1 /*
2 * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/assembler.hpp"
27 #include "assembler_arm.inline.hpp"
28 #include "code/debugInfoRec.hpp"
29 #include "code/icBuffer.hpp"
30 #include "code/vtableStubs.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "logging/log.hpp"
33 #include "memory/resourceArea.hpp"
34 #include "oops/compiledICHolder.hpp"
35 #include "runtime/sharedRuntime.hpp"
36 #include "runtime/vframeArray.hpp"
37 #include "utilities/align.hpp"
38 #include "vmreg_arm.inline.hpp"
39 #ifdef COMPILER1
40 #include "c1/c1_Runtime1.hpp"
41 #include "runtime/safepoint.hpp"
42 #endif
43 #ifdef COMPILER2
44 #include "opto/runtime.hpp"
45 #endif
46
47 #define __ masm->
48
49 class RegisterSaver {
50 public:
51
52 // Special registers:
53 // 32-bit ARM 64-bit ARM
54 // Rthread: R10 R28
55 // LR: R14 R30
56
57 // Rthread is callee saved in the C ABI and never changed by compiled code:
58 // no need to save it.
59
60 // 2 slots for LR: the one at LR_offset and an other one at R14/R30_offset.
61 // The one at LR_offset is a return address that is needed by stack walking.
62 // A c2 method uses LR as a standard register so it may be live when we
63 // branch to the runtime. The slot at R14/R30_offset is for the value of LR
64 // in case it's live in the method we are coming from.
65
66
67 enum RegisterLayout {
68 fpu_save_size = FloatRegisterImpl::number_of_registers,
69 #ifndef __SOFTFP__
70 D0_offset = 0,
71 #endif
72 R0_offset = fpu_save_size,
73 R1_offset,
74 R2_offset,
75 R3_offset,
76 R4_offset,
77 R5_offset,
78 R6_offset,
79 #if (FP_REG_NUM != 7)
80 // if not saved as FP
81 R7_offset,
82 #endif
83 R8_offset,
84 R9_offset,
85 #if (FP_REG_NUM != 11)
86 // if not saved as FP
87 R11_offset,
88 #endif
89 R12_offset,
90 R14_offset,
91 FP_offset,
92 LR_offset,
93 reg_save_size,
94
95 Rmethod_offset = R9_offset,
96 Rtemp_offset = R12_offset,
97 };
98
99 // all regs but Rthread (R10), FP (R7 or R11), SP and PC
100 // (altFP_7_11 is the one amoung R7 and R11 which is not FP)
101 #define SAVED_BASE_REGS (RegisterSet(R0, R6) | RegisterSet(R8, R9) | RegisterSet(R12) | R14 | altFP_7_11)
102
103
104 // When LR may be live in the nmethod from which we are comming
105 // then lr_saved is true, the return address is saved before the
106 // call to save_live_register by the caller and LR contains the
107 // live value.
108
109 static OopMap* save_live_registers(MacroAssembler* masm,
110 int* total_frame_words,
111 bool lr_saved = false);
112 static void restore_live_registers(MacroAssembler* masm, bool restore_lr = true);
113
114 };
115
116
117
118
save_live_registers(MacroAssembler * masm,int * total_frame_words,bool lr_saved)119 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm,
120 int* total_frame_words,
121 bool lr_saved) {
122 *total_frame_words = reg_save_size;
123
124 OopMapSet *oop_maps = new OopMapSet();
125 OopMap* map = new OopMap(VMRegImpl::slots_per_word * (*total_frame_words), 0);
126
127 if (lr_saved) {
128 __ push(RegisterSet(FP));
129 } else {
130 __ push(RegisterSet(FP) | RegisterSet(LR));
131 }
132 __ push(SAVED_BASE_REGS);
133 if (HaveVFP) {
134 if (VM_Version::has_vfp3_32()) {
135 __ fpush(FloatRegisterSet(D16, 16));
136 } else {
137 if (FloatRegisterImpl::number_of_registers > 32) {
138 assert(FloatRegisterImpl::number_of_registers == 64, "nb fp registers should be 64");
139 __ sub(SP, SP, 32 * wordSize);
140 }
141 }
142 __ fpush(FloatRegisterSet(D0, 16));
143 } else {
144 __ sub(SP, SP, fpu_save_size * wordSize);
145 }
146
147 int i;
148 int j=0;
149 for (i = R0_offset; i <= R9_offset; i++) {
150 if (j == FP_REG_NUM) {
151 // skip the FP register, managed below.
152 j++;
153 }
154 map->set_callee_saved(VMRegImpl::stack2reg(i), as_Register(j)->as_VMReg());
155 j++;
156 }
157 assert(j == R10->encoding(), "must be");
158 #if (FP_REG_NUM != 11)
159 // add R11, if not managed as FP
160 map->set_callee_saved(VMRegImpl::stack2reg(R11_offset), R11->as_VMReg());
161 #endif
162 map->set_callee_saved(VMRegImpl::stack2reg(R12_offset), R12->as_VMReg());
163 map->set_callee_saved(VMRegImpl::stack2reg(R14_offset), R14->as_VMReg());
164 if (HaveVFP) {
165 for (i = 0; i < (VM_Version::has_vfp3_32() ? 64 : 32); i+=2) {
166 map->set_callee_saved(VMRegImpl::stack2reg(i), as_FloatRegister(i)->as_VMReg());
167 map->set_callee_saved(VMRegImpl::stack2reg(i + 1), as_FloatRegister(i)->as_VMReg()->next());
168 }
169 }
170
171 return map;
172 }
173
restore_live_registers(MacroAssembler * masm,bool restore_lr)174 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_lr) {
175 if (HaveVFP) {
176 __ fpop(FloatRegisterSet(D0, 16));
177 if (VM_Version::has_vfp3_32()) {
178 __ fpop(FloatRegisterSet(D16, 16));
179 } else {
180 if (FloatRegisterImpl::number_of_registers > 32) {
181 assert(FloatRegisterImpl::number_of_registers == 64, "nb fp registers should be 64");
182 __ add(SP, SP, 32 * wordSize);
183 }
184 }
185 } else {
186 __ add(SP, SP, fpu_save_size * wordSize);
187 }
188 __ pop(SAVED_BASE_REGS);
189 if (restore_lr) {
190 __ pop(RegisterSet(FP) | RegisterSet(LR));
191 } else {
192 __ pop(RegisterSet(FP));
193 }
194 }
195
196
push_result_registers(MacroAssembler * masm,BasicType ret_type)197 static void push_result_registers(MacroAssembler* masm, BasicType ret_type) {
198 #ifdef __ABI_HARD__
199 if (ret_type == T_DOUBLE || ret_type == T_FLOAT) {
200 __ sub(SP, SP, 8);
201 __ fstd(D0, Address(SP));
202 return;
203 }
204 #endif // __ABI_HARD__
205 __ raw_push(R0, R1);
206 }
207
pop_result_registers(MacroAssembler * masm,BasicType ret_type)208 static void pop_result_registers(MacroAssembler* masm, BasicType ret_type) {
209 #ifdef __ABI_HARD__
210 if (ret_type == T_DOUBLE || ret_type == T_FLOAT) {
211 __ fldd(D0, Address(SP));
212 __ add(SP, SP, 8);
213 return;
214 }
215 #endif // __ABI_HARD__
216 __ raw_pop(R0, R1);
217 }
218
push_param_registers(MacroAssembler * masm,int fp_regs_in_arguments)219 static void push_param_registers(MacroAssembler* masm, int fp_regs_in_arguments) {
220 // R1-R3 arguments need to be saved, but we push 4 registers for 8-byte alignment
221 __ push(RegisterSet(R0, R3));
222
223 // preserve arguments
224 // Likely not needed as the locking code won't probably modify volatile FP registers,
225 // but there is no way to guarantee that
226 if (fp_regs_in_arguments) {
227 // convert fp_regs_in_arguments to a number of double registers
228 int double_regs_num = (fp_regs_in_arguments + 1) >> 1;
229 __ fpush_hardfp(FloatRegisterSet(D0, double_regs_num));
230 }
231 }
232
pop_param_registers(MacroAssembler * masm,int fp_regs_in_arguments)233 static void pop_param_registers(MacroAssembler* masm, int fp_regs_in_arguments) {
234 if (fp_regs_in_arguments) {
235 int double_regs_num = (fp_regs_in_arguments + 1) >> 1;
236 __ fpop_hardfp(FloatRegisterSet(D0, double_regs_num));
237 }
238 __ pop(RegisterSet(R0, R3));
239 }
240
241
242
243 // Is vector's size (in bytes) bigger than a size saved by default?
244 // All vector registers are saved by default on ARM.
is_wide_vector(int size)245 bool SharedRuntime::is_wide_vector(int size) {
246 return false;
247 }
248
trampoline_size()249 size_t SharedRuntime::trampoline_size() {
250 return 16;
251 }
252
generate_trampoline(MacroAssembler * masm,address destination)253 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
254 InlinedAddress dest(destination);
255 __ indirect_jump(dest, Rtemp);
256 __ bind_literal(dest);
257 }
258
c_calling_convention(const BasicType * sig_bt,VMRegPair * regs,VMRegPair * regs2,int total_args_passed)259 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
260 VMRegPair *regs,
261 VMRegPair *regs2,
262 int total_args_passed) {
263 assert(regs2 == NULL, "not needed on arm");
264
265 int slot = 0;
266 int ireg = 0;
267 #ifdef __ABI_HARD__
268 int fp_slot = 0;
269 int single_fpr_slot = 0;
270 #endif // __ABI_HARD__
271 for (int i = 0; i < total_args_passed; i++) {
272 switch (sig_bt[i]) {
273 case T_SHORT:
274 case T_CHAR:
275 case T_BYTE:
276 case T_BOOLEAN:
277 case T_INT:
278 case T_ARRAY:
279 case T_OBJECT:
280 case T_ADDRESS:
281 case T_METADATA:
282 #ifndef __ABI_HARD__
283 case T_FLOAT:
284 #endif // !__ABI_HARD__
285 if (ireg < 4) {
286 Register r = as_Register(ireg);
287 regs[i].set1(r->as_VMReg());
288 ireg++;
289 } else {
290 regs[i].set1(VMRegImpl::stack2reg(slot));
291 slot++;
292 }
293 break;
294 case T_LONG:
295 #ifndef __ABI_HARD__
296 case T_DOUBLE:
297 #endif // !__ABI_HARD__
298 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
299 if (ireg <= 2) {
300 #if (ALIGN_WIDE_ARGUMENTS == 1)
301 if(ireg & 1) ireg++; // Aligned location required
302 #endif
303 Register r1 = as_Register(ireg);
304 Register r2 = as_Register(ireg + 1);
305 regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
306 ireg += 2;
307 #if (ALIGN_WIDE_ARGUMENTS == 0)
308 } else if (ireg == 3) {
309 // uses R3 + one stack slot
310 Register r = as_Register(ireg);
311 regs[i].set_pair(VMRegImpl::stack2reg(slot), r->as_VMReg());
312 ireg += 1;
313 slot += 1;
314 #endif
315 } else {
316 if (slot & 1) slot++; // Aligned location required
317 regs[i].set_pair(VMRegImpl::stack2reg(slot+1), VMRegImpl::stack2reg(slot));
318 slot += 2;
319 ireg = 4;
320 }
321 break;
322 case T_VOID:
323 regs[i].set_bad();
324 break;
325 #ifdef __ABI_HARD__
326 case T_FLOAT:
327 if ((fp_slot < 16)||(single_fpr_slot & 1)) {
328 if ((single_fpr_slot & 1) == 0) {
329 single_fpr_slot = fp_slot;
330 fp_slot += 2;
331 }
332 FloatRegister r = as_FloatRegister(single_fpr_slot);
333 single_fpr_slot++;
334 regs[i].set1(r->as_VMReg());
335 } else {
336 regs[i].set1(VMRegImpl::stack2reg(slot));
337 slot++;
338 }
339 break;
340 case T_DOUBLE:
341 assert(ALIGN_WIDE_ARGUMENTS == 1, "ABI_HARD not supported with unaligned wide arguments");
342 if (fp_slot <= 14) {
343 FloatRegister r1 = as_FloatRegister(fp_slot);
344 FloatRegister r2 = as_FloatRegister(fp_slot+1);
345 regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
346 fp_slot += 2;
347 } else {
348 if(slot & 1) slot++;
349 regs[i].set_pair(VMRegImpl::stack2reg(slot+1), VMRegImpl::stack2reg(slot));
350 slot += 2;
351 single_fpr_slot = 16;
352 }
353 break;
354 #endif // __ABI_HARD__
355 default:
356 ShouldNotReachHere();
357 }
358 }
359 return slot;
360 }
361
java_calling_convention(const BasicType * sig_bt,VMRegPair * regs,int total_args_passed,int is_outgoing)362 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
363 VMRegPair *regs,
364 int total_args_passed,
365 int is_outgoing) {
366 #ifdef __SOFTFP__
367 // soft float is the same as the C calling convention.
368 return c_calling_convention(sig_bt, regs, NULL, total_args_passed);
369 #endif // __SOFTFP__
370 (void) is_outgoing;
371 int slot = 0;
372 int ireg = 0;
373 int freg = 0;
374 int single_fpr = 0;
375
376 for (int i = 0; i < total_args_passed; i++) {
377 switch (sig_bt[i]) {
378 case T_SHORT:
379 case T_CHAR:
380 case T_BYTE:
381 case T_BOOLEAN:
382 case T_INT:
383 case T_ARRAY:
384 case T_OBJECT:
385 case T_ADDRESS:
386 if (ireg < 4) {
387 Register r = as_Register(ireg++);
388 regs[i].set1(r->as_VMReg());
389 } else {
390 regs[i].set1(VMRegImpl::stack2reg(slot++));
391 }
392 break;
393 case T_FLOAT:
394 // C2 utilizes S14/S15 for mem-mem moves
395 if ((freg < 16 COMPILER2_PRESENT(-2)) || (single_fpr & 1)) {
396 if ((single_fpr & 1) == 0) {
397 single_fpr = freg;
398 freg += 2;
399 }
400 FloatRegister r = as_FloatRegister(single_fpr++);
401 regs[i].set1(r->as_VMReg());
402 } else {
403 regs[i].set1(VMRegImpl::stack2reg(slot++));
404 }
405 break;
406 case T_DOUBLE:
407 // C2 utilizes S14/S15 for mem-mem moves
408 if (freg <= 14 COMPILER2_PRESENT(-2)) {
409 FloatRegister r1 = as_FloatRegister(freg);
410 FloatRegister r2 = as_FloatRegister(freg + 1);
411 regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
412 freg += 2;
413 } else {
414 // Keep internally the aligned calling convention,
415 // ignoring ALIGN_WIDE_ARGUMENTS
416 if (slot & 1) slot++;
417 regs[i].set_pair(VMRegImpl::stack2reg(slot + 1), VMRegImpl::stack2reg(slot));
418 slot += 2;
419 single_fpr = 16;
420 }
421 break;
422 case T_LONG:
423 // Keep internally the aligned calling convention,
424 // ignoring ALIGN_WIDE_ARGUMENTS
425 if (ireg <= 2) {
426 if (ireg & 1) ireg++;
427 Register r1 = as_Register(ireg);
428 Register r2 = as_Register(ireg + 1);
429 regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
430 ireg += 2;
431 } else {
432 if (slot & 1) slot++;
433 regs[i].set_pair(VMRegImpl::stack2reg(slot + 1), VMRegImpl::stack2reg(slot));
434 slot += 2;
435 ireg = 4;
436 }
437 break;
438 case T_VOID:
439 regs[i].set_bad();
440 break;
441 default:
442 ShouldNotReachHere();
443 }
444 }
445
446 if (slot & 1) slot++;
447 return slot;
448 }
449
patch_callers_callsite(MacroAssembler * masm)450 static void patch_callers_callsite(MacroAssembler *masm) {
451 Label skip;
452
453 __ ldr(Rtemp, Address(Rmethod, Method::code_offset()));
454 __ cbz(Rtemp, skip);
455
456 // Pushing an even number of registers for stack alignment.
457 // Selecting R9, which had to be saved anyway for some platforms.
458 __ push(RegisterSet(R0, R3) | R9 | LR);
459 __ fpush_hardfp(FloatRegisterSet(D0, 8));
460
461 __ mov(R0, Rmethod);
462 __ mov(R1, LR);
463 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
464
465 __ fpop_hardfp(FloatRegisterSet(D0, 8));
466 __ pop(RegisterSet(R0, R3) | R9 | LR);
467
468 __ bind(skip);
469 }
470
gen_i2c_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs)471 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
472 int total_args_passed, int comp_args_on_stack,
473 const BasicType *sig_bt, const VMRegPair *regs) {
474 // TODO: ARM - May be can use ldm to load arguments
475 const Register tmp = Rtemp; // avoid erasing R5_mh
476
477 // Next assert may not be needed but safer. Extra analysis required
478 // if this there is not enough free registers and we need to use R5 here.
479 assert_different_registers(tmp, R5_mh);
480
481 // 6243940 We might end up in handle_wrong_method if
482 // the callee is deoptimized as we race thru here. If that
483 // happens we don't want to take a safepoint because the
484 // caller frame will look interpreted and arguments are now
485 // "compiled" so it is much better to make this transition
486 // invisible to the stack walking code. Unfortunately if
487 // we try and find the callee by normal means a safepoint
488 // is possible. So we stash the desired callee in the thread
489 // and the vm will find there should this case occur.
490 Address callee_target_addr(Rthread, JavaThread::callee_target_offset());
491 __ str(Rmethod, callee_target_addr);
492
493
494 assert_different_registers(tmp, R0, R1, R2, R3, Rsender_sp, Rmethod);
495
496 const Register initial_sp = Rmethod; // temporarily scratched
497
498 // Old code was modifying R4 but this looks unsafe (particularly with JSR292)
499 assert_different_registers(tmp, R0, R1, R2, R3, Rsender_sp, initial_sp);
500
501 __ mov(initial_sp, SP);
502
503 if (comp_args_on_stack) {
504 __ sub_slow(SP, SP, comp_args_on_stack * VMRegImpl::stack_slot_size);
505 }
506 __ bic(SP, SP, StackAlignmentInBytes - 1);
507
508 for (int i = 0; i < total_args_passed; i++) {
509 if (sig_bt[i] == T_VOID) {
510 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
511 continue;
512 }
513 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "must be ordered");
514 int arg_offset = Interpreter::expr_offset_in_bytes(total_args_passed - 1 - i);
515
516 VMReg r_1 = regs[i].first();
517 VMReg r_2 = regs[i].second();
518 if (r_1->is_stack()) {
519 int stack_offset = r_1->reg2stack() * VMRegImpl::stack_slot_size;
520 if (!r_2->is_valid()) {
521 __ ldr(tmp, Address(initial_sp, arg_offset));
522 __ str(tmp, Address(SP, stack_offset));
523 } else {
524 __ ldr(tmp, Address(initial_sp, arg_offset - Interpreter::stackElementSize));
525 __ str(tmp, Address(SP, stack_offset));
526 __ ldr(tmp, Address(initial_sp, arg_offset));
527 __ str(tmp, Address(SP, stack_offset + wordSize));
528 }
529 } else if (r_1->is_Register()) {
530 if (!r_2->is_valid()) {
531 __ ldr(r_1->as_Register(), Address(initial_sp, arg_offset));
532 } else {
533 __ ldr(r_1->as_Register(), Address(initial_sp, arg_offset - Interpreter::stackElementSize));
534 __ ldr(r_2->as_Register(), Address(initial_sp, arg_offset));
535 }
536 } else if (r_1->is_FloatRegister()) {
537 #ifdef __SOFTFP__
538 ShouldNotReachHere();
539 #endif // __SOFTFP__
540 if (!r_2->is_valid()) {
541 __ flds(r_1->as_FloatRegister(), Address(initial_sp, arg_offset));
542 } else {
543 __ fldd(r_1->as_FloatRegister(), Address(initial_sp, arg_offset - Interpreter::stackElementSize));
544 }
545 } else {
546 assert(!r_1->is_valid() && !r_2->is_valid(), "must be");
547 }
548 }
549
550 // restore Rmethod (scratched for initial_sp)
551 __ ldr(Rmethod, callee_target_addr);
552 __ ldr(PC, Address(Rmethod, Method::from_compiled_offset()));
553
554 }
555
gen_c2i_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,Label & skip_fixup)556 static void gen_c2i_adapter(MacroAssembler *masm,
557 int total_args_passed, int comp_args_on_stack,
558 const BasicType *sig_bt, const VMRegPair *regs,
559 Label& skip_fixup) {
560 // TODO: ARM - May be can use stm to deoptimize arguments
561 const Register tmp = Rtemp;
562
563 patch_callers_callsite(masm);
564 __ bind(skip_fixup);
565
566 __ mov(Rsender_sp, SP); // not yet saved
567
568
569 int extraspace = total_args_passed * Interpreter::stackElementSize;
570 if (extraspace) {
571 __ sub_slow(SP, SP, extraspace);
572 }
573
574 for (int i = 0; i < total_args_passed; i++) {
575 if (sig_bt[i] == T_VOID) {
576 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
577 continue;
578 }
579 int stack_offset = (total_args_passed - 1 - i) * Interpreter::stackElementSize;
580
581 VMReg r_1 = regs[i].first();
582 VMReg r_2 = regs[i].second();
583 if (r_1->is_stack()) {
584 int arg_offset = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
585 if (!r_2->is_valid()) {
586 __ ldr(tmp, Address(SP, arg_offset));
587 __ str(tmp, Address(SP, stack_offset));
588 } else {
589 __ ldr(tmp, Address(SP, arg_offset));
590 __ str(tmp, Address(SP, stack_offset - Interpreter::stackElementSize));
591 __ ldr(tmp, Address(SP, arg_offset + wordSize));
592 __ str(tmp, Address(SP, stack_offset));
593 }
594 } else if (r_1->is_Register()) {
595 if (!r_2->is_valid()) {
596 __ str(r_1->as_Register(), Address(SP, stack_offset));
597 } else {
598 __ str(r_1->as_Register(), Address(SP, stack_offset - Interpreter::stackElementSize));
599 __ str(r_2->as_Register(), Address(SP, stack_offset));
600 }
601 } else if (r_1->is_FloatRegister()) {
602 #ifdef __SOFTFP__
603 ShouldNotReachHere();
604 #endif // __SOFTFP__
605 if (!r_2->is_valid()) {
606 __ fsts(r_1->as_FloatRegister(), Address(SP, stack_offset));
607 } else {
608 __ fstd(r_1->as_FloatRegister(), Address(SP, stack_offset - Interpreter::stackElementSize));
609 }
610 } else {
611 assert(!r_1->is_valid() && !r_2->is_valid(), "must be");
612 }
613 }
614
615 __ ldr(PC, Address(Rmethod, Method::interpreter_entry_offset()));
616
617 }
618
generate_i2c2i_adapters(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,AdapterFingerPrint * fingerprint)619 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
620 int total_args_passed,
621 int comp_args_on_stack,
622 const BasicType *sig_bt,
623 const VMRegPair *regs,
624 AdapterFingerPrint* fingerprint) {
625 address i2c_entry = __ pc();
626 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
627
628 address c2i_unverified_entry = __ pc();
629 Label skip_fixup;
630 const Register receiver = R0;
631 const Register holder_klass = Rtemp; // XXX should be OK for C2 but not 100% sure
632 const Register receiver_klass = R4;
633
634 __ load_klass(receiver_klass, receiver);
635 __ ldr(holder_klass, Address(Ricklass, CompiledICHolder::holder_klass_offset()));
636 __ ldr(Rmethod, Address(Ricklass, CompiledICHolder::holder_metadata_offset()));
637 __ cmp(receiver_klass, holder_klass);
638
639 __ ldr(Rtemp, Address(Rmethod, Method::code_offset()), eq);
640 __ cmp(Rtemp, 0, eq);
641 __ b(skip_fixup, eq);
642 __ jump(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type, noreg, ne);
643
644 address c2i_entry = __ pc();
645 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
646
647 __ flush();
648 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
649 }
650
651
reg2offset_in(VMReg r)652 static int reg2offset_in(VMReg r) {
653 // Account for saved FP and LR
654 return r->reg2stack() * VMRegImpl::stack_slot_size + 2*wordSize;
655 }
656
reg2offset_out(VMReg r)657 static int reg2offset_out(VMReg r) {
658 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
659 }
660
661
verify_oop_args(MacroAssembler * masm,const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)662 static void verify_oop_args(MacroAssembler* masm,
663 const methodHandle& method,
664 const BasicType* sig_bt,
665 const VMRegPair* regs) {
666 Register temp_reg = Rmethod; // not part of any compiled calling seq
667 if (VerifyOops) {
668 for (int i = 0; i < method->size_of_parameters(); i++) {
669 if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
670 VMReg r = regs[i].first();
671 assert(r->is_valid(), "bad oop arg");
672 if (r->is_stack()) {
673 __ ldr(temp_reg, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
674 __ verify_oop(temp_reg);
675 } else {
676 __ verify_oop(r->as_Register());
677 }
678 }
679 }
680 }
681 }
682
gen_special_dispatch(MacroAssembler * masm,const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)683 static void gen_special_dispatch(MacroAssembler* masm,
684 const methodHandle& method,
685 const BasicType* sig_bt,
686 const VMRegPair* regs) {
687 verify_oop_args(masm, method, sig_bt, regs);
688 vmIntrinsics::ID iid = method->intrinsic_id();
689
690 // Now write the args into the outgoing interpreter space
691 bool has_receiver = false;
692 Register receiver_reg = noreg;
693 int member_arg_pos = -1;
694 Register member_reg = noreg;
695 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
696 if (ref_kind != 0) {
697 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
698 member_reg = Rmethod; // known to be free at this point
699 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
700 } else if (iid == vmIntrinsics::_invokeBasic) {
701 has_receiver = true;
702 } else {
703 fatal("unexpected intrinsic id %d", iid);
704 }
705
706 if (member_reg != noreg) {
707 // Load the member_arg into register, if necessary.
708 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
709 VMReg r = regs[member_arg_pos].first();
710 if (r->is_stack()) {
711 __ ldr(member_reg, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
712 } else {
713 // no data motion is needed
714 member_reg = r->as_Register();
715 }
716 }
717
718 if (has_receiver) {
719 // Make sure the receiver is loaded into a register.
720 assert(method->size_of_parameters() > 0, "oob");
721 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
722 VMReg r = regs[0].first();
723 assert(r->is_valid(), "bad receiver arg");
724 if (r->is_stack()) {
725 // Porting note: This assumes that compiled calling conventions always
726 // pass the receiver oop in a register. If this is not true on some
727 // platform, pick a temp and load the receiver from stack.
728 assert(false, "receiver always in a register");
729 receiver_reg = j_rarg0; // known to be free at this point
730 __ ldr(receiver_reg, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
731 } else {
732 // no data motion is needed
733 receiver_reg = r->as_Register();
734 }
735 }
736
737 // Figure out which address we are really jumping to:
738 MethodHandles::generate_method_handle_dispatch(masm, iid,
739 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
740 }
741
742 // ---------------------------------------------------------------------------
743 // Generate a native wrapper for a given method. The method takes arguments
744 // in the Java compiled code convention, marshals them to the native
745 // convention (handlizes oops, etc), transitions to native, makes the call,
746 // returns to java state (possibly blocking), unhandlizes any result and
747 // returns.
generate_native_wrapper(MacroAssembler * masm,const methodHandle & method,int compile_id,BasicType * in_sig_bt,VMRegPair * in_regs,BasicType ret_type,address critical_entry)748 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
749 const methodHandle& method,
750 int compile_id,
751 BasicType* in_sig_bt,
752 VMRegPair* in_regs,
753 BasicType ret_type,
754 address critical_entry) {
755 if (method->is_method_handle_intrinsic()) {
756 vmIntrinsics::ID iid = method->intrinsic_id();
757 intptr_t start = (intptr_t)__ pc();
758 int vep_offset = ((intptr_t)__ pc()) - start;
759 gen_special_dispatch(masm,
760 method,
761 in_sig_bt,
762 in_regs);
763 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
764 __ flush();
765 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
766 return nmethod::new_native_nmethod(method,
767 compile_id,
768 masm->code(),
769 vep_offset,
770 frame_complete,
771 stack_slots / VMRegImpl::slots_per_word,
772 in_ByteSize(-1),
773 in_ByteSize(-1),
774 (OopMapSet*)NULL);
775 }
776 // Arguments for JNI method include JNIEnv and Class if static
777
778 // Usage of Rtemp should be OK since scratched by native call
779
780 bool is_static = method->is_static();
781
782 const int total_in_args = method->size_of_parameters();
783 int total_c_args = total_in_args + 1;
784 if (is_static) {
785 total_c_args++;
786 }
787
788 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
789 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
790
791 int argc = 0;
792 out_sig_bt[argc++] = T_ADDRESS;
793 if (is_static) {
794 out_sig_bt[argc++] = T_OBJECT;
795 }
796
797 int i;
798 for (i = 0; i < total_in_args; i++) {
799 out_sig_bt[argc++] = in_sig_bt[i];
800 }
801
802 int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
803 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
804 // Since object arguments need to be wrapped, we must preserve space
805 // for those object arguments which come in registers (GPR_PARAMS maximum)
806 // plus one more slot for Klass handle (for static methods)
807 int oop_handle_offset = stack_slots;
808 stack_slots += (GPR_PARAMS + 1) * VMRegImpl::slots_per_word;
809
810 // Plus a lock if needed
811 int lock_slot_offset = 0;
812 if (method->is_synchronized()) {
813 lock_slot_offset = stack_slots;
814 assert(sizeof(BasicLock) == wordSize, "adjust this code");
815 stack_slots += VMRegImpl::slots_per_word;
816 }
817
818 // Space to save return address and FP
819 stack_slots += 2 * VMRegImpl::slots_per_word;
820
821 // Calculate the final stack size taking account of alignment
822 stack_slots = align_up(stack_slots, StackAlignmentInBytes / VMRegImpl::stack_slot_size);
823 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
824 int lock_slot_fp_offset = stack_size - 2 * wordSize -
825 lock_slot_offset * VMRegImpl::stack_slot_size;
826
827 // Unverified entry point
828 address start = __ pc();
829
830 // Inline cache check, same as in C1_MacroAssembler::inline_cache_check()
831 const Register receiver = R0; // see receiverOpr()
832 __ load_klass(Rtemp, receiver);
833 __ cmp(Rtemp, Ricklass);
834 Label verified;
835
836 __ b(verified, eq); // jump over alignment no-ops too
837 __ jump(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type, Rtemp);
838 __ align(CodeEntryAlignment);
839
840 // Verified entry point
841 __ bind(verified);
842 int vep_offset = __ pc() - start;
843
844
845 if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
846 // Object.hashCode, System.identityHashCode can pull the hashCode from the header word
847 // instead of doing a full VM transition once it's been computed.
848 Label slow_case;
849 const Register obj_reg = R0;
850
851 // Unlike for Object.hashCode, System.identityHashCode is static method and
852 // gets object as argument instead of the receiver.
853 if (method->intrinsic_id() == vmIntrinsics::_identityHashCode) {
854 assert(method->is_static(), "method should be static");
855 // return 0 for null reference input, return val = R0 = obj_reg = 0
856 __ cmp(obj_reg, 0);
857 __ bx(LR, eq);
858 }
859
860 __ ldr(Rtemp, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
861
862 assert(markOopDesc::unlocked_value == 1, "adjust this code");
863 __ tbz(Rtemp, exact_log2(markOopDesc::unlocked_value), slow_case);
864
865 if (UseBiasedLocking) {
866 assert(is_power_of_2(markOopDesc::biased_lock_bit_in_place), "adjust this code");
867 __ tbnz(Rtemp, exact_log2(markOopDesc::biased_lock_bit_in_place), slow_case);
868 }
869
870 __ bics(Rtemp, Rtemp, ~markOopDesc::hash_mask_in_place);
871 __ mov(R0, AsmOperand(Rtemp, lsr, markOopDesc::hash_shift), ne);
872 __ bx(LR, ne);
873
874 __ bind(slow_case);
875 }
876
877 // Bang stack pages
878 __ arm_stack_overflow_check(stack_size, Rtemp);
879
880 // Setup frame linkage
881 __ raw_push(FP, LR);
882 __ mov(FP, SP);
883 __ sub_slow(SP, SP, stack_size - 2*wordSize);
884
885 int frame_complete = __ pc() - start;
886
887 OopMapSet* oop_maps = new OopMapSet();
888 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
889 const int extra_args = is_static ? 2 : 1;
890 int receiver_offset = -1;
891 int fp_regs_in_arguments = 0;
892
893 for (i = total_in_args; --i >= 0; ) {
894 switch (in_sig_bt[i]) {
895 case T_ARRAY:
896 case T_OBJECT: {
897 VMReg src = in_regs[i].first();
898 VMReg dst = out_regs[i + extra_args].first();
899 if (src->is_stack()) {
900 assert(dst->is_stack(), "must be");
901 assert(i != 0, "Incoming receiver is always in a register");
902 __ ldr(Rtemp, Address(FP, reg2offset_in(src)));
903 __ cmp(Rtemp, 0);
904 __ add(Rtemp, FP, reg2offset_in(src), ne);
905 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
906 int offset_in_older_frame = src->reg2stack() + SharedRuntime::out_preserve_stack_slots();
907 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
908 } else {
909 int offset = oop_handle_offset * VMRegImpl::stack_slot_size;
910 __ str(src->as_Register(), Address(SP, offset));
911 map->set_oop(VMRegImpl::stack2reg(oop_handle_offset));
912 if ((i == 0) && (!is_static)) {
913 receiver_offset = offset;
914 }
915 oop_handle_offset += VMRegImpl::slots_per_word;
916
917 if (dst->is_stack()) {
918 __ movs(Rtemp, src->as_Register());
919 __ add(Rtemp, SP, offset, ne);
920 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
921 } else {
922 __ movs(dst->as_Register(), src->as_Register());
923 __ add(dst->as_Register(), SP, offset, ne);
924 }
925 }
926 }
927
928 case T_VOID:
929 break;
930
931
932 #ifdef __SOFTFP__
933 case T_DOUBLE:
934 #endif
935 case T_LONG: {
936 VMReg src_1 = in_regs[i].first();
937 VMReg src_2 = in_regs[i].second();
938 VMReg dst_1 = out_regs[i + extra_args].first();
939 VMReg dst_2 = out_regs[i + extra_args].second();
940 #if (ALIGN_WIDE_ARGUMENTS == 0)
941 // C convention can mix a register and a stack slot for a
942 // 64-bits native argument.
943
944 // Note: following code should work independently of whether
945 // the Java calling convention follows C convention or whether
946 // it aligns 64-bit values.
947 if (dst_2->is_Register()) {
948 if (src_1->as_Register() != dst_1->as_Register()) {
949 assert(src_1->as_Register() != dst_2->as_Register() &&
950 src_2->as_Register() != dst_2->as_Register(), "must be");
951 __ mov(dst_2->as_Register(), src_2->as_Register());
952 __ mov(dst_1->as_Register(), src_1->as_Register());
953 } else {
954 assert(src_2->as_Register() == dst_2->as_Register(), "must be");
955 }
956 } else if (src_2->is_Register()) {
957 if (dst_1->is_Register()) {
958 // dst mixes a register and a stack slot
959 assert(dst_2->is_stack() && src_1->is_Register() && src_2->is_Register(), "must be");
960 assert(src_1->as_Register() != dst_1->as_Register(), "must be");
961 __ str(src_2->as_Register(), Address(SP, reg2offset_out(dst_2)));
962 __ mov(dst_1->as_Register(), src_1->as_Register());
963 } else {
964 // registers to stack slots
965 assert(dst_2->is_stack() && src_1->is_Register() && src_2->is_Register(), "must be");
966 __ str(src_1->as_Register(), Address(SP, reg2offset_out(dst_1)));
967 __ str(src_2->as_Register(), Address(SP, reg2offset_out(dst_2)));
968 }
969 } else if (src_1->is_Register()) {
970 if (dst_1->is_Register()) {
971 // src and dst must be R3 + stack slot
972 assert(dst_1->as_Register() == src_1->as_Register(), "must be");
973 __ ldr(Rtemp, Address(FP, reg2offset_in(src_2)));
974 __ str(Rtemp, Address(SP, reg2offset_out(dst_2)));
975 } else {
976 // <R3,stack> -> <stack,stack>
977 assert(dst_2->is_stack() && src_2->is_stack(), "must be");
978 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
979 __ str(src_1->as_Register(), Address(SP, reg2offset_out(dst_1)));
980 __ str(LR, Address(SP, reg2offset_out(dst_2)));
981 }
982 } else {
983 assert(src_2->is_stack() && dst_1->is_stack() && dst_2->is_stack(), "must be");
984 __ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
985 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
986 __ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
987 __ str(LR, Address(SP, reg2offset_out(dst_2)));
988 }
989 #else // ALIGN_WIDE_ARGUMENTS
990 if (src_1->is_stack()) {
991 assert(src_2->is_stack() && dst_1->is_stack() && dst_2->is_stack(), "must be");
992 __ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
993 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
994 __ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
995 __ str(LR, Address(SP, reg2offset_out(dst_2)));
996 } else if (dst_1->is_stack()) {
997 assert(dst_2->is_stack() && src_1->is_Register() && src_2->is_Register(), "must be");
998 __ str(src_1->as_Register(), Address(SP, reg2offset_out(dst_1)));
999 __ str(src_2->as_Register(), Address(SP, reg2offset_out(dst_2)));
1000 } else if (src_1->as_Register() == dst_1->as_Register()) {
1001 assert(src_2->as_Register() == dst_2->as_Register(), "must be");
1002 } else {
1003 assert(src_1->as_Register() != dst_2->as_Register() &&
1004 src_2->as_Register() != dst_2->as_Register(), "must be");
1005 __ mov(dst_2->as_Register(), src_2->as_Register());
1006 __ mov(dst_1->as_Register(), src_1->as_Register());
1007 }
1008 #endif // ALIGN_WIDE_ARGUMENTS
1009 break;
1010 }
1011
1012 #if (!defined __SOFTFP__ && !defined __ABI_HARD__)
1013 case T_FLOAT: {
1014 VMReg src = in_regs[i].first();
1015 VMReg dst = out_regs[i + extra_args].first();
1016 if (src->is_stack()) {
1017 assert(dst->is_stack(), "must be");
1018 __ ldr(Rtemp, Address(FP, reg2offset_in(src)));
1019 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
1020 } else if (dst->is_stack()) {
1021 __ fsts(src->as_FloatRegister(), Address(SP, reg2offset_out(dst)));
1022 } else {
1023 assert(src->is_FloatRegister() && dst->is_Register(), "must be");
1024 __ fmrs(dst->as_Register(), src->as_FloatRegister());
1025 }
1026 break;
1027 }
1028
1029 case T_DOUBLE: {
1030 VMReg src_1 = in_regs[i].first();
1031 VMReg src_2 = in_regs[i].second();
1032 VMReg dst_1 = out_regs[i + extra_args].first();
1033 VMReg dst_2 = out_regs[i + extra_args].second();
1034 if (src_1->is_stack()) {
1035 assert(src_2->is_stack() && dst_1->is_stack() && dst_2->is_stack(), "must be");
1036 __ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
1037 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
1038 __ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
1039 __ str(LR, Address(SP, reg2offset_out(dst_2)));
1040 } else if (dst_1->is_stack()) {
1041 assert(dst_2->is_stack() && src_1->is_FloatRegister(), "must be");
1042 __ fstd(src_1->as_FloatRegister(), Address(SP, reg2offset_out(dst_1)));
1043 #if (ALIGN_WIDE_ARGUMENTS == 0)
1044 } else if (dst_2->is_stack()) {
1045 assert(! src_2->is_stack(), "must be"); // assuming internal java convention is aligned
1046 // double register must go into R3 + one stack slot
1047 __ fmrrd(dst_1->as_Register(), Rtemp, src_1->as_FloatRegister());
1048 __ str(Rtemp, Address(SP, reg2offset_out(dst_2)));
1049 #endif
1050 } else {
1051 assert(src_1->is_FloatRegister() && dst_1->is_Register() && dst_2->is_Register(), "must be");
1052 __ fmrrd(dst_1->as_Register(), dst_2->as_Register(), src_1->as_FloatRegister());
1053 }
1054 break;
1055 }
1056 #endif // __SOFTFP__
1057
1058 #ifdef __ABI_HARD__
1059 case T_FLOAT: {
1060 VMReg src = in_regs[i].first();
1061 VMReg dst = out_regs[i + extra_args].first();
1062 if (src->is_stack()) {
1063 if (dst->is_stack()) {
1064 __ ldr(Rtemp, Address(FP, reg2offset_in(src)));
1065 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
1066 } else {
1067 // C2 Java calling convention does not populate S14 and S15, therefore
1068 // those need to be loaded from stack here
1069 __ flds(dst->as_FloatRegister(), Address(FP, reg2offset_in(src)));
1070 fp_regs_in_arguments++;
1071 }
1072 } else {
1073 assert(src->is_FloatRegister(), "must be");
1074 fp_regs_in_arguments++;
1075 }
1076 break;
1077 }
1078 case T_DOUBLE: {
1079 VMReg src_1 = in_regs[i].first();
1080 VMReg src_2 = in_regs[i].second();
1081 VMReg dst_1 = out_regs[i + extra_args].first();
1082 VMReg dst_2 = out_regs[i + extra_args].second();
1083 if (src_1->is_stack()) {
1084 if (dst_1->is_stack()) {
1085 assert(dst_2->is_stack(), "must be");
1086 __ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
1087 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
1088 __ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
1089 __ str(LR, Address(SP, reg2offset_out(dst_2)));
1090 } else {
1091 // C2 Java calling convention does not populate S14 and S15, therefore
1092 // those need to be loaded from stack here
1093 __ fldd(dst_1->as_FloatRegister(), Address(FP, reg2offset_in(src_1)));
1094 fp_regs_in_arguments += 2;
1095 }
1096 } else {
1097 assert(src_1->is_FloatRegister() && src_2->is_FloatRegister(), "must be");
1098 fp_regs_in_arguments += 2;
1099 }
1100 break;
1101 }
1102 #endif // __ABI_HARD__
1103
1104 default: {
1105 assert(in_sig_bt[i] != T_ADDRESS, "found T_ADDRESS in java args");
1106 VMReg src = in_regs[i].first();
1107 VMReg dst = out_regs[i + extra_args].first();
1108 if (src->is_stack()) {
1109 assert(dst->is_stack(), "must be");
1110 __ ldr(Rtemp, Address(FP, reg2offset_in(src)));
1111 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
1112 } else if (dst->is_stack()) {
1113 __ str(src->as_Register(), Address(SP, reg2offset_out(dst)));
1114 } else {
1115 assert(src->is_Register() && dst->is_Register(), "must be");
1116 __ mov(dst->as_Register(), src->as_Register());
1117 }
1118 }
1119 }
1120 }
1121
1122 // Get Klass mirror
1123 int klass_offset = -1;
1124 if (is_static) {
1125 klass_offset = oop_handle_offset * VMRegImpl::stack_slot_size;
1126 __ mov_oop(Rtemp, JNIHandles::make_local(method->method_holder()->java_mirror()));
1127 __ add(c_rarg1, SP, klass_offset);
1128 __ str(Rtemp, Address(SP, klass_offset));
1129 map->set_oop(VMRegImpl::stack2reg(oop_handle_offset));
1130 }
1131
1132 // the PC offset given to add_gc_map must match the PC saved in set_last_Java_frame
1133 int pc_offset = __ set_last_Java_frame(SP, FP, true, Rtemp);
1134 assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
1135 oop_maps->add_gc_map(pc_offset, map);
1136
1137 // Order last_Java_pc store with the thread state transition (to _thread_in_native)
1138 __ membar(MacroAssembler::StoreStore, Rtemp);
1139
1140 // RedefineClasses() tracing support for obsolete method entry
1141 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1142 __ save_caller_save_registers();
1143 __ mov(R0, Rthread);
1144 __ mov_metadata(R1, method());
1145 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), R0, R1);
1146 __ restore_caller_save_registers();
1147 }
1148
1149 const Register sync_handle = R5;
1150 const Register sync_obj = R6;
1151 const Register disp_hdr = altFP_7_11;
1152 const Register tmp = R8;
1153
1154 Label slow_lock, slow_lock_biased, lock_done, fast_lock;
1155 if (method->is_synchronized()) {
1156 // The first argument is a handle to sync object (a class or an instance)
1157 __ ldr(sync_obj, Address(R1));
1158 // Remember the handle for the unlocking code
1159 __ mov(sync_handle, R1);
1160
1161 __ resolve(IS_NOT_NULL, sync_obj);
1162
1163 if(UseBiasedLocking) {
1164 __ biased_locking_enter(sync_obj, tmp, disp_hdr/*scratched*/, false, Rtemp, lock_done, slow_lock_biased);
1165 }
1166
1167 const Register mark = tmp;
1168 // On MP platforms the next load could return a 'stale' value if the memory location has been modified by another thread.
1169 // That would be acceptable as either CAS or slow case path is taken in that case
1170
1171 __ ldr(mark, Address(sync_obj, oopDesc::mark_offset_in_bytes()));
1172 __ sub(disp_hdr, FP, lock_slot_fp_offset);
1173 __ tst(mark, markOopDesc::unlocked_value);
1174 __ b(fast_lock, ne);
1175
1176 // Check for recursive lock
1177 // See comments in InterpreterMacroAssembler::lock_object for
1178 // explanations on the fast recursive locking check.
1179 // Check independently the low bits and the distance to SP
1180 // -1- test low 2 bits
1181 __ movs(Rtemp, AsmOperand(mark, lsl, 30));
1182 // -2- test (hdr - SP) if the low two bits are 0
1183 __ sub(Rtemp, mark, SP, eq);
1184 __ movs(Rtemp, AsmOperand(Rtemp, lsr, exact_log2(os::vm_page_size())), eq);
1185 // If still 'eq' then recursive locking OK: set displaced header to 0
1186 __ str(Rtemp, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()), eq);
1187 __ b(lock_done, eq);
1188 __ b(slow_lock);
1189
1190 __ bind(fast_lock);
1191 __ str(mark, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()));
1192
1193 __ cas_for_lock_acquire(mark, disp_hdr, sync_obj, Rtemp, slow_lock);
1194
1195 __ bind(lock_done);
1196 }
1197
1198 // Get JNIEnv*
1199 __ add(c_rarg0, Rthread, in_bytes(JavaThread::jni_environment_offset()));
1200
1201 // Perform thread state transition
1202 __ mov(Rtemp, _thread_in_native);
1203 __ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1204
1205 // Finally, call the native method
1206 __ call(method->native_function());
1207
1208 // Set FPSCR/FPCR to a known state
1209 if (AlwaysRestoreFPU) {
1210 __ restore_default_fp_mode();
1211 }
1212
1213 // Ensure a Boolean result is mapped to 0..1
1214 if (ret_type == T_BOOLEAN) {
1215 __ c2bool(R0);
1216 }
1217
1218 // Do a safepoint check while thread is in transition state
1219 InlinedAddress safepoint_state(SafepointSynchronize::address_of_state());
1220 Label call_safepoint_runtime, return_to_java;
1221 __ mov(Rtemp, _thread_in_native_trans);
1222 __ ldr_literal(R2, safepoint_state);
1223 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1224
1225 // make sure the store is observed before reading the SafepointSynchronize state and further mem refs
1226 __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
1227
1228 __ ldr_s32(R2, Address(R2));
1229 __ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset()));
1230 __ cmp(R2, SafepointSynchronize::_not_synchronized);
1231 __ cond_cmp(R3, 0, eq);
1232 __ b(call_safepoint_runtime, ne);
1233 __ bind(return_to_java);
1234
1235 // Perform thread state transition and reguard stack yellow pages if needed
1236 Label reguard, reguard_done;
1237 __ mov(Rtemp, _thread_in_Java);
1238 __ ldr_s32(R2, Address(Rthread, JavaThread::stack_guard_state_offset()));
1239 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1240
1241 __ cmp(R2, JavaThread::stack_guard_yellow_reserved_disabled);
1242 __ b(reguard, eq);
1243 __ bind(reguard_done);
1244
1245 Label slow_unlock, unlock_done;
1246 if (method->is_synchronized()) {
1247 __ ldr(sync_obj, Address(sync_handle));
1248
1249 __ resolve(IS_NOT_NULL, sync_obj);
1250
1251 if(UseBiasedLocking) {
1252 __ biased_locking_exit(sync_obj, Rtemp, unlock_done);
1253 // disp_hdr may not have been saved on entry with biased locking
1254 __ sub(disp_hdr, FP, lock_slot_fp_offset);
1255 }
1256
1257 // See C1_MacroAssembler::unlock_object() for more comments
1258 __ ldr(R2, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()));
1259 __ cbz(R2, unlock_done);
1260
1261 __ cas_for_lock_release(disp_hdr, R2, sync_obj, Rtemp, slow_unlock);
1262
1263 __ bind(unlock_done);
1264 }
1265
1266 // Set last java frame and handle block to zero
1267 __ ldr(LR, Address(Rthread, JavaThread::active_handles_offset()));
1268 __ reset_last_Java_frame(Rtemp); // sets Rtemp to 0 on 32-bit ARM
1269
1270 __ str_32(Rtemp, Address(LR, JNIHandleBlock::top_offset_in_bytes()));
1271 if (CheckJNICalls) {
1272 __ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1273 }
1274
1275 // Unbox oop result, e.g. JNIHandles::resolve value in R0.
1276 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1277 __ resolve_jobject(R0, // value
1278 Rtemp, // tmp1
1279 R1_tmp); // tmp2
1280 }
1281
1282 // Any exception pending?
1283 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
1284 __ mov(SP, FP);
1285
1286 __ cmp(Rtemp, 0);
1287 // Pop the frame and return if no exception pending
1288 __ pop(RegisterSet(FP) | RegisterSet(PC), eq);
1289 // Pop the frame and forward the exception. Rexception_pc contains return address.
1290 __ ldr(FP, Address(SP, wordSize, post_indexed), ne);
1291 __ ldr(Rexception_pc, Address(SP, wordSize, post_indexed), ne);
1292 __ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
1293
1294 // Safepoint operation and/or pending suspend request is in progress.
1295 // Save the return values and call the runtime function by hand.
1296 __ bind(call_safepoint_runtime);
1297 push_result_registers(masm, ret_type);
1298 __ mov(R0, Rthread);
1299 __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1300 pop_result_registers(masm, ret_type);
1301 __ b(return_to_java);
1302
1303 __ bind_literal(safepoint_state);
1304
1305 // Reguard stack pages. Save native results around a call to C runtime.
1306 __ bind(reguard);
1307 push_result_registers(masm, ret_type);
1308 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1309 pop_result_registers(masm, ret_type);
1310 __ b(reguard_done);
1311
1312 if (method->is_synchronized()) {
1313 // Locking slow case
1314 if(UseBiasedLocking) {
1315 __ bind(slow_lock_biased);
1316 __ sub(disp_hdr, FP, lock_slot_fp_offset);
1317 }
1318
1319 __ bind(slow_lock);
1320
1321 push_param_registers(masm, fp_regs_in_arguments);
1322
1323 // last_Java_frame is already set, so do call_VM manually; no exception can occur
1324 __ mov(R0, sync_obj);
1325 __ mov(R1, disp_hdr);
1326 __ mov(R2, Rthread);
1327 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C));
1328
1329 pop_param_registers(masm, fp_regs_in_arguments);
1330
1331 __ b(lock_done);
1332
1333 // Unlocking slow case
1334 __ bind(slow_unlock);
1335
1336 push_result_registers(masm, ret_type);
1337
1338 // Clear pending exception before reentering VM.
1339 // Can store the oop in register since it is a leaf call.
1340 assert_different_registers(Rtmp_save1, sync_obj, disp_hdr);
1341 __ ldr(Rtmp_save1, Address(Rthread, Thread::pending_exception_offset()));
1342 Register zero = __ zero_register(Rtemp);
1343 __ str(zero, Address(Rthread, Thread::pending_exception_offset()));
1344 __ mov(R0, sync_obj);
1345 __ mov(R1, disp_hdr);
1346 __ mov(R2, Rthread);
1347 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
1348 __ str(Rtmp_save1, Address(Rthread, Thread::pending_exception_offset()));
1349
1350 pop_result_registers(masm, ret_type);
1351
1352 __ b(unlock_done);
1353 }
1354
1355 __ flush();
1356 return nmethod::new_native_nmethod(method,
1357 compile_id,
1358 masm->code(),
1359 vep_offset,
1360 frame_complete,
1361 stack_slots / VMRegImpl::slots_per_word,
1362 in_ByteSize(is_static ? klass_offset : receiver_offset),
1363 in_ByteSize(lock_slot_offset * VMRegImpl::stack_slot_size),
1364 oop_maps);
1365 }
1366
1367 // this function returns the adjust size (in number of words) to a c2i adapter
1368 // activation for use during deoptimization
last_frame_adjust(int callee_parameters,int callee_locals)1369 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
1370 int extra_locals_size = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
1371 return extra_locals_size;
1372 }
1373
1374
out_preserve_stack_slots()1375 uint SharedRuntime::out_preserve_stack_slots() {
1376 return 0;
1377 }
1378
1379
1380 //------------------------------generate_deopt_blob----------------------------
generate_deopt_blob()1381 void SharedRuntime::generate_deopt_blob() {
1382 ResourceMark rm;
1383 CodeBuffer buffer("deopt_blob", 1024, 1024);
1384 int frame_size_in_words;
1385 OopMapSet* oop_maps;
1386 int reexecute_offset;
1387 int exception_in_tls_offset;
1388 int exception_offset;
1389
1390 MacroAssembler* masm = new MacroAssembler(&buffer);
1391 Label cont;
1392 const Register Rkind = R9; // caller-saved
1393 const Register Rublock = R6;
1394 const Register Rsender = altFP_7_11;
1395 assert_different_registers(Rkind, Rublock, Rsender, Rexception_obj, Rexception_pc, R0, R1, R2, R3, R8, Rtemp);
1396
1397 address start = __ pc();
1398
1399 oop_maps = new OopMapSet();
1400 // LR saved by caller (can be live in c2 method)
1401
1402 // A deopt is a case where LR may be live in the c2 nmethod. So it's
1403 // not possible to call the deopt blob from the nmethod and pass the
1404 // address of the deopt handler of the nmethod in LR. What happens
1405 // now is that the caller of the deopt blob pushes the current
1406 // address so the deopt blob doesn't have to do it. This way LR can
1407 // be preserved, contains the live value from the nmethod and is
1408 // saved at R14/R30_offset here.
1409 OopMap* map = RegisterSaver::save_live_registers(masm, &frame_size_in_words, true);
1410 __ mov(Rkind, Deoptimization::Unpack_deopt);
1411 __ b(cont);
1412
1413 exception_offset = __ pc() - start;
1414
1415 // Transfer Rexception_obj & Rexception_pc in TLS and fall thru to the
1416 // exception_in_tls_offset entry point.
1417 __ str(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
1418 __ str(Rexception_pc, Address(Rthread, JavaThread::exception_pc_offset()));
1419 // Force return value to NULL to avoid confusing the escape analysis
1420 // logic. Everything is dead here anyway.
1421 __ mov(R0, 0);
1422
1423 exception_in_tls_offset = __ pc() - start;
1424
1425 // Exception data is in JavaThread structure
1426 // Patch the return address of the current frame
1427 __ ldr(LR, Address(Rthread, JavaThread::exception_pc_offset()));
1428 (void) RegisterSaver::save_live_registers(masm, &frame_size_in_words);
1429 {
1430 const Register Rzero = __ zero_register(Rtemp); // XXX should be OK for C2 but not 100% sure
1431 __ str(Rzero, Address(Rthread, JavaThread::exception_pc_offset()));
1432 }
1433 __ mov(Rkind, Deoptimization::Unpack_exception);
1434 __ b(cont);
1435
1436 reexecute_offset = __ pc() - start;
1437
1438 (void) RegisterSaver::save_live_registers(masm, &frame_size_in_words);
1439 __ mov(Rkind, Deoptimization::Unpack_reexecute);
1440
1441 // Calculate UnrollBlock and save the result in Rublock
1442 __ bind(cont);
1443 __ mov(R0, Rthread);
1444 __ mov(R1, Rkind);
1445
1446 int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp); // note: FP may not need to be saved (not on x86)
1447 assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
1448 __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info));
1449 if (pc_offset == -1) {
1450 pc_offset = __ offset();
1451 }
1452 oop_maps->add_gc_map(pc_offset, map);
1453 __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
1454
1455 __ mov(Rublock, R0);
1456
1457 // Reload Rkind from the UnrollBlock (might have changed)
1458 __ ldr_s32(Rkind, Address(Rublock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
1459 Label noException;
1460 __ cmp_32(Rkind, Deoptimization::Unpack_exception); // Was exception pending?
1461 __ b(noException, ne);
1462 // handle exception case
1463 #ifdef ASSERT
1464 // assert that exception_pc is zero in tls
1465 { Label L;
1466 __ ldr(Rexception_pc, Address(Rthread, JavaThread::exception_pc_offset()));
1467 __ cbz(Rexception_pc, L);
1468 __ stop("exception pc should be null");
1469 __ bind(L);
1470 }
1471 #endif
1472 __ ldr(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
1473 __ verify_oop(Rexception_obj);
1474 {
1475 const Register Rzero = __ zero_register(Rtemp);
1476 __ str(Rzero, Address(Rthread, JavaThread::exception_oop_offset()));
1477 }
1478
1479 __ bind(noException);
1480
1481 // This frame is going away. Fetch return value, so we can move it to
1482 // a new frame.
1483 __ ldr(R0, Address(SP, RegisterSaver::R0_offset * wordSize));
1484 __ ldr(R1, Address(SP, RegisterSaver::R1_offset * wordSize));
1485 #ifndef __SOFTFP__
1486 __ ldr_double(D0, Address(SP, RegisterSaver::D0_offset * wordSize));
1487 #endif
1488 // pop frame
1489 __ add(SP, SP, RegisterSaver::reg_save_size * wordSize);
1490
1491 // Set initial stack state before pushing interpreter frames
1492 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
1493 __ ldr(R2, Address(Rublock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
1494 __ ldr(R3, Address(Rublock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
1495
1496 __ add(SP, SP, Rtemp);
1497
1498 #ifdef ASSERT
1499 // Compilers generate code that bang the stack by as much as the
1500 // interpreter would need. So this stack banging should never
1501 // trigger a fault. Verify that it does not on non product builds.
1502 // See if it is enough stack to push deoptimized frames
1503 if (UseStackBanging) {
1504 // The compiled method that we are deoptimizing was popped from the stack.
1505 // If the stack bang results in a stack overflow, we don't return to the
1506 // method that is being deoptimized. The stack overflow exception is
1507 // propagated to the caller of the deoptimized method. Need to get the pc
1508 // from the caller in LR and restore FP.
1509 __ ldr(LR, Address(R2, 0));
1510 __ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
1511 __ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
1512 __ arm_stack_overflow_check(R8, Rtemp);
1513 }
1514 #endif
1515 __ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
1516
1517 // Pick up the initial fp we should save
1518 // XXX Note: was ldr(FP, Address(FP));
1519
1520 // The compiler no longer uses FP as a frame pointer for the
1521 // compiled code. It can be used by the allocator in C2 or to
1522 // memorize the original SP for JSR292 call sites.
1523
1524 // Hence, ldr(FP, Address(FP)) is probably not correct. For x86,
1525 // Deoptimization::fetch_unroll_info computes the right FP value and
1526 // stores it in Rublock.initial_info. This has been activated for ARM.
1527 __ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
1528
1529 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
1530 __ mov(Rsender, SP);
1531 __ sub(SP, SP, Rtemp);
1532
1533 // Push interpreter frames in a loop
1534 Label loop;
1535 __ bind(loop);
1536 __ ldr(LR, Address(R2, wordSize, post_indexed)); // load frame pc
1537 __ ldr(Rtemp, Address(R3, wordSize, post_indexed)); // load frame size
1538
1539 __ raw_push(FP, LR); // create new frame
1540 __ mov(FP, SP);
1541 __ sub(Rtemp, Rtemp, 2*wordSize);
1542
1543 __ sub(SP, SP, Rtemp);
1544
1545 __ str(Rsender, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
1546 __ mov(LR, 0);
1547 __ str(LR, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1548
1549 __ subs(R8, R8, 1); // decrement counter
1550 __ mov(Rsender, SP);
1551 __ b(loop, ne);
1552
1553 // Re-push self-frame
1554 __ ldr(LR, Address(R2));
1555 __ raw_push(FP, LR);
1556 __ mov(FP, SP);
1557 __ sub(SP, SP, (frame_size_in_words - 2) * wordSize);
1558
1559 // Restore frame locals after moving the frame
1560 __ str(R0, Address(SP, RegisterSaver::R0_offset * wordSize));
1561 __ str(R1, Address(SP, RegisterSaver::R1_offset * wordSize));
1562
1563 #ifndef __SOFTFP__
1564 __ str_double(D0, Address(SP, RegisterSaver::D0_offset * wordSize));
1565 #endif // !__SOFTFP__
1566
1567 #ifdef ASSERT
1568 // Reload Rkind from the UnrollBlock and check that it was not overwritten (Rkind is not callee-saved)
1569 { Label L;
1570 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
1571 __ cmp_32(Rkind, Rtemp);
1572 __ b(L, eq);
1573 __ stop("Rkind was overwritten");
1574 __ bind(L);
1575 }
1576 #endif
1577
1578 // Call unpack_frames with proper arguments
1579 __ mov(R0, Rthread);
1580 __ mov(R1, Rkind);
1581
1582 pc_offset = __ set_last_Java_frame(SP, FP, true, Rtemp);
1583 assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
1584 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
1585 if (pc_offset == -1) {
1586 pc_offset = __ offset();
1587 }
1588 oop_maps->add_gc_map(pc_offset, new OopMap(frame_size_in_words * VMRegImpl::slots_per_word, 0));
1589 __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
1590
1591 // Collect return values, pop self-frame and jump to interpreter
1592 __ ldr(R0, Address(SP, RegisterSaver::R0_offset * wordSize));
1593 __ ldr(R1, Address(SP, RegisterSaver::R1_offset * wordSize));
1594 // Interpreter floats controlled by __SOFTFP__, but compiler
1595 // float return value registers controlled by __ABI_HARD__
1596 // This matters for vfp-sflt builds.
1597 #ifndef __SOFTFP__
1598 // Interpreter hard float
1599 #ifdef __ABI_HARD__
1600 // Compiler float return value in FP registers
1601 __ ldr_double(D0, Address(SP, RegisterSaver::D0_offset * wordSize));
1602 #else
1603 // Compiler float return value in integer registers,
1604 // copy to D0 for interpreter (S0 <-- R0)
1605 __ fmdrr(D0_tos, R0, R1);
1606 #endif
1607 #endif // !__SOFTFP__
1608 __ mov(SP, FP);
1609
1610 __ pop(RegisterSet(FP) | RegisterSet(PC));
1611
1612 __ flush();
1613
1614 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset,
1615 reexecute_offset, frame_size_in_words);
1616 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
1617 }
1618
1619 #ifdef COMPILER2
1620
1621 //------------------------------generate_uncommon_trap_blob--------------------
1622 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
1623 // instead.
generate_uncommon_trap_blob()1624 void SharedRuntime::generate_uncommon_trap_blob() {
1625 // allocate space for the code
1626 ResourceMark rm;
1627
1628 // setup code generation tools
1629 int pad = VerifyThread ? 512 : 0;
1630 #ifdef _LP64
1631 CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
1632 #else
1633 // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
1634 // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
1635 CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
1636 #endif
1637 // bypassed when code generation useless
1638 MacroAssembler* masm = new MacroAssembler(&buffer);
1639 const Register Rublock = R6;
1640 const Register Rsender = altFP_7_11;
1641 assert_different_registers(Rublock, Rsender, Rexception_obj, R0, R1, R2, R3, R8, Rtemp);
1642
1643 //
1644 // This is the entry point for all traps the compiler takes when it thinks
1645 // it cannot handle further execution of compilation code. The frame is
1646 // deoptimized in these cases and converted into interpreter frames for
1647 // execution
1648 // The steps taken by this frame are as follows:
1649 // - push a fake "unpack_frame"
1650 // - call the C routine Deoptimization::uncommon_trap (this function
1651 // packs the current compiled frame into vframe arrays and returns
1652 // information about the number and size of interpreter frames which
1653 // are equivalent to the frame which is being deoptimized)
1654 // - deallocate the "unpack_frame"
1655 // - deallocate the deoptimization frame
1656 // - in a loop using the information returned in the previous step
1657 // push interpreter frames;
1658 // - create a dummy "unpack_frame"
1659 // - call the C routine: Deoptimization::unpack_frames (this function
1660 // lays out values on the interpreter frame which was just created)
1661 // - deallocate the dummy unpack_frame
1662 // - return to the interpreter entry point
1663 //
1664 // Refer to the following methods for more information:
1665 // - Deoptimization::uncommon_trap
1666 // - Deoptimization::unpack_frame
1667
1668 // the unloaded class index is in R0 (first parameter to this blob)
1669
1670 __ raw_push(FP, LR);
1671 __ set_last_Java_frame(SP, FP, false, Rtemp);
1672 __ mov(R2, Deoptimization::Unpack_uncommon_trap);
1673 __ mov(R1, R0);
1674 __ mov(R0, Rthread);
1675 __ call(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap));
1676 __ mov(Rublock, R0);
1677 __ reset_last_Java_frame(Rtemp);
1678 __ raw_pop(FP, LR);
1679
1680 #ifdef ASSERT
1681 { Label L;
1682 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
1683 __ cmp_32(Rtemp, Deoptimization::Unpack_uncommon_trap);
1684 __ b(L, eq);
1685 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
1686 __ bind(L);
1687 }
1688 #endif
1689
1690
1691 // Set initial stack state before pushing interpreter frames
1692 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
1693 __ ldr(R2, Address(Rublock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
1694 __ ldr(R3, Address(Rublock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
1695
1696 __ add(SP, SP, Rtemp);
1697
1698 // See if it is enough stack to push deoptimized frames
1699 #ifdef ASSERT
1700 // Compilers generate code that bang the stack by as much as the
1701 // interpreter would need. So this stack banging should never
1702 // trigger a fault. Verify that it does not on non product builds.
1703 if (UseStackBanging) {
1704 // The compiled method that we are deoptimizing was popped from the stack.
1705 // If the stack bang results in a stack overflow, we don't return to the
1706 // method that is being deoptimized. The stack overflow exception is
1707 // propagated to the caller of the deoptimized method. Need to get the pc
1708 // from the caller in LR and restore FP.
1709 __ ldr(LR, Address(R2, 0));
1710 __ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
1711 __ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
1712 __ arm_stack_overflow_check(R8, Rtemp);
1713 }
1714 #endif
1715 __ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
1716 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
1717 __ mov(Rsender, SP);
1718 __ sub(SP, SP, Rtemp);
1719 // __ ldr(FP, Address(FP));
1720 __ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
1721
1722 // Push interpreter frames in a loop
1723 Label loop;
1724 __ bind(loop);
1725 __ ldr(LR, Address(R2, wordSize, post_indexed)); // load frame pc
1726 __ ldr(Rtemp, Address(R3, wordSize, post_indexed)); // load frame size
1727
1728 __ raw_push(FP, LR); // create new frame
1729 __ mov(FP, SP);
1730 __ sub(Rtemp, Rtemp, 2*wordSize);
1731
1732 __ sub(SP, SP, Rtemp);
1733
1734 __ str(Rsender, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
1735 __ mov(LR, 0);
1736 __ str(LR, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1737 __ subs(R8, R8, 1); // decrement counter
1738 __ mov(Rsender, SP);
1739 __ b(loop, ne);
1740
1741 // Re-push self-frame
1742 __ ldr(LR, Address(R2));
1743 __ raw_push(FP, LR);
1744 __ mov(FP, SP);
1745
1746 // Call unpack_frames with proper arguments
1747 __ mov(R0, Rthread);
1748 __ mov(R1, Deoptimization::Unpack_uncommon_trap);
1749 __ set_last_Java_frame(SP, FP, true, Rtemp);
1750 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
1751 // oop_maps->add_gc_map(__ pc() - start, new OopMap(frame_size_in_words, 0));
1752 __ reset_last_Java_frame(Rtemp);
1753
1754 __ mov(SP, FP);
1755 __ pop(RegisterSet(FP) | RegisterSet(PC));
1756
1757 masm->flush();
1758 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, 2 /* LR+FP */);
1759 }
1760
1761 #endif // COMPILER2
1762
1763 //------------------------------generate_handler_blob------
1764 //
1765 // Generate a special Compile2Runtime blob that saves all registers,
1766 // setup oopmap, and calls safepoint code to stop the compiled code for
1767 // a safepoint.
1768 //
generate_handler_blob(address call_ptr,int poll_type)1769 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
1770 assert(StubRoutines::forward_exception_entry() != NULL, "must be generated before");
1771
1772 ResourceMark rm;
1773 CodeBuffer buffer("handler_blob", 256, 256);
1774 int frame_size_words;
1775 OopMapSet* oop_maps;
1776
1777 bool cause_return = (poll_type == POLL_AT_RETURN);
1778
1779 MacroAssembler* masm = new MacroAssembler(&buffer);
1780 address start = __ pc();
1781 oop_maps = new OopMapSet();
1782
1783 if (!cause_return) {
1784 __ sub(SP, SP, 4); // make room for LR which may still be live
1785 // here if we are coming from a c2 method
1786 }
1787
1788 OopMap* map = RegisterSaver::save_live_registers(masm, &frame_size_words, !cause_return);
1789 if (!cause_return) {
1790 // update saved PC with correct value
1791 // need 2 steps because LR can be live in c2 method
1792 __ ldr(LR, Address(Rthread, JavaThread::saved_exception_pc_offset()));
1793 __ str(LR, Address(SP, RegisterSaver::LR_offset * wordSize));
1794 }
1795
1796 __ mov(R0, Rthread);
1797 int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp); // note: FP may not need to be saved (not on x86)
1798 assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
1799 __ call(call_ptr);
1800 if (pc_offset == -1) {
1801 pc_offset = __ offset();
1802 }
1803 oop_maps->add_gc_map(pc_offset, map);
1804 __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
1805
1806 // Check for pending exception
1807 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
1808 __ cmp(Rtemp, 0);
1809
1810 if (!cause_return) {
1811 RegisterSaver::restore_live_registers(masm, false);
1812 __ pop(PC, eq);
1813 __ pop(Rexception_pc);
1814 } else {
1815 RegisterSaver::restore_live_registers(masm);
1816 __ bx(LR, eq);
1817 __ mov(Rexception_pc, LR);
1818 }
1819
1820 __ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
1821
1822 __ flush();
1823
1824 return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
1825 }
1826
generate_resolve_blob(address destination,const char * name)1827 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
1828 assert(StubRoutines::forward_exception_entry() != NULL, "must be generated before");
1829
1830 ResourceMark rm;
1831 CodeBuffer buffer(name, 1000, 512);
1832 int frame_size_words;
1833 OopMapSet *oop_maps;
1834 int frame_complete;
1835
1836 MacroAssembler* masm = new MacroAssembler(&buffer);
1837 Label pending_exception;
1838
1839 int start = __ offset();
1840
1841 oop_maps = new OopMapSet();
1842 OopMap* map = RegisterSaver::save_live_registers(masm, &frame_size_words);
1843
1844 frame_complete = __ offset();
1845
1846 __ mov(R0, Rthread);
1847
1848 int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp);
1849 assert(start == 0, "warning: start differs from code_begin");
1850 __ call(destination);
1851 if (pc_offset == -1) {
1852 pc_offset = __ offset();
1853 }
1854 oop_maps->add_gc_map(pc_offset, map);
1855 __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
1856
1857 __ ldr(R1, Address(Rthread, Thread::pending_exception_offset()));
1858 __ cbnz(R1, pending_exception);
1859
1860 // Overwrite saved register values
1861
1862 // Place metadata result of VM call into Rmethod
1863 __ get_vm_result_2(R1, Rtemp);
1864 __ str(R1, Address(SP, RegisterSaver::Rmethod_offset * wordSize));
1865
1866 // Place target address (VM call result) into Rtemp
1867 __ str(R0, Address(SP, RegisterSaver::Rtemp_offset * wordSize));
1868
1869 RegisterSaver::restore_live_registers(masm);
1870 __ jump(Rtemp);
1871
1872 __ bind(pending_exception);
1873
1874 RegisterSaver::restore_live_registers(masm);
1875 const Register Rzero = __ zero_register(Rtemp);
1876 __ str(Rzero, Address(Rthread, JavaThread::vm_result_2_offset()));
1877 __ mov(Rexception_pc, LR);
1878 __ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
1879
1880 __ flush();
1881
1882 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
1883 }
1884