1 /*
2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_ASM_ASSEMBLER_HPP
26 #define SHARE_ASM_ASSEMBLER_HPP
27 
28 #include "asm/codeBuffer.hpp"
29 #include "asm/register.hpp"
30 #include "code/oopRecorder.hpp"
31 #include "code/relocInfo.hpp"
32 #include "memory/allocation.hpp"
33 #include "runtime/vm_version.hpp"
34 #include "utilities/debug.hpp"
35 #include "utilities/growableArray.hpp"
36 #include "utilities/macros.hpp"
37 
38 // This file contains platform-independent assembler declarations.
39 
40 class MacroAssembler;
41 class AbstractAssembler;
42 class Label;
43 
44 /**
45  * Labels represent destinations for control transfer instructions.  Such
46  * instructions can accept a Label as their target argument.  A Label is
47  * bound to the current location in the code stream by calling the
48  * MacroAssembler's 'bind' method, which in turn calls the Label's 'bind'
49  * method.  A Label may be referenced by an instruction before it's bound
50  * (i.e., 'forward referenced').  'bind' stores the current code offset
51  * in the Label object.
52  *
53  * If an instruction references a bound Label, the offset field(s) within
54  * the instruction are immediately filled in based on the Label's code
55  * offset.  If an instruction references an unbound label, that
56  * instruction is put on a list of instructions that must be patched
57  * (i.e., 'resolved') when the Label is bound.
58  *
59  * 'bind' will call the platform-specific 'patch_instruction' method to
60  * fill in the offset field(s) for each unresolved instruction (if there
61  * are any).  'patch_instruction' lives in one of the
62  * cpu/<arch>/vm/assembler_<arch>* files.
63  *
64  * Instead of using a linked list of unresolved instructions, a Label has
65  * an array of unresolved instruction code offsets.  _patch_index
66  * contains the total number of forward references.  If the Label's array
67  * overflows (i.e., _patch_index grows larger than the array size), a
68  * GrowableArray is allocated to hold the remaining offsets.  (The cache
69  * size is 4 for now, which handles over 99.5% of the cases)
70  *
71  * Labels may only be used within a single CodeSection.  If you need
72  * to create references between code sections, use explicit relocations.
73  */
74 class Label {
75  private:
76   enum { PatchCacheSize = 4 debug_only( +4 ) };
77 
78   // _loc encodes both the binding state (via its sign)
79   // and the binding locator (via its value) of a label.
80   //
81   // _loc >= 0   bound label, loc() encodes the target (jump) position
82   // _loc == -1  unbound label
83   int _loc;
84 
85   // References to instructions that jump to this unresolved label.
86   // These instructions need to be patched when the label is bound
87   // using the platform-specific patchInstruction() method.
88   //
89   // To avoid having to allocate from the C-heap each time, we provide
90   // a local cache and use the overflow only if we exceed the local cache
91   int _patches[PatchCacheSize];
92   int _patch_index;
93   GrowableArray<int>* _patch_overflow;
94 
Label(const Label &)95   Label(const Label&) { ShouldNotReachHere(); }
96  protected:
97 
98   // The label will be bound to a location near its users.
99   bool _is_near;
100 
101 #ifdef ASSERT
102   // Sourcre file and line location of jump instruction
103   int _lines[PatchCacheSize];
104   const char* _files[PatchCacheSize];
105 #endif
106  public:
107 
108   /**
109    * After binding, be sure 'patch_instructions' is called later to link
110    */
bind_loc(int loc)111   void bind_loc(int loc) {
112     assert(loc >= 0, "illegal locator");
113     assert(_loc == -1, "already bound");
114     _loc = loc;
115   }
bind_loc(int pos,int sect)116   void bind_loc(int pos, int sect) { bind_loc(CodeBuffer::locator(pos, sect)); }
117 
118 #ifndef PRODUCT
119   // Iterates over all unresolved instructions for printing
120   void print_instructions(MacroAssembler* masm) const;
121 #endif // PRODUCT
122 
123   /**
124    * Returns the position of the the Label in the code buffer
125    * The position is a 'locator', which encodes both offset and section.
126    */
loc() const127   int loc() const {
128     assert(_loc >= 0, "unbound label");
129     return _loc;
130   }
loc_pos() const131   int loc_pos()  const { return CodeBuffer::locator_pos(loc()); }
loc_sect() const132   int loc_sect() const { return CodeBuffer::locator_sect(loc()); }
133 
is_bound() const134   bool is_bound() const    { return _loc >=  0; }
is_unbound() const135   bool is_unbound() const  { return _loc == -1 && _patch_index > 0; }
is_unused() const136   bool is_unused() const   { return _loc == -1 && _patch_index == 0; }
137 
138   // The label will be bound to a location near its users. Users can
139   // optimize on this information, e.g. generate short branches.
is_near()140   bool is_near()           { return _is_near; }
141 
142   /**
143    * Adds a reference to an unresolved displacement instruction to
144    * this unbound label
145    *
146    * @param cb         the code buffer being patched
147    * @param branch_loc the locator of the branch instruction in the code buffer
148    */
149   void add_patch_at(CodeBuffer* cb, int branch_loc, const char* file = NULL, int line = 0);
150 
151   /**
152    * Iterate over the list of patches, resolving the instructions
153    * Call patch_instruction on each 'branch_loc' value
154    */
155   void patch_instructions(MacroAssembler* masm);
156 
init()157   void init() {
158     _loc = -1;
159     _patch_index = 0;
160     _patch_overflow = NULL;
161     _is_near = false;
162   }
163 
Label()164   Label() {
165     init();
166   }
167 
~Label()168   ~Label() {
169     assert(is_bound() || is_unused(), "Label was never bound to a location, but it was used as a jmp target");
170   }
171 
reset()172   void reset() {
173     init(); //leave _patch_overflow because it points to CodeBuffer.
174   }
175 };
176 
177 // A NearLabel must be bound to a location near its users. Users can
178 // optimize on this information, e.g. generate short branches.
179 class NearLabel : public Label {
180  public:
NearLabel()181   NearLabel() : Label() { _is_near = true; }
182 };
183 
184 // A union type for code which has to assemble both constant and
185 // non-constant operands, when the distinction cannot be made
186 // statically.
187 class RegisterOrConstant {
188  private:
189   Register _r;
190   intptr_t _c;
191 
192  public:
RegisterOrConstant()193   RegisterOrConstant(): _r(noreg), _c(0) {}
RegisterOrConstant(Register r)194   RegisterOrConstant(Register r): _r(r), _c(0) {}
RegisterOrConstant(intptr_t c)195   RegisterOrConstant(intptr_t c): _r(noreg), _c(c) {}
196 
as_register() const197   Register as_register() const { assert(is_register(),""); return _r; }
as_constant() const198   intptr_t as_constant() const { assert(is_constant(),""); return _c; }
199 
register_or_noreg() const200   Register register_or_noreg() const { return _r; }
constant_or_zero() const201   intptr_t constant_or_zero() const  { return _c; }
202 
is_register() const203   bool is_register() const { return _r != noreg; }
is_constant() const204   bool is_constant() const { return _r == noreg; }
205 };
206 
207 // The Abstract Assembler: Pure assembler doing NO optimizations on the
208 // instruction level; i.e., what you write is what you get.
209 // The Assembler is generating code into a CodeBuffer.
210 class AbstractAssembler : public ResourceObj  {
211   friend class Label;
212 
213  protected:
214   CodeSection* _code_section;          // section within the code buffer
215   OopRecorder* _oop_recorder;          // support for relocInfo::oop_type
216 
217  public:
218   // Code emission & accessing
addr_at(int pos) const219   address addr_at(int pos) const { return code_section()->start() + pos; }
220 
221  protected:
222   // This routine is called with a label is used for an address.
223   // Labels and displacements truck in offsets, but target must return a PC.
target(Label & L)224   address target(Label& L)             { return code_section()->target(L, pc()); }
225 
is8bit(int x) const226   bool is8bit(int x) const             { return -0x80 <= x && x < 0x80; }
isByte(int x) const227   bool isByte(int x) const             { return 0 <= x && x < 0x100; }
isShiftCount(int x) const228   bool isShiftCount(int x) const       { return 0 <= x && x < 32; }
229 
230   // Instruction boundaries (required when emitting relocatable values).
231   class InstructionMark: public StackObj {
232    private:
233     AbstractAssembler* _assm;
234 
235    public:
InstructionMark(AbstractAssembler * assm)236     InstructionMark(AbstractAssembler* assm) : _assm(assm) {
237       assert(assm->inst_mark() == NULL, "overlapping instructions");
238       _assm->set_inst_mark();
239     }
~InstructionMark()240     ~InstructionMark() {
241       _assm->clear_inst_mark();
242     }
243   };
244   friend class InstructionMark;
245 #ifdef ASSERT
246   // Make it return true on platforms which need to verify
247   // instruction boundaries for some operations.
248   static bool pd_check_instruction_mark();
249 
250   // Add delta to short branch distance to verify that it still fit into imm8.
251   int _short_branch_delta;
252 
short_branch_delta() const253   int  short_branch_delta() const { return _short_branch_delta; }
set_short_branch_delta()254   void set_short_branch_delta()   { _short_branch_delta = 32; }
clear_short_branch_delta()255   void clear_short_branch_delta() { _short_branch_delta = 0; }
256 
257   class ShortBranchVerifier: public StackObj {
258    private:
259     AbstractAssembler* _assm;
260 
261    public:
ShortBranchVerifier(AbstractAssembler * assm)262     ShortBranchVerifier(AbstractAssembler* assm) : _assm(assm) {
263       assert(assm->short_branch_delta() == 0, "overlapping instructions");
264       _assm->set_short_branch_delta();
265     }
~ShortBranchVerifier()266     ~ShortBranchVerifier() {
267       _assm->clear_short_branch_delta();
268     }
269   };
270 #else
271   // Dummy in product.
272   class ShortBranchVerifier: public StackObj {
273    public:
ShortBranchVerifier(AbstractAssembler * assm)274     ShortBranchVerifier(AbstractAssembler* assm) {}
275   };
276 #endif
277 
278  public:
279 
280   // Creation
281   AbstractAssembler(CodeBuffer* code);
282 
283   // ensure buf contains all code (call this before using/copying the code)
284   void flush();
285 
emit_int8(int8_t x)286   void emit_int8(   int8_t  x) { code_section()->emit_int8(   x); }
emit_int16(int16_t x)287   void emit_int16(  int16_t x) { code_section()->emit_int16(  x); }
emit_int32(int32_t x)288   void emit_int32(  int32_t x) { code_section()->emit_int32(  x); }
emit_int64(int64_t x)289   void emit_int64(  int64_t x) { code_section()->emit_int64(  x); }
290 
emit_float(jfloat x)291   void emit_float(  jfloat  x) { code_section()->emit_float(  x); }
emit_double(jdouble x)292   void emit_double( jdouble x) { code_section()->emit_double( x); }
emit_address(address x)293   void emit_address(address x) { code_section()->emit_address(x); }
294 
295   // min and max values for signed immediate ranges
min_simm(int nbits)296   static int min_simm(int nbits) { return -(intptr_t(1) << (nbits - 1))    ; }
max_simm(int nbits)297   static int max_simm(int nbits) { return  (intptr_t(1) << (nbits - 1)) - 1; }
298 
299   // Define some:
min_simm10()300   static int min_simm10() { return min_simm(10); }
min_simm13()301   static int min_simm13() { return min_simm(13); }
min_simm16()302   static int min_simm16() { return min_simm(16); }
303 
304   // Test if x is within signed immediate range for nbits
is_simm(intptr_t x,int nbits)305   static bool is_simm(intptr_t x, int nbits) { return min_simm(nbits) <= x && x <= max_simm(nbits); }
306 
307   // Define some:
is_simm5(intptr_t x)308   static bool is_simm5( intptr_t x) { return is_simm(x, 5 ); }
is_simm8(intptr_t x)309   static bool is_simm8( intptr_t x) { return is_simm(x, 8 ); }
is_simm10(intptr_t x)310   static bool is_simm10(intptr_t x) { return is_simm(x, 10); }
is_simm11(intptr_t x)311   static bool is_simm11(intptr_t x) { return is_simm(x, 11); }
is_simm12(intptr_t x)312   static bool is_simm12(intptr_t x) { return is_simm(x, 12); }
is_simm13(intptr_t x)313   static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
is_simm16(intptr_t x)314   static bool is_simm16(intptr_t x) { return is_simm(x, 16); }
is_simm26(intptr_t x)315   static bool is_simm26(intptr_t x) { return is_simm(x, 26); }
is_simm32(intptr_t x)316   static bool is_simm32(intptr_t x) { return is_simm(x, 32); }
317 
318   // Accessors
code_section() const319   CodeSection*  code_section() const   { return _code_section; }
code() const320   CodeBuffer*   code()         const   { return code_section()->outer(); }
sect() const321   int           sect()         const   { return code_section()->index(); }
pc() const322   address       pc()           const   { return code_section()->end();   }
offset() const323   int           offset()       const   { return code_section()->size();  }
locator() const324   int           locator()      const   { return CodeBuffer::locator(offset(), sect()); }
325 
oop_recorder() const326   OopRecorder*  oop_recorder() const   { return _oop_recorder; }
set_oop_recorder(OopRecorder * r)327   void      set_oop_recorder(OopRecorder* r) { _oop_recorder = r; }
328 
inst_mark() const329   address       inst_mark() const { return code_section()->mark();       }
set_inst_mark()330   void      set_inst_mark()       {        code_section()->set_mark();   }
clear_inst_mark()331   void    clear_inst_mark()       {        code_section()->clear_mark(); }
332 
333   // Constants in code
relocate(RelocationHolder const & rspec,int format=0)334   void relocate(RelocationHolder const& rspec, int format = 0) {
335     assert(!pd_check_instruction_mark()
336         || inst_mark() == NULL || inst_mark() == code_section()->end(),
337         "call relocate() between instructions");
338     code_section()->relocate(code_section()->end(), rspec, format);
339   }
relocate(relocInfo::relocType rtype,int format=0)340   void relocate(   relocInfo::relocType rtype, int format = 0) {
341     code_section()->relocate(code_section()->end(), rtype, format);
342   }
343 
344   static int code_fill_byte();         // used to pad out odd-sized code buffers
345 
346   // Associate a comment with the current offset.  It will be printed
347   // along with the disassembly when printing nmethods.  Currently
348   // only supported in the instruction section of the code buffer.
349   void block_comment(const char* comment);
350   // Copy str to a buffer that has the same lifetime as the CodeBuffer
351   const char* code_string(const char* str);
352 
353   // Label functions
354   void bind(Label& L); // binds an unbound label L to the current code position
355 
356   // Move to a different section in the same code buffer.
357   void set_code_section(CodeSection* cs);
358 
359   // Inform assembler when generating stub code and relocation info
360   address    start_a_stub(int required_space);
361   void       end_a_stub();
362   // Ditto for constants.
363   address    start_a_const(int required_space, int required_align = sizeof(double));
364   void       end_a_const(CodeSection* cs);  // Pass the codesection to continue in (insts or stubs?).
365 
366   // constants support
367   //
368   // We must remember the code section (insts or stubs) in c1
369   // so we can reset to the proper section in end_a_const().
int_constant(jint c)370   address int_constant(jint c) {
371     CodeSection* c1 = _code_section;
372     address ptr = start_a_const(sizeof(c), sizeof(c));
373     if (ptr != NULL) {
374       emit_int32(c);
375       end_a_const(c1);
376     }
377     return ptr;
378   }
long_constant(jlong c)379   address long_constant(jlong c) {
380     CodeSection* c1 = _code_section;
381     address ptr = start_a_const(sizeof(c), sizeof(c));
382     if (ptr != NULL) {
383       emit_int64(c);
384       end_a_const(c1);
385     }
386     return ptr;
387   }
double_constant(jdouble c)388   address double_constant(jdouble c) {
389     CodeSection* c1 = _code_section;
390     address ptr = start_a_const(sizeof(c), sizeof(c));
391     if (ptr != NULL) {
392       emit_double(c);
393       end_a_const(c1);
394     }
395     return ptr;
396   }
float_constant(jfloat c)397   address float_constant(jfloat c) {
398     CodeSection* c1 = _code_section;
399     address ptr = start_a_const(sizeof(c), sizeof(c));
400     if (ptr != NULL) {
401       emit_float(c);
402       end_a_const(c1);
403     }
404     return ptr;
405   }
address_constant(address c)406   address address_constant(address c) {
407     CodeSection* c1 = _code_section;
408     address ptr = start_a_const(sizeof(c), sizeof(c));
409     if (ptr != NULL) {
410       emit_address(c);
411       end_a_const(c1);
412     }
413     return ptr;
414   }
address_constant(address c,RelocationHolder const & rspec)415   address address_constant(address c, RelocationHolder const& rspec) {
416     CodeSection* c1 = _code_section;
417     address ptr = start_a_const(sizeof(c), sizeof(c));
418     if (ptr != NULL) {
419       relocate(rspec);
420       emit_address(c);
421       end_a_const(c1);
422     }
423     return ptr;
424   }
425 
426   // Bootstrapping aid to cope with delayed determination of constants.
427   // Returns a static address which will eventually contain the constant.
428   // The value zero (NULL) stands instead of a constant which is still uncomputed.
429   // Thus, the eventual value of the constant must not be zero.
430   // This is fine, since this is designed for embedding object field
431   // offsets in code which must be generated before the object class is loaded.
432   // Field offsets are never zero, since an object's header (mark word)
433   // is located at offset zero.
434   RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0);
435   RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0);
436   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0;
437   // Last overloading is platform-dependent; look in assembler_<arch>.cpp.
438   static intptr_t* delayed_value_addr(int(*constant_fn)());
439   static intptr_t* delayed_value_addr(address(*constant_fn)());
440   static void update_delayed_values();
441 
442   // Bang stack to trigger StackOverflowError at a safe location
443   // implementation delegates to machine-specific bang_stack_with_offset
444   void generate_stack_overflow_check( int frame_size_in_bytes );
445   virtual void bang_stack_with_offset(int offset) = 0;
446 
447 
448   /**
449    * A platform-dependent method to patch a jump instruction that refers
450    * to this label.
451    *
452    * @param branch the location of the instruction to patch
453    * @param masm the assembler which generated the branch
454    */
455   void pd_patch_instruction(address branch, address target, const char* file, int line);
456 
457 };
458 
459 #include CPU_HEADER(assembler)
460 
461 #endif // SHARE_ASM_ASSEMBLER_HPP
462