node *iff = proj->in(0);
2383   if( iff->Opcode() == Op_If ) {
2384     // During matching If's have Bool & Cmp side-by-side
2385     BoolNode *b = iff->in(1)->as_Bool();
2386     Node *cmp = iff->in(2);
2387     int opc = cmp->Opcode();
2388     if (opc != Op_CmpP && opc != Op_CmpN) return;
2389 
2390     const Type* ct = cmp->in(2)->bottom_type();
2391     if (ct == TypePtr::NULL_PTR ||
2392         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2393 
2394       bool push_it = false;
2395       if( proj->Opcode() == Op_IfTrue ) {
2396 #ifndef PRODUCT
2397         extern int all_null_checks_found;
2398         all_null_checks_found++;
2399 #endif
2400         if( b->_test._test == BoolTest::ne ) {
2401           push_it = true;
2402         }
2403       } else {
2404         assert( proj->Opcode() == Op_IfFalse, "" );
2405         if( b->_test._test == BoolTest::eq ) {
2406           push_it = true;
2407         }
2408       }
2409       if( push_it ) {
2410         _null_check_tests.push(proj);
2411         Node* val = cmp->in(1);
2412 #ifdef _LP64
2413         if (val->bottom_type()->isa_narrowoop() &&
2414             !Matcher::narrow_oop_use_complex_address()) {
2415           //
2416           // Look for DecodeN node which should be pinned to orig_proj.
2417           // On platforms (Sparc) which can not handle 2 adds
2418           // in addressing mode we have to keep a DecodeN node and
2419           // use it to do implicit NULL check in address.
2420           //
2421           // DecodeN node was pinned to non-null path (orig_proj) during
2422           // CastPP transformation in final_graph_reshaping_impl().
2423           //
2424           uint cnt = orig_proj->outcnt();
2425           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2426             Node* d = orig_proj->raw_out(i);
2427             if (d->is_DecodeN() && d->in(1) == val) {
2428               val = d;
2429               val->set_req(0, NULL); // Unpin now.
2430               // Mark this as special case to distinguish from
2431               // a regular case: CmpP(DecodeN, NULL).
2432               val = (Node*)(((intptr_t)val) | 1);
2433               break;
2434             }
2435           }
2436         }
2437 #endif
2438         _null_check_tests.push(val);
2439       }
2440     }
2441   }
2442 }
2443 
2444 //---------------------------validate_null_checks------------------------------
2445 // Its possible that the value being NULL checked is not the root of a match
2446 // tree.  If so, I cannot use the value in an implicit null check.
validate_null_checks()2447 void Matcher::validate_null_checks( ) {
2448   uint cnt = _null_check_tests.size();
2449   for( uint i=0; i < cnt; i+=2 ) {
2450     Node *test = _null_check_tests[i];
2451     Node *val = _null_check_tests[i+1];
2452     bool is_decoden = ((intptr_t)val) & 1;
2453     val = (Node*)(((intptr_t)val) & ~1);
2454     if (has_new_node(val)) {
2455       Node* new_val = new_node(val);
2456       if (is_decoden) {
2457         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2458         // Note: new_val may have a control edge if
2459         // the original ideal node DecodeN was matched before
2460         // it was unpinned in Matcher::collect_null_checks().
2461         // Unpin the mach node and mark it.
2462         new_val->set_req(0, NULL);
2463         new_val = (Node*)(((intptr_t)new_val) | 1);
2464       }
2465       // Is a match-tree root, so replace with the matched value
2466       _null_check_tests.map(i+1, new_val);
2467     } else {
2468       // Yank from candidate list
2469       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2470       _null_check_tests.map(i,_null_check_tests[--cnt]);
2471       _null_check_tests.pop();
2472       _null_check_tests.pop();
2473       i-=2;
2474     }
2475   }
2476 }
2477 
2478 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2479 // atomic instruction acting as a store_load barrier without any
2480 // intervening volatile load, and thus we don't need a barrier here.
2481 // We retain the Node to act as a compiler ordering barrier.
post_store_load_barrier(const Node * vmb)2482 bool Matcher::post_store_load_barrier(const Node* vmb) {
2483   Compile* C = Compile::current();
2484   assert(vmb->is_MemBar(), "");
2485   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2486   const MemBarNode* membar = vmb->as_MemBar();
2487 
2488   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2489   Node* ctrl = NULL;
2490   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2491     Node* p = membar->fast_out(i);
2492     assert(p->is_Proj(), "only projections here");
2493     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2494         !C->node_arena()->contains(p)) { // Unmatched old-space only
2495       ctrl = p;
2496       break;
2497     }
2498   }
2499   assert((ctrl != NULL), "missing control projection");
2500 
2501   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2502     Node *x = ctrl->fast_out(j);
2503     int xop = x->Opcode();
2504 
2505     // We don't need current barrier if we see another or a lock
2506     // before seeing volatile load.
2507     //
2508     // Op_Fastunlock previously appeared in the Op_* list below.
2509     // With the advent of 1-0 lock operations we're no longer guaranteed
2510     // that a monitor exit operation contains a serializing instruction.
2511 
2512     if (xop == Op_MemBarVolatile ||
2513         xop == Op_CompareAndExchangeB ||
2514         xop == Op_CompareAndExchangeS ||
2515         xop == Op_CompareAndExchangeI ||
2516         xop == Op_CompareAndExchangeL ||
2517         xop == Op_CompareAndExchangeP ||
2518         xop == Op_CompareAndExchangeN ||
2519         xop == Op_WeakCompareAndSwapB ||
2520         xop == Op_WeakCompareAndSwapS ||
2521         xop == Op_WeakCompareAndSwapL ||
2522         xop == Op_WeakCompareAndSwapP ||
2523         xop == Op_WeakCompareAndSwapN ||
2524         xop == Op_WeakCompareAndSwapI ||
2525         xop == Op_CompareAndSwapB ||
2526         xop == Op_CompareAndSwapS ||
2527         xop == Op_CompareAndSwapL ||
2528         xop == Op_CompareAndSwapP ||
2529         xop == Op_CompareAndSwapN ||
2530         xop == Op_CompareAndSwapI ||
2531         BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) {
2532       return true;
2533     }
2534 
2535     // Op_FastLock previously appeared in the Op_* list above.
2536     // With biased locking we're no longer guaranteed that a monitor
2537     // enter operation contains a serializing instruction.
2538     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2539       return true;
2540     }
2541 
2542     if (x->is_MemBar()) {
2543       // We must retain this membar if there is an upcoming volatile
2544       // load, which will be followed by acquire membar.
2545       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2546         return false;
2547       } else {
2548         // For other kinds of barriers, check by pretending we
2549         // are them, and seeing if we can be removed.
2550         return post_store_load_barrier(x->as_MemBar());
2551       }
2552     }
2553 
2554     // probably not necessary to check for these
2555     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2556       return false;
2557     }
2558   }
2559   return false;
2560 }
2561 
2562 // Check whether node n is a branch to an uncommon trap that we could
2563 // optimize as test with very high branch costs in case of going to
2564 // the uncommon trap. The code must be able to be recompiled to use
2565 // a cheaper test.
branches_to_uncommon_trap(const Node * n)2566 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2567   // Don't do it for natives, adapters, or runtime stubs
2568   Compile *C = Compile::current();
2569   if (!C->is_method_compilation()) return false;
2570 
2571   assert(n->is_If(), "You should only call this on if nodes.");
2572   IfNode *ifn = n->as_If();
2573 
2574   Node *ifFalse = NULL;
2575   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2576     if (ifn->fast_out(i)->is_IfFalse()) {
2577       ifFalse = ifn->fast_out(i);
2578       break;
2579     }
2580   }
2581   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2582 
2583   Node *reg = ifFalse;
2584   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2585                // Alternatively use visited set?  Seems too expensive.
2586   while (reg != NULL && cnt > 0) {
2587     CallNode *call = NULL;
2588     RegionNode *nxt_reg = NULL;
2589     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2590       Node *o = reg->fast_out(i);
2591       if (o->is_Call()) {
2592         call = o->as_Call();
2593       }
2594       if (o->is_Region()) {
2595         nxt_reg = o->as_Region();
2596       }
2597     }
2598 
2599     if (call &&
2600         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2601       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2602       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2603         jint tr_con = trtype->is_int()->get_con();
2604         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2605         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2606         assert((int)reason < (int)BitsPerInt, "recode bit map");
2607 
2608         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2609             && action != Deoptimization::Action_none) {
2610           // This uncommon trap is sure to recompile, eventually.
2611           // When that happens, C->too_many_traps will prevent
2612           // this transformation from happening again.
2613           return true;
2614         }
2615       }
2616     }
2617 
2618     reg = nxt_reg;
2619     cnt--;
2620   }
2621 
2622   return false;
2623 }
2624 
2625 //=============================================================================
2626 //---------------------------State---------------------------------------------
State(void)2627 State::State(void) {
2628 #ifdef ASSERT
2629   _id = 0;
2630   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2631   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2632   //memset(_cost, -1, sizeof(_cost));
2633   //memset(_rule, -1, sizeof(_rule));
2634 #endif
2635   memset(_valid, 0, sizeof(_valid));
2636 }
2637 
2638 #ifdef ASSERT
~State()2639 State::~State() {
2640   _id = 99;
2641   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2642   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2643   memset(_cost, -3, sizeof(_cost));
2644   memset(_rule, -3, sizeof(_rule));
2645 }
2646 #endif
2647 
2648 #ifndef PRODUCT
2649 //---------------------------dump----------------------------------------------
dump()2650 void State::dump() {
2651   tty->print("\n");
2652   dump(0);
2653 }
2654 
dump(int depth)2655 void State::dump(int depth) {
2656   for( int j = 0; j < depth; j++ )
2657     tty->print("   ");
2658   tty->print("--N: ");
2659   _leaf->dump();
2660   uint i;
2661   for( i = 0; i < _LAST_MACH_OPER; i++ )
2662     // Check for valid entry
2663     if( valid(i) ) {
2664       for( int j = 0; j < depth; j++ )
2665         tty->print("   ");
2666         assert(_cost[i] != max_juint, "cost must be a valid value");
2667         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2668         tty->print_cr("%s  %d  %s",
2669                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2670       }
2671   tty->cr();
2672 
2673   for( i=0; i<2; i++ )
2674     if( _kids[i] )
2675       _kids[i]->dump(depth+1);
2676 }
2677 #endif
2678