1 /*
2  * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.lang.annotation.Native;
29 import java.lang.invoke.MethodHandles;
30 import java.lang.constant.Constable;
31 import java.lang.constant.ConstantDesc;
32 import java.util.Objects;
33 import java.util.Optional;
34 
35 import jdk.internal.HotSpotIntrinsicCandidate;
36 import jdk.internal.misc.VM;
37 
38 import static java.lang.String.COMPACT_STRINGS;
39 import static java.lang.String.LATIN1;
40 import static java.lang.String.UTF16;
41 
42 /**
43  * The {@code Integer} class wraps a value of the primitive type
44  * {@code int} in an object. An object of type {@code Integer}
45  * contains a single field whose type is {@code int}.
46  *
47  * <p>In addition, this class provides several methods for converting
48  * an {@code int} to a {@code String} and a {@code String} to an
49  * {@code int}, as well as other constants and methods useful when
50  * dealing with an {@code int}.
51  *
52  * <p>Implementation note: The implementations of the "bit twiddling"
53  * methods (such as {@link #highestOneBit(int) highestOneBit} and
54  * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are
55  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
56  * Delight</i>, (Addison Wesley, 2002).
57  *
58  * @author  Lee Boynton
59  * @author  Arthur van Hoff
60  * @author  Josh Bloch
61  * @author  Joseph D. Darcy
62  * @since 1.0
63  */
64 public final class Integer extends Number
65         implements Comparable<Integer>, Constable, ConstantDesc {
66     /**
67      * A constant holding the minimum value an {@code int} can
68      * have, -2<sup>31</sup>.
69      */
70     @Native public static final int   MIN_VALUE = 0x80000000;
71 
72     /**
73      * A constant holding the maximum value an {@code int} can
74      * have, 2<sup>31</sup>-1.
75      */
76     @Native public static final int   MAX_VALUE = 0x7fffffff;
77 
78     /**
79      * The {@code Class} instance representing the primitive type
80      * {@code int}.
81      *
82      * @since   1.1
83      */
84     @SuppressWarnings("unchecked")
85     public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");
86 
87     /**
88      * All possible chars for representing a number as a String
89      */
90     static final char[] digits = {
91         '0' , '1' , '2' , '3' , '4' , '5' ,
92         '6' , '7' , '8' , '9' , 'a' , 'b' ,
93         'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
94         'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
95         'o' , 'p' , 'q' , 'r' , 's' , 't' ,
96         'u' , 'v' , 'w' , 'x' , 'y' , 'z'
97     };
98 
99     /**
100      * Returns a string representation of the first argument in the
101      * radix specified by the second argument.
102      *
103      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
104      * or larger than {@code Character.MAX_RADIX}, then the radix
105      * {@code 10} is used instead.
106      *
107      * <p>If the first argument is negative, the first element of the
108      * result is the ASCII minus character {@code '-'}
109      * ({@code '\u005Cu002D'}). If the first argument is not
110      * negative, no sign character appears in the result.
111      *
112      * <p>The remaining characters of the result represent the magnitude
113      * of the first argument. If the magnitude is zero, it is
114      * represented by a single zero character {@code '0'}
115      * ({@code '\u005Cu0030'}); otherwise, the first character of
116      * the representation of the magnitude will not be the zero
117      * character.  The following ASCII characters are used as digits:
118      *
119      * <blockquote>
120      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
121      * </blockquote>
122      *
123      * These are {@code '\u005Cu0030'} through
124      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
125      * {@code '\u005Cu007A'}. If {@code radix} is
126      * <var>N</var>, then the first <var>N</var> of these characters
127      * are used as radix-<var>N</var> digits in the order shown. Thus,
128      * the digits for hexadecimal (radix 16) are
129      * {@code 0123456789abcdef}. If uppercase letters are
130      * desired, the {@link java.lang.String#toUpperCase()} method may
131      * be called on the result:
132      *
133      * <blockquote>
134      *  {@code Integer.toString(n, 16).toUpperCase()}
135      * </blockquote>
136      *
137      * @param   i       an integer to be converted to a string.
138      * @param   radix   the radix to use in the string representation.
139      * @return  a string representation of the argument in the specified radix.
140      * @see     java.lang.Character#MAX_RADIX
141      * @see     java.lang.Character#MIN_RADIX
142      */
toString(int i, int radix)143     public static String toString(int i, int radix) {
144         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
145             radix = 10;
146 
147         /* Use the faster version */
148         if (radix == 10) {
149             return toString(i);
150         }
151 
152         if (COMPACT_STRINGS) {
153             byte[] buf = new byte[33];
154             boolean negative = (i < 0);
155             int charPos = 32;
156 
157             if (!negative) {
158                 i = -i;
159             }
160 
161             while (i <= -radix) {
162                 buf[charPos--] = (byte)digits[-(i % radix)];
163                 i = i / radix;
164             }
165             buf[charPos] = (byte)digits[-i];
166 
167             if (negative) {
168                 buf[--charPos] = '-';
169             }
170 
171             return StringLatin1.newString(buf, charPos, (33 - charPos));
172         }
173         return toStringUTF16(i, radix);
174     }
175 
toStringUTF16(int i, int radix)176     private static String toStringUTF16(int i, int radix) {
177         byte[] buf = new byte[33 * 2];
178         boolean negative = (i < 0);
179         int charPos = 32;
180         if (!negative) {
181             i = -i;
182         }
183         while (i <= -radix) {
184             StringUTF16.putChar(buf, charPos--, digits[-(i % radix)]);
185             i = i / radix;
186         }
187         StringUTF16.putChar(buf, charPos, digits[-i]);
188 
189         if (negative) {
190             StringUTF16.putChar(buf, --charPos, '-');
191         }
192         return StringUTF16.newString(buf, charPos, (33 - charPos));
193     }
194 
195     /**
196      * Returns a string representation of the first argument as an
197      * unsigned integer value in the radix specified by the second
198      * argument.
199      *
200      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
201      * or larger than {@code Character.MAX_RADIX}, then the radix
202      * {@code 10} is used instead.
203      *
204      * <p>Note that since the first argument is treated as an unsigned
205      * value, no leading sign character is printed.
206      *
207      * <p>If the magnitude is zero, it is represented by a single zero
208      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
209      * the first character of the representation of the magnitude will
210      * not be the zero character.
211      *
212      * <p>The behavior of radixes and the characters used as digits
213      * are the same as {@link #toString(int, int) toString}.
214      *
215      * @param   i       an integer to be converted to an unsigned string.
216      * @param   radix   the radix to use in the string representation.
217      * @return  an unsigned string representation of the argument in the specified radix.
218      * @see     #toString(int, int)
219      * @since 1.8
220      */
toUnsignedString(int i, int radix)221     public static String toUnsignedString(int i, int radix) {
222         return Long.toUnsignedString(toUnsignedLong(i), radix);
223     }
224 
225     /**
226      * Returns a string representation of the integer argument as an
227      * unsigned integer in base&nbsp;16.
228      *
229      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
230      * if the argument is negative; otherwise, it is equal to the
231      * argument.  This value is converted to a string of ASCII digits
232      * in hexadecimal (base&nbsp;16) with no extra leading
233      * {@code 0}s.
234      *
235      * <p>The value of the argument can be recovered from the returned
236      * string {@code s} by calling {@link
237      * Integer#parseUnsignedInt(String, int)
238      * Integer.parseUnsignedInt(s, 16)}.
239      *
240      * <p>If the unsigned magnitude is zero, it is represented by a
241      * single zero character {@code '0'} ({@code '\u005Cu0030'});
242      * otherwise, the first character of the representation of the
243      * unsigned magnitude will not be the zero character. The
244      * following characters are used as hexadecimal digits:
245      *
246      * <blockquote>
247      *  {@code 0123456789abcdef}
248      * </blockquote>
249      *
250      * These are the characters {@code '\u005Cu0030'} through
251      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
252      * {@code '\u005Cu0066'}. If uppercase letters are
253      * desired, the {@link java.lang.String#toUpperCase()} method may
254      * be called on the result:
255      *
256      * <blockquote>
257      *  {@code Integer.toHexString(n).toUpperCase()}
258      * </blockquote>
259      *
260      * @param   i   an integer to be converted to a string.
261      * @return  the string representation of the unsigned integer value
262      *          represented by the argument in hexadecimal (base&nbsp;16).
263      * @see #parseUnsignedInt(String, int)
264      * @see #toUnsignedString(int, int)
265      * @since   1.0.2
266      */
toHexString(int i)267     public static String toHexString(int i) {
268         return toUnsignedString0(i, 4);
269     }
270 
271     /**
272      * Returns a string representation of the integer argument as an
273      * unsigned integer in base&nbsp;8.
274      *
275      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
276      * if the argument is negative; otherwise, it is equal to the
277      * argument.  This value is converted to a string of ASCII digits
278      * in octal (base&nbsp;8) with no extra leading {@code 0}s.
279      *
280      * <p>The value of the argument can be recovered from the returned
281      * string {@code s} by calling {@link
282      * Integer#parseUnsignedInt(String, int)
283      * Integer.parseUnsignedInt(s, 8)}.
284      *
285      * <p>If the unsigned magnitude is zero, it is represented by a
286      * single zero character {@code '0'} ({@code '\u005Cu0030'});
287      * otherwise, the first character of the representation of the
288      * unsigned magnitude will not be the zero character. The
289      * following characters are used as octal digits:
290      *
291      * <blockquote>
292      * {@code 01234567}
293      * </blockquote>
294      *
295      * These are the characters {@code '\u005Cu0030'} through
296      * {@code '\u005Cu0037'}.
297      *
298      * @param   i   an integer to be converted to a string.
299      * @return  the string representation of the unsigned integer value
300      *          represented by the argument in octal (base&nbsp;8).
301      * @see #parseUnsignedInt(String, int)
302      * @see #toUnsignedString(int, int)
303      * @since   1.0.2
304      */
toOctalString(int i)305     public static String toOctalString(int i) {
306         return toUnsignedString0(i, 3);
307     }
308 
309     /**
310      * Returns a string representation of the integer argument as an
311      * unsigned integer in base&nbsp;2.
312      *
313      * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
314      * if the argument is negative; otherwise it is equal to the
315      * argument.  This value is converted to a string of ASCII digits
316      * in binary (base&nbsp;2) with no extra leading {@code 0}s.
317      *
318      * <p>The value of the argument can be recovered from the returned
319      * string {@code s} by calling {@link
320      * Integer#parseUnsignedInt(String, int)
321      * Integer.parseUnsignedInt(s, 2)}.
322      *
323      * <p>If the unsigned magnitude is zero, it is represented by a
324      * single zero character {@code '0'} ({@code '\u005Cu0030'});
325      * otherwise, the first character of the representation of the
326      * unsigned magnitude will not be the zero character. The
327      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
328      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
329      *
330      * @param   i   an integer to be converted to a string.
331      * @return  the string representation of the unsigned integer value
332      *          represented by the argument in binary (base&nbsp;2).
333      * @see #parseUnsignedInt(String, int)
334      * @see #toUnsignedString(int, int)
335      * @since   1.0.2
336      */
toBinaryString(int i)337     public static String toBinaryString(int i) {
338         return toUnsignedString0(i, 1);
339     }
340 
341     /**
342      * Convert the integer to an unsigned number.
343      */
toUnsignedString0(int val, int shift)344     private static String toUnsignedString0(int val, int shift) {
345         // assert shift > 0 && shift <=5 : "Illegal shift value";
346         int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val);
347         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
348         if (COMPACT_STRINGS) {
349             byte[] buf = new byte[chars];
350             formatUnsignedInt(val, shift, buf, 0, chars);
351             return new String(buf, LATIN1);
352         } else {
353             byte[] buf = new byte[chars * 2];
354             formatUnsignedIntUTF16(val, shift, buf, 0, chars);
355             return new String(buf, UTF16);
356         }
357     }
358 
359     /**
360      * Format an {@code int} (treated as unsigned) into a character buffer. If
361      * {@code len} exceeds the formatted ASCII representation of {@code val},
362      * {@code buf} will be padded with leading zeroes.
363      *
364      * @param val the unsigned int to format
365      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
366      * @param buf the character buffer to write to
367      * @param offset the offset in the destination buffer to start at
368      * @param len the number of characters to write
369      */
formatUnsignedInt(int val, int shift, char[] buf, int offset, int len)370     static void formatUnsignedInt(int val, int shift, char[] buf, int offset, int len) {
371         // assert shift > 0 && shift <=5 : "Illegal shift value";
372         // assert offset >= 0 && offset < buf.length : "illegal offset";
373         // assert len > 0 && (offset + len) <= buf.length : "illegal length";
374         int charPos = offset + len;
375         int radix = 1 << shift;
376         int mask = radix - 1;
377         do {
378             buf[--charPos] = Integer.digits[val & mask];
379             val >>>= shift;
380         } while (charPos > offset);
381     }
382 
383     /** byte[]/LATIN1 version    */
formatUnsignedInt(int val, int shift, byte[] buf, int offset, int len)384     static void formatUnsignedInt(int val, int shift, byte[] buf, int offset, int len) {
385         int charPos = offset + len;
386         int radix = 1 << shift;
387         int mask = radix - 1;
388         do {
389             buf[--charPos] = (byte)Integer.digits[val & mask];
390             val >>>= shift;
391         } while (charPos > offset);
392     }
393 
394     /** byte[]/UTF16 version    */
formatUnsignedIntUTF16(int val, int shift, byte[] buf, int offset, int len)395     private static void formatUnsignedIntUTF16(int val, int shift, byte[] buf, int offset, int len) {
396         int charPos = offset + len;
397         int radix = 1 << shift;
398         int mask = radix - 1;
399         do {
400             StringUTF16.putChar(buf, --charPos, Integer.digits[val & mask]);
401             val >>>= shift;
402         } while (charPos > offset);
403     }
404 
405     static final byte[] DigitTens = {
406         '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
407         '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
408         '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
409         '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
410         '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
411         '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
412         '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
413         '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
414         '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
415         '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
416         } ;
417 
418     static final byte[] DigitOnes = {
419         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
420         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
421         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
422         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
423         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
424         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
425         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
426         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
427         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
428         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
429         } ;
430 
431 
432     /**
433      * Returns a {@code String} object representing the
434      * specified integer. The argument is converted to signed decimal
435      * representation and returned as a string, exactly as if the
436      * argument and radix 10 were given as arguments to the {@link
437      * #toString(int, int)} method.
438      *
439      * @param   i   an integer to be converted.
440      * @return  a string representation of the argument in base&nbsp;10.
441      */
442     @HotSpotIntrinsicCandidate
toString(int i)443     public static String toString(int i) {
444         int size = stringSize(i);
445         if (COMPACT_STRINGS) {
446             byte[] buf = new byte[size];
447             getChars(i, size, buf);
448             return new String(buf, LATIN1);
449         } else {
450             byte[] buf = new byte[size * 2];
451             StringUTF16.getChars(i, size, buf);
452             return new String(buf, UTF16);
453         }
454     }
455 
456     /**
457      * Returns a string representation of the argument as an unsigned
458      * decimal value.
459      *
460      * The argument is converted to unsigned decimal representation
461      * and returned as a string exactly as if the argument and radix
462      * 10 were given as arguments to the {@link #toUnsignedString(int,
463      * int)} method.
464      *
465      * @param   i  an integer to be converted to an unsigned string.
466      * @return  an unsigned string representation of the argument.
467      * @see     #toUnsignedString(int, int)
468      * @since 1.8
469      */
toUnsignedString(int i)470     public static String toUnsignedString(int i) {
471         return Long.toString(toUnsignedLong(i));
472     }
473 
474     /**
475      * Places characters representing the integer i into the
476      * character array buf. The characters are placed into
477      * the buffer backwards starting with the least significant
478      * digit at the specified index (exclusive), and working
479      * backwards from there.
480      *
481      * @implNote This method converts positive inputs into negative
482      * values, to cover the Integer.MIN_VALUE case. Converting otherwise
483      * (negative to positive) will expose -Integer.MIN_VALUE that overflows
484      * integer.
485      *
486      * @param i     value to convert
487      * @param index next index, after the least significant digit
488      * @param buf   target buffer, Latin1-encoded
489      * @return index of the most significant digit or minus sign, if present
490      */
getChars(int i, int index, byte[] buf)491     static int getChars(int i, int index, byte[] buf) {
492         int q, r;
493         int charPos = index;
494 
495         boolean negative = i < 0;
496         if (!negative) {
497             i = -i;
498         }
499 
500         // Generate two digits per iteration
501         while (i <= -100) {
502             q = i / 100;
503             r = (q * 100) - i;
504             i = q;
505             buf[--charPos] = DigitOnes[r];
506             buf[--charPos] = DigitTens[r];
507         }
508 
509         // We know there are at most two digits left at this point.
510         q = i / 10;
511         r = (q * 10) - i;
512         buf[--charPos] = (byte)('0' + r);
513 
514         // Whatever left is the remaining digit.
515         if (q < 0) {
516             buf[--charPos] = (byte)('0' - q);
517         }
518 
519         if (negative) {
520             buf[--charPos] = (byte)'-';
521         }
522         return charPos;
523     }
524 
525     // Left here for compatibility reasons, see JDK-8143900.
526     static final int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
527                                       99999999, 999999999, Integer.MAX_VALUE };
528 
529     /**
530      * Returns the string representation size for a given int value.
531      *
532      * @param x int value
533      * @return string size
534      *
535      * @implNote There are other ways to compute this: e.g. binary search,
536      * but values are biased heavily towards zero, and therefore linear search
537      * wins. The iteration results are also routinely inlined in the generated
538      * code after loop unrolling.
539      */
540     static int stringSize(int x) {
541         int d = 1;
542         if (x >= 0) {
543             d = 0;
544             x = -x;
545         }
546         int p = -10;
547         for (int i = 1; i < 10; i++) {
548             if (x > p)
549                 return i + d;
550             p = 10 * p;
551         }
552         return 10 + d;
553     }
554 
555     /**
556      * Parses the string argument as a signed integer in the radix
557      * specified by the second argument. The characters in the string
558      * must all be digits of the specified radix (as determined by
559      * whether {@link java.lang.Character#digit(char, int)} returns a
560      * nonnegative value), except that the first character may be an
561      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
562      * indicate a negative value or an ASCII plus sign {@code '+'}
563      * ({@code '\u005Cu002B'}) to indicate a positive value. The
564      * resulting integer value is returned.
565      *
566      * <p>An exception of type {@code NumberFormatException} is
567      * thrown if any of the following situations occurs:
568      * <ul>
569      * <li>The first argument is {@code null} or is a string of
570      * length zero.
571      *
572      * <li>The radix is either smaller than
573      * {@link java.lang.Character#MIN_RADIX} or
574      * larger than {@link java.lang.Character#MAX_RADIX}.
575      *
576      * <li>Any character of the string is not a digit of the specified
577      * radix, except that the first character may be a minus sign
578      * {@code '-'} ({@code '\u005Cu002D'}) or plus sign
579      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
580      * string is longer than length 1.
581      *
582      * <li>The value represented by the string is not a value of type
583      * {@code int}.
584      * </ul>
585      *
586      * <p>Examples:
587      * <blockquote><pre>
588      * parseInt("0", 10) returns 0
589      * parseInt("473", 10) returns 473
590      * parseInt("+42", 10) returns 42
591      * parseInt("-0", 10) returns 0
592      * parseInt("-FF", 16) returns -255
593      * parseInt("1100110", 2) returns 102
594      * parseInt("2147483647", 10) returns 2147483647
595      * parseInt("-2147483648", 10) returns -2147483648
596      * parseInt("2147483648", 10) throws a NumberFormatException
597      * parseInt("99", 8) throws a NumberFormatException
598      * parseInt("Kona", 10) throws a NumberFormatException
599      * parseInt("Kona", 27) returns 411787
600      * </pre></blockquote>
601      *
602      * @param      s   the {@code String} containing the integer
603      *                  representation to be parsed
604      * @param      radix   the radix to be used while parsing {@code s}.
605      * @return     the integer represented by the string argument in the
606      *             specified radix.
607      * @exception  NumberFormatException if the {@code String}
608      *             does not contain a parsable {@code int}.
609      */
610     public static int parseInt(String s, int radix)
611                 throws NumberFormatException
612     {
613         /*
614          * WARNING: This method may be invoked early during VM initialization
615          * before IntegerCache is initialized. Care must be taken to not use
616          * the valueOf method.
617          */
618 
619         if (s == null) {
620             throw new NumberFormatException("null");
621         }
622 
623         if (radix < Character.MIN_RADIX) {
624             throw new NumberFormatException("radix " + radix +
625                                             " less than Character.MIN_RADIX");
626         }
627 
628         if (radix > Character.MAX_RADIX) {
629             throw new NumberFormatException("radix " + radix +
630                                             " greater than Character.MAX_RADIX");
631         }
632 
633         boolean negative = false;
634         int i = 0, len = s.length();
635         int limit = -Integer.MAX_VALUE;
636 
637         if (len > 0) {
638             char firstChar = s.charAt(0);
639             if (firstChar < '0') { // Possible leading "+" or "-"
640                 if (firstChar == '-') {
641                     negative = true;
642                     limit = Integer.MIN_VALUE;
643                 } else if (firstChar != '+') {
644                     throw NumberFormatException.forInputString(s, radix);
645                 }
646 
647                 if (len == 1) { // Cannot have lone "+" or "-"
648                     throw NumberFormatException.forInputString(s, radix);
649                 }
650                 i++;
651             }
652             int multmin = limit / radix;
653             int result = 0;
654             while (i < len) {
655                 // Accumulating negatively avoids surprises near MAX_VALUE
656                 int digit = Character.digit(s.charAt(i++), radix);
657                 if (digit < 0 || result < multmin) {
658                     throw NumberFormatException.forInputString(s, radix);
659                 }
660                 result *= radix;
661                 if (result < limit + digit) {
662                     throw NumberFormatException.forInputString(s, radix);
663                 }
664                 result -= digit;
665             }
666             return negative ? result : -result;
667         } else {
668             throw NumberFormatException.forInputString(s, radix);
669         }
670     }
671 
672     /**
673      * Parses the {@link CharSequence} argument as a signed {@code int} in the
674      * specified {@code radix}, beginning at the specified {@code beginIndex}
675      * and extending to {@code endIndex - 1}.
676      *
677      * <p>The method does not take steps to guard against the
678      * {@code CharSequence} being mutated while parsing.
679      *
680      * @param      s   the {@code CharSequence} containing the {@code int}
681      *                  representation to be parsed
682      * @param      beginIndex   the beginning index, inclusive.
683      * @param      endIndex     the ending index, exclusive.
684      * @param      radix   the radix to be used while parsing {@code s}.
685      * @return     the signed {@code int} represented by the subsequence in
686      *             the specified radix.
687      * @throws     NullPointerException  if {@code s} is null.
688      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
689      *             negative, or if {@code beginIndex} is greater than
690      *             {@code endIndex} or if {@code endIndex} is greater than
691      *             {@code s.length()}.
692      * @throws     NumberFormatException  if the {@code CharSequence} does not
693      *             contain a parsable {@code int} in the specified
694      *             {@code radix}, or if {@code radix} is either smaller than
695      *             {@link java.lang.Character#MIN_RADIX} or larger than
696      *             {@link java.lang.Character#MAX_RADIX}.
697      * @since  9
698      */
699     public static int parseInt(CharSequence s, int beginIndex, int endIndex, int radix)
700                 throws NumberFormatException {
701         s = Objects.requireNonNull(s);
702 
703         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
704             throw new IndexOutOfBoundsException();
705         }
706         if (radix < Character.MIN_RADIX) {
707             throw new NumberFormatException("radix " + radix +
708                                             " less than Character.MIN_RADIX");
709         }
710         if (radix > Character.MAX_RADIX) {
711             throw new NumberFormatException("radix " + radix +
712                                             " greater than Character.MAX_RADIX");
713         }
714 
715         boolean negative = false;
716         int i = beginIndex;
717         int limit = -Integer.MAX_VALUE;
718 
719         if (i < endIndex) {
720             char firstChar = s.charAt(i);
721             if (firstChar < '0') { // Possible leading "+" or "-"
722                 if (firstChar == '-') {
723                     negative = true;
724                     limit = Integer.MIN_VALUE;
725                 } else if (firstChar != '+') {
726                     throw NumberFormatException.forCharSequence(s, beginIndex,
727                             endIndex, i);
728                 }
729                 i++;
730                 if (i == endIndex) { // Cannot have lone "+" or "-"
731                     throw NumberFormatException.forCharSequence(s, beginIndex,
732                             endIndex, i);
733                 }
734             }
735             int multmin = limit / radix;
736             int result = 0;
737             while (i < endIndex) {
738                 // Accumulating negatively avoids surprises near MAX_VALUE
739                 int digit = Character.digit(s.charAt(i), radix);
740                 if (digit < 0 || result < multmin) {
741                     throw NumberFormatException.forCharSequence(s, beginIndex,
742                             endIndex, i);
743                 }
744                 result *= radix;
745                 if (result < limit + digit) {
746                     throw NumberFormatException.forCharSequence(s, beginIndex,
747                             endIndex, i);
748                 }
749                 i++;
750                 result -= digit;
751             }
752             return negative ? result : -result;
753         } else {
754             throw NumberFormatException.forInputString("", radix);
755         }
756     }
757 
758     /**
759      * Parses the string argument as a signed decimal integer. The
760      * characters in the string must all be decimal digits, except
761      * that the first character may be an ASCII minus sign {@code '-'}
762      * ({@code '\u005Cu002D'}) to indicate a negative value or an
763      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
764      * indicate a positive value. The resulting integer value is
765      * returned, exactly as if the argument and the radix 10 were
766      * given as arguments to the {@link #parseInt(java.lang.String,
767      * int)} method.
768      *
769      * @param s    a {@code String} containing the {@code int}
770      *             representation to be parsed
771      * @return     the integer value represented by the argument in decimal.
772      * @exception  NumberFormatException  if the string does not contain a
773      *               parsable integer.
774      */
775     public static int parseInt(String s) throws NumberFormatException {
776         return parseInt(s,10);
777     }
778 
779     /**
780      * Parses the string argument as an unsigned integer in the radix
781      * specified by the second argument.  An unsigned integer maps the
782      * values usually associated with negative numbers to positive
783      * numbers larger than {@code MAX_VALUE}.
784      *
785      * The characters in the string must all be digits of the
786      * specified radix (as determined by whether {@link
787      * java.lang.Character#digit(char, int)} returns a nonnegative
788      * value), except that the first character may be an ASCII plus
789      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
790      * integer value is returned.
791      *
792      * <p>An exception of type {@code NumberFormatException} is
793      * thrown if any of the following situations occurs:
794      * <ul>
795      * <li>The first argument is {@code null} or is a string of
796      * length zero.
797      *
798      * <li>The radix is either smaller than
799      * {@link java.lang.Character#MIN_RADIX} or
800      * larger than {@link java.lang.Character#MAX_RADIX}.
801      *
802      * <li>Any character of the string is not a digit of the specified
803      * radix, except that the first character may be a plus sign
804      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
805      * string is longer than length 1.
806      *
807      * <li>The value represented by the string is larger than the
808      * largest unsigned {@code int}, 2<sup>32</sup>-1.
809      *
810      * </ul>
811      *
812      *
813      * @param      s   the {@code String} containing the unsigned integer
814      *                  representation to be parsed
815      * @param      radix   the radix to be used while parsing {@code s}.
816      * @return     the integer represented by the string argument in the
817      *             specified radix.
818      * @throws     NumberFormatException if the {@code String}
819      *             does not contain a parsable {@code int}.
820      * @since 1.8
821      */
822     public static int parseUnsignedInt(String s, int radix)
823                 throws NumberFormatException {
824         if (s == null)  {
825             throw new NumberFormatException("null");
826         }
827 
828         int len = s.length();
829         if (len > 0) {
830             char firstChar = s.charAt(0);
831             if (firstChar == '-') {
832                 throw new
833                     NumberFormatException(String.format("Illegal leading minus sign " +
834                                                        "on unsigned string %s.", s));
835             } else {
836                 if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
837                     (radix == 10 && len <= 9) ) { // Integer.MAX_VALUE in base 10 is 10 digits
838                     return parseInt(s, radix);
839                 } else {
840                     long ell = Long.parseLong(s, radix);
841                     if ((ell & 0xffff_ffff_0000_0000L) == 0) {
842                         return (int) ell;
843                     } else {
844                         throw new
845                             NumberFormatException(String.format("String value %s exceeds " +
846                                                                 "range of unsigned int.", s));
847                     }
848                 }
849             }
850         } else {
851             throw NumberFormatException.forInputString(s, radix);
852         }
853     }
854 
855     /**
856      * Parses the {@link CharSequence} argument as an unsigned {@code int} in
857      * the specified {@code radix}, beginning at the specified
858      * {@code beginIndex} and extending to {@code endIndex - 1}.
859      *
860      * <p>The method does not take steps to guard against the
861      * {@code CharSequence} being mutated while parsing.
862      *
863      * @param      s   the {@code CharSequence} containing the unsigned
864      *                 {@code int} representation to be parsed
865      * @param      beginIndex   the beginning index, inclusive.
866      * @param      endIndex     the ending index, exclusive.
867      * @param      radix   the radix to be used while parsing {@code s}.
868      * @return     the unsigned {@code int} represented by the subsequence in
869      *             the specified radix.
870      * @throws     NullPointerException  if {@code s} is null.
871      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
872      *             negative, or if {@code beginIndex} is greater than
873      *             {@code endIndex} or if {@code endIndex} is greater than
874      *             {@code s.length()}.
875      * @throws     NumberFormatException  if the {@code CharSequence} does not
876      *             contain a parsable unsigned {@code int} in the specified
877      *             {@code radix}, or if {@code radix} is either smaller than
878      *             {@link java.lang.Character#MIN_RADIX} or larger than
879      *             {@link java.lang.Character#MAX_RADIX}.
880      * @since  9
881      */
882     public static int parseUnsignedInt(CharSequence s, int beginIndex, int endIndex, int radix)
883                 throws NumberFormatException {
884         s = Objects.requireNonNull(s);
885 
886         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
887             throw new IndexOutOfBoundsException();
888         }
889         int start = beginIndex, len = endIndex - beginIndex;
890 
891         if (len > 0) {
892             char firstChar = s.charAt(start);
893             if (firstChar == '-') {
894                 throw new
895                     NumberFormatException(String.format("Illegal leading minus sign " +
896                                                        "on unsigned string %s.", s));
897             } else {
898                 if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
899                         (radix == 10 && len <= 9)) { // Integer.MAX_VALUE in base 10 is 10 digits
900                     return parseInt(s, start, start + len, radix);
901                 } else {
902                     long ell = Long.parseLong(s, start, start + len, radix);
903                     if ((ell & 0xffff_ffff_0000_0000L) == 0) {
904                         return (int) ell;
905                     } else {
906                         throw new
907                             NumberFormatException(String.format("String value %s exceeds " +
908                                                                 "range of unsigned int.", s));
909                     }
910                 }
911             }
912         } else {
913             throw new NumberFormatException("");
914         }
915     }
916 
917     /**
918      * Parses the string argument as an unsigned decimal integer. The
919      * characters in the string must all be decimal digits, except
920      * that the first character may be an ASCII plus sign {@code
921      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
922      * is returned, exactly as if the argument and the radix 10 were
923      * given as arguments to the {@link
924      * #parseUnsignedInt(java.lang.String, int)} method.
925      *
926      * @param s   a {@code String} containing the unsigned {@code int}
927      *            representation to be parsed
928      * @return    the unsigned integer value represented by the argument in decimal.
929      * @throws    NumberFormatException  if the string does not contain a
930      *            parsable unsigned integer.
931      * @since 1.8
932      */
933     public static int parseUnsignedInt(String s) throws NumberFormatException {
934         return parseUnsignedInt(s, 10);
935     }
936 
937     /**
938      * Returns an {@code Integer} object holding the value
939      * extracted from the specified {@code String} when parsed
940      * with the radix given by the second argument. The first argument
941      * is interpreted as representing a signed integer in the radix
942      * specified by the second argument, exactly as if the arguments
943      * were given to the {@link #parseInt(java.lang.String, int)}
944      * method. The result is an {@code Integer} object that
945      * represents the integer value specified by the string.
946      *
947      * <p>In other words, this method returns an {@code Integer}
948      * object equal to the value of:
949      *
950      * <blockquote>
951      *  {@code new Integer(Integer.parseInt(s, radix))}
952      * </blockquote>
953      *
954      * @param      s   the string to be parsed.
955      * @param      radix the radix to be used in interpreting {@code s}
956      * @return     an {@code Integer} object holding the value
957      *             represented by the string argument in the specified
958      *             radix.
959      * @exception NumberFormatException if the {@code String}
960      *            does not contain a parsable {@code int}.
961      */
962     public static Integer valueOf(String s, int radix) throws NumberFormatException {
963         return Integer.valueOf(parseInt(s,radix));
964     }
965 
966     /**
967      * Returns an {@code Integer} object holding the
968      * value of the specified {@code String}. The argument is
969      * interpreted as representing a signed decimal integer, exactly
970      * as if the argument were given to the {@link
971      * #parseInt(java.lang.String)} method. The result is an
972      * {@code Integer} object that represents the integer value
973      * specified by the string.
974      *
975      * <p>In other words, this method returns an {@code Integer}
976      * object equal to the value of:
977      *
978      * <blockquote>
979      *  {@code new Integer(Integer.parseInt(s))}
980      * </blockquote>
981      *
982      * @param      s   the string to be parsed.
983      * @return     an {@code Integer} object holding the value
984      *             represented by the string argument.
985      * @exception  NumberFormatException  if the string cannot be parsed
986      *             as an integer.
987      */
988     public static Integer valueOf(String s) throws NumberFormatException {
989         return Integer.valueOf(parseInt(s, 10));
990     }
991 
992     /**
993      * Cache to support the object identity semantics of autoboxing for values between
994      * -128 and 127 (inclusive) as required by JLS.
995      *
996      * The cache is initialized on first usage.  The size of the cache
997      * may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
998      * During VM initialization, java.lang.Integer.IntegerCache.high property
999      * may be set and saved in the private system properties in the
1000      * jdk.internal.misc.VM class.
1001      *
1002      * WARNING: The cache is archived with CDS and reloaded from the shared
1003      * archive at runtime. The archived cache (Integer[]) and Integer objects
1004      * reside in the closed archive heap regions. Care should be taken when
1005      * changing the implementation and the cache array should not be assigned
1006      * with new Integer object(s) after initialization.
1007      */
1008 
1009     private static class IntegerCache {
1010         static final int low = -128;
1011         static final int high;
1012         static final Integer[] cache;
1013         static Integer[] archivedCache;
1014 
1015         static {
1016             // high value may be configured by property
1017             int h = 127;
1018             String integerCacheHighPropValue =
1019                 VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
1020             if (integerCacheHighPropValue != null) {
1021                 try {
1022                     h = Math.max(parseInt(integerCacheHighPropValue), 127);
1023                     // Maximum array size is Integer.MAX_VALUE
1024                     h = Math.min(h, Integer.MAX_VALUE - (-low) -1);
1025                 } catch( NumberFormatException nfe) {
1026                     // If the property cannot be parsed into an int, ignore it.
1027                 }
1028             }
1029             high = h;
1030 
1031             // Load IntegerCache.archivedCache from archive, if possible
1032             VM.initializeFromArchive(IntegerCache.class);
1033             int size = (high - low) + 1;
1034 
1035             // Use the archived cache if it exists and is large enough
1036             if (archivedCache == null || size > archivedCache.length) {
1037                 Integer[] c = new Integer[size];
1038                 int j = low;
1039                 for(int i = 0; i < c.length; i++) {
1040                     c[i] = new Integer(j++);
1041                 }
1042                 archivedCache = c;
1043             }
1044             cache = archivedCache;
1045             // range [-128, 127] must be interned (JLS7 5.1.7)
1046             assert IntegerCache.high >= 127;
1047         }
1048 
1049         private IntegerCache() {}
1050     }
1051 
1052     /**
1053      * Returns an {@code Integer} instance representing the specified
1054      * {@code int} value.  If a new {@code Integer} instance is not
1055      * required, this method should generally be used in preference to
1056      * the constructor {@link #Integer(int)}, as this method is likely
1057      * to yield significantly better space and time performance by
1058      * caching frequently requested values.
1059      *
1060      * This method will always cache values in the range -128 to 127,
1061      * inclusive, and may cache other values outside of this range.
1062      *
1063      * @param  i an {@code int} value.
1064      * @return an {@code Integer} instance representing {@code i}.
1065      * @since  1.5
1066      */
1067     @HotSpotIntrinsicCandidate
1068     public static Integer valueOf(int i) {
1069         if (i >= IntegerCache.low && i <= IntegerCache.high)
1070             return IntegerCache.cache[i + (-IntegerCache.low)];
1071         return new Integer(i);
1072     }
1073 
1074     /**
1075      * The value of the {@code Integer}.
1076      *
1077      * @serial
1078      */
1079     private final int value;
1080 
1081     /**
1082      * Constructs a newly allocated {@code Integer} object that
1083      * represents the specified {@code int} value.
1084      *
1085      * @param   value   the value to be represented by the
1086      *                  {@code Integer} object.
1087      *
1088      * @deprecated
1089      * It is rarely appropriate to use this constructor. The static factory
1090      * {@link #valueOf(int)} is generally a better choice, as it is
1091      * likely to yield significantly better space and time performance.
1092      */
1093     @Deprecated(since="9")
1094     public Integer(int value) {
1095         this.value = value;
1096     }
1097 
1098     /**
1099      * Constructs a newly allocated {@code Integer} object that
1100      * represents the {@code int} value indicated by the
1101      * {@code String} parameter. The string is converted to an
1102      * {@code int} value in exactly the manner used by the
1103      * {@code parseInt} method for radix 10.
1104      *
1105      * @param   s   the {@code String} to be converted to an {@code Integer}.
1106      * @throws      NumberFormatException if the {@code String} does not
1107      *              contain a parsable integer.
1108      *
1109      * @deprecated
1110      * It is rarely appropriate to use this constructor.
1111      * Use {@link #parseInt(String)} to convert a string to a
1112      * {@code int} primitive, or use {@link #valueOf(String)}
1113      * to convert a string to an {@code Integer} object.
1114      */
1115     @Deprecated(since="9")
1116     public Integer(String s) throws NumberFormatException {
1117         this.value = parseInt(s, 10);
1118     }
1119 
1120     /**
1121      * Returns the value of this {@code Integer} as a {@code byte}
1122      * after a narrowing primitive conversion.
1123      * @jls 5.1.3 Narrowing Primitive Conversions
1124      */
1125     public byte byteValue() {
1126         return (byte)value;
1127     }
1128 
1129     /**
1130      * Returns the value of this {@code Integer} as a {@code short}
1131      * after a narrowing primitive conversion.
1132      * @jls 5.1.3 Narrowing Primitive Conversions
1133      */
1134     public short shortValue() {
1135         return (short)value;
1136     }
1137 
1138     /**
1139      * Returns the value of this {@code Integer} as an
1140      * {@code int}.
1141      */
1142     @HotSpotIntrinsicCandidate
1143     public int intValue() {
1144         return value;
1145     }
1146 
1147     /**
1148      * Returns the value of this {@code Integer} as a {@code long}
1149      * after a widening primitive conversion.
1150      * @jls 5.1.2 Widening Primitive Conversions
1151      * @see Integer#toUnsignedLong(int)
1152      */
1153     public long longValue() {
1154         return (long)value;
1155     }
1156 
1157     /**
1158      * Returns the value of this {@code Integer} as a {@code float}
1159      * after a widening primitive conversion.
1160      * @jls 5.1.2 Widening Primitive Conversions
1161      */
1162     public float floatValue() {
1163         return (float)value;
1164     }
1165 
1166     /**
1167      * Returns the value of this {@code Integer} as a {@code double}
1168      * after a widening primitive conversion.
1169      * @jls 5.1.2 Widening Primitive Conversions
1170      */
1171     public double doubleValue() {
1172         return (double)value;
1173     }
1174 
1175     /**
1176      * Returns a {@code String} object representing this
1177      * {@code Integer}'s value. The value is converted to signed
1178      * decimal representation and returned as a string, exactly as if
1179      * the integer value were given as an argument to the {@link
1180      * java.lang.Integer#toString(int)} method.
1181      *
1182      * @return  a string representation of the value of this object in
1183      *          base&nbsp;10.
1184      */
1185     public String toString() {
1186         return toString(value);
1187     }
1188 
1189     /**
1190      * Returns a hash code for this {@code Integer}.
1191      *
1192      * @return  a hash code value for this object, equal to the
1193      *          primitive {@code int} value represented by this
1194      *          {@code Integer} object.
1195      */
1196     @Override
1197     public int hashCode() {
1198         return Integer.hashCode(value);
1199     }
1200 
1201     /**
1202      * Returns a hash code for an {@code int} value; compatible with
1203      * {@code Integer.hashCode()}.
1204      *
1205      * @param value the value to hash
1206      * @since 1.8
1207      *
1208      * @return a hash code value for an {@code int} value.
1209      */
1210     public static int hashCode(int value) {
1211         return value;
1212     }
1213 
1214     /**
1215      * Compares this object to the specified object.  The result is
1216      * {@code true} if and only if the argument is not
1217      * {@code null} and is an {@code Integer} object that
1218      * contains the same {@code int} value as this object.
1219      *
1220      * @param   obj   the object to compare with.
1221      * @return  {@code true} if the objects are the same;
1222      *          {@code false} otherwise.
1223      */
1224     public boolean equals(Object obj) {
1225         if (obj instanceof Integer) {
1226             return value == ((Integer)obj).intValue();
1227         }
1228         return false;
1229     }
1230 
1231     /**
1232      * Determines the integer value of the system property with the
1233      * specified name.
1234      *
1235      * <p>The first argument is treated as the name of a system
1236      * property.  System properties are accessible through the {@link
1237      * java.lang.System#getProperty(java.lang.String)} method. The
1238      * string value of this property is then interpreted as an integer
1239      * value using the grammar supported by {@link Integer#decode decode} and
1240      * an {@code Integer} object representing this value is returned.
1241      *
1242      * <p>If there is no property with the specified name, if the
1243      * specified name is empty or {@code null}, or if the property
1244      * does not have the correct numeric format, then {@code null} is
1245      * returned.
1246      *
1247      * <p>In other words, this method returns an {@code Integer}
1248      * object equal to the value of:
1249      *
1250      * <blockquote>
1251      *  {@code getInteger(nm, null)}
1252      * </blockquote>
1253      *
1254      * @param   nm   property name.
1255      * @return  the {@code Integer} value of the property.
1256      * @throws  SecurityException for the same reasons as
1257      *          {@link System#getProperty(String) System.getProperty}
1258      * @see     java.lang.System#getProperty(java.lang.String)
1259      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1260      */
1261     public static Integer getInteger(String nm) {
1262         return getInteger(nm, null);
1263     }
1264 
1265     /**
1266      * Determines the integer value of the system property with the
1267      * specified name.
1268      *
1269      * <p>The first argument is treated as the name of a system
1270      * property.  System properties are accessible through the {@link
1271      * java.lang.System#getProperty(java.lang.String)} method. The
1272      * string value of this property is then interpreted as an integer
1273      * value using the grammar supported by {@link Integer#decode decode} and
1274      * an {@code Integer} object representing this value is returned.
1275      *
1276      * <p>The second argument is the default value. An {@code Integer} object
1277      * that represents the value of the second argument is returned if there
1278      * is no property of the specified name, if the property does not have
1279      * the correct numeric format, or if the specified name is empty or
1280      * {@code null}.
1281      *
1282      * <p>In other words, this method returns an {@code Integer} object
1283      * equal to the value of:
1284      *
1285      * <blockquote>
1286      *  {@code getInteger(nm, new Integer(val))}
1287      * </blockquote>
1288      *
1289      * but in practice it may be implemented in a manner such as:
1290      *
1291      * <blockquote><pre>
1292      * Integer result = getInteger(nm, null);
1293      * return (result == null) ? new Integer(val) : result;
1294      * </pre></blockquote>
1295      *
1296      * to avoid the unnecessary allocation of an {@code Integer}
1297      * object when the default value is not needed.
1298      *
1299      * @param   nm   property name.
1300      * @param   val   default value.
1301      * @return  the {@code Integer} value of the property.
1302      * @throws  SecurityException for the same reasons as
1303      *          {@link System#getProperty(String) System.getProperty}
1304      * @see     java.lang.System#getProperty(java.lang.String)
1305      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1306      */
1307     public static Integer getInteger(String nm, int val) {
1308         Integer result = getInteger(nm, null);
1309         return (result == null) ? Integer.valueOf(val) : result;
1310     }
1311 
1312     /**
1313      * Returns the integer value of the system property with the
1314      * specified name.  The first argument is treated as the name of a
1315      * system property.  System properties are accessible through the
1316      * {@link java.lang.System#getProperty(java.lang.String)} method.
1317      * The string value of this property is then interpreted as an
1318      * integer value, as per the {@link Integer#decode decode} method,
1319      * and an {@code Integer} object representing this value is
1320      * returned; in summary:
1321      *
1322      * <ul><li>If the property value begins with the two ASCII characters
1323      *         {@code 0x} or the ASCII character {@code #}, not
1324      *      followed by a minus sign, then the rest of it is parsed as a
1325      *      hexadecimal integer exactly as by the method
1326      *      {@link #valueOf(java.lang.String, int)} with radix 16.
1327      * <li>If the property value begins with the ASCII character
1328      *     {@code 0} followed by another character, it is parsed as an
1329      *     octal integer exactly as by the method
1330      *     {@link #valueOf(java.lang.String, int)} with radix 8.
1331      * <li>Otherwise, the property value is parsed as a decimal integer
1332      * exactly as by the method {@link #valueOf(java.lang.String, int)}
1333      * with radix 10.
1334      * </ul>
1335      *
1336      * <p>The second argument is the default value. The default value is
1337      * returned if there is no property of the specified name, if the
1338      * property does not have the correct numeric format, or if the
1339      * specified name is empty or {@code null}.
1340      *
1341      * @param   nm   property name.
1342      * @param   val   default value.
1343      * @return  the {@code Integer} value of the property.
1344      * @throws  SecurityException for the same reasons as
1345      *          {@link System#getProperty(String) System.getProperty}
1346      * @see     System#getProperty(java.lang.String)
1347      * @see     System#getProperty(java.lang.String, java.lang.String)
1348      */
1349     public static Integer getInteger(String nm, Integer val) {
1350         String v = null;
1351         try {
1352             v = System.getProperty(nm);
1353         } catch (IllegalArgumentException | NullPointerException e) {
1354         }
1355         if (v != null) {
1356             try {
1357                 return Integer.decode(v);
1358             } catch (NumberFormatException e) {
1359             }
1360         }
1361         return val;
1362     }
1363 
1364     /**
1365      * Decodes a {@code String} into an {@code Integer}.
1366      * Accepts decimal, hexadecimal, and octal numbers given
1367      * by the following grammar:
1368      *
1369      * <blockquote>
1370      * <dl>
1371      * <dt><i>DecodableString:</i>
1372      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1373      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1374      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1375      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1376      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1377      *
1378      * <dt><i>Sign:</i>
1379      * <dd>{@code -}
1380      * <dd>{@code +}
1381      * </dl>
1382      * </blockquote>
1383      *
1384      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1385      * are as defined in section 3.10.1 of
1386      * <cite>The Java&trade; Language Specification</cite>,
1387      * except that underscores are not accepted between digits.
1388      *
1389      * <p>The sequence of characters following an optional
1390      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1391      * "{@code #}", or leading zero) is parsed as by the {@code
1392      * Integer.parseInt} method with the indicated radix (10, 16, or
1393      * 8).  This sequence of characters must represent a positive
1394      * value or a {@link NumberFormatException} will be thrown.  The
1395      * result is negated if first character of the specified {@code
1396      * String} is the minus sign.  No whitespace characters are
1397      * permitted in the {@code String}.
1398      *
1399      * @param     nm the {@code String} to decode.
1400      * @return    an {@code Integer} object holding the {@code int}
1401      *             value represented by {@code nm}
1402      * @exception NumberFormatException  if the {@code String} does not
1403      *            contain a parsable integer.
1404      * @see java.lang.Integer#parseInt(java.lang.String, int)
1405      */
1406     public static Integer decode(String nm) throws NumberFormatException {
1407         int radix = 10;
1408         int index = 0;
1409         boolean negative = false;
1410         Integer result;
1411 
1412         if (nm.isEmpty())
1413             throw new NumberFormatException("Zero length string");
1414         char firstChar = nm.charAt(0);
1415         // Handle sign, if present
1416         if (firstChar == '-') {
1417             negative = true;
1418             index++;
1419         } else if (firstChar == '+')
1420             index++;
1421 
1422         // Handle radix specifier, if present
1423         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1424             index += 2;
1425             radix = 16;
1426         }
1427         else if (nm.startsWith("#", index)) {
1428             index ++;
1429             radix = 16;
1430         }
1431         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1432             index ++;
1433             radix = 8;
1434         }
1435 
1436         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1437             throw new NumberFormatException("Sign character in wrong position");
1438 
1439         try {
1440             result = Integer.valueOf(nm.substring(index), radix);
1441             result = negative ? Integer.valueOf(-result.intValue()) : result;
1442         } catch (NumberFormatException e) {
1443             // If number is Integer.MIN_VALUE, we'll end up here. The next line
1444             // handles this case, and causes any genuine format error to be
1445             // rethrown.
1446             String constant = negative ? ("-" + nm.substring(index))
1447                                        : nm.substring(index);
1448             result = Integer.valueOf(constant, radix);
1449         }
1450         return result;
1451     }
1452 
1453     /**
1454      * Compares two {@code Integer} objects numerically.
1455      *
1456      * @param   anotherInteger   the {@code Integer} to be compared.
1457      * @return  the value {@code 0} if this {@code Integer} is
1458      *          equal to the argument {@code Integer}; a value less than
1459      *          {@code 0} if this {@code Integer} is numerically less
1460      *          than the argument {@code Integer}; and a value greater
1461      *          than {@code 0} if this {@code Integer} is numerically
1462      *           greater than the argument {@code Integer} (signed
1463      *           comparison).
1464      * @since   1.2
1465      */
1466     public int compareTo(Integer anotherInteger) {
1467         return compare(this.value, anotherInteger.value);
1468     }
1469 
1470     /**
1471      * Compares two {@code int} values numerically.
1472      * The value returned is identical to what would be returned by:
1473      * <pre>
1474      *    Integer.valueOf(x).compareTo(Integer.valueOf(y))
1475      * </pre>
1476      *
1477      * @param  x the first {@code int} to compare
1478      * @param  y the second {@code int} to compare
1479      * @return the value {@code 0} if {@code x == y};
1480      *         a value less than {@code 0} if {@code x < y}; and
1481      *         a value greater than {@code 0} if {@code x > y}
1482      * @since 1.7
1483      */
1484     public static int compare(int x, int y) {
1485         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1486     }
1487 
1488     /**
1489      * Compares two {@code int} values numerically treating the values
1490      * as unsigned.
1491      *
1492      * @param  x the first {@code int} to compare
1493      * @param  y the second {@code int} to compare
1494      * @return the value {@code 0} if {@code x == y}; a value less
1495      *         than {@code 0} if {@code x < y} as unsigned values; and
1496      *         a value greater than {@code 0} if {@code x > y} as
1497      *         unsigned values
1498      * @since 1.8
1499      */
1500     public static int compareUnsigned(int x, int y) {
1501         return compare(x + MIN_VALUE, y + MIN_VALUE);
1502     }
1503 
1504     /**
1505      * Converts the argument to a {@code long} by an unsigned
1506      * conversion.  In an unsigned conversion to a {@code long}, the
1507      * high-order 32 bits of the {@code long} are zero and the
1508      * low-order 32 bits are equal to the bits of the integer
1509      * argument.
1510      *
1511      * Consequently, zero and positive {@code int} values are mapped
1512      * to a numerically equal {@code long} value and negative {@code
1513      * int} values are mapped to a {@code long} value equal to the
1514      * input plus 2<sup>32</sup>.
1515      *
1516      * @param  x the value to convert to an unsigned {@code long}
1517      * @return the argument converted to {@code long} by an unsigned
1518      *         conversion
1519      * @since 1.8
1520      */
1521     public static long toUnsignedLong(int x) {
1522         return ((long) x) & 0xffffffffL;
1523     }
1524 
1525     /**
1526      * Returns the unsigned quotient of dividing the first argument by
1527      * the second where each argument and the result is interpreted as
1528      * an unsigned value.
1529      *
1530      * <p>Note that in two's complement arithmetic, the three other
1531      * basic arithmetic operations of add, subtract, and multiply are
1532      * bit-wise identical if the two operands are regarded as both
1533      * being signed or both being unsigned.  Therefore separate {@code
1534      * addUnsigned}, etc. methods are not provided.
1535      *
1536      * @param dividend the value to be divided
1537      * @param divisor the value doing the dividing
1538      * @return the unsigned quotient of the first argument divided by
1539      * the second argument
1540      * @see #remainderUnsigned
1541      * @since 1.8
1542      */
1543     public static int divideUnsigned(int dividend, int divisor) {
1544         // In lieu of tricky code, for now just use long arithmetic.
1545         return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor));
1546     }
1547 
1548     /**
1549      * Returns the unsigned remainder from dividing the first argument
1550      * by the second where each argument and the result is interpreted
1551      * as an unsigned value.
1552      *
1553      * @param dividend the value to be divided
1554      * @param divisor the value doing the dividing
1555      * @return the unsigned remainder of the first argument divided by
1556      * the second argument
1557      * @see #divideUnsigned
1558      * @since 1.8
1559      */
1560     public static int remainderUnsigned(int dividend, int divisor) {
1561         // In lieu of tricky code, for now just use long arithmetic.
1562         return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor));
1563     }
1564 
1565 
1566     // Bit twiddling
1567 
1568     /**
1569      * The number of bits used to represent an {@code int} value in two's
1570      * complement binary form.
1571      *
1572      * @since 1.5
1573      */
1574     @Native public static final int SIZE = 32;
1575 
1576     /**
1577      * The number of bytes used to represent an {@code int} value in two's
1578      * complement binary form.
1579      *
1580      * @since 1.8
1581      */
1582     public static final int BYTES = SIZE / Byte.SIZE;
1583 
1584     /**
1585      * Returns an {@code int} value with at most a single one-bit, in the
1586      * position of the highest-order ("leftmost") one-bit in the specified
1587      * {@code int} value.  Returns zero if the specified value has no
1588      * one-bits in its two's complement binary representation, that is, if it
1589      * is equal to zero.
1590      *
1591      * @param i the value whose highest one bit is to be computed
1592      * @return an {@code int} value with a single one-bit, in the position
1593      *     of the highest-order one-bit in the specified value, or zero if
1594      *     the specified value is itself equal to zero.
1595      * @since 1.5
1596      */
1597     public static int highestOneBit(int i) {
1598         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1599     }
1600 
1601     /**
1602      * Returns an {@code int} value with at most a single one-bit, in the
1603      * position of the lowest-order ("rightmost") one-bit in the specified
1604      * {@code int} value.  Returns zero if the specified value has no
1605      * one-bits in its two's complement binary representation, that is, if it
1606      * is equal to zero.
1607      *
1608      * @param i the value whose lowest one bit is to be computed
1609      * @return an {@code int} value with a single one-bit, in the position
1610      *     of the lowest-order one-bit in the specified value, or zero if
1611      *     the specified value is itself equal to zero.
1612      * @since 1.5
1613      */
1614     public static int lowestOneBit(int i) {
1615         // HD, Section 2-1
1616         return i & -i;
1617     }
1618 
1619     /**
1620      * Returns the number of zero bits preceding the highest-order
1621      * ("leftmost") one-bit in the two's complement binary representation
1622      * of the specified {@code int} value.  Returns 32 if the
1623      * specified value has no one-bits in its two's complement representation,
1624      * in other words if it is equal to zero.
1625      *
1626      * <p>Note that this method is closely related to the logarithm base 2.
1627      * For all positive {@code int} values x:
1628      * <ul>
1629      * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}
1630      * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
1631      * </ul>
1632      *
1633      * @param i the value whose number of leading zeros is to be computed
1634      * @return the number of zero bits preceding the highest-order
1635      *     ("leftmost") one-bit in the two's complement binary representation
1636      *     of the specified {@code int} value, or 32 if the value
1637      *     is equal to zero.
1638      * @since 1.5
1639      */
1640     @HotSpotIntrinsicCandidate
1641     public static int numberOfLeadingZeros(int i) {
1642         // HD, Count leading 0's
1643         if (i <= 0)
1644             return i == 0 ? 32 : 0;
1645         int n = 31;
1646         if (i >= 1 << 16) { n -= 16; i >>>= 16; }
1647         if (i >= 1 <<  8) { n -=  8; i >>>=  8; }
1648         if (i >= 1 <<  4) { n -=  4; i >>>=  4; }
1649         if (i >= 1 <<  2) { n -=  2; i >>>=  2; }
1650         return n - (i >>> 1);
1651     }
1652 
1653     /**
1654      * Returns the number of zero bits following the lowest-order ("rightmost")
1655      * one-bit in the two's complement binary representation of the specified
1656      * {@code int} value.  Returns 32 if the specified value has no
1657      * one-bits in its two's complement representation, in other words if it is
1658      * equal to zero.
1659      *
1660      * @param i the value whose number of trailing zeros is to be computed
1661      * @return the number of zero bits following the lowest-order ("rightmost")
1662      *     one-bit in the two's complement binary representation of the
1663      *     specified {@code int} value, or 32 if the value is equal
1664      *     to zero.
1665      * @since 1.5
1666      */
1667     @HotSpotIntrinsicCandidate
numberOfTrailingZeros(int i)1668     public static int numberOfTrailingZeros(int i) {
1669         // HD, Count trailing 0's
1670         i = ~i & (i - 1);
1671         if (i <= 0) return i & 32;
1672         int n = 1;
1673         if (i > 1 << 16) { n += 16; i >>>= 16; }
1674         if (i > 1 <<  8) { n +=  8; i >>>=  8; }
1675         if (i > 1 <<  4) { n +=  4; i >>>=  4; }
1676         if (i > 1 <<  2) { n +=  2; i >>>=  2; }
1677         return n + (i >>> 1);
1678     }
1679 
1680     /**
1681      * Returns the number of one-bits in the two's complement binary
1682      * representation of the specified {@code int} value.  This function is
1683      * sometimes referred to as the <i>population count</i>.
1684      *
1685      * @param i the value whose bits are to be counted
1686      * @return the number of one-bits in the two's complement binary
1687      *     representation of the specified {@code int} value.
1688      * @since 1.5
1689      */
1690     @HotSpotIntrinsicCandidate
bitCount(int i)1691     public static int bitCount(int i) {
1692         // HD, Figure 5-2
1693         i = i - ((i >>> 1) & 0x55555555);
1694         i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
1695         i = (i + (i >>> 4)) & 0x0f0f0f0f;
1696         i = i + (i >>> 8);
1697         i = i + (i >>> 16);
1698         return i & 0x3f;
1699     }
1700 
1701     /**
1702      * Returns the value obtained by rotating the two's complement binary
1703      * representation of the specified {@code int} value left by the
1704      * specified number of bits.  (Bits shifted out of the left hand, or
1705      * high-order, side reenter on the right, or low-order.)
1706      *
1707      * <p>Note that left rotation with a negative distance is equivalent to
1708      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1709      * distance)}.  Note also that rotation by any multiple of 32 is a
1710      * no-op, so all but the last five bits of the rotation distance can be
1711      * ignored, even if the distance is negative: {@code rotateLeft(val,
1712      * distance) == rotateLeft(val, distance & 0x1F)}.
1713      *
1714      * @param i the value whose bits are to be rotated left
1715      * @param distance the number of bit positions to rotate left
1716      * @return the value obtained by rotating the two's complement binary
1717      *     representation of the specified {@code int} value left by the
1718      *     specified number of bits.
1719      * @since 1.5
1720      */
rotateLeft(int i, int distance)1721     public static int rotateLeft(int i, int distance) {
1722         return (i << distance) | (i >>> -distance);
1723     }
1724 
1725     /**
1726      * Returns the value obtained by rotating the two's complement binary
1727      * representation of the specified {@code int} value right by the
1728      * specified number of bits.  (Bits shifted out of the right hand, or
1729      * low-order, side reenter on the left, or high-order.)
1730      *
1731      * <p>Note that right rotation with a negative distance is equivalent to
1732      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1733      * distance)}.  Note also that rotation by any multiple of 32 is a
1734      * no-op, so all but the last five bits of the rotation distance can be
1735      * ignored, even if the distance is negative: {@code rotateRight(val,
1736      * distance) == rotateRight(val, distance & 0x1F)}.
1737      *
1738      * @param i the value whose bits are to be rotated right
1739      * @param distance the number of bit positions to rotate right
1740      * @return the value obtained by rotating the two's complement binary
1741      *     representation of the specified {@code int} value right by the
1742      *     specified number of bits.
1743      * @since 1.5
1744      */
rotateRight(int i, int distance)1745     public static int rotateRight(int i, int distance) {
1746         return (i >>> distance) | (i << -distance);
1747     }
1748 
1749     /**
1750      * Returns the value obtained by reversing the order of the bits in the
1751      * two's complement binary representation of the specified {@code int}
1752      * value.
1753      *
1754      * @param i the value to be reversed
1755      * @return the value obtained by reversing order of the bits in the
1756      *     specified {@code int} value.
1757      * @since 1.5
1758      */
reverse(int i)1759     public static int reverse(int i) {
1760         // HD, Figure 7-1
1761         i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
1762         i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
1763         i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
1764 
1765         return reverseBytes(i);
1766     }
1767 
1768     /**
1769      * Returns the signum function of the specified {@code int} value.  (The
1770      * return value is -1 if the specified value is negative; 0 if the
1771      * specified value is zero; and 1 if the specified value is positive.)
1772      *
1773      * @param i the value whose signum is to be computed
1774      * @return the signum function of the specified {@code int} value.
1775      * @since 1.5
1776      */
signum(int i)1777     public static int signum(int i) {
1778         // HD, Section 2-7
1779         return (i >> 31) | (-i >>> 31);
1780     }
1781 
1782     /**
1783      * Returns the value obtained by reversing the order of the bytes in the
1784      * two's complement representation of the specified {@code int} value.
1785      *
1786      * @param i the value whose bytes are to be reversed
1787      * @return the value obtained by reversing the bytes in the specified
1788      *     {@code int} value.
1789      * @since 1.5
1790      */
1791     @HotSpotIntrinsicCandidate
reverseBytes(int i)1792     public static int reverseBytes(int i) {
1793         return (i << 24)            |
1794                ((i & 0xff00) << 8)  |
1795                ((i >>> 8) & 0xff00) |
1796                (i >>> 24);
1797     }
1798 
1799     /**
1800      * Adds two integers together as per the + operator.
1801      *
1802      * @param a the first operand
1803      * @param b the second operand
1804      * @return the sum of {@code a} and {@code b}
1805      * @see java.util.function.BinaryOperator
1806      * @since 1.8
1807      */
sum(int a, int b)1808     public static int sum(int a, int b) {
1809         return a + b;
1810     }
1811 
1812     /**
1813      * Returns the greater of two {@code int} values
1814      * as if by calling {@link Math#max(int, int) Math.max}.
1815      *
1816      * @param a the first operand
1817      * @param b the second operand
1818      * @return the greater of {@code a} and {@code b}
1819      * @see java.util.function.BinaryOperator
1820      * @since 1.8
1821      */
max(int a, int b)1822     public static int max(int a, int b) {
1823         return Math.max(a, b);
1824     }
1825 
1826     /**
1827      * Returns the smaller of two {@code int} values
1828      * as if by calling {@link Math#min(int, int) Math.min}.
1829      *
1830      * @param a the first operand
1831      * @param b the second operand
1832      * @return the smaller of {@code a} and {@code b}
1833      * @see java.util.function.BinaryOperator
1834      * @since 1.8
1835      */
min(int a, int b)1836     public static int min(int a, int b) {
1837         return Math.min(a, b);
1838     }
1839 
1840     /**
1841      * Returns an {@link Optional} containing the nominal descriptor for this
1842      * instance, which is the instance itself.
1843      *
1844      * @return an {@link Optional} describing the {@linkplain Integer} instance
1845      * @since 12
1846      */
1847     @Override
describeConstable()1848     public Optional<Integer> describeConstable() {
1849         return Optional.of(this);
1850     }
1851 
1852     /**
1853      * Resolves this instance as a {@link ConstantDesc}, the result of which is
1854      * the instance itself.
1855      *
1856      * @param lookup ignored
1857      * @return the {@linkplain Integer} instance
1858      * @since 12
1859      */
1860     @Override
resolveConstantDesc(MethodHandles.Lookup lookup)1861     public Integer resolveConstantDesc(MethodHandles.Lookup lookup) {
1862         return this;
1863     }
1864 
1865     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1866     @Native private static final long serialVersionUID = 1360826667806852920L;
1867 }
1868