1 /*
2  * Copyright (c) 2009, 2012, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_UTILITIES_STACK_HPP
26 #define SHARE_VM_UTILITIES_STACK_HPP
27 
28 #include "memory/allocation.hpp"
29 
30 // Class Stack (below) grows and shrinks by linking together "segments" which
31 // are allocated on demand.  Segments are arrays of the element type (E) plus an
32 // extra pointer-sized field to store the segment link.  Recently emptied
33 // segments are kept in a cache and reused.
34 //
35 // Notes/caveats:
36 //
37 // The size of an element must either evenly divide the size of a pointer or be
38 // a multiple of the size of a pointer.
39 //
40 // Destructors are not called for elements popped off the stack, so element
41 // types which rely on destructors for things like reference counting will not
42 // work properly.
43 //
44 // Class Stack allocates segments from the C heap.  However, two protected
45 // virtual methods are used to alloc/free memory which subclasses can override:
46 //
47 //      virtual void* alloc(size_t bytes);
48 //      virtual void  free(void* addr, size_t bytes);
49 //
50 // The alloc() method must return storage aligned for any use.  The
51 // implementation in class Stack assumes that alloc() will terminate the process
52 // if the allocation fails.
53 
54 template <class E, MEMFLAGS F> class StackIterator;
55 
56 // StackBase holds common data/methods that don't depend on the element type,
57 // factored out to reduce template code duplication.
58 template <MEMFLAGS F> class StackBase
59 {
60 public:
segment_size() const61   size_t segment_size()   const { return _seg_size; } // Elements per segment.
max_size() const62   size_t max_size()       const { return _max_size; } // Max elements allowed.
max_cache_size() const63   size_t max_cache_size() const { return _max_cache_size; } // Max segments
64                                                             // allowed in cache.
65 
cache_size() const66   size_t cache_size() const { return _cache_size; }   // Segments in the cache.
67 
68 protected:
69   // The ctor arguments correspond to the like-named functions above.
70   // segment_size:    number of items per segment
71   // max_cache_size:  maxmium number of *segments* to cache
72   // max_size:        maximum number of items allowed, rounded to a multiple of
73   //                  the segment size (0 == unlimited)
74   inline StackBase(size_t segment_size, size_t max_cache_size, size_t max_size);
75 
76   // Round max_size to a multiple of the segment size.  Treat 0 as unlimited.
77   static inline size_t adjust_max_size(size_t max_size, size_t seg_size);
78 
79 protected:
80   const size_t _seg_size;       // Number of items per segment.
81   const size_t _max_size;       // Maximum number of items allowed in the stack.
82   const size_t _max_cache_size; // Maximum number of segments to cache.
83   size_t       _cur_seg_size;   // Number of items in the current segment.
84   size_t       _full_seg_size;  // Number of items in already-filled segments.
85   size_t       _cache_size;     // Number of segments in the cache.
86 };
87 
88 #ifdef __GNUC__
89 #define inline
90 #endif // __GNUC__
91 
92 template <class E, MEMFLAGS F>
93 class Stack:  public StackBase<F>
94 {
95 public:
96   friend class StackIterator<E, F>;
97 
98   // Number of elements that fit in 4K bytes minus the size of two pointers
99   // (link field and malloc header).
100   static const size_t _default_segment_size =  (4096 - 2 * sizeof(E*)) / sizeof(E);
default_segment_size()101   static size_t default_segment_size() { return _default_segment_size; }
102 
103   // segment_size:    number of items per segment
104   // max_cache_size:  maxmium number of *segments* to cache
105   // max_size:        maximum number of items allowed, rounded to a multiple of
106   //                  the segment size (0 == unlimited)
107   inline Stack(size_t segment_size = _default_segment_size,
108                size_t max_cache_size = 4, size_t max_size = 0);
~Stack()109   inline ~Stack() { clear(true); }
110 
is_empty() const111   inline bool is_empty() const { return this->_cur_seg == NULL; }
is_full() const112   inline bool is_full()  const { return this->_full_seg_size >= this->max_size(); }
113 
114   // Performance sensitive code should use is_empty() instead of size() == 0 and
115   // is_full() instead of size() == max_size().  Using a conditional here allows
116   // just one var to be updated when pushing/popping elements instead of two;
117   // _full_seg_size is updated only when pushing/popping segments.
size() const118   inline size_t size() const {
119     return is_empty() ? 0 : this->_full_seg_size + this->_cur_seg_size;
120   }
121 
122   inline void push(E elem);
123   inline E    pop();
124 
125   // Clear everything from the stack, releasing the associated memory.  If
126   // clear_cache is true, also release any cached segments.
127   void clear(bool clear_cache = false);
128 
129 protected:
130   // Each segment includes space for _seg_size elements followed by a link
131   // (pointer) to the previous segment; the space is allocated as a single block
132   // of size segment_bytes().  _seg_size is rounded up if necessary so the link
133   // is properly aligned.  The C struct for the layout would be:
134   //
135   // struct segment {
136   //   E     elements[_seg_size];
137   //   E*    link;
138   // };
139 
140   // Round up seg_size to keep the link field aligned.
141   static inline size_t adjust_segment_size(size_t seg_size);
142 
143   // Methods for allocation size and getting/setting the link.
144   inline size_t link_offset() const;              // Byte offset of link field.
145   inline size_t segment_bytes() const;            // Segment size in bytes.
146   inline E**    link_addr(E* seg) const;          // Address of the link field.
147   inline E*     get_link(E* seg) const;           // Extract the link from seg.
148   inline E*     set_link(E* new_seg, E* old_seg); // new_seg.link = old_seg.
149 
150   virtual E*    alloc(size_t bytes);
151   virtual void  free(E* addr, size_t bytes);
152 
153   void push_segment();
154   void pop_segment();
155 
156   void free_segments(E* seg);          // Free all segments in the list.
157   inline void reset(bool reset_cache); // Reset all data fields.
158 
159   DEBUG_ONLY(void verify(bool at_empty_transition) const;)
160   DEBUG_ONLY(void zap_segment(E* seg, bool zap_link_field) const;)
161 
162 private:
163   E* _cur_seg;    // Current segment.
164   E* _cache;      // Segment cache to avoid ping-ponging.
165 };
166 
167 template <class E, MEMFLAGS F> class ResourceStack:  public Stack<E, F>, public ResourceObj
168 {
169 public:
170   // If this class becomes widely used, it may make sense to save the Thread
171   // and use it when allocating segments.
172 //  ResourceStack(size_t segment_size = Stack<E, F>::default_segment_size()):
ResourceStack(size_t segment_size)173   ResourceStack(size_t segment_size): Stack<E, F>(segment_size, max_uintx)
174     { }
175 
176   // Set the segment pointers to NULL so the parent dtor does not free them;
177   // that must be done by the ResourceMark code.
~ResourceStack()178   ~ResourceStack() { Stack<E, F>::reset(true); }
179 
180 protected:
181   virtual E*   alloc(size_t bytes);
182   virtual void free(E* addr, size_t bytes);
183 
184 private:
185   void clear(bool clear_cache = false);
186 };
187 
188 template <class E, MEMFLAGS F>
189 class StackIterator: public StackObj
190 {
191 public:
StackIterator(Stack<E,F> & stack)192   StackIterator(Stack<E, F>& stack): _stack(stack) { sync(); }
193 
stack() const194   Stack<E, F>& stack() const { return _stack; }
195 
is_empty() const196   bool is_empty() const { return _cur_seg == NULL; }
197 
next()198   E  next() { return *next_addr(); }
199   E* next_addr();
200 
201   void sync(); // Sync the iterator's state to the stack's current state.
202 
203 private:
204   Stack<E, F>& _stack;
205   size_t    _cur_seg_size;
206   E*        _cur_seg;
207   size_t    _full_seg_size;
208 };
209 
210 #ifdef __GNUC__
211 #undef inline
212 #endif // __GNUC__
213 
214 #endif // SHARE_VM_UTILITIES_STACK_HPP
215