1 /*
2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "gc/g1/g1CollectedHeap.inline.hpp"
27 #include "gc/g1/g1DirtyCardQueue.hpp"
28 #include "gc/g1/g1FreeIdSet.hpp"
29 #include "gc/g1/g1RemSet.hpp"
30 #include "gc/g1/g1ThreadLocalData.hpp"
31 #include "gc/g1/heapRegionRemSet.hpp"
32 #include "gc/shared/suspendibleThreadSet.hpp"
33 #include "gc/shared/workgroup.hpp"
34 #include "runtime/atomic.hpp"
35 #include "runtime/flags/flagSetting.hpp"
36 #include "runtime/mutexLocker.hpp"
37 #include "runtime/safepoint.hpp"
38 #include "runtime/thread.inline.hpp"
39 #include "runtime/threadSMR.hpp"
40 
41 // Closure used for updating remembered sets and recording references that
42 // point into the collection set while the mutator is running.
43 // Assumed to be only executed concurrently with the mutator. Yields via
44 // SuspendibleThreadSet after every card.
45 class G1RefineCardConcurrentlyClosure: public G1CardTableEntryClosure {
46 public:
do_card_ptr(CardValue * card_ptr,uint worker_i)47   bool do_card_ptr(CardValue* card_ptr, uint worker_i) {
48     G1CollectedHeap::heap()->rem_set()->refine_card_concurrently(card_ptr, worker_i);
49 
50     if (SuspendibleThreadSet::should_yield()) {
51       // Caller will actually yield.
52       return false;
53     }
54     // Otherwise, we finished successfully; return true.
55     return true;
56   }
57 };
58 
G1DirtyCardQueue(G1DirtyCardQueueSet * qset)59 G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset) :
60   // Dirty card queues are always active, so we create them with their
61   // active field set to true.
62   PtrQueue(qset, true /* active */)
63 { }
64 
~G1DirtyCardQueue()65 G1DirtyCardQueue::~G1DirtyCardQueue() {
66   flush();
67 }
68 
handle_completed_buffer()69 void G1DirtyCardQueue::handle_completed_buffer() {
70   assert(_buf != NULL, "precondition");
71   BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
72   G1DirtyCardQueueSet* dcqs = dirty_card_qset();
73   if (dcqs->process_or_enqueue_completed_buffer(node)) {
74     reset();                    // Buffer fully processed, reset index.
75   } else {
76     allocate_buffer();          // Buffer enqueued, get a new one.
77   }
78 }
79 
G1DirtyCardQueueSet(bool notify_when_complete)80 G1DirtyCardQueueSet::G1DirtyCardQueueSet(bool notify_when_complete) :
81   PtrQueueSet(notify_when_complete),
82   _max_completed_buffers(MaxCompletedBuffersUnlimited),
83   _completed_buffers_padding(0),
84   _free_ids(NULL),
85   _processed_buffers_mut(0),
86   _processed_buffers_rs_thread(0),
87   _cur_par_buffer_node(NULL)
88 {
89   _all_active = true;
90 }
91 
~G1DirtyCardQueueSet()92 G1DirtyCardQueueSet::~G1DirtyCardQueueSet() {
93   delete _free_ids;
94 }
95 
96 // Determines how many mutator threads can process the buffers in parallel.
num_par_ids()97 uint G1DirtyCardQueueSet::num_par_ids() {
98   return (uint)os::initial_active_processor_count();
99 }
100 
initialize(Monitor * cbl_mon,BufferNode::Allocator * allocator,bool init_free_ids)101 void G1DirtyCardQueueSet::initialize(Monitor* cbl_mon,
102                                      BufferNode::Allocator* allocator,
103                                      bool init_free_ids) {
104   PtrQueueSet::initialize(cbl_mon, allocator);
105   if (init_free_ids) {
106     _free_ids = new G1FreeIdSet(0, num_par_ids());
107   }
108 }
109 
handle_zero_index_for_thread(Thread * t)110 void G1DirtyCardQueueSet::handle_zero_index_for_thread(Thread* t) {
111   G1ThreadLocalData::dirty_card_queue(t).handle_zero_index();
112 }
113 
apply_closure_to_buffer(G1CardTableEntryClosure * cl,BufferNode * node,bool consume,uint worker_i)114 bool G1DirtyCardQueueSet::apply_closure_to_buffer(G1CardTableEntryClosure* cl,
115                                                   BufferNode* node,
116                                                   bool consume,
117                                                   uint worker_i) {
118   if (cl == NULL) return true;
119   bool result = true;
120   void** buf = BufferNode::make_buffer_from_node(node);
121   size_t i = node->index();
122   size_t limit = buffer_size();
123   for ( ; i < limit; ++i) {
124     CardTable::CardValue* card_ptr = static_cast<CardTable::CardValue*>(buf[i]);
125     assert(card_ptr != NULL, "invariant");
126     if (!cl->do_card_ptr(card_ptr, worker_i)) {
127       result = false;           // Incomplete processing.
128       break;
129     }
130   }
131   if (consume) {
132     assert(i <= buffer_size(), "invariant");
133     node->set_index(i);
134   }
135   return result;
136 }
137 
138 #ifndef ASSERT
139 #define assert_fully_consumed(node, buffer_size)
140 #else
141 #define assert_fully_consumed(node, buffer_size)                \
142   do {                                                          \
143     size_t _afc_index = (node)->index();                        \
144     size_t _afc_size = (buffer_size);                           \
145     assert(_afc_index == _afc_size,                             \
146            "Buffer was not fully consumed as claimed: index: "  \
147            SIZE_FORMAT ", size: " SIZE_FORMAT,                  \
148             _afc_index, _afc_size);                             \
149   } while (0)
150 #endif // ASSERT
151 
process_or_enqueue_completed_buffer(BufferNode * node)152 bool G1DirtyCardQueueSet::process_or_enqueue_completed_buffer(BufferNode* node) {
153   if (Thread::current()->is_Java_thread()) {
154     // If the number of buffers exceeds the limit, make this Java
155     // thread do the processing itself.  We don't lock to access
156     // buffer count or padding; it is fine to be imprecise here.  The
157     // add of padding could overflow, which is treated as unlimited.
158     size_t max_buffers = max_completed_buffers();
159     size_t limit = max_buffers + completed_buffers_padding();
160     if ((completed_buffers_num() > limit) && (limit >= max_buffers)) {
161       if (mut_process_buffer(node)) {
162         return true;
163       }
164     }
165   }
166   enqueue_completed_buffer(node);
167   return false;
168 }
169 
mut_process_buffer(BufferNode * node)170 bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) {
171   guarantee(_free_ids != NULL, "must be");
172 
173   uint worker_i = _free_ids->claim_par_id(); // temporarily claim an id
174   G1RefineCardConcurrentlyClosure cl;
175   bool result = apply_closure_to_buffer(&cl, node, true, worker_i);
176   _free_ids->release_par_id(worker_i); // release the id
177 
178   if (result) {
179     assert_fully_consumed(node, buffer_size());
180     Atomic::inc(&_processed_buffers_mut);
181   }
182   return result;
183 }
184 
refine_completed_buffer_concurrently(uint worker_i,size_t stop_at)185 bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_i, size_t stop_at) {
186   G1RefineCardConcurrentlyClosure cl;
187   return apply_closure_to_completed_buffer(&cl, worker_i, stop_at, false);
188 }
189 
apply_closure_during_gc(G1CardTableEntryClosure * cl,uint worker_i)190 bool G1DirtyCardQueueSet::apply_closure_during_gc(G1CardTableEntryClosure* cl, uint worker_i) {
191   assert_at_safepoint();
192   return apply_closure_to_completed_buffer(cl, worker_i, 0, true);
193 }
194 
apply_closure_to_completed_buffer(G1CardTableEntryClosure * cl,uint worker_i,size_t stop_at,bool during_pause)195 bool G1DirtyCardQueueSet::apply_closure_to_completed_buffer(G1CardTableEntryClosure* cl,
196                                                             uint worker_i,
197                                                             size_t stop_at,
198                                                             bool during_pause) {
199   assert(!during_pause || stop_at == 0, "Should not leave any completed buffers during a pause");
200   BufferNode* nd = get_completed_buffer(stop_at);
201   if (nd == NULL) {
202     return false;
203   } else {
204     if (apply_closure_to_buffer(cl, nd, true, worker_i)) {
205       assert_fully_consumed(nd, buffer_size());
206       // Done with fully processed buffer.
207       deallocate_buffer(nd);
208       Atomic::inc(&_processed_buffers_rs_thread);
209     } else {
210       // Return partially processed buffer to the queue.
211       guarantee(!during_pause, "Should never stop early");
212       enqueue_completed_buffer(nd);
213     }
214     return true;
215   }
216 }
217 
par_apply_closure_to_all_completed_buffers(G1CardTableEntryClosure * cl)218 void G1DirtyCardQueueSet::par_apply_closure_to_all_completed_buffers(G1CardTableEntryClosure* cl) {
219   BufferNode* nd = _cur_par_buffer_node;
220   while (nd != NULL) {
221     BufferNode* next = nd->next();
222     BufferNode* actual = Atomic::cmpxchg(next, &_cur_par_buffer_node, nd);
223     if (actual == nd) {
224       bool b = apply_closure_to_buffer(cl, nd, false);
225       guarantee(b, "Should not stop early.");
226       nd = next;
227     } else {
228       nd = actual;
229     }
230   }
231 }
232 
abandon_logs()233 void G1DirtyCardQueueSet::abandon_logs() {
234   assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
235   abandon_completed_buffers();
236 
237   // Since abandon is done only at safepoints, we can safely manipulate
238   // these queues.
239   struct AbandonThreadLogClosure : public ThreadClosure {
240     virtual void do_thread(Thread* t) {
241       G1ThreadLocalData::dirty_card_queue(t).reset();
242     }
243   } closure;
244   Threads::threads_do(&closure);
245 
246   G1BarrierSet::shared_dirty_card_queue().reset();
247 }
248 
concatenate_logs()249 void G1DirtyCardQueueSet::concatenate_logs() {
250   // Iterate over all the threads, if we find a partial log add it to
251   // the global list of logs.  Temporarily turn off the limit on the number
252   // of outstanding buffers.
253   assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
254   size_t old_limit = max_completed_buffers();
255   set_max_completed_buffers(MaxCompletedBuffersUnlimited);
256 
257   struct ConcatenateThreadLogClosure : public ThreadClosure {
258     virtual void do_thread(Thread* t) {
259       G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t);
260       if (!dcq.is_empty()) {
261         dcq.flush();
262       }
263     }
264   } closure;
265   Threads::threads_do(&closure);
266 
267   G1BarrierSet::shared_dirty_card_queue().flush();
268   set_max_completed_buffers(old_limit);
269 }
270