1 /*
2 * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "ci/ciUtilities.inline.hpp"
28 #include "classfile/systemDictionary.hpp"
29 #include "classfile/vmSymbols.hpp"
30 #include "compiler/compileBroker.hpp"
31 #include "compiler/compileLog.hpp"
32 #include "gc/shared/barrierSet.hpp"
33 #include "jfr/support/jfrIntrinsics.hpp"
34 #include "memory/resourceArea.hpp"
35 #include "oops/objArrayKlass.hpp"
36 #include "opto/addnode.hpp"
37 #include "opto/arraycopynode.hpp"
38 #include "opto/c2compiler.hpp"
39 #include "opto/callGenerator.hpp"
40 #include "opto/castnode.hpp"
41 #include "opto/cfgnode.hpp"
42 #include "opto/convertnode.hpp"
43 #include "opto/countbitsnode.hpp"
44 #include "opto/intrinsicnode.hpp"
45 #include "opto/idealKit.hpp"
46 #include "opto/mathexactnode.hpp"
47 #include "opto/movenode.hpp"
48 #include "opto/mulnode.hpp"
49 #include "opto/narrowptrnode.hpp"
50 #include "opto/opaquenode.hpp"
51 #include "opto/parse.hpp"
52 #include "opto/runtime.hpp"
53 #include "opto/rootnode.hpp"
54 #include "opto/subnode.hpp"
55 #include "prims/nativeLookup.hpp"
56 #include "prims/unsafe.hpp"
57 #include "runtime/objectMonitor.hpp"
58 #include "runtime/sharedRuntime.hpp"
59 #include "utilities/macros.hpp"
60
61
62 class LibraryIntrinsic : public InlineCallGenerator {
63 // Extend the set of intrinsics known to the runtime:
64 public:
65 private:
66 bool _is_virtual;
67 bool _does_virtual_dispatch;
68 int8_t _predicates_count; // Intrinsic is predicated by several conditions
69 int8_t _last_predicate; // Last generated predicate
70 vmIntrinsics::ID _intrinsic_id;
71
72 public:
LibraryIntrinsic(ciMethod * m,bool is_virtual,int predicates_count,bool does_virtual_dispatch,vmIntrinsics::ID id)73 LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
74 : InlineCallGenerator(m),
75 _is_virtual(is_virtual),
76 _does_virtual_dispatch(does_virtual_dispatch),
77 _predicates_count((int8_t)predicates_count),
78 _last_predicate((int8_t)-1),
79 _intrinsic_id(id)
80 {
81 }
is_intrinsic() const82 virtual bool is_intrinsic() const { return true; }
is_virtual() const83 virtual bool is_virtual() const { return _is_virtual; }
is_predicated() const84 virtual bool is_predicated() const { return _predicates_count > 0; }
predicates_count() const85 virtual int predicates_count() const { return _predicates_count; }
does_virtual_dispatch() const86 virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; }
87 virtual JVMState* generate(JVMState* jvms);
88 virtual Node* generate_predicate(JVMState* jvms, int predicate);
intrinsic_id() const89 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
90 };
91
92
93 // Local helper class for LibraryIntrinsic:
94 class LibraryCallKit : public GraphKit {
95 private:
96 LibraryIntrinsic* _intrinsic; // the library intrinsic being called
97 Node* _result; // the result node, if any
98 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted
99
100 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
101
102 public:
LibraryCallKit(JVMState * jvms,LibraryIntrinsic * intrinsic)103 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
104 : GraphKit(jvms),
105 _intrinsic(intrinsic),
106 _result(NULL)
107 {
108 // Check if this is a root compile. In that case we don't have a caller.
109 if (!jvms->has_method()) {
110 _reexecute_sp = sp();
111 } else {
112 // Find out how many arguments the interpreter needs when deoptimizing
113 // and save the stack pointer value so it can used by uncommon_trap.
114 // We find the argument count by looking at the declared signature.
115 bool ignored_will_link;
116 ciSignature* declared_signature = NULL;
117 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
118 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
119 _reexecute_sp = sp() + nargs; // "push" arguments back on stack
120 }
121 }
122
is_LibraryCallKit() const123 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
124
caller() const125 ciMethod* caller() const { return jvms()->method(); }
bci() const126 int bci() const { return jvms()->bci(); }
intrinsic() const127 LibraryIntrinsic* intrinsic() const { return _intrinsic; }
intrinsic_id() const128 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); }
callee() const129 ciMethod* callee() const { return _intrinsic->method(); }
130
131 bool try_to_inline(int predicate);
132 Node* try_to_predicate(int predicate);
133
push_result()134 void push_result() {
135 // Push the result onto the stack.
136 if (!stopped() && result() != NULL) {
137 BasicType bt = result()->bottom_type()->basic_type();
138 push_node(bt, result());
139 }
140 }
141
142 private:
fatal_unexpected_iid(vmIntrinsics::ID iid)143 void fatal_unexpected_iid(vmIntrinsics::ID iid) {
144 fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
145 }
146
set_result(Node * n)147 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
148 void set_result(RegionNode* region, PhiNode* value);
result()149 Node* result() { return _result; }
150
reexecute_sp()151 virtual int reexecute_sp() { return _reexecute_sp; }
152
153 // Helper functions to inline natives
154 Node* generate_guard(Node* test, RegionNode* region, float true_prob);
155 Node* generate_slow_guard(Node* test, RegionNode* region);
156 Node* generate_fair_guard(Node* test, RegionNode* region);
157 Node* generate_negative_guard(Node* index, RegionNode* region,
158 // resulting CastII of index:
159 Node* *pos_index = NULL);
160 Node* generate_limit_guard(Node* offset, Node* subseq_length,
161 Node* array_length,
162 RegionNode* region);
163 void generate_string_range_check(Node* array, Node* offset,
164 Node* length, bool char_count);
165 Node* generate_current_thread(Node* &tls_output);
166 Node* load_mirror_from_klass(Node* klass);
167 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
168 RegionNode* region, int null_path,
169 int offset);
load_klass_from_mirror(Node * mirror,bool never_see_null,RegionNode * region,int null_path)170 Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
171 RegionNode* region, int null_path) {
172 int offset = java_lang_Class::klass_offset_in_bytes();
173 return load_klass_from_mirror_common(mirror, never_see_null,
174 region, null_path,
175 offset);
176 }
load_array_klass_from_mirror(Node * mirror,bool never_see_null,RegionNode * region,int null_path)177 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
178 RegionNode* region, int null_path) {
179 int offset = java_lang_Class::array_klass_offset_in_bytes();
180 return load_klass_from_mirror_common(mirror, never_see_null,
181 region, null_path,
182 offset);
183 }
184 Node* generate_access_flags_guard(Node* kls,
185 int modifier_mask, int modifier_bits,
186 RegionNode* region);
187 Node* generate_interface_guard(Node* kls, RegionNode* region);
generate_array_guard(Node * kls,RegionNode * region)188 Node* generate_array_guard(Node* kls, RegionNode* region) {
189 return generate_array_guard_common(kls, region, false, false);
190 }
generate_non_array_guard(Node * kls,RegionNode * region)191 Node* generate_non_array_guard(Node* kls, RegionNode* region) {
192 return generate_array_guard_common(kls, region, false, true);
193 }
generate_objArray_guard(Node * kls,RegionNode * region)194 Node* generate_objArray_guard(Node* kls, RegionNode* region) {
195 return generate_array_guard_common(kls, region, true, false);
196 }
generate_non_objArray_guard(Node * kls,RegionNode * region)197 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
198 return generate_array_guard_common(kls, region, true, true);
199 }
200 Node* generate_array_guard_common(Node* kls, RegionNode* region,
201 bool obj_array, bool not_array);
202 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
203 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
204 bool is_virtual = false, bool is_static = false);
generate_method_call_static(vmIntrinsics::ID method_id)205 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
206 return generate_method_call(method_id, false, true);
207 }
generate_method_call_virtual(vmIntrinsics::ID method_id)208 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
209 return generate_method_call(method_id, true, false);
210 }
211 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
212 Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
213
214 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
215 bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
216 bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
217 bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
218 Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
219 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
220 bool inline_string_indexOfChar();
221 bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
222 bool inline_string_toBytesU();
223 bool inline_string_getCharsU();
224 bool inline_string_copy(bool compress);
225 bool inline_string_char_access(bool is_store);
226 Node* round_double_node(Node* n);
227 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
228 bool inline_math_native(vmIntrinsics::ID id);
229 bool inline_math(vmIntrinsics::ID id);
230 bool inline_double_math(vmIntrinsics::ID id);
231 template <typename OverflowOp>
232 bool inline_math_overflow(Node* arg1, Node* arg2);
233 void inline_math_mathExact(Node* math, Node* test);
234 bool inline_math_addExactI(bool is_increment);
235 bool inline_math_addExactL(bool is_increment);
236 bool inline_math_multiplyExactI();
237 bool inline_math_multiplyExactL();
238 bool inline_math_multiplyHigh();
239 bool inline_math_negateExactI();
240 bool inline_math_negateExactL();
241 bool inline_math_subtractExactI(bool is_decrement);
242 bool inline_math_subtractExactL(bool is_decrement);
243 bool inline_min_max(vmIntrinsics::ID id);
244 bool inline_notify(vmIntrinsics::ID id);
245 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
246 // This returns Type::AnyPtr, RawPtr, or OopPtr.
247 int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
248 Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false);
249
250 typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
251 DecoratorSet mo_decorator_for_access_kind(AccessKind kind);
252 bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
253 static bool klass_needs_init_guard(Node* kls);
254 bool inline_unsafe_allocate();
255 bool inline_unsafe_newArray(bool uninitialized);
256 bool inline_unsafe_copyMemory();
257 bool inline_native_currentThread();
258
259 bool inline_native_time_funcs(address method, const char* funcName);
260 #ifdef JFR_HAVE_INTRINSICS
261 bool inline_native_classID();
262 bool inline_native_getEventWriter();
263 #endif
264 bool inline_native_isInterrupted();
265 bool inline_native_Class_query(vmIntrinsics::ID id);
266 bool inline_native_subtype_check();
267 bool inline_native_getLength();
268 bool inline_array_copyOf(bool is_copyOfRange);
269 bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
270 bool inline_preconditions_checkIndex();
271 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array);
272 bool inline_native_clone(bool is_virtual);
273 bool inline_native_Reflection_getCallerClass();
274 // Helper function for inlining native object hash method
275 bool inline_native_hashcode(bool is_virtual, bool is_static);
276 bool inline_native_getClass();
277
278 // Helper functions for inlining arraycopy
279 bool inline_arraycopy();
280 AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
281 RegionNode* slow_region);
282 JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
283 void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
284 uint new_idx);
285
286 typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
287 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind, AccessKind access_kind);
288 bool inline_unsafe_fence(vmIntrinsics::ID id);
289 bool inline_onspinwait();
290 bool inline_fp_conversions(vmIntrinsics::ID id);
291 bool inline_number_methods(vmIntrinsics::ID id);
292 bool inline_reference_get();
293 bool inline_Class_cast();
294 bool inline_aescrypt_Block(vmIntrinsics::ID id);
295 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
296 bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
297 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
298 Node* inline_counterMode_AESCrypt_predicate();
299 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
300 Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
301 bool inline_ghash_processBlocks();
302 bool inline_base64_encodeBlock();
303 bool inline_sha_implCompress(vmIntrinsics::ID id);
304 bool inline_digestBase_implCompressMB(int predicate);
305 bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
306 bool long_state, address stubAddr, const char *stubName,
307 Node* src_start, Node* ofs, Node* limit);
308 Node* get_state_from_sha_object(Node *sha_object);
309 Node* get_state_from_sha5_object(Node *sha_object);
310 Node* inline_digestBase_implCompressMB_predicate(int predicate);
311 bool inline_encodeISOArray();
312 bool inline_updateCRC32();
313 bool inline_updateBytesCRC32();
314 bool inline_updateByteBufferCRC32();
315 Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
316 bool inline_updateBytesCRC32C();
317 bool inline_updateDirectByteBufferCRC32C();
318 bool inline_updateBytesAdler32();
319 bool inline_updateByteBufferAdler32();
320 bool inline_multiplyToLen();
321 bool inline_hasNegatives();
322 bool inline_squareToLen();
323 bool inline_mulAdd();
324 bool inline_montgomeryMultiply();
325 bool inline_montgomerySquare();
326 bool inline_vectorizedMismatch();
327 bool inline_fma(vmIntrinsics::ID id);
328 bool inline_character_compare(vmIntrinsics::ID id);
329 bool inline_fp_min_max(vmIntrinsics::ID id);
330
331 bool inline_profileBoolean();
332 bool inline_isCompileConstant();
clear_upper_avx()333 void clear_upper_avx() {
334 #ifdef X86
335 if (UseAVX >= 2) {
336 C->set_clear_upper_avx(true);
337 }
338 #endif
339 }
340 };
341
342 //---------------------------make_vm_intrinsic----------------------------
make_vm_intrinsic(ciMethod * m,bool is_virtual)343 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
344 vmIntrinsics::ID id = m->intrinsic_id();
345 assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
346
347 if (!m->is_loaded()) {
348 // Do not attempt to inline unloaded methods.
349 return NULL;
350 }
351
352 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
353 bool is_available = false;
354
355 {
356 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
357 // the compiler must transition to '_thread_in_vm' state because both
358 // methods access VM-internal data.
359 VM_ENTRY_MARK;
360 methodHandle mh(THREAD, m->get_Method());
361 is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
362 !C->directive()->is_intrinsic_disabled(mh) &&
363 !vmIntrinsics::is_disabled_by_flags(mh);
364
365 }
366
367 if (is_available) {
368 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
369 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
370 return new LibraryIntrinsic(m, is_virtual,
371 vmIntrinsics::predicates_needed(id),
372 vmIntrinsics::does_virtual_dispatch(id),
373 (vmIntrinsics::ID) id);
374 } else {
375 return NULL;
376 }
377 }
378
379 //----------------------register_library_intrinsics-----------------------
380 // Initialize this file's data structures, for each Compile instance.
register_library_intrinsics()381 void Compile::register_library_intrinsics() {
382 // Nothing to do here.
383 }
384
generate(JVMState * jvms)385 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
386 LibraryCallKit kit(jvms, this);
387 Compile* C = kit.C;
388 int nodes = C->unique();
389 #ifndef PRODUCT
390 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
391 char buf[1000];
392 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
393 tty->print_cr("Intrinsic %s", str);
394 }
395 #endif
396 ciMethod* callee = kit.callee();
397 const int bci = kit.bci();
398
399 // Try to inline the intrinsic.
400 if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
401 kit.try_to_inline(_last_predicate)) {
402 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
403 : "(intrinsic)";
404 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
405 if (C->print_intrinsics() || C->print_inlining()) {
406 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
407 }
408 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
409 if (C->log()) {
410 C->log()->elem("intrinsic id='%s'%s nodes='%d'",
411 vmIntrinsics::name_at(intrinsic_id()),
412 (is_virtual() ? " virtual='1'" : ""),
413 C->unique() - nodes);
414 }
415 // Push the result from the inlined method onto the stack.
416 kit.push_result();
417 C->print_inlining_update(this);
418 return kit.transfer_exceptions_into_jvms();
419 }
420
421 // The intrinsic bailed out
422 if (jvms->has_method()) {
423 // Not a root compile.
424 const char* msg;
425 if (callee->intrinsic_candidate()) {
426 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
427 } else {
428 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
429 : "failed to inline (intrinsic), method not annotated";
430 }
431 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
432 if (C->print_intrinsics() || C->print_inlining()) {
433 C->print_inlining(callee, jvms->depth() - 1, bci, msg);
434 }
435 } else {
436 // Root compile
437 ResourceMark rm;
438 stringStream msg_stream;
439 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
440 vmIntrinsics::name_at(intrinsic_id()),
441 is_virtual() ? " (virtual)" : "", bci);
442 const char *msg = msg_stream.as_string();
443 log_debug(jit, inlining)("%s", msg);
444 if (C->print_intrinsics() || C->print_inlining()) {
445 tty->print("%s", msg);
446 }
447 }
448 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
449 C->print_inlining_update(this);
450 return NULL;
451 }
452
generate_predicate(JVMState * jvms,int predicate)453 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
454 LibraryCallKit kit(jvms, this);
455 Compile* C = kit.C;
456 int nodes = C->unique();
457 _last_predicate = predicate;
458 #ifndef PRODUCT
459 assert(is_predicated() && predicate < predicates_count(), "sanity");
460 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
461 char buf[1000];
462 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
463 tty->print_cr("Predicate for intrinsic %s", str);
464 }
465 #endif
466 ciMethod* callee = kit.callee();
467 const int bci = kit.bci();
468
469 Node* slow_ctl = kit.try_to_predicate(predicate);
470 if (!kit.failing()) {
471 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
472 : "(intrinsic, predicate)";
473 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
474 if (C->print_intrinsics() || C->print_inlining()) {
475 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
476 }
477 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
478 if (C->log()) {
479 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
480 vmIntrinsics::name_at(intrinsic_id()),
481 (is_virtual() ? " virtual='1'" : ""),
482 C->unique() - nodes);
483 }
484 return slow_ctl; // Could be NULL if the check folds.
485 }
486
487 // The intrinsic bailed out
488 if (jvms->has_method()) {
489 // Not a root compile.
490 const char* msg = "failed to generate predicate for intrinsic";
491 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
492 if (C->print_intrinsics() || C->print_inlining()) {
493 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
494 }
495 } else {
496 // Root compile
497 ResourceMark rm;
498 stringStream msg_stream;
499 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
500 vmIntrinsics::name_at(intrinsic_id()),
501 is_virtual() ? " (virtual)" : "", bci);
502 const char *msg = msg_stream.as_string();
503 log_debug(jit, inlining)("%s", msg);
504 if (C->print_intrinsics() || C->print_inlining()) {
505 C->print_inlining_stream()->print("%s", msg);
506 }
507 }
508 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
509 return NULL;
510 }
511
try_to_inline(int predicate)512 bool LibraryCallKit::try_to_inline(int predicate) {
513 // Handle symbolic names for otherwise undistinguished boolean switches:
514 const bool is_store = true;
515 const bool is_compress = true;
516 const bool is_static = true;
517 const bool is_volatile = true;
518
519 if (!jvms()->has_method()) {
520 // Root JVMState has a null method.
521 assert(map()->memory()->Opcode() == Op_Parm, "");
522 // Insert the memory aliasing node
523 set_all_memory(reset_memory());
524 }
525 assert(merged_memory(), "");
526
527
528 switch (intrinsic_id()) {
529 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
530 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static);
531 case vmIntrinsics::_getClass: return inline_native_getClass();
532
533 case vmIntrinsics::_ceil:
534 case vmIntrinsics::_floor:
535 case vmIntrinsics::_rint:
536 case vmIntrinsics::_dsin:
537 case vmIntrinsics::_dcos:
538 case vmIntrinsics::_dtan:
539 case vmIntrinsics::_dabs:
540 case vmIntrinsics::_fabs:
541 case vmIntrinsics::_iabs:
542 case vmIntrinsics::_labs:
543 case vmIntrinsics::_datan2:
544 case vmIntrinsics::_dsqrt:
545 case vmIntrinsics::_dexp:
546 case vmIntrinsics::_dlog:
547 case vmIntrinsics::_dlog10:
548 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id());
549
550 case vmIntrinsics::_min:
551 case vmIntrinsics::_max: return inline_min_max(intrinsic_id());
552
553 case vmIntrinsics::_notify:
554 case vmIntrinsics::_notifyAll:
555 return inline_notify(intrinsic_id());
556
557 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */);
558 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */);
559 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */);
560 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */);
561 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */);
562 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */);
563 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI();
564 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL();
565 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh();
566 case vmIntrinsics::_negateExactI: return inline_math_negateExactI();
567 case vmIntrinsics::_negateExactL: return inline_math_negateExactL();
568 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */);
569 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */);
570
571 case vmIntrinsics::_arraycopy: return inline_arraycopy();
572
573 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL);
574 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU);
575 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU);
576 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL);
577
578 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL);
579 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU);
580 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL);
581 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL);
582 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU);
583 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL);
584 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar();
585
586 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL);
587 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU);
588
589 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU();
590 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU();
591 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store);
592 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store);
593
594 case vmIntrinsics::_compressStringC:
595 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress);
596 case vmIntrinsics::_inflateStringC:
597 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress);
598
599 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false);
600 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false);
601 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false);
602 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false);
603 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false);
604 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false);
605 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false);
606 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false);
607 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false);
608
609 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false);
610 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false);
611 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false);
612 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false);
613 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false);
614 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false);
615 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false);
616 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false);
617 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false);
618
619 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false);
620 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false);
621 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false);
622 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false);
623 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false);
624 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false);
625 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false);
626 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false);
627 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false);
628
629 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false);
630 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false);
631 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false);
632 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false);
633 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false);
634 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false);
635 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false);
636 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false);
637 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false);
638
639 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true);
640 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true);
641 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true);
642 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true);
643
644 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true);
645 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true);
646 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true);
647 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true);
648
649 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false);
650 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false);
651 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false);
652 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false);
653 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false);
654 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false);
655 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false);
656 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false);
657 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false);
658
659 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false);
660 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false);
661 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false);
662 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false);
663 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false);
664 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false);
665 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false);
666 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false);
667 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false);
668
669 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false);
670 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false);
671 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false);
672 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false);
673 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false);
674 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false);
675 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false);
676 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false);
677 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false);
678
679 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false);
680 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false);
681 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false);
682 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false);
683 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false);
684 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false);
685 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false);
686 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false);
687 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false);
688
689 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile);
690 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile);
691 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile);
692 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile);
693 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile);
694
695 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
696 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
697 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
698 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
699 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed);
700 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire);
701 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release);
702 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile);
703 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed);
704 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire);
705 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release);
706 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile);
707 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed);
708 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire);
709 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release);
710 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile);
711 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed);
712 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire);
713 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release);
714 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile);
715
716 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile);
717 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire);
718 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release);
719 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile);
720 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire);
721 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release);
722 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile);
723 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire);
724 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release);
725 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile);
726 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire);
727 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release);
728 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile);
729 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire);
730 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release);
731
732 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile);
733 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile);
734 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile);
735 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile);
736
737 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile);
738 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile);
739 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile);
740 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile);
741 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile);
742
743 case vmIntrinsics::_loadFence:
744 case vmIntrinsics::_storeFence:
745 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id());
746
747 case vmIntrinsics::_onSpinWait: return inline_onspinwait();
748
749 case vmIntrinsics::_currentThread: return inline_native_currentThread();
750 case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted();
751
752 #ifdef JFR_HAVE_INTRINSICS
753 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime");
754 case vmIntrinsics::_getClassId: return inline_native_classID();
755 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter();
756 #endif
757 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
758 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
759 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate();
760 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory();
761 case vmIntrinsics::_getLength: return inline_native_getLength();
762 case vmIntrinsics::_copyOf: return inline_array_copyOf(false);
763 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true);
764 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL);
765 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU);
766 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
767 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual());
768
769 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
770 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false);
771
772 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check();
773
774 case vmIntrinsics::_isInstance:
775 case vmIntrinsics::_getModifiers:
776 case vmIntrinsics::_isInterface:
777 case vmIntrinsics::_isArray:
778 case vmIntrinsics::_isPrimitive:
779 case vmIntrinsics::_getSuperclass:
780 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id());
781
782 case vmIntrinsics::_floatToRawIntBits:
783 case vmIntrinsics::_floatToIntBits:
784 case vmIntrinsics::_intBitsToFloat:
785 case vmIntrinsics::_doubleToRawLongBits:
786 case vmIntrinsics::_doubleToLongBits:
787 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id());
788
789 case vmIntrinsics::_numberOfLeadingZeros_i:
790 case vmIntrinsics::_numberOfLeadingZeros_l:
791 case vmIntrinsics::_numberOfTrailingZeros_i:
792 case vmIntrinsics::_numberOfTrailingZeros_l:
793 case vmIntrinsics::_bitCount_i:
794 case vmIntrinsics::_bitCount_l:
795 case vmIntrinsics::_reverseBytes_i:
796 case vmIntrinsics::_reverseBytes_l:
797 case vmIntrinsics::_reverseBytes_s:
798 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id());
799
800 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass();
801
802 case vmIntrinsics::_Reference_get: return inline_reference_get();
803
804 case vmIntrinsics::_Class_cast: return inline_Class_cast();
805
806 case vmIntrinsics::_aescrypt_encryptBlock:
807 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id());
808
809 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
810 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
811 return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
812
813 case vmIntrinsics::_counterMode_AESCrypt:
814 return inline_counterMode_AESCrypt(intrinsic_id());
815
816 case vmIntrinsics::_sha_implCompress:
817 case vmIntrinsics::_sha2_implCompress:
818 case vmIntrinsics::_sha5_implCompress:
819 return inline_sha_implCompress(intrinsic_id());
820
821 case vmIntrinsics::_digestBase_implCompressMB:
822 return inline_digestBase_implCompressMB(predicate);
823
824 case vmIntrinsics::_multiplyToLen:
825 return inline_multiplyToLen();
826
827 case vmIntrinsics::_squareToLen:
828 return inline_squareToLen();
829
830 case vmIntrinsics::_mulAdd:
831 return inline_mulAdd();
832
833 case vmIntrinsics::_montgomeryMultiply:
834 return inline_montgomeryMultiply();
835 case vmIntrinsics::_montgomerySquare:
836 return inline_montgomerySquare();
837
838 case vmIntrinsics::_vectorizedMismatch:
839 return inline_vectorizedMismatch();
840
841 case vmIntrinsics::_ghash_processBlocks:
842 return inline_ghash_processBlocks();
843 case vmIntrinsics::_base64_encodeBlock:
844 return inline_base64_encodeBlock();
845
846 case vmIntrinsics::_encodeISOArray:
847 case vmIntrinsics::_encodeByteISOArray:
848 return inline_encodeISOArray();
849
850 case vmIntrinsics::_updateCRC32:
851 return inline_updateCRC32();
852 case vmIntrinsics::_updateBytesCRC32:
853 return inline_updateBytesCRC32();
854 case vmIntrinsics::_updateByteBufferCRC32:
855 return inline_updateByteBufferCRC32();
856
857 case vmIntrinsics::_updateBytesCRC32C:
858 return inline_updateBytesCRC32C();
859 case vmIntrinsics::_updateDirectByteBufferCRC32C:
860 return inline_updateDirectByteBufferCRC32C();
861
862 case vmIntrinsics::_updateBytesAdler32:
863 return inline_updateBytesAdler32();
864 case vmIntrinsics::_updateByteBufferAdler32:
865 return inline_updateByteBufferAdler32();
866
867 case vmIntrinsics::_profileBoolean:
868 return inline_profileBoolean();
869 case vmIntrinsics::_isCompileConstant:
870 return inline_isCompileConstant();
871
872 case vmIntrinsics::_hasNegatives:
873 return inline_hasNegatives();
874
875 case vmIntrinsics::_fmaD:
876 case vmIntrinsics::_fmaF:
877 return inline_fma(intrinsic_id());
878
879 case vmIntrinsics::_isDigit:
880 case vmIntrinsics::_isLowerCase:
881 case vmIntrinsics::_isUpperCase:
882 case vmIntrinsics::_isWhitespace:
883 return inline_character_compare(intrinsic_id());
884
885 case vmIntrinsics::_maxF:
886 case vmIntrinsics::_minF:
887 case vmIntrinsics::_maxD:
888 case vmIntrinsics::_minD:
889 return inline_fp_min_max(intrinsic_id());
890
891 default:
892 // If you get here, it may be that someone has added a new intrinsic
893 // to the list in vmSymbols.hpp without implementing it here.
894 #ifndef PRODUCT
895 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
896 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
897 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
898 }
899 #endif
900 return false;
901 }
902 }
903
try_to_predicate(int predicate)904 Node* LibraryCallKit::try_to_predicate(int predicate) {
905 if (!jvms()->has_method()) {
906 // Root JVMState has a null method.
907 assert(map()->memory()->Opcode() == Op_Parm, "");
908 // Insert the memory aliasing node
909 set_all_memory(reset_memory());
910 }
911 assert(merged_memory(), "");
912
913 switch (intrinsic_id()) {
914 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
915 return inline_cipherBlockChaining_AESCrypt_predicate(false);
916 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
917 return inline_cipherBlockChaining_AESCrypt_predicate(true);
918 case vmIntrinsics::_counterMode_AESCrypt:
919 return inline_counterMode_AESCrypt_predicate();
920 case vmIntrinsics::_digestBase_implCompressMB:
921 return inline_digestBase_implCompressMB_predicate(predicate);
922
923 default:
924 // If you get here, it may be that someone has added a new intrinsic
925 // to the list in vmSymbols.hpp without implementing it here.
926 #ifndef PRODUCT
927 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
928 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
929 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
930 }
931 #endif
932 Node* slow_ctl = control();
933 set_control(top()); // No fast path instrinsic
934 return slow_ctl;
935 }
936 }
937
938 //------------------------------set_result-------------------------------
939 // Helper function for finishing intrinsics.
set_result(RegionNode * region,PhiNode * value)940 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
941 record_for_igvn(region);
942 set_control(_gvn.transform(region));
943 set_result( _gvn.transform(value));
944 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
945 }
946
947 //------------------------------generate_guard---------------------------
948 // Helper function for generating guarded fast-slow graph structures.
949 // The given 'test', if true, guards a slow path. If the test fails
950 // then a fast path can be taken. (We generally hope it fails.)
951 // In all cases, GraphKit::control() is updated to the fast path.
952 // The returned value represents the control for the slow path.
953 // The return value is never 'top'; it is either a valid control
954 // or NULL if it is obvious that the slow path can never be taken.
955 // Also, if region and the slow control are not NULL, the slow edge
956 // is appended to the region.
generate_guard(Node * test,RegionNode * region,float true_prob)957 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
958 if (stopped()) {
959 // Already short circuited.
960 return NULL;
961 }
962
963 // Build an if node and its projections.
964 // If test is true we take the slow path, which we assume is uncommon.
965 if (_gvn.type(test) == TypeInt::ZERO) {
966 // The slow branch is never taken. No need to build this guard.
967 return NULL;
968 }
969
970 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
971
972 Node* if_slow = _gvn.transform(new IfTrueNode(iff));
973 if (if_slow == top()) {
974 // The slow branch is never taken. No need to build this guard.
975 return NULL;
976 }
977
978 if (region != NULL)
979 region->add_req(if_slow);
980
981 Node* if_fast = _gvn.transform(new IfFalseNode(iff));
982 set_control(if_fast);
983
984 return if_slow;
985 }
986
generate_slow_guard(Node * test,RegionNode * region)987 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
988 return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
989 }
generate_fair_guard(Node * test,RegionNode * region)990 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
991 return generate_guard(test, region, PROB_FAIR);
992 }
993
generate_negative_guard(Node * index,RegionNode * region,Node ** pos_index)994 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
995 Node* *pos_index) {
996 if (stopped())
997 return NULL; // already stopped
998 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
999 return NULL; // index is already adequately typed
1000 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1001 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1002 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1003 if (is_neg != NULL && pos_index != NULL) {
1004 // Emulate effect of Parse::adjust_map_after_if.
1005 Node* ccast = new CastIINode(index, TypeInt::POS);
1006 ccast->set_req(0, control());
1007 (*pos_index) = _gvn.transform(ccast);
1008 }
1009 return is_neg;
1010 }
1011
1012 // Make sure that 'position' is a valid limit index, in [0..length].
1013 // There are two equivalent plans for checking this:
1014 // A. (offset + copyLength) unsigned<= arrayLength
1015 // B. offset <= (arrayLength - copyLength)
1016 // We require that all of the values above, except for the sum and
1017 // difference, are already known to be non-negative.
1018 // Plan A is robust in the face of overflow, if offset and copyLength
1019 // are both hugely positive.
1020 //
1021 // Plan B is less direct and intuitive, but it does not overflow at
1022 // all, since the difference of two non-negatives is always
1023 // representable. Whenever Java methods must perform the equivalent
1024 // check they generally use Plan B instead of Plan A.
1025 // For the moment we use Plan A.
generate_limit_guard(Node * offset,Node * subseq_length,Node * array_length,RegionNode * region)1026 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1027 Node* subseq_length,
1028 Node* array_length,
1029 RegionNode* region) {
1030 if (stopped())
1031 return NULL; // already stopped
1032 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1033 if (zero_offset && subseq_length->eqv_uncast(array_length))
1034 return NULL; // common case of whole-array copy
1035 Node* last = subseq_length;
1036 if (!zero_offset) // last += offset
1037 last = _gvn.transform(new AddINode(last, offset));
1038 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1039 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1040 Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1041 return is_over;
1042 }
1043
1044 // Emit range checks for the given String.value byte array
generate_string_range_check(Node * array,Node * offset,Node * count,bool char_count)1045 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1046 if (stopped()) {
1047 return; // already stopped
1048 }
1049 RegionNode* bailout = new RegionNode(1);
1050 record_for_igvn(bailout);
1051 if (char_count) {
1052 // Convert char count to byte count
1053 count = _gvn.transform(new LShiftINode(count, intcon(1)));
1054 }
1055
1056 // Offset and count must not be negative
1057 generate_negative_guard(offset, bailout);
1058 generate_negative_guard(count, bailout);
1059 // Offset + count must not exceed length of array
1060 generate_limit_guard(offset, count, load_array_length(array), bailout);
1061
1062 if (bailout->req() > 1) {
1063 PreserveJVMState pjvms(this);
1064 set_control(_gvn.transform(bailout));
1065 uncommon_trap(Deoptimization::Reason_intrinsic,
1066 Deoptimization::Action_maybe_recompile);
1067 }
1068 }
1069
1070 //--------------------------generate_current_thread--------------------
generate_current_thread(Node * & tls_output)1071 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1072 ciKlass* thread_klass = env()->Thread_klass();
1073 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1074 Node* thread = _gvn.transform(new ThreadLocalNode());
1075 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1076 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1077 tls_output = thread;
1078 return threadObj;
1079 }
1080
1081
1082 //------------------------------make_string_method_node------------------------
1083 // Helper method for String intrinsic functions. This version is called with
1084 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1085 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1086 // containing the lengths of str1 and str2.
make_string_method_node(int opcode,Node * str1_start,Node * cnt1,Node * str2_start,Node * cnt2,StrIntrinsicNode::ArgEnc ae)1087 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1088 Node* result = NULL;
1089 switch (opcode) {
1090 case Op_StrIndexOf:
1091 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1092 str1_start, cnt1, str2_start, cnt2, ae);
1093 break;
1094 case Op_StrComp:
1095 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1096 str1_start, cnt1, str2_start, cnt2, ae);
1097 break;
1098 case Op_StrEquals:
1099 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1100 // Use the constant length if there is one because optimized match rule may exist.
1101 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1102 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1103 break;
1104 default:
1105 ShouldNotReachHere();
1106 return NULL;
1107 }
1108
1109 // All these intrinsics have checks.
1110 C->set_has_split_ifs(true); // Has chance for split-if optimization
1111 clear_upper_avx();
1112
1113 return _gvn.transform(result);
1114 }
1115
1116 //------------------------------inline_string_compareTo------------------------
inline_string_compareTo(StrIntrinsicNode::ArgEnc ae)1117 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1118 Node* arg1 = argument(0);
1119 Node* arg2 = argument(1);
1120
1121 arg1 = must_be_not_null(arg1, true);
1122 arg2 = must_be_not_null(arg2, true);
1123
1124 arg1 = access_resolve(arg1, ACCESS_READ);
1125 arg2 = access_resolve(arg2, ACCESS_READ);
1126
1127 // Get start addr and length of first argument
1128 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE);
1129 Node* arg1_cnt = load_array_length(arg1);
1130
1131 // Get start addr and length of second argument
1132 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE);
1133 Node* arg2_cnt = load_array_length(arg2);
1134
1135 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1136 set_result(result);
1137 return true;
1138 }
1139
1140 //------------------------------inline_string_equals------------------------
inline_string_equals(StrIntrinsicNode::ArgEnc ae)1141 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1142 Node* arg1 = argument(0);
1143 Node* arg2 = argument(1);
1144
1145 // paths (plus control) merge
1146 RegionNode* region = new RegionNode(3);
1147 Node* phi = new PhiNode(region, TypeInt::BOOL);
1148
1149 if (!stopped()) {
1150
1151 arg1 = must_be_not_null(arg1, true);
1152 arg2 = must_be_not_null(arg2, true);
1153
1154 arg1 = access_resolve(arg1, ACCESS_READ);
1155 arg2 = access_resolve(arg2, ACCESS_READ);
1156
1157 // Get start addr and length of first argument
1158 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE);
1159 Node* arg1_cnt = load_array_length(arg1);
1160
1161 // Get start addr and length of second argument
1162 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE);
1163 Node* arg2_cnt = load_array_length(arg2);
1164
1165 // Check for arg1_cnt != arg2_cnt
1166 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1167 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1168 Node* if_ne = generate_slow_guard(bol, NULL);
1169 if (if_ne != NULL) {
1170 phi->init_req(2, intcon(0));
1171 region->init_req(2, if_ne);
1172 }
1173
1174 // Check for count == 0 is done by assembler code for StrEquals.
1175
1176 if (!stopped()) {
1177 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1178 phi->init_req(1, equals);
1179 region->init_req(1, control());
1180 }
1181 }
1182
1183 // post merge
1184 set_control(_gvn.transform(region));
1185 record_for_igvn(region);
1186
1187 set_result(_gvn.transform(phi));
1188 return true;
1189 }
1190
1191 //------------------------------inline_array_equals----------------------------
inline_array_equals(StrIntrinsicNode::ArgEnc ae)1192 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1193 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1194 Node* arg1 = argument(0);
1195 Node* arg2 = argument(1);
1196
1197 arg1 = access_resolve(arg1, ACCESS_READ);
1198 arg2 = access_resolve(arg2, ACCESS_READ);
1199
1200 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1201 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1202 clear_upper_avx();
1203
1204 return true;
1205 }
1206
1207 //------------------------------inline_hasNegatives------------------------------
inline_hasNegatives()1208 bool LibraryCallKit::inline_hasNegatives() {
1209 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1210 return false;
1211 }
1212
1213 assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1214 // no receiver since it is static method
1215 Node* ba = argument(0);
1216 Node* offset = argument(1);
1217 Node* len = argument(2);
1218
1219 ba = must_be_not_null(ba, true);
1220
1221 // Range checks
1222 generate_string_range_check(ba, offset, len, false);
1223 if (stopped()) {
1224 return true;
1225 }
1226 ba = access_resolve(ba, ACCESS_READ);
1227 Node* ba_start = array_element_address(ba, offset, T_BYTE);
1228 Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1229 set_result(_gvn.transform(result));
1230 return true;
1231 }
1232
inline_preconditions_checkIndex()1233 bool LibraryCallKit::inline_preconditions_checkIndex() {
1234 Node* index = argument(0);
1235 Node* length = argument(1);
1236 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1237 return false;
1238 }
1239
1240 Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1241 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1242
1243 {
1244 BuildCutout unless(this, len_pos_bol, PROB_MAX);
1245 uncommon_trap(Deoptimization::Reason_intrinsic,
1246 Deoptimization::Action_make_not_entrant);
1247 }
1248
1249 if (stopped()) {
1250 return false;
1251 }
1252
1253 Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1254 BoolTest::mask btest = BoolTest::lt;
1255 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1256 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1257 _gvn.set_type(rc, rc->Value(&_gvn));
1258 if (!rc_bool->is_Con()) {
1259 record_for_igvn(rc);
1260 }
1261 set_control(_gvn.transform(new IfTrueNode(rc)));
1262 {
1263 PreserveJVMState pjvms(this);
1264 set_control(_gvn.transform(new IfFalseNode(rc)));
1265 uncommon_trap(Deoptimization::Reason_range_check,
1266 Deoptimization::Action_make_not_entrant);
1267 }
1268
1269 if (stopped()) {
1270 return false;
1271 }
1272
1273 Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1274 result->set_req(0, control());
1275 result = _gvn.transform(result);
1276 set_result(result);
1277 replace_in_map(index, result);
1278 clear_upper_avx();
1279 return true;
1280 }
1281
1282 //------------------------------inline_string_indexOf------------------------
inline_string_indexOf(StrIntrinsicNode::ArgEnc ae)1283 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1284 if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1285 return false;
1286 }
1287 Node* src = argument(0);
1288 Node* tgt = argument(1);
1289
1290 // Make the merge point
1291 RegionNode* result_rgn = new RegionNode(4);
1292 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT);
1293
1294 src = must_be_not_null(src, true);
1295 tgt = must_be_not_null(tgt, true);
1296
1297 src = access_resolve(src, ACCESS_READ);
1298 tgt = access_resolve(tgt, ACCESS_READ);
1299
1300 // Get start addr and length of source string
1301 Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1302 Node* src_count = load_array_length(src);
1303
1304 // Get start addr and length of substring
1305 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1306 Node* tgt_count = load_array_length(tgt);
1307
1308 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1309 // Divide src size by 2 if String is UTF16 encoded
1310 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1311 }
1312 if (ae == StrIntrinsicNode::UU) {
1313 // Divide substring size by 2 if String is UTF16 encoded
1314 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1315 }
1316
1317 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1318 if (result != NULL) {
1319 result_phi->init_req(3, result);
1320 result_rgn->init_req(3, control());
1321 }
1322 set_control(_gvn.transform(result_rgn));
1323 record_for_igvn(result_rgn);
1324 set_result(_gvn.transform(result_phi));
1325
1326 return true;
1327 }
1328
1329 //-----------------------------inline_string_indexOf-----------------------
inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae)1330 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1331 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1332 return false;
1333 }
1334 if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1335 return false;
1336 }
1337 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1338 Node* src = argument(0); // byte[]
1339 Node* src_count = argument(1); // char count
1340 Node* tgt = argument(2); // byte[]
1341 Node* tgt_count = argument(3); // char count
1342 Node* from_index = argument(4); // char index
1343
1344 src = must_be_not_null(src, true);
1345 tgt = must_be_not_null(tgt, true);
1346
1347 src = access_resolve(src, ACCESS_READ);
1348 tgt = access_resolve(tgt, ACCESS_READ);
1349
1350 // Multiply byte array index by 2 if String is UTF16 encoded
1351 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1352 src_count = _gvn.transform(new SubINode(src_count, from_index));
1353 Node* src_start = array_element_address(src, src_offset, T_BYTE);
1354 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1355
1356 // Range checks
1357 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1358 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1359 if (stopped()) {
1360 return true;
1361 }
1362
1363 RegionNode* region = new RegionNode(5);
1364 Node* phi = new PhiNode(region, TypeInt::INT);
1365
1366 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1367 if (result != NULL) {
1368 // The result is index relative to from_index if substring was found, -1 otherwise.
1369 // Generate code which will fold into cmove.
1370 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1371 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1372
1373 Node* if_lt = generate_slow_guard(bol, NULL);
1374 if (if_lt != NULL) {
1375 // result == -1
1376 phi->init_req(3, result);
1377 region->init_req(3, if_lt);
1378 }
1379 if (!stopped()) {
1380 result = _gvn.transform(new AddINode(result, from_index));
1381 phi->init_req(4, result);
1382 region->init_req(4, control());
1383 }
1384 }
1385
1386 set_control(_gvn.transform(region));
1387 record_for_igvn(region);
1388 set_result(_gvn.transform(phi));
1389 clear_upper_avx();
1390
1391 return true;
1392 }
1393
1394 // Create StrIndexOfNode with fast path checks
make_indexOf_node(Node * src_start,Node * src_count,Node * tgt_start,Node * tgt_count,RegionNode * region,Node * phi,StrIntrinsicNode::ArgEnc ae)1395 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1396 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1397 // Check for substr count > string count
1398 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1399 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1400 Node* if_gt = generate_slow_guard(bol, NULL);
1401 if (if_gt != NULL) {
1402 phi->init_req(1, intcon(-1));
1403 region->init_req(1, if_gt);
1404 }
1405 if (!stopped()) {
1406 // Check for substr count == 0
1407 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1408 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1409 Node* if_zero = generate_slow_guard(bol, NULL);
1410 if (if_zero != NULL) {
1411 phi->init_req(2, intcon(0));
1412 region->init_req(2, if_zero);
1413 }
1414 }
1415 if (!stopped()) {
1416 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1417 }
1418 return NULL;
1419 }
1420
1421 //-----------------------------inline_string_indexOfChar-----------------------
inline_string_indexOfChar()1422 bool LibraryCallKit::inline_string_indexOfChar() {
1423 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1424 return false;
1425 }
1426 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1427 return false;
1428 }
1429 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1430 Node* src = argument(0); // byte[]
1431 Node* tgt = argument(1); // tgt is int ch
1432 Node* from_index = argument(2);
1433 Node* max = argument(3);
1434
1435 src = must_be_not_null(src, true);
1436 src = access_resolve(src, ACCESS_READ);
1437
1438 Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1439 Node* src_start = array_element_address(src, src_offset, T_BYTE);
1440 Node* src_count = _gvn.transform(new SubINode(max, from_index));
1441
1442 // Range checks
1443 generate_string_range_check(src, src_offset, src_count, true);
1444 if (stopped()) {
1445 return true;
1446 }
1447
1448 RegionNode* region = new RegionNode(3);
1449 Node* phi = new PhiNode(region, TypeInt::INT);
1450
1451 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1452 C->set_has_split_ifs(true); // Has chance for split-if optimization
1453 _gvn.transform(result);
1454
1455 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1456 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1457
1458 Node* if_lt = generate_slow_guard(bol, NULL);
1459 if (if_lt != NULL) {
1460 // result == -1
1461 phi->init_req(2, result);
1462 region->init_req(2, if_lt);
1463 }
1464 if (!stopped()) {
1465 result = _gvn.transform(new AddINode(result, from_index));
1466 phi->init_req(1, result);
1467 region->init_req(1, control());
1468 }
1469 set_control(_gvn.transform(region));
1470 record_for_igvn(region);
1471 set_result(_gvn.transform(phi));
1472
1473 return true;
1474 }
1475 //---------------------------inline_string_copy---------------------
1476 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1477 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1478 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1479 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1480 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1481 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
inline_string_copy(bool compress)1482 bool LibraryCallKit::inline_string_copy(bool compress) {
1483 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1484 return false;
1485 }
1486 int nargs = 5; // 2 oops, 3 ints
1487 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1488
1489 Node* src = argument(0);
1490 Node* src_offset = argument(1);
1491 Node* dst = argument(2);
1492 Node* dst_offset = argument(3);
1493 Node* length = argument(4);
1494
1495 // Check for allocation before we add nodes that would confuse
1496 // tightly_coupled_allocation()
1497 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1498
1499 // Figure out the size and type of the elements we will be copying.
1500 const Type* src_type = src->Value(&_gvn);
1501 const Type* dst_type = dst->Value(&_gvn);
1502 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1503 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1504 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1505 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1506 "Unsupported array types for inline_string_copy");
1507
1508 src = must_be_not_null(src, true);
1509 dst = must_be_not_null(dst, true);
1510
1511 // Convert char[] offsets to byte[] offsets
1512 bool convert_src = (compress && src_elem == T_BYTE);
1513 bool convert_dst = (!compress && dst_elem == T_BYTE);
1514 if (convert_src) {
1515 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1516 } else if (convert_dst) {
1517 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1518 }
1519
1520 // Range checks
1521 generate_string_range_check(src, src_offset, length, convert_src);
1522 generate_string_range_check(dst, dst_offset, length, convert_dst);
1523 if (stopped()) {
1524 return true;
1525 }
1526
1527 src = access_resolve(src, ACCESS_READ);
1528 dst = access_resolve(dst, ACCESS_WRITE);
1529
1530 Node* src_start = array_element_address(src, src_offset, src_elem);
1531 Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1532 // 'src_start' points to src array + scaled offset
1533 // 'dst_start' points to dst array + scaled offset
1534 Node* count = NULL;
1535 if (compress) {
1536 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1537 } else {
1538 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1539 }
1540
1541 if (alloc != NULL) {
1542 if (alloc->maybe_set_complete(&_gvn)) {
1543 // "You break it, you buy it."
1544 InitializeNode* init = alloc->initialization();
1545 assert(init->is_complete(), "we just did this");
1546 init->set_complete_with_arraycopy();
1547 assert(dst->is_CheckCastPP(), "sanity");
1548 assert(dst->in(0)->in(0) == init, "dest pinned");
1549 }
1550 // Do not let stores that initialize this object be reordered with
1551 // a subsequent store that would make this object accessible by
1552 // other threads.
1553 // Record what AllocateNode this StoreStore protects so that
1554 // escape analysis can go from the MemBarStoreStoreNode to the
1555 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1556 // based on the escape status of the AllocateNode.
1557 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1558 }
1559 if (compress) {
1560 set_result(_gvn.transform(count));
1561 }
1562 clear_upper_avx();
1563
1564 return true;
1565 }
1566
1567 #ifdef _LP64
1568 #define XTOP ,top() /*additional argument*/
1569 #else //_LP64
1570 #define XTOP /*no additional argument*/
1571 #endif //_LP64
1572
1573 //------------------------inline_string_toBytesU--------------------------
1574 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
inline_string_toBytesU()1575 bool LibraryCallKit::inline_string_toBytesU() {
1576 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1577 return false;
1578 }
1579 // Get the arguments.
1580 Node* value = argument(0);
1581 Node* offset = argument(1);
1582 Node* length = argument(2);
1583
1584 Node* newcopy = NULL;
1585
1586 // Set the original stack and the reexecute bit for the interpreter to reexecute
1587 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1588 { PreserveReexecuteState preexecs(this);
1589 jvms()->set_should_reexecute(true);
1590
1591 // Check if a null path was taken unconditionally.
1592 value = null_check(value);
1593
1594 RegionNode* bailout = new RegionNode(1);
1595 record_for_igvn(bailout);
1596
1597 // Range checks
1598 generate_negative_guard(offset, bailout);
1599 generate_negative_guard(length, bailout);
1600 generate_limit_guard(offset, length, load_array_length(value), bailout);
1601 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1602 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1603
1604 if (bailout->req() > 1) {
1605 PreserveJVMState pjvms(this);
1606 set_control(_gvn.transform(bailout));
1607 uncommon_trap(Deoptimization::Reason_intrinsic,
1608 Deoptimization::Action_maybe_recompile);
1609 }
1610 if (stopped()) {
1611 return true;
1612 }
1613
1614 Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1615 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1616 newcopy = new_array(klass_node, size, 0); // no arguments to push
1617 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1618
1619 // Calculate starting addresses.
1620 value = access_resolve(value, ACCESS_READ);
1621 Node* src_start = array_element_address(value, offset, T_CHAR);
1622 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1623
1624 // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1625 const TypeInt* toffset = gvn().type(offset)->is_int();
1626 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1627
1628 // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1629 const char* copyfunc_name = "arraycopy";
1630 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1631 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1632 OptoRuntime::fast_arraycopy_Type(),
1633 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1634 src_start, dst_start, ConvI2X(length) XTOP);
1635 // Do not let reads from the cloned object float above the arraycopy.
1636 if (alloc != NULL) {
1637 if (alloc->maybe_set_complete(&_gvn)) {
1638 // "You break it, you buy it."
1639 InitializeNode* init = alloc->initialization();
1640 assert(init->is_complete(), "we just did this");
1641 init->set_complete_with_arraycopy();
1642 assert(newcopy->is_CheckCastPP(), "sanity");
1643 assert(newcopy->in(0)->in(0) == init, "dest pinned");
1644 }
1645 // Do not let stores that initialize this object be reordered with
1646 // a subsequent store that would make this object accessible by
1647 // other threads.
1648 // Record what AllocateNode this StoreStore protects so that
1649 // escape analysis can go from the MemBarStoreStoreNode to the
1650 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1651 // based on the escape status of the AllocateNode.
1652 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1653 } else {
1654 insert_mem_bar(Op_MemBarCPUOrder);
1655 }
1656 } // original reexecute is set back here
1657
1658 C->set_has_split_ifs(true); // Has chance for split-if optimization
1659 if (!stopped()) {
1660 set_result(newcopy);
1661 }
1662 clear_upper_avx();
1663
1664 return true;
1665 }
1666
1667 //------------------------inline_string_getCharsU--------------------------
1668 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
inline_string_getCharsU()1669 bool LibraryCallKit::inline_string_getCharsU() {
1670 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1671 return false;
1672 }
1673
1674 // Get the arguments.
1675 Node* src = argument(0);
1676 Node* src_begin = argument(1);
1677 Node* src_end = argument(2); // exclusive offset (i < src_end)
1678 Node* dst = argument(3);
1679 Node* dst_begin = argument(4);
1680
1681 // Check for allocation before we add nodes that would confuse
1682 // tightly_coupled_allocation()
1683 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1684
1685 // Check if a null path was taken unconditionally.
1686 src = null_check(src);
1687 dst = null_check(dst);
1688 if (stopped()) {
1689 return true;
1690 }
1691
1692 // Get length and convert char[] offset to byte[] offset
1693 Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1694 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1695
1696 // Range checks
1697 generate_string_range_check(src, src_begin, length, true);
1698 generate_string_range_check(dst, dst_begin, length, false);
1699 if (stopped()) {
1700 return true;
1701 }
1702
1703 if (!stopped()) {
1704 src = access_resolve(src, ACCESS_READ);
1705 dst = access_resolve(dst, ACCESS_WRITE);
1706
1707 // Calculate starting addresses.
1708 Node* src_start = array_element_address(src, src_begin, T_BYTE);
1709 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1710
1711 // Check if array addresses are aligned to HeapWordSize
1712 const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1713 const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1714 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1715 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1716
1717 // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1718 const char* copyfunc_name = "arraycopy";
1719 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1720 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1721 OptoRuntime::fast_arraycopy_Type(),
1722 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1723 src_start, dst_start, ConvI2X(length) XTOP);
1724 // Do not let reads from the cloned object float above the arraycopy.
1725 if (alloc != NULL) {
1726 if (alloc->maybe_set_complete(&_gvn)) {
1727 // "You break it, you buy it."
1728 InitializeNode* init = alloc->initialization();
1729 assert(init->is_complete(), "we just did this");
1730 init->set_complete_with_arraycopy();
1731 assert(dst->is_CheckCastPP(), "sanity");
1732 assert(dst->in(0)->in(0) == init, "dest pinned");
1733 }
1734 // Do not let stores that initialize this object be reordered with
1735 // a subsequent store that would make this object accessible by
1736 // other threads.
1737 // Record what AllocateNode this StoreStore protects so that
1738 // escape analysis can go from the MemBarStoreStoreNode to the
1739 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1740 // based on the escape status of the AllocateNode.
1741 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1742 } else {
1743 insert_mem_bar(Op_MemBarCPUOrder);
1744 }
1745 }
1746
1747 C->set_has_split_ifs(true); // Has chance for split-if optimization
1748 return true;
1749 }
1750
1751 //----------------------inline_string_char_access----------------------------
1752 // Store/Load char to/from byte[] array.
1753 // static void StringUTF16.putChar(byte[] val, int index, int c)
1754 // static char StringUTF16.getChar(byte[] val, int index)
inline_string_char_access(bool is_store)1755 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1756 Node* value = argument(0);
1757 Node* index = argument(1);
1758 Node* ch = is_store ? argument(2) : NULL;
1759
1760 // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1761 // correctly requires matched array shapes.
1762 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1763 "sanity: byte[] and char[] bases agree");
1764 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1765 "sanity: byte[] and char[] scales agree");
1766
1767 // Bail when getChar over constants is requested: constant folding would
1768 // reject folding mismatched char access over byte[]. A normal inlining for getChar
1769 // Java method would constant fold nicely instead.
1770 if (!is_store && value->is_Con() && index->is_Con()) {
1771 return false;
1772 }
1773
1774 value = must_be_not_null(value, true);
1775 value = access_resolve(value, is_store ? ACCESS_WRITE : ACCESS_READ);
1776
1777 Node* adr = array_element_address(value, index, T_CHAR);
1778 if (adr->is_top()) {
1779 return false;
1780 }
1781 if (is_store) {
1782 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1783 } else {
1784 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
1785 set_result(ch);
1786 }
1787 return true;
1788 }
1789
1790 //--------------------------round_double_node--------------------------------
1791 // Round a double node if necessary.
round_double_node(Node * n)1792 Node* LibraryCallKit::round_double_node(Node* n) {
1793 if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1794 n = _gvn.transform(new RoundDoubleNode(0, n));
1795 return n;
1796 }
1797
1798 //------------------------------inline_math-----------------------------------
1799 // public static double Math.abs(double)
1800 // public static double Math.sqrt(double)
1801 // public static double Math.log(double)
1802 // public static double Math.log10(double)
inline_double_math(vmIntrinsics::ID id)1803 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1804 Node* arg = round_double_node(argument(0));
1805 Node* n = NULL;
1806 switch (id) {
1807 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break;
1808 case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break;
1809 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1810 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1811 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1812 default: fatal_unexpected_iid(id); break;
1813 }
1814 set_result(_gvn.transform(n));
1815 return true;
1816 }
1817
1818 //------------------------------inline_math-----------------------------------
1819 // public static float Math.abs(float)
1820 // public static int Math.abs(int)
1821 // public static long Math.abs(long)
inline_math(vmIntrinsics::ID id)1822 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1823 Node* arg = argument(0);
1824 Node* n = NULL;
1825 switch (id) {
1826 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break;
1827 case vmIntrinsics::_iabs: n = new AbsINode( arg); break;
1828 case vmIntrinsics::_labs: n = new AbsLNode( arg); break;
1829 default: fatal_unexpected_iid(id); break;
1830 }
1831 set_result(_gvn.transform(n));
1832 return true;
1833 }
1834
1835 //------------------------------runtime_math-----------------------------
runtime_math(const TypeFunc * call_type,address funcAddr,const char * funcName)1836 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1837 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1838 "must be (DD)D or (D)D type");
1839
1840 // Inputs
1841 Node* a = round_double_node(argument(0));
1842 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1843
1844 const TypePtr* no_memory_effects = NULL;
1845 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1846 no_memory_effects,
1847 a, top(), b, b ? top() : NULL);
1848 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1849 #ifdef ASSERT
1850 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1851 assert(value_top == top(), "second value must be top");
1852 #endif
1853
1854 set_result(value);
1855 return true;
1856 }
1857
1858 //------------------------------inline_math_native-----------------------------
inline_math_native(vmIntrinsics::ID id)1859 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1860 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1861 switch (id) {
1862 // These intrinsics are not properly supported on all hardware
1863 case vmIntrinsics::_dsin:
1864 return StubRoutines::dsin() != NULL ?
1865 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1866 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN");
1867 case vmIntrinsics::_dcos:
1868 return StubRoutines::dcos() != NULL ?
1869 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1870 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS");
1871 case vmIntrinsics::_dtan:
1872 return StubRoutines::dtan() != NULL ?
1873 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1874 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1875 case vmIntrinsics::_dlog:
1876 return StubRoutines::dlog() != NULL ?
1877 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1878 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG");
1879 case vmIntrinsics::_dlog10:
1880 return StubRoutines::dlog10() != NULL ?
1881 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1882 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1883
1884 // These intrinsics are supported on all hardware
1885 case vmIntrinsics::_ceil:
1886 case vmIntrinsics::_floor:
1887 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1888 case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1889 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false;
1890 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false;
1891 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false;
1892 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false;
1893
1894 case vmIntrinsics::_dexp:
1895 return StubRoutines::dexp() != NULL ?
1896 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") :
1897 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP");
1898 case vmIntrinsics::_dpow: {
1899 Node* exp = round_double_node(argument(2));
1900 const TypeD* d = _gvn.type(exp)->isa_double_constant();
1901 if (d != NULL && d->getd() == 2.0) {
1902 // Special case: pow(x, 2.0) => x * x
1903 Node* base = round_double_node(argument(0));
1904 set_result(_gvn.transform(new MulDNode(base, base)));
1905 return true;
1906 }
1907 return StubRoutines::dpow() != NULL ?
1908 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1909 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW");
1910 }
1911 #undef FN_PTR
1912
1913 // These intrinsics are not yet correctly implemented
1914 case vmIntrinsics::_datan2:
1915 return false;
1916
1917 default:
1918 fatal_unexpected_iid(id);
1919 return false;
1920 }
1921 }
1922
is_simple_name(Node * n)1923 static bool is_simple_name(Node* n) {
1924 return (n->req() == 1 // constant
1925 || (n->is_Type() && n->as_Type()->type()->singleton())
1926 || n->is_Proj() // parameter or return value
1927 || n->is_Phi() // local of some sort
1928 );
1929 }
1930
1931 //----------------------------inline_notify-----------------------------------*
inline_notify(vmIntrinsics::ID id)1932 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1933 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1934 address func;
1935 if (id == vmIntrinsics::_notify) {
1936 func = OptoRuntime::monitor_notify_Java();
1937 } else {
1938 func = OptoRuntime::monitor_notifyAll_Java();
1939 }
1940 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1941 make_slow_call_ex(call, env()->Throwable_klass(), false);
1942 return true;
1943 }
1944
1945
1946 //----------------------------inline_min_max-----------------------------------
inline_min_max(vmIntrinsics::ID id)1947 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1948 set_result(generate_min_max(id, argument(0), argument(1)));
1949 return true;
1950 }
1951
inline_math_mathExact(Node * math,Node * test)1952 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1953 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1954 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1955 Node* fast_path = _gvn.transform( new IfFalseNode(check));
1956 Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1957
1958 {
1959 PreserveJVMState pjvms(this);
1960 PreserveReexecuteState preexecs(this);
1961 jvms()->set_should_reexecute(true);
1962
1963 set_control(slow_path);
1964 set_i_o(i_o());
1965
1966 uncommon_trap(Deoptimization::Reason_intrinsic,
1967 Deoptimization::Action_none);
1968 }
1969
1970 set_control(fast_path);
1971 set_result(math);
1972 }
1973
1974 template <typename OverflowOp>
inline_math_overflow(Node * arg1,Node * arg2)1975 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1976 typedef typename OverflowOp::MathOp MathOp;
1977
1978 MathOp* mathOp = new MathOp(arg1, arg2);
1979 Node* operation = _gvn.transform( mathOp );
1980 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1981 inline_math_mathExact(operation, ofcheck);
1982 return true;
1983 }
1984
inline_math_addExactI(bool is_increment)1985 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1986 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1987 }
1988
inline_math_addExactL(bool is_increment)1989 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1990 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1991 }
1992
inline_math_subtractExactI(bool is_decrement)1993 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1994 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1995 }
1996
inline_math_subtractExactL(bool is_decrement)1997 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1998 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1999 }
2000
inline_math_negateExactI()2001 bool LibraryCallKit::inline_math_negateExactI() {
2002 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2003 }
2004
inline_math_negateExactL()2005 bool LibraryCallKit::inline_math_negateExactL() {
2006 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2007 }
2008
inline_math_multiplyExactI()2009 bool LibraryCallKit::inline_math_multiplyExactI() {
2010 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2011 }
2012
inline_math_multiplyExactL()2013 bool LibraryCallKit::inline_math_multiplyExactL() {
2014 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2015 }
2016
inline_math_multiplyHigh()2017 bool LibraryCallKit::inline_math_multiplyHigh() {
2018 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2019 return true;
2020 }
2021
2022 Node*
generate_min_max(vmIntrinsics::ID id,Node * x0,Node * y0)2023 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2024 // These are the candidate return value:
2025 Node* xvalue = x0;
2026 Node* yvalue = y0;
2027
2028 if (xvalue == yvalue) {
2029 return xvalue;
2030 }
2031
2032 bool want_max = (id == vmIntrinsics::_max);
2033
2034 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2035 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2036 if (txvalue == NULL || tyvalue == NULL) return top();
2037 // This is not really necessary, but it is consistent with a
2038 // hypothetical MaxINode::Value method:
2039 int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2040
2041 // %%% This folding logic should (ideally) be in a different place.
2042 // Some should be inside IfNode, and there to be a more reliable
2043 // transformation of ?: style patterns into cmoves. We also want
2044 // more powerful optimizations around cmove and min/max.
2045
2046 // Try to find a dominating comparison of these guys.
2047 // It can simplify the index computation for Arrays.copyOf
2048 // and similar uses of System.arraycopy.
2049 // First, compute the normalized version of CmpI(x, y).
2050 int cmp_op = Op_CmpI;
2051 Node* xkey = xvalue;
2052 Node* ykey = yvalue;
2053 Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2054 if (ideal_cmpxy->is_Cmp()) {
2055 // E.g., if we have CmpI(length - offset, count),
2056 // it might idealize to CmpI(length, count + offset)
2057 cmp_op = ideal_cmpxy->Opcode();
2058 xkey = ideal_cmpxy->in(1);
2059 ykey = ideal_cmpxy->in(2);
2060 }
2061
2062 // Start by locating any relevant comparisons.
2063 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2064 Node* cmpxy = NULL;
2065 Node* cmpyx = NULL;
2066 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2067 Node* cmp = start_from->fast_out(k);
2068 if (cmp->outcnt() > 0 && // must have prior uses
2069 cmp->in(0) == NULL && // must be context-independent
2070 cmp->Opcode() == cmp_op) { // right kind of compare
2071 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp;
2072 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp;
2073 }
2074 }
2075
2076 const int NCMPS = 2;
2077 Node* cmps[NCMPS] = { cmpxy, cmpyx };
2078 int cmpn;
2079 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2080 if (cmps[cmpn] != NULL) break; // find a result
2081 }
2082 if (cmpn < NCMPS) {
2083 // Look for a dominating test that tells us the min and max.
2084 int depth = 0; // Limit search depth for speed
2085 Node* dom = control();
2086 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2087 if (++depth >= 100) break;
2088 Node* ifproj = dom;
2089 if (!ifproj->is_Proj()) continue;
2090 Node* iff = ifproj->in(0);
2091 if (!iff->is_If()) continue;
2092 Node* bol = iff->in(1);
2093 if (!bol->is_Bool()) continue;
2094 Node* cmp = bol->in(1);
2095 if (cmp == NULL) continue;
2096 for (cmpn = 0; cmpn < NCMPS; cmpn++)
2097 if (cmps[cmpn] == cmp) break;
2098 if (cmpn == NCMPS) continue;
2099 BoolTest::mask btest = bol->as_Bool()->_test._test;
2100 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate();
2101 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
2102 // At this point, we know that 'x btest y' is true.
2103 switch (btest) {
2104 case BoolTest::eq:
2105 // They are proven equal, so we can collapse the min/max.
2106 // Either value is the answer. Choose the simpler.
2107 if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2108 return yvalue;
2109 return xvalue;
2110 case BoolTest::lt: // x < y
2111 case BoolTest::le: // x <= y
2112 return (want_max ? yvalue : xvalue);
2113 case BoolTest::gt: // x > y
2114 case BoolTest::ge: // x >= y
2115 return (want_max ? xvalue : yvalue);
2116 default:
2117 break;
2118 }
2119 }
2120 }
2121
2122 // We failed to find a dominating test.
2123 // Let's pick a test that might GVN with prior tests.
2124 Node* best_bol = NULL;
2125 BoolTest::mask best_btest = BoolTest::illegal;
2126 for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2127 Node* cmp = cmps[cmpn];
2128 if (cmp == NULL) continue;
2129 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2130 Node* bol = cmp->fast_out(j);
2131 if (!bol->is_Bool()) continue;
2132 BoolTest::mask btest = bol->as_Bool()->_test._test;
2133 if (btest == BoolTest::eq || btest == BoolTest::ne) continue;
2134 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute();
2135 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2136 best_bol = bol->as_Bool();
2137 best_btest = btest;
2138 }
2139 }
2140 }
2141
2142 Node* answer_if_true = NULL;
2143 Node* answer_if_false = NULL;
2144 switch (best_btest) {
2145 default:
2146 if (cmpxy == NULL)
2147 cmpxy = ideal_cmpxy;
2148 best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2149 // and fall through:
2150 case BoolTest::lt: // x < y
2151 case BoolTest::le: // x <= y
2152 answer_if_true = (want_max ? yvalue : xvalue);
2153 answer_if_false = (want_max ? xvalue : yvalue);
2154 break;
2155 case BoolTest::gt: // x > y
2156 case BoolTest::ge: // x >= y
2157 answer_if_true = (want_max ? xvalue : yvalue);
2158 answer_if_false = (want_max ? yvalue : xvalue);
2159 break;
2160 }
2161
2162 jint hi, lo;
2163 if (want_max) {
2164 // We can sharpen the minimum.
2165 hi = MAX2(txvalue->_hi, tyvalue->_hi);
2166 lo = MAX2(txvalue->_lo, tyvalue->_lo);
2167 } else {
2168 // We can sharpen the maximum.
2169 hi = MIN2(txvalue->_hi, tyvalue->_hi);
2170 lo = MIN2(txvalue->_lo, tyvalue->_lo);
2171 }
2172
2173 // Use a flow-free graph structure, to avoid creating excess control edges
2174 // which could hinder other optimizations.
2175 // Since Math.min/max is often used with arraycopy, we want
2176 // tightly_coupled_allocation to be able to see beyond min/max expressions.
2177 Node* cmov = CMoveNode::make(NULL, best_bol,
2178 answer_if_false, answer_if_true,
2179 TypeInt::make(lo, hi, widen));
2180
2181 return _gvn.transform(cmov);
2182
2183 /*
2184 // This is not as desirable as it may seem, since Min and Max
2185 // nodes do not have a full set of optimizations.
2186 // And they would interfere, anyway, with 'if' optimizations
2187 // and with CMoveI canonical forms.
2188 switch (id) {
2189 case vmIntrinsics::_min:
2190 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2191 case vmIntrinsics::_max:
2192 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2193 default:
2194 ShouldNotReachHere();
2195 }
2196 */
2197 }
2198
2199 inline int
classify_unsafe_addr(Node * & base,Node * & offset,BasicType type)2200 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2201 const TypePtr* base_type = TypePtr::NULL_PTR;
2202 if (base != NULL) base_type = _gvn.type(base)->isa_ptr();
2203 if (base_type == NULL) {
2204 // Unknown type.
2205 return Type::AnyPtr;
2206 } else if (base_type == TypePtr::NULL_PTR) {
2207 // Since this is a NULL+long form, we have to switch to a rawptr.
2208 base = _gvn.transform(new CastX2PNode(offset));
2209 offset = MakeConX(0);
2210 return Type::RawPtr;
2211 } else if (base_type->base() == Type::RawPtr) {
2212 return Type::RawPtr;
2213 } else if (base_type->isa_oopptr()) {
2214 // Base is never null => always a heap address.
2215 if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2216 return Type::OopPtr;
2217 }
2218 // Offset is small => always a heap address.
2219 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2220 if (offset_type != NULL &&
2221 base_type->offset() == 0 && // (should always be?)
2222 offset_type->_lo >= 0 &&
2223 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2224 return Type::OopPtr;
2225 } else if (type == T_OBJECT) {
2226 // off heap access to an oop doesn't make any sense. Has to be on
2227 // heap.
2228 return Type::OopPtr;
2229 }
2230 // Otherwise, it might either be oop+off or NULL+addr.
2231 return Type::AnyPtr;
2232 } else {
2233 // No information:
2234 return Type::AnyPtr;
2235 }
2236 }
2237
make_unsafe_address(Node * & base,Node * offset,DecoratorSet decorators,BasicType type,bool can_cast)2238 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) {
2239 Node* uncasted_base = base;
2240 int kind = classify_unsafe_addr(uncasted_base, offset, type);
2241 if (kind == Type::RawPtr) {
2242 return basic_plus_adr(top(), uncasted_base, offset);
2243 } else if (kind == Type::AnyPtr) {
2244 assert(base == uncasted_base, "unexpected base change");
2245 if (can_cast) {
2246 if (!_gvn.type(base)->speculative_maybe_null() &&
2247 !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2248 // According to profiling, this access is always on
2249 // heap. Casting the base to not null and thus avoiding membars
2250 // around the access should allow better optimizations
2251 Node* null_ctl = top();
2252 base = null_check_oop(base, &null_ctl, true, true, true);
2253 assert(null_ctl->is_top(), "no null control here");
2254 return basic_plus_adr(base, offset);
2255 } else if (_gvn.type(base)->speculative_always_null() &&
2256 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2257 // According to profiling, this access is always off
2258 // heap.
2259 base = null_assert(base);
2260 Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2261 offset = MakeConX(0);
2262 return basic_plus_adr(top(), raw_base, offset);
2263 }
2264 }
2265 // We don't know if it's an on heap or off heap access. Fall back
2266 // to raw memory access.
2267 base = access_resolve(base, decorators);
2268 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2269 return basic_plus_adr(top(), raw, offset);
2270 } else {
2271 assert(base == uncasted_base, "unexpected base change");
2272 // We know it's an on heap access so base can't be null
2273 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2274 base = must_be_not_null(base, true);
2275 }
2276 return basic_plus_adr(base, offset);
2277 }
2278 }
2279
2280 //--------------------------inline_number_methods-----------------------------
2281 // inline int Integer.numberOfLeadingZeros(int)
2282 // inline int Long.numberOfLeadingZeros(long)
2283 //
2284 // inline int Integer.numberOfTrailingZeros(int)
2285 // inline int Long.numberOfTrailingZeros(long)
2286 //
2287 // inline int Integer.bitCount(int)
2288 // inline int Long.bitCount(long)
2289 //
2290 // inline char Character.reverseBytes(char)
2291 // inline short Short.reverseBytes(short)
2292 // inline int Integer.reverseBytes(int)
2293 // inline long Long.reverseBytes(long)
inline_number_methods(vmIntrinsics::ID id)2294 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2295 Node* arg = argument(0);
2296 Node* n = NULL;
2297 switch (id) {
2298 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break;
2299 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break;
2300 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break;
2301 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break;
2302 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break;
2303 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break;
2304 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break;
2305 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break;
2306 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break;
2307 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break;
2308 default: fatal_unexpected_iid(id); break;
2309 }
2310 set_result(_gvn.transform(n));
2311 return true;
2312 }
2313
2314 //----------------------------inline_unsafe_access----------------------------
2315
sharpen_unsafe_type(Compile::AliasType * alias_type,const TypePtr * adr_type)2316 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2317 // Attempt to infer a sharper value type from the offset and base type.
2318 ciKlass* sharpened_klass = NULL;
2319
2320 // See if it is an instance field, with an object type.
2321 if (alias_type->field() != NULL) {
2322 if (alias_type->field()->type()->is_klass()) {
2323 sharpened_klass = alias_type->field()->type()->as_klass();
2324 }
2325 }
2326
2327 // See if it is a narrow oop array.
2328 if (adr_type->isa_aryptr()) {
2329 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2330 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2331 if (elem_type != NULL) {
2332 sharpened_klass = elem_type->klass();
2333 }
2334 }
2335 }
2336
2337 // The sharpened class might be unloaded if there is no class loader
2338 // contraint in place.
2339 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2340 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2341
2342 #ifndef PRODUCT
2343 if (C->print_intrinsics() || C->print_inlining()) {
2344 tty->print(" from base type: "); adr_type->dump(); tty->cr();
2345 tty->print(" sharpened value: "); tjp->dump(); tty->cr();
2346 }
2347 #endif
2348 // Sharpen the value type.
2349 return tjp;
2350 }
2351 return NULL;
2352 }
2353
mo_decorator_for_access_kind(AccessKind kind)2354 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2355 switch (kind) {
2356 case Relaxed:
2357 return MO_UNORDERED;
2358 case Opaque:
2359 return MO_RELAXED;
2360 case Acquire:
2361 return MO_ACQUIRE;
2362 case Release:
2363 return MO_RELEASE;
2364 case Volatile:
2365 return MO_SEQ_CST;
2366 default:
2367 ShouldNotReachHere();
2368 return 0;
2369 }
2370 }
2371
inline_unsafe_access(bool is_store,const BasicType type,const AccessKind kind,const bool unaligned)2372 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2373 if (callee()->is_static()) return false; // caller must have the capability!
2374 DecoratorSet decorators = C2_UNSAFE_ACCESS;
2375 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2376 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2377 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2378
2379 if (type == T_OBJECT || type == T_ARRAY) {
2380 decorators |= ON_UNKNOWN_OOP_REF;
2381 }
2382
2383 if (unaligned) {
2384 decorators |= C2_UNALIGNED;
2385 }
2386
2387 #ifndef PRODUCT
2388 {
2389 ResourceMark rm;
2390 // Check the signatures.
2391 ciSignature* sig = callee()->signature();
2392 #ifdef ASSERT
2393 if (!is_store) {
2394 // Object getReference(Object base, int/long offset), etc.
2395 BasicType rtype = sig->return_type()->basic_type();
2396 assert(rtype == type, "getter must return the expected value");
2397 assert(sig->count() == 2, "oop getter has 2 arguments");
2398 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2399 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2400 } else {
2401 // void putReference(Object base, int/long offset, Object x), etc.
2402 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2403 assert(sig->count() == 3, "oop putter has 3 arguments");
2404 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2405 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2406 BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2407 assert(vtype == type, "putter must accept the expected value");
2408 }
2409 #endif // ASSERT
2410 }
2411 #endif //PRODUCT
2412
2413 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
2414
2415 Node* receiver = argument(0); // type: oop
2416
2417 // Build address expression.
2418 Node* adr;
2419 Node* heap_base_oop = top();
2420 Node* offset = top();
2421 Node* val;
2422
2423 // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2424 Node* base = argument(1); // type: oop
2425 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2426 offset = argument(2); // type: long
2427 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2428 // to be plain byte offsets, which are also the same as those accepted
2429 // by oopDesc::field_addr.
2430 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2431 "fieldOffset must be byte-scaled");
2432 // 32-bit machines ignore the high half!
2433 offset = ConvL2X(offset);
2434 adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed);
2435
2436 if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2437 heap_base_oop = base;
2438 } else if (type == T_OBJECT) {
2439 return false; // off-heap oop accesses are not supported
2440 }
2441
2442 // Can base be NULL? Otherwise, always on-heap access.
2443 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2444
2445 if (!can_access_non_heap) {
2446 decorators |= IN_HEAP;
2447 }
2448
2449 val = is_store ? argument(4) : NULL;
2450
2451 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2452 if (adr_type == TypePtr::NULL_PTR) {
2453 return false; // off-heap access with zero address
2454 }
2455
2456 // Try to categorize the address.
2457 Compile::AliasType* alias_type = C->alias_type(adr_type);
2458 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2459
2460 if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2461 alias_type->adr_type() == TypeAryPtr::RANGE) {
2462 return false; // not supported
2463 }
2464
2465 bool mismatched = false;
2466 BasicType bt = alias_type->basic_type();
2467 if (bt != T_ILLEGAL) {
2468 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2469 if (bt == T_BYTE && adr_type->isa_aryptr()) {
2470 // Alias type doesn't differentiate between byte[] and boolean[]).
2471 // Use address type to get the element type.
2472 bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2473 }
2474 if (bt == T_ARRAY || bt == T_NARROWOOP) {
2475 // accessing an array field with getReference is not a mismatch
2476 bt = T_OBJECT;
2477 }
2478 if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2479 // Don't intrinsify mismatched object accesses
2480 return false;
2481 }
2482 mismatched = (bt != type);
2483 } else if (alias_type->adr_type()->isa_oopptr()) {
2484 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2485 }
2486
2487 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2488
2489 if (mismatched) {
2490 decorators |= C2_MISMATCHED;
2491 }
2492
2493 // First guess at the value type.
2494 const Type *value_type = Type::get_const_basic_type(type);
2495
2496 // Figure out the memory ordering.
2497 decorators |= mo_decorator_for_access_kind(kind);
2498
2499 if (!is_store && type == T_OBJECT) {
2500 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2501 if (tjp != NULL) {
2502 value_type = tjp;
2503 }
2504 }
2505
2506 receiver = null_check(receiver);
2507 if (stopped()) {
2508 return true;
2509 }
2510 // Heap pointers get a null-check from the interpreter,
2511 // as a courtesy. However, this is not guaranteed by Unsafe,
2512 // and it is not possible to fully distinguish unintended nulls
2513 // from intended ones in this API.
2514
2515 if (!is_store) {
2516 Node* p = NULL;
2517 // Try to constant fold a load from a constant field
2518 ciField* field = alias_type->field();
2519 if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2520 // final or stable field
2521 p = make_constant_from_field(field, heap_base_oop);
2522 }
2523
2524 if (p == NULL) { // Could not constant fold the load
2525 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2526 // Normalize the value returned by getBoolean in the following cases
2527 if (type == T_BOOLEAN &&
2528 (mismatched ||
2529 heap_base_oop == top() || // - heap_base_oop is NULL or
2530 (can_access_non_heap && field == NULL)) // - heap_base_oop is potentially NULL
2531 // and the unsafe access is made to large offset
2532 // (i.e., larger than the maximum offset necessary for any
2533 // field access)
2534 ) {
2535 IdealKit ideal = IdealKit(this);
2536 #define __ ideal.
2537 IdealVariable normalized_result(ideal);
2538 __ declarations_done();
2539 __ set(normalized_result, p);
2540 __ if_then(p, BoolTest::ne, ideal.ConI(0));
2541 __ set(normalized_result, ideal.ConI(1));
2542 ideal.end_if();
2543 final_sync(ideal);
2544 p = __ value(normalized_result);
2545 #undef __
2546 }
2547 }
2548 if (type == T_ADDRESS) {
2549 p = gvn().transform(new CastP2XNode(NULL, p));
2550 p = ConvX2UL(p);
2551 }
2552 // The load node has the control of the preceding MemBarCPUOrder. All
2553 // following nodes will have the control of the MemBarCPUOrder inserted at
2554 // the end of this method. So, pushing the load onto the stack at a later
2555 // point is fine.
2556 set_result(p);
2557 } else {
2558 if (bt == T_ADDRESS) {
2559 // Repackage the long as a pointer.
2560 val = ConvL2X(val);
2561 val = gvn().transform(new CastX2PNode(val));
2562 }
2563 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2564 }
2565
2566 return true;
2567 }
2568
2569 //----------------------------inline_unsafe_load_store----------------------------
2570 // This method serves a couple of different customers (depending on LoadStoreKind):
2571 //
2572 // LS_cmp_swap:
2573 //
2574 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2575 // boolean compareAndSetInt( Object o, long offset, int expected, int x);
2576 // boolean compareAndSetLong( Object o, long offset, long expected, long x);
2577 //
2578 // LS_cmp_swap_weak:
2579 //
2580 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x);
2581 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x);
2582 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2583 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2584 //
2585 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x);
2586 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x);
2587 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x);
2588 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x);
2589 //
2590 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x);
2591 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x);
2592 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x);
2593 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x);
2594 //
2595 // LS_cmp_exchange:
2596 //
2597 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2598 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2599 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2600 //
2601 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x);
2602 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x);
2603 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x);
2604 //
2605 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x);
2606 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x);
2607 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x);
2608 //
2609 // LS_get_add:
2610 //
2611 // int getAndAddInt( Object o, long offset, int delta)
2612 // long getAndAddLong(Object o, long offset, long delta)
2613 //
2614 // LS_get_set:
2615 //
2616 // int getAndSet(Object o, long offset, int newValue)
2617 // long getAndSet(Object o, long offset, long newValue)
2618 // Object getAndSet(Object o, long offset, Object newValue)
2619 //
inline_unsafe_load_store(const BasicType type,const LoadStoreKind kind,const AccessKind access_kind)2620 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2621 // This basic scheme here is the same as inline_unsafe_access, but
2622 // differs in enough details that combining them would make the code
2623 // overly confusing. (This is a true fact! I originally combined
2624 // them, but even I was confused by it!) As much code/comments as
2625 // possible are retained from inline_unsafe_access though to make
2626 // the correspondences clearer. - dl
2627
2628 if (callee()->is_static()) return false; // caller must have the capability!
2629
2630 DecoratorSet decorators = C2_UNSAFE_ACCESS;
2631 decorators |= mo_decorator_for_access_kind(access_kind);
2632
2633 #ifndef PRODUCT
2634 BasicType rtype;
2635 {
2636 ResourceMark rm;
2637 // Check the signatures.
2638 ciSignature* sig = callee()->signature();
2639 rtype = sig->return_type()->basic_type();
2640 switch(kind) {
2641 case LS_get_add:
2642 case LS_get_set: {
2643 // Check the signatures.
2644 #ifdef ASSERT
2645 assert(rtype == type, "get and set must return the expected type");
2646 assert(sig->count() == 3, "get and set has 3 arguments");
2647 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2648 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2649 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2650 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2651 #endif // ASSERT
2652 break;
2653 }
2654 case LS_cmp_swap:
2655 case LS_cmp_swap_weak: {
2656 // Check the signatures.
2657 #ifdef ASSERT
2658 assert(rtype == T_BOOLEAN, "CAS must return boolean");
2659 assert(sig->count() == 4, "CAS has 4 arguments");
2660 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2661 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2662 #endif // ASSERT
2663 break;
2664 }
2665 case LS_cmp_exchange: {
2666 // Check the signatures.
2667 #ifdef ASSERT
2668 assert(rtype == type, "CAS must return the expected type");
2669 assert(sig->count() == 4, "CAS has 4 arguments");
2670 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2671 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2672 #endif // ASSERT
2673 break;
2674 }
2675 default:
2676 ShouldNotReachHere();
2677 }
2678 }
2679 #endif //PRODUCT
2680
2681 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
2682
2683 // Get arguments:
2684 Node* receiver = NULL;
2685 Node* base = NULL;
2686 Node* offset = NULL;
2687 Node* oldval = NULL;
2688 Node* newval = NULL;
2689 switch(kind) {
2690 case LS_cmp_swap:
2691 case LS_cmp_swap_weak:
2692 case LS_cmp_exchange: {
2693 const bool two_slot_type = type2size[type] == 2;
2694 receiver = argument(0); // type: oop
2695 base = argument(1); // type: oop
2696 offset = argument(2); // type: long
2697 oldval = argument(4); // type: oop, int, or long
2698 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long
2699 break;
2700 }
2701 case LS_get_add:
2702 case LS_get_set: {
2703 receiver = argument(0); // type: oop
2704 base = argument(1); // type: oop
2705 offset = argument(2); // type: long
2706 oldval = NULL;
2707 newval = argument(4); // type: oop, int, or long
2708 break;
2709 }
2710 default:
2711 ShouldNotReachHere();
2712 }
2713
2714 // Build field offset expression.
2715 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2716 // to be plain byte offsets, which are also the same as those accepted
2717 // by oopDesc::field_addr.
2718 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2719 // 32-bit machines ignore the high half of long offsets
2720 offset = ConvL2X(offset);
2721 Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false);
2722 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2723
2724 Compile::AliasType* alias_type = C->alias_type(adr_type);
2725 BasicType bt = alias_type->basic_type();
2726 if (bt != T_ILLEGAL &&
2727 ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2728 // Don't intrinsify mismatched object accesses.
2729 return false;
2730 }
2731
2732 // For CAS, unlike inline_unsafe_access, there seems no point in
2733 // trying to refine types. Just use the coarse types here.
2734 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2735 const Type *value_type = Type::get_const_basic_type(type);
2736
2737 switch (kind) {
2738 case LS_get_set:
2739 case LS_cmp_exchange: {
2740 if (type == T_OBJECT) {
2741 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2742 if (tjp != NULL) {
2743 value_type = tjp;
2744 }
2745 }
2746 break;
2747 }
2748 case LS_cmp_swap:
2749 case LS_cmp_swap_weak:
2750 case LS_get_add:
2751 break;
2752 default:
2753 ShouldNotReachHere();
2754 }
2755
2756 // Null check receiver.
2757 receiver = null_check(receiver);
2758 if (stopped()) {
2759 return true;
2760 }
2761
2762 int alias_idx = C->get_alias_index(adr_type);
2763
2764 if (type == T_OBJECT || type == T_ARRAY) {
2765 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2766
2767 // Transformation of a value which could be NULL pointer (CastPP #NULL)
2768 // could be delayed during Parse (for example, in adjust_map_after_if()).
2769 // Execute transformation here to avoid barrier generation in such case.
2770 if (_gvn.type(newval) == TypePtr::NULL_PTR)
2771 newval = _gvn.makecon(TypePtr::NULL_PTR);
2772
2773 if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2774 // Refine the value to a null constant, when it is known to be null
2775 oldval = _gvn.makecon(TypePtr::NULL_PTR);
2776 }
2777 }
2778
2779 Node* result = NULL;
2780 switch (kind) {
2781 case LS_cmp_exchange: {
2782 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2783 oldval, newval, value_type, type, decorators);
2784 break;
2785 }
2786 case LS_cmp_swap_weak:
2787 decorators |= C2_WEAK_CMPXCHG;
2788 case LS_cmp_swap: {
2789 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2790 oldval, newval, value_type, type, decorators);
2791 break;
2792 }
2793 case LS_get_set: {
2794 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2795 newval, value_type, type, decorators);
2796 break;
2797 }
2798 case LS_get_add: {
2799 result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2800 newval, value_type, type, decorators);
2801 break;
2802 }
2803 default:
2804 ShouldNotReachHere();
2805 }
2806
2807 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2808 set_result(result);
2809 return true;
2810 }
2811
inline_unsafe_fence(vmIntrinsics::ID id)2812 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2813 // Regardless of form, don't allow previous ld/st to move down,
2814 // then issue acquire, release, or volatile mem_bar.
2815 insert_mem_bar(Op_MemBarCPUOrder);
2816 switch(id) {
2817 case vmIntrinsics::_loadFence:
2818 insert_mem_bar(Op_LoadFence);
2819 return true;
2820 case vmIntrinsics::_storeFence:
2821 insert_mem_bar(Op_StoreFence);
2822 return true;
2823 case vmIntrinsics::_fullFence:
2824 insert_mem_bar(Op_MemBarVolatile);
2825 return true;
2826 default:
2827 fatal_unexpected_iid(id);
2828 return false;
2829 }
2830 }
2831
inline_onspinwait()2832 bool LibraryCallKit::inline_onspinwait() {
2833 insert_mem_bar(Op_OnSpinWait);
2834 return true;
2835 }
2836
klass_needs_init_guard(Node * kls)2837 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2838 if (!kls->is_Con()) {
2839 return true;
2840 }
2841 const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2842 if (klsptr == NULL) {
2843 return true;
2844 }
2845 ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2846 // don't need a guard for a klass that is already initialized
2847 return !ik->is_initialized();
2848 }
2849
2850 //----------------------------inline_unsafe_allocate---------------------------
2851 // public native Object Unsafe.allocateInstance(Class<?> cls);
inline_unsafe_allocate()2852 bool LibraryCallKit::inline_unsafe_allocate() {
2853 if (callee()->is_static()) return false; // caller must have the capability!
2854
2855 null_check_receiver(); // null-check, then ignore
2856 Node* cls = null_check(argument(1));
2857 if (stopped()) return true;
2858
2859 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2860 kls = null_check(kls);
2861 if (stopped()) return true; // argument was like int.class
2862
2863 Node* test = NULL;
2864 if (LibraryCallKit::klass_needs_init_guard(kls)) {
2865 // Note: The argument might still be an illegal value like
2866 // Serializable.class or Object[].class. The runtime will handle it.
2867 // But we must make an explicit check for initialization.
2868 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2869 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2870 // can generate code to load it as unsigned byte.
2871 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2872 Node* bits = intcon(InstanceKlass::fully_initialized);
2873 test = _gvn.transform(new SubINode(inst, bits));
2874 // The 'test' is non-zero if we need to take a slow path.
2875 }
2876
2877 Node* obj = new_instance(kls, test);
2878 set_result(obj);
2879 return true;
2880 }
2881
2882 //------------------------inline_native_time_funcs--------------
2883 // inline code for System.currentTimeMillis() and System.nanoTime()
2884 // these have the same type and signature
inline_native_time_funcs(address funcAddr,const char * funcName)2885 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2886 const TypeFunc* tf = OptoRuntime::void_long_Type();
2887 const TypePtr* no_memory_effects = NULL;
2888 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2889 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2890 #ifdef ASSERT
2891 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2892 assert(value_top == top(), "second value must be top");
2893 #endif
2894 set_result(value);
2895 return true;
2896 }
2897
2898 #ifdef JFR_HAVE_INTRINSICS
2899
2900 /*
2901 * oop -> myklass
2902 * myklass->trace_id |= USED
2903 * return myklass->trace_id & ~0x3
2904 */
inline_native_classID()2905 bool LibraryCallKit::inline_native_classID() {
2906 Node* cls = null_check(argument(0), T_OBJECT);
2907 Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2908 kls = null_check(kls, T_OBJECT);
2909
2910 ByteSize offset = KLASS_TRACE_ID_OFFSET;
2911 Node* insp = basic_plus_adr(kls, in_bytes(offset));
2912 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
2913
2914 Node* clsused = longcon(0x01l); // set the class bit
2915 Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
2916 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2917 store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
2918
2919 #ifdef TRACE_ID_META_BITS
2920 Node* mbits = longcon(~TRACE_ID_META_BITS);
2921 tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
2922 #endif
2923 #ifdef TRACE_ID_SHIFT
2924 Node* cbits = intcon(TRACE_ID_SHIFT);
2925 tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
2926 #endif
2927
2928 set_result(tvalue);
2929 return true;
2930
2931 }
2932
inline_native_getEventWriter()2933 bool LibraryCallKit::inline_native_getEventWriter() {
2934 Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
2935
2936 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
2937 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
2938
2939 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2940
2941 Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
2942 Node* test_jobj_eq_null = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
2943
2944 IfNode* iff_jobj_null =
2945 create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
2946
2947 enum { _normal_path = 1,
2948 _null_path = 2,
2949 PATH_LIMIT };
2950
2951 RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
2952 PhiNode* result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
2953
2954 Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
2955 result_rgn->init_req(_null_path, jobj_is_null);
2956 result_val->init_req(_null_path, null());
2957
2958 Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
2959 set_control(jobj_is_not_null);
2960 Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT,
2961 IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
2962 result_rgn->init_req(_normal_path, control());
2963 result_val->init_req(_normal_path, res);
2964
2965 set_result(result_rgn, result_val);
2966
2967 return true;
2968 }
2969
2970 #endif // JFR_HAVE_INTRINSICS
2971
2972 //------------------------inline_native_currentThread------------------
inline_native_currentThread()2973 bool LibraryCallKit::inline_native_currentThread() {
2974 Node* junk = NULL;
2975 set_result(generate_current_thread(junk));
2976 return true;
2977 }
2978
2979 //------------------------inline_native_isInterrupted------------------
2980 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
inline_native_isInterrupted()2981 bool LibraryCallKit::inline_native_isInterrupted() {
2982 // Add a fast path to t.isInterrupted(clear_int):
2983 // (t == Thread.current() &&
2984 // (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
2985 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2986 // So, in the common case that the interrupt bit is false,
2987 // we avoid making a call into the VM. Even if the interrupt bit
2988 // is true, if the clear_int argument is false, we avoid the VM call.
2989 // However, if the receiver is not currentThread, we must call the VM,
2990 // because there must be some locking done around the operation.
2991
2992 // We only go to the fast case code if we pass two guards.
2993 // Paths which do not pass are accumulated in the slow_region.
2994
2995 enum {
2996 no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted
2997 no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int
2998 slow_result_path = 3, // slow path: t.isInterrupted(clear_int)
2999 PATH_LIMIT
3000 };
3001
3002 // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3003 // out of the function.
3004 insert_mem_bar(Op_MemBarCPUOrder);
3005
3006 RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3007 PhiNode* result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3008
3009 RegionNode* slow_region = new RegionNode(1);
3010 record_for_igvn(slow_region);
3011
3012 // (a) Receiving thread must be the current thread.
3013 Node* rec_thr = argument(0);
3014 Node* tls_ptr = NULL;
3015 Node* cur_thr = generate_current_thread(tls_ptr);
3016
3017 // Resolve oops to stable for CmpP below.
3018 cur_thr = access_resolve(cur_thr, 0);
3019 rec_thr = access_resolve(rec_thr, 0);
3020
3021 Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3022 Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3023
3024 generate_slow_guard(bol_thr, slow_region);
3025
3026 // (b) Interrupt bit on TLS must be false.
3027 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3028 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3029 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3030
3031 // Set the control input on the field _interrupted read to prevent it floating up.
3032 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3033 Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3034 Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3035
3036 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3037
3038 // First fast path: if (!TLS._interrupted) return false;
3039 Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3040 result_rgn->init_req(no_int_result_path, false_bit);
3041 result_val->init_req(no_int_result_path, intcon(0));
3042
3043 // drop through to next case
3044 set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3045
3046 #ifndef _WINDOWS
3047 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3048 Node* clr_arg = argument(1);
3049 Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3050 Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3051 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3052
3053 // Second fast path: ... else if (!clear_int) return true;
3054 Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3055 result_rgn->init_req(no_clear_result_path, false_arg);
3056 result_val->init_req(no_clear_result_path, intcon(1));
3057
3058 // drop through to next case
3059 set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3060 #else
3061 // To return true on Windows you must read the _interrupted field
3062 // and check the event state i.e. take the slow path.
3063 #endif // _WINDOWS
3064
3065 // (d) Otherwise, go to the slow path.
3066 slow_region->add_req(control());
3067 set_control( _gvn.transform(slow_region));
3068
3069 if (stopped()) {
3070 // There is no slow path.
3071 result_rgn->init_req(slow_result_path, top());
3072 result_val->init_req(slow_result_path, top());
3073 } else {
3074 // non-virtual because it is a private non-static
3075 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3076
3077 Node* slow_val = set_results_for_java_call(slow_call);
3078 // this->control() comes from set_results_for_java_call
3079
3080 Node* fast_io = slow_call->in(TypeFunc::I_O);
3081 Node* fast_mem = slow_call->in(TypeFunc::Memory);
3082
3083 // These two phis are pre-filled with copies of of the fast IO and Memory
3084 PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3085 PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO);
3086
3087 result_rgn->init_req(slow_result_path, control());
3088 result_io ->init_req(slow_result_path, i_o());
3089 result_mem->init_req(slow_result_path, reset_memory());
3090 result_val->init_req(slow_result_path, slow_val);
3091
3092 set_all_memory(_gvn.transform(result_mem));
3093 set_i_o( _gvn.transform(result_io));
3094 }
3095
3096 C->set_has_split_ifs(true); // Has chance for split-if optimization
3097 set_result(result_rgn, result_val);
3098 return true;
3099 }
3100
3101 //---------------------------load_mirror_from_klass----------------------------
3102 // Given a klass oop, load its java mirror (a java.lang.Class oop).
load_mirror_from_klass(Node * klass)3103 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3104 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3105 Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3106 // mirror = ((OopHandle)mirror)->resolve();
3107 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3108 }
3109
3110 //-----------------------load_klass_from_mirror_common-------------------------
3111 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3112 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3113 // and branch to the given path on the region.
3114 // If never_see_null, take an uncommon trap on null, so we can optimistically
3115 // compile for the non-null case.
3116 // If the region is NULL, force never_see_null = true.
load_klass_from_mirror_common(Node * mirror,bool never_see_null,RegionNode * region,int null_path,int offset)3117 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3118 bool never_see_null,
3119 RegionNode* region,
3120 int null_path,
3121 int offset) {
3122 if (region == NULL) never_see_null = true;
3123 Node* p = basic_plus_adr(mirror, offset);
3124 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3125 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3126 Node* null_ctl = top();
3127 kls = null_check_oop(kls, &null_ctl, never_see_null);
3128 if (region != NULL) {
3129 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3130 region->init_req(null_path, null_ctl);
3131 } else {
3132 assert(null_ctl == top(), "no loose ends");
3133 }
3134 return kls;
3135 }
3136
3137 //--------------------(inline_native_Class_query helpers)---------------------
3138 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3139 // Fall through if (mods & mask) == bits, take the guard otherwise.
generate_access_flags_guard(Node * kls,int modifier_mask,int modifier_bits,RegionNode * region)3140 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3141 // Branch around if the given klass has the given modifier bit set.
3142 // Like generate_guard, adds a new path onto the region.
3143 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3144 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3145 Node* mask = intcon(modifier_mask);
3146 Node* bits = intcon(modifier_bits);
3147 Node* mbit = _gvn.transform(new AndINode(mods, mask));
3148 Node* cmp = _gvn.transform(new CmpINode(mbit, bits));
3149 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3150 return generate_fair_guard(bol, region);
3151 }
generate_interface_guard(Node * kls,RegionNode * region)3152 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3153 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3154 }
3155
3156 //-------------------------inline_native_Class_query-------------------
inline_native_Class_query(vmIntrinsics::ID id)3157 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3158 const Type* return_type = TypeInt::BOOL;
3159 Node* prim_return_value = top(); // what happens if it's a primitive class?
3160 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3161 bool expect_prim = false; // most of these guys expect to work on refs
3162
3163 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3164
3165 Node* mirror = argument(0);
3166 Node* obj = top();
3167
3168 switch (id) {
3169 case vmIntrinsics::_isInstance:
3170 // nothing is an instance of a primitive type
3171 prim_return_value = intcon(0);
3172 obj = argument(1);
3173 break;
3174 case vmIntrinsics::_getModifiers:
3175 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3176 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3177 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3178 break;
3179 case vmIntrinsics::_isInterface:
3180 prim_return_value = intcon(0);
3181 break;
3182 case vmIntrinsics::_isArray:
3183 prim_return_value = intcon(0);
3184 expect_prim = true; // cf. ObjectStreamClass.getClassSignature
3185 break;
3186 case vmIntrinsics::_isPrimitive:
3187 prim_return_value = intcon(1);
3188 expect_prim = true; // obviously
3189 break;
3190 case vmIntrinsics::_getSuperclass:
3191 prim_return_value = null();
3192 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3193 break;
3194 case vmIntrinsics::_getClassAccessFlags:
3195 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3196 return_type = TypeInt::INT; // not bool! 6297094
3197 break;
3198 default:
3199 fatal_unexpected_iid(id);
3200 break;
3201 }
3202
3203 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3204 if (mirror_con == NULL) return false; // cannot happen?
3205
3206 #ifndef PRODUCT
3207 if (C->print_intrinsics() || C->print_inlining()) {
3208 ciType* k = mirror_con->java_mirror_type();
3209 if (k) {
3210 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3211 k->print_name();
3212 tty->cr();
3213 }
3214 }
3215 #endif
3216
3217 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3218 RegionNode* region = new RegionNode(PATH_LIMIT);
3219 record_for_igvn(region);
3220 PhiNode* phi = new PhiNode(region, return_type);
3221
3222 // The mirror will never be null of Reflection.getClassAccessFlags, however
3223 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3224 // if it is. See bug 4774291.
3225
3226 // For Reflection.getClassAccessFlags(), the null check occurs in
3227 // the wrong place; see inline_unsafe_access(), above, for a similar
3228 // situation.
3229 mirror = null_check(mirror);
3230 // If mirror or obj is dead, only null-path is taken.
3231 if (stopped()) return true;
3232
3233 if (expect_prim) never_see_null = false; // expect nulls (meaning prims)
3234
3235 // Now load the mirror's klass metaobject, and null-check it.
3236 // Side-effects region with the control path if the klass is null.
3237 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3238 // If kls is null, we have a primitive mirror.
3239 phi->init_req(_prim_path, prim_return_value);
3240 if (stopped()) { set_result(region, phi); return true; }
3241 bool safe_for_replace = (region->in(_prim_path) == top());
3242
3243 Node* p; // handy temp
3244 Node* null_ctl;
3245
3246 // Now that we have the non-null klass, we can perform the real query.
3247 // For constant classes, the query will constant-fold in LoadNode::Value.
3248 Node* query_value = top();
3249 switch (id) {
3250 case vmIntrinsics::_isInstance:
3251 // nothing is an instance of a primitive type
3252 query_value = gen_instanceof(obj, kls, safe_for_replace);
3253 break;
3254
3255 case vmIntrinsics::_getModifiers:
3256 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3257 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3258 break;
3259
3260 case vmIntrinsics::_isInterface:
3261 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3262 if (generate_interface_guard(kls, region) != NULL)
3263 // A guard was added. If the guard is taken, it was an interface.
3264 phi->add_req(intcon(1));
3265 // If we fall through, it's a plain class.
3266 query_value = intcon(0);
3267 break;
3268
3269 case vmIntrinsics::_isArray:
3270 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3271 if (generate_array_guard(kls, region) != NULL)
3272 // A guard was added. If the guard is taken, it was an array.
3273 phi->add_req(intcon(1));
3274 // If we fall through, it's a plain class.
3275 query_value = intcon(0);
3276 break;
3277
3278 case vmIntrinsics::_isPrimitive:
3279 query_value = intcon(0); // "normal" path produces false
3280 break;
3281
3282 case vmIntrinsics::_getSuperclass:
3283 // The rules here are somewhat unfortunate, but we can still do better
3284 // with random logic than with a JNI call.
3285 // Interfaces store null or Object as _super, but must report null.
3286 // Arrays store an intermediate super as _super, but must report Object.
3287 // Other types can report the actual _super.
3288 // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3289 if (generate_interface_guard(kls, region) != NULL)
3290 // A guard was added. If the guard is taken, it was an interface.
3291 phi->add_req(null());
3292 if (generate_array_guard(kls, region) != NULL)
3293 // A guard was added. If the guard is taken, it was an array.
3294 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3295 // If we fall through, it's a plain class. Get its _super.
3296 p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3297 kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3298 null_ctl = top();
3299 kls = null_check_oop(kls, &null_ctl);
3300 if (null_ctl != top()) {
3301 // If the guard is taken, Object.superClass is null (both klass and mirror).
3302 region->add_req(null_ctl);
3303 phi ->add_req(null());
3304 }
3305 if (!stopped()) {
3306 query_value = load_mirror_from_klass(kls);
3307 }
3308 break;
3309
3310 case vmIntrinsics::_getClassAccessFlags:
3311 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3312 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3313 break;
3314
3315 default:
3316 fatal_unexpected_iid(id);
3317 break;
3318 }
3319
3320 // Fall-through is the normal case of a query to a real class.
3321 phi->init_req(1, query_value);
3322 region->init_req(1, control());
3323
3324 C->set_has_split_ifs(true); // Has chance for split-if optimization
3325 set_result(region, phi);
3326 return true;
3327 }
3328
3329 //-------------------------inline_Class_cast-------------------
inline_Class_cast()3330 bool LibraryCallKit::inline_Class_cast() {
3331 Node* mirror = argument(0); // Class
3332 Node* obj = argument(1);
3333 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3334 if (mirror_con == NULL) {
3335 return false; // dead path (mirror->is_top()).
3336 }
3337 if (obj == NULL || obj->is_top()) {
3338 return false; // dead path
3339 }
3340 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3341
3342 // First, see if Class.cast() can be folded statically.
3343 // java_mirror_type() returns non-null for compile-time Class constants.
3344 ciType* tm = mirror_con->java_mirror_type();
3345 if (tm != NULL && tm->is_klass() &&
3346 tp != NULL && tp->klass() != NULL) {
3347 if (!tp->klass()->is_loaded()) {
3348 // Don't use intrinsic when class is not loaded.
3349 return false;
3350 } else {
3351 int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3352 if (static_res == Compile::SSC_always_true) {
3353 // isInstance() is true - fold the code.
3354 set_result(obj);
3355 return true;
3356 } else if (static_res == Compile::SSC_always_false) {
3357 // Don't use intrinsic, have to throw ClassCastException.
3358 // If the reference is null, the non-intrinsic bytecode will
3359 // be optimized appropriately.
3360 return false;
3361 }
3362 }
3363 }
3364
3365 // Bailout intrinsic and do normal inlining if exception path is frequent.
3366 if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3367 return false;
3368 }
3369
3370 // Generate dynamic checks.
3371 // Class.cast() is java implementation of _checkcast bytecode.
3372 // Do checkcast (Parse::do_checkcast()) optimizations here.
3373
3374 mirror = null_check(mirror);
3375 // If mirror is dead, only null-path is taken.
3376 if (stopped()) {
3377 return true;
3378 }
3379
3380 // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3381 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3382 RegionNode* region = new RegionNode(PATH_LIMIT);
3383 record_for_igvn(region);
3384
3385 // Now load the mirror's klass metaobject, and null-check it.
3386 // If kls is null, we have a primitive mirror and
3387 // nothing is an instance of a primitive type.
3388 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3389
3390 Node* res = top();
3391 if (!stopped()) {
3392 Node* bad_type_ctrl = top();
3393 // Do checkcast optimizations.
3394 res = gen_checkcast(obj, kls, &bad_type_ctrl);
3395 region->init_req(_bad_type_path, bad_type_ctrl);
3396 }
3397 if (region->in(_prim_path) != top() ||
3398 region->in(_bad_type_path) != top()) {
3399 // Let Interpreter throw ClassCastException.
3400 PreserveJVMState pjvms(this);
3401 set_control(_gvn.transform(region));
3402 uncommon_trap(Deoptimization::Reason_intrinsic,
3403 Deoptimization::Action_maybe_recompile);
3404 }
3405 if (!stopped()) {
3406 set_result(res);
3407 }
3408 return true;
3409 }
3410
3411
3412 //--------------------------inline_native_subtype_check------------------------
3413 // This intrinsic takes the JNI calls out of the heart of
3414 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
inline_native_subtype_check()3415 bool LibraryCallKit::inline_native_subtype_check() {
3416 // Pull both arguments off the stack.
3417 Node* args[2]; // two java.lang.Class mirrors: superc, subc
3418 args[0] = argument(0);
3419 args[1] = argument(1);
3420 Node* klasses[2]; // corresponding Klasses: superk, subk
3421 klasses[0] = klasses[1] = top();
3422
3423 enum {
3424 // A full decision tree on {superc is prim, subc is prim}:
3425 _prim_0_path = 1, // {P,N} => false
3426 // {P,P} & superc!=subc => false
3427 _prim_same_path, // {P,P} & superc==subc => true
3428 _prim_1_path, // {N,P} => false
3429 _ref_subtype_path, // {N,N} & subtype check wins => true
3430 _both_ref_path, // {N,N} & subtype check loses => false
3431 PATH_LIMIT
3432 };
3433
3434 RegionNode* region = new RegionNode(PATH_LIMIT);
3435 Node* phi = new PhiNode(region, TypeInt::BOOL);
3436 record_for_igvn(region);
3437
3438 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads
3439 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3440 int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3441
3442 // First null-check both mirrors and load each mirror's klass metaobject.
3443 int which_arg;
3444 for (which_arg = 0; which_arg <= 1; which_arg++) {
3445 Node* arg = args[which_arg];
3446 arg = null_check(arg);
3447 if (stopped()) break;
3448 args[which_arg] = arg;
3449
3450 Node* p = basic_plus_adr(arg, class_klass_offset);
3451 Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3452 klasses[which_arg] = _gvn.transform(kls);
3453 }
3454
3455 // Resolve oops to stable for CmpP below.
3456 args[0] = access_resolve(args[0], 0);
3457 args[1] = access_resolve(args[1], 0);
3458
3459 // Having loaded both klasses, test each for null.
3460 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3461 for (which_arg = 0; which_arg <= 1; which_arg++) {
3462 Node* kls = klasses[which_arg];
3463 Node* null_ctl = top();
3464 kls = null_check_oop(kls, &null_ctl, never_see_null);
3465 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3466 region->init_req(prim_path, null_ctl);
3467 if (stopped()) break;
3468 klasses[which_arg] = kls;
3469 }
3470
3471 if (!stopped()) {
3472 // now we have two reference types, in klasses[0..1]
3473 Node* subk = klasses[1]; // the argument to isAssignableFrom
3474 Node* superk = klasses[0]; // the receiver
3475 region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3476 // now we have a successful reference subtype check
3477 region->set_req(_ref_subtype_path, control());
3478 }
3479
3480 // If both operands are primitive (both klasses null), then
3481 // we must return true when they are identical primitives.
3482 // It is convenient to test this after the first null klass check.
3483 set_control(region->in(_prim_0_path)); // go back to first null check
3484 if (!stopped()) {
3485 // Since superc is primitive, make a guard for the superc==subc case.
3486 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3487 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3488 generate_guard(bol_eq, region, PROB_FAIR);
3489 if (region->req() == PATH_LIMIT+1) {
3490 // A guard was added. If the added guard is taken, superc==subc.
3491 region->swap_edges(PATH_LIMIT, _prim_same_path);
3492 region->del_req(PATH_LIMIT);
3493 }
3494 region->set_req(_prim_0_path, control()); // Not equal after all.
3495 }
3496
3497 // these are the only paths that produce 'true':
3498 phi->set_req(_prim_same_path, intcon(1));
3499 phi->set_req(_ref_subtype_path, intcon(1));
3500
3501 // pull together the cases:
3502 assert(region->req() == PATH_LIMIT, "sane region");
3503 for (uint i = 1; i < region->req(); i++) {
3504 Node* ctl = region->in(i);
3505 if (ctl == NULL || ctl == top()) {
3506 region->set_req(i, top());
3507 phi ->set_req(i, top());
3508 } else if (phi->in(i) == NULL) {
3509 phi->set_req(i, intcon(0)); // all other paths produce 'false'
3510 }
3511 }
3512
3513 set_control(_gvn.transform(region));
3514 set_result(_gvn.transform(phi));
3515 return true;
3516 }
3517
3518 //---------------------generate_array_guard_common------------------------
generate_array_guard_common(Node * kls,RegionNode * region,bool obj_array,bool not_array)3519 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3520 bool obj_array, bool not_array) {
3521
3522 if (stopped()) {
3523 return NULL;
3524 }
3525
3526 // If obj_array/non_array==false/false:
3527 // Branch around if the given klass is in fact an array (either obj or prim).
3528 // If obj_array/non_array==false/true:
3529 // Branch around if the given klass is not an array klass of any kind.
3530 // If obj_array/non_array==true/true:
3531 // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3532 // If obj_array/non_array==true/false:
3533 // Branch around if the kls is an oop array (Object[] or subtype)
3534 //
3535 // Like generate_guard, adds a new path onto the region.
3536 jint layout_con = 0;
3537 Node* layout_val = get_layout_helper(kls, layout_con);
3538 if (layout_val == NULL) {
3539 bool query = (obj_array
3540 ? Klass::layout_helper_is_objArray(layout_con)
3541 : Klass::layout_helper_is_array(layout_con));
3542 if (query == not_array) {
3543 return NULL; // never a branch
3544 } else { // always a branch
3545 Node* always_branch = control();
3546 if (region != NULL)
3547 region->add_req(always_branch);
3548 set_control(top());
3549 return always_branch;
3550 }
3551 }
3552 // Now test the correct condition.
3553 jint nval = (obj_array
3554 ? (jint)(Klass::_lh_array_tag_type_value
3555 << Klass::_lh_array_tag_shift)
3556 : Klass::_lh_neutral_value);
3557 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3558 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array
3559 // invert the test if we are looking for a non-array
3560 if (not_array) btest = BoolTest(btest).negate();
3561 Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3562 return generate_fair_guard(bol, region);
3563 }
3564
3565
3566 //-----------------------inline_native_newArray--------------------------
3567 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3568 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
inline_unsafe_newArray(bool uninitialized)3569 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3570 Node* mirror;
3571 Node* count_val;
3572 if (uninitialized) {
3573 mirror = argument(1);
3574 count_val = argument(2);
3575 } else {
3576 mirror = argument(0);
3577 count_val = argument(1);
3578 }
3579
3580 mirror = null_check(mirror);
3581 // If mirror or obj is dead, only null-path is taken.
3582 if (stopped()) return true;
3583
3584 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3585 RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3586 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3587 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO);
3588 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3589
3590 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3591 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3592 result_reg, _slow_path);
3593 Node* normal_ctl = control();
3594 Node* no_array_ctl = result_reg->in(_slow_path);
3595
3596 // Generate code for the slow case. We make a call to newArray().
3597 set_control(no_array_ctl);
3598 if (!stopped()) {
3599 // Either the input type is void.class, or else the
3600 // array klass has not yet been cached. Either the
3601 // ensuing call will throw an exception, or else it
3602 // will cache the array klass for next time.
3603 PreserveJVMState pjvms(this);
3604 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3605 Node* slow_result = set_results_for_java_call(slow_call);
3606 // this->control() comes from set_results_for_java_call
3607 result_reg->set_req(_slow_path, control());
3608 result_val->set_req(_slow_path, slow_result);
3609 result_io ->set_req(_slow_path, i_o());
3610 result_mem->set_req(_slow_path, reset_memory());
3611 }
3612
3613 set_control(normal_ctl);
3614 if (!stopped()) {
3615 // Normal case: The array type has been cached in the java.lang.Class.
3616 // The following call works fine even if the array type is polymorphic.
3617 // It could be a dynamic mix of int[], boolean[], Object[], etc.
3618 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push
3619 result_reg->init_req(_normal_path, control());
3620 result_val->init_req(_normal_path, obj);
3621 result_io ->init_req(_normal_path, i_o());
3622 result_mem->init_req(_normal_path, reset_memory());
3623
3624 if (uninitialized) {
3625 // Mark the allocation so that zeroing is skipped
3626 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3627 alloc->maybe_set_complete(&_gvn);
3628 }
3629 }
3630
3631 // Return the combined state.
3632 set_i_o( _gvn.transform(result_io) );
3633 set_all_memory( _gvn.transform(result_mem));
3634
3635 C->set_has_split_ifs(true); // Has chance for split-if optimization
3636 set_result(result_reg, result_val);
3637 return true;
3638 }
3639
3640 //----------------------inline_native_getLength--------------------------
3641 // public static native int java.lang.reflect.Array.getLength(Object array);
inline_native_getLength()3642 bool LibraryCallKit::inline_native_getLength() {
3643 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
3644
3645 Node* array = null_check(argument(0));
3646 // If array is dead, only null-path is taken.
3647 if (stopped()) return true;
3648
3649 // Deoptimize if it is a non-array.
3650 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3651
3652 if (non_array != NULL) {
3653 PreserveJVMState pjvms(this);
3654 set_control(non_array);
3655 uncommon_trap(Deoptimization::Reason_intrinsic,
3656 Deoptimization::Action_maybe_recompile);
3657 }
3658
3659 // If control is dead, only non-array-path is taken.
3660 if (stopped()) return true;
3661
3662 // The works fine even if the array type is polymorphic.
3663 // It could be a dynamic mix of int[], boolean[], Object[], etc.
3664 Node* result = load_array_length(array);
3665
3666 C->set_has_split_ifs(true); // Has chance for split-if optimization
3667 set_result(result);
3668 return true;
3669 }
3670
3671 //------------------------inline_array_copyOf----------------------------
3672 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType);
3673 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType);
inline_array_copyOf(bool is_copyOfRange)3674 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3675 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false;
3676
3677 // Get the arguments.
3678 Node* original = argument(0);
3679 Node* start = is_copyOfRange? argument(1): intcon(0);
3680 Node* end = is_copyOfRange? argument(2): argument(1);
3681 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3682
3683 Node* newcopy = NULL;
3684
3685 // Set the original stack and the reexecute bit for the interpreter to reexecute
3686 // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3687 { PreserveReexecuteState preexecs(this);
3688 jvms()->set_should_reexecute(true);
3689
3690 array_type_mirror = null_check(array_type_mirror);
3691 original = null_check(original);
3692
3693 // Check if a null path was taken unconditionally.
3694 if (stopped()) return true;
3695
3696 Node* orig_length = load_array_length(original);
3697
3698 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3699 klass_node = null_check(klass_node);
3700
3701 RegionNode* bailout = new RegionNode(1);
3702 record_for_igvn(bailout);
3703
3704 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3705 // Bail out if that is so.
3706 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3707 if (not_objArray != NULL) {
3708 // Improve the klass node's type from the new optimistic assumption:
3709 ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3710 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3711 Node* cast = new CastPPNode(klass_node, akls);
3712 cast->init_req(0, control());
3713 klass_node = _gvn.transform(cast);
3714 }
3715
3716 // Bail out if either start or end is negative.
3717 generate_negative_guard(start, bailout, &start);
3718 generate_negative_guard(end, bailout, &end);
3719
3720 Node* length = end;
3721 if (_gvn.type(start) != TypeInt::ZERO) {
3722 length = _gvn.transform(new SubINode(end, start));
3723 }
3724
3725 // Bail out if length is negative.
3726 // Without this the new_array would throw
3727 // NegativeArraySizeException but IllegalArgumentException is what
3728 // should be thrown
3729 generate_negative_guard(length, bailout, &length);
3730
3731 if (bailout->req() > 1) {
3732 PreserveJVMState pjvms(this);
3733 set_control(_gvn.transform(bailout));
3734 uncommon_trap(Deoptimization::Reason_intrinsic,
3735 Deoptimization::Action_maybe_recompile);
3736 }
3737
3738 if (!stopped()) {
3739 // How many elements will we copy from the original?
3740 // The answer is MinI(orig_length - start, length).
3741 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3742 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3743
3744 original = access_resolve(original, ACCESS_READ);
3745
3746 // Generate a direct call to the right arraycopy function(s).
3747 // We know the copy is disjoint but we might not know if the
3748 // oop stores need checking.
3749 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class).
3750 // This will fail a store-check if x contains any non-nulls.
3751
3752 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3753 // loads/stores but it is legal only if we're sure the
3754 // Arrays.copyOf would succeed. So we need all input arguments
3755 // to the copyOf to be validated, including that the copy to the
3756 // new array won't trigger an ArrayStoreException. That subtype
3757 // check can be optimized if we know something on the type of
3758 // the input array from type speculation.
3759 if (_gvn.type(klass_node)->singleton()) {
3760 ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3761 ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3762
3763 int test = C->static_subtype_check(superk, subk);
3764 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3765 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3766 if (t_original->speculative_type() != NULL) {
3767 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3768 }
3769 }
3770 }
3771
3772 bool validated = false;
3773 // Reason_class_check rather than Reason_intrinsic because we
3774 // want to intrinsify even if this traps.
3775 if (!too_many_traps(Deoptimization::Reason_class_check)) {
3776 Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3777 klass_node);
3778
3779 if (not_subtype_ctrl != top()) {
3780 PreserveJVMState pjvms(this);
3781 set_control(not_subtype_ctrl);
3782 uncommon_trap(Deoptimization::Reason_class_check,
3783 Deoptimization::Action_make_not_entrant);
3784 assert(stopped(), "Should be stopped");
3785 }
3786 validated = true;
3787 }
3788
3789 if (!stopped()) {
3790 newcopy = new_array(klass_node, length, 0); // no arguments to push
3791
3792 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
3793 load_object_klass(original), klass_node);
3794 if (!is_copyOfRange) {
3795 ac->set_copyof(validated);
3796 } else {
3797 ac->set_copyofrange(validated);
3798 }
3799 Node* n = _gvn.transform(ac);
3800 if (n == ac) {
3801 ac->connect_outputs(this);
3802 } else {
3803 assert(validated, "shouldn't transform if all arguments not validated");
3804 set_all_memory(n);
3805 }
3806 }
3807 }
3808 } // original reexecute is set back here
3809
3810 C->set_has_split_ifs(true); // Has chance for split-if optimization
3811 if (!stopped()) {
3812 set_result(newcopy);
3813 }
3814 return true;
3815 }
3816
3817
3818 //----------------------generate_virtual_guard---------------------------
3819 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call.
generate_virtual_guard(Node * obj_klass,RegionNode * slow_region)3820 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3821 RegionNode* slow_region) {
3822 ciMethod* method = callee();
3823 int vtable_index = method->vtable_index();
3824 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3825 "bad index %d", vtable_index);
3826 // Get the Method* out of the appropriate vtable entry.
3827 int entry_offset = in_bytes(Klass::vtable_start_offset()) +
3828 vtable_index*vtableEntry::size_in_bytes() +
3829 vtableEntry::method_offset_in_bytes();
3830 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset);
3831 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3832
3833 // Compare the target method with the expected method (e.g., Object.hashCode).
3834 const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3835
3836 Node* native_call = makecon(native_call_addr);
3837 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call));
3838 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3839
3840 return generate_slow_guard(test_native, slow_region);
3841 }
3842
3843 //-----------------------generate_method_call----------------------------
3844 // Use generate_method_call to make a slow-call to the real
3845 // method if the fast path fails. An alternative would be to
3846 // use a stub like OptoRuntime::slow_arraycopy_Java.
3847 // This only works for expanding the current library call,
3848 // not another intrinsic. (E.g., don't use this for making an
3849 // arraycopy call inside of the copyOf intrinsic.)
3850 CallJavaNode*
generate_method_call(vmIntrinsics::ID method_id,bool is_virtual,bool is_static)3851 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3852 // When compiling the intrinsic method itself, do not use this technique.
3853 guarantee(callee() != C->method(), "cannot make slow-call to self");
3854
3855 ciMethod* method = callee();
3856 // ensure the JVMS we have will be correct for this call
3857 guarantee(method_id == method->intrinsic_id(), "must match");
3858
3859 const TypeFunc* tf = TypeFunc::make(method);
3860 CallJavaNode* slow_call;
3861 if (is_static) {
3862 assert(!is_virtual, "");
3863 slow_call = new CallStaticJavaNode(C, tf,
3864 SharedRuntime::get_resolve_static_call_stub(),
3865 method, bci());
3866 } else if (is_virtual) {
3867 null_check_receiver();
3868 int vtable_index = Method::invalid_vtable_index;
3869 if (UseInlineCaches) {
3870 // Suppress the vtable call
3871 } else {
3872 // hashCode and clone are not a miranda methods,
3873 // so the vtable index is fixed.
3874 // No need to use the linkResolver to get it.
3875 vtable_index = method->vtable_index();
3876 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3877 "bad index %d", vtable_index);
3878 }
3879 slow_call = new CallDynamicJavaNode(tf,
3880 SharedRuntime::get_resolve_virtual_call_stub(),
3881 method, vtable_index, bci());
3882 } else { // neither virtual nor static: opt_virtual
3883 null_check_receiver();
3884 slow_call = new CallStaticJavaNode(C, tf,
3885 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3886 method, bci());
3887 slow_call->set_optimized_virtual(true);
3888 }
3889 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
3890 // To be able to issue a direct call (optimized virtual or virtual)
3891 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
3892 // about the method being invoked should be attached to the call site to
3893 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
3894 slow_call->set_override_symbolic_info(true);
3895 }
3896 set_arguments_for_java_call(slow_call);
3897 set_edges_for_java_call(slow_call);
3898 return slow_call;
3899 }
3900
3901
3902 /**
3903 * Build special case code for calls to hashCode on an object. This call may
3904 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3905 * slightly different code.
3906 */
inline_native_hashcode(bool is_virtual,bool is_static)3907 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3908 assert(is_static == callee()->is_static(), "correct intrinsic selection");
3909 assert(!(is_virtual && is_static), "either virtual, special, or static");
3910
3911 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3912
3913 RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3914 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT);
3915 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO);
3916 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3917 Node* obj = NULL;
3918 if (!is_static) {
3919 // Check for hashing null object
3920 obj = null_check_receiver();
3921 if (stopped()) return true; // unconditionally null
3922 result_reg->init_req(_null_path, top());
3923 result_val->init_req(_null_path, top());
3924 } else {
3925 // Do a null check, and return zero if null.
3926 // System.identityHashCode(null) == 0
3927 obj = argument(0);
3928 Node* null_ctl = top();
3929 obj = null_check_oop(obj, &null_ctl);
3930 result_reg->init_req(_null_path, null_ctl);
3931 result_val->init_req(_null_path, _gvn.intcon(0));
3932 }
3933
3934 // Unconditionally null? Then return right away.
3935 if (stopped()) {
3936 set_control( result_reg->in(_null_path));
3937 if (!stopped())
3938 set_result(result_val->in(_null_path));
3939 return true;
3940 }
3941
3942 // We only go to the fast case code if we pass a number of guards. The
3943 // paths which do not pass are accumulated in the slow_region.
3944 RegionNode* slow_region = new RegionNode(1);
3945 record_for_igvn(slow_region);
3946
3947 // If this is a virtual call, we generate a funny guard. We pull out
3948 // the vtable entry corresponding to hashCode() from the target object.
3949 // If the target method which we are calling happens to be the native
3950 // Object hashCode() method, we pass the guard. We do not need this
3951 // guard for non-virtual calls -- the caller is known to be the native
3952 // Object hashCode().
3953 if (is_virtual) {
3954 // After null check, get the object's klass.
3955 Node* obj_klass = load_object_klass(obj);
3956 generate_virtual_guard(obj_klass, slow_region);
3957 }
3958
3959 // Get the header out of the object, use LoadMarkNode when available
3960 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3961 // The control of the load must be NULL. Otherwise, the load can move before
3962 // the null check after castPP removal.
3963 Node* no_ctrl = NULL;
3964 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3965
3966 // Test the header to see if it is unlocked.
3967 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3968 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
3969 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value);
3970 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
3971 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
3972
3973 generate_slow_guard(test_unlocked, slow_region);
3974
3975 // Get the hash value and check to see that it has been properly assigned.
3976 // We depend on hash_mask being at most 32 bits and avoid the use of
3977 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3978 // vm: see markOop.hpp.
3979 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask);
3980 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift);
3981 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
3982 // This hack lets the hash bits live anywhere in the mark object now, as long
3983 // as the shift drops the relevant bits into the low 32 bits. Note that
3984 // Java spec says that HashCode is an int so there's no point in capturing
3985 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3986 hshifted_header = ConvX2I(hshifted_header);
3987 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask));
3988
3989 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash);
3990 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val));
3991 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
3992
3993 generate_slow_guard(test_assigned, slow_region);
3994
3995 Node* init_mem = reset_memory();
3996 // fill in the rest of the null path:
3997 result_io ->init_req(_null_path, i_o());
3998 result_mem->init_req(_null_path, init_mem);
3999
4000 result_val->init_req(_fast_path, hash_val);
4001 result_reg->init_req(_fast_path, control());
4002 result_io ->init_req(_fast_path, i_o());
4003 result_mem->init_req(_fast_path, init_mem);
4004
4005 // Generate code for the slow case. We make a call to hashCode().
4006 set_control(_gvn.transform(slow_region));
4007 if (!stopped()) {
4008 // No need for PreserveJVMState, because we're using up the present state.
4009 set_all_memory(init_mem);
4010 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4011 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4012 Node* slow_result = set_results_for_java_call(slow_call);
4013 // this->control() comes from set_results_for_java_call
4014 result_reg->init_req(_slow_path, control());
4015 result_val->init_req(_slow_path, slow_result);
4016 result_io ->set_req(_slow_path, i_o());
4017 result_mem ->set_req(_slow_path, reset_memory());
4018 }
4019
4020 // Return the combined state.
4021 set_i_o( _gvn.transform(result_io) );
4022 set_all_memory( _gvn.transform(result_mem));
4023
4024 set_result(result_reg, result_val);
4025 return true;
4026 }
4027
4028 //---------------------------inline_native_getClass----------------------------
4029 // public final native Class<?> java.lang.Object.getClass();
4030 //
4031 // Build special case code for calls to getClass on an object.
inline_native_getClass()4032 bool LibraryCallKit::inline_native_getClass() {
4033 Node* obj = null_check_receiver();
4034 if (stopped()) return true;
4035 set_result(load_mirror_from_klass(load_object_klass(obj)));
4036 return true;
4037 }
4038
4039 //-----------------inline_native_Reflection_getCallerClass---------------------
4040 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4041 //
4042 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4043 //
4044 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4045 // in that it must skip particular security frames and checks for
4046 // caller sensitive methods.
inline_native_Reflection_getCallerClass()4047 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4048 #ifndef PRODUCT
4049 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4050 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4051 }
4052 #endif
4053
4054 if (!jvms()->has_method()) {
4055 #ifndef PRODUCT
4056 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4057 tty->print_cr(" Bailing out because intrinsic was inlined at top level");
4058 }
4059 #endif
4060 return false;
4061 }
4062
4063 // Walk back up the JVM state to find the caller at the required
4064 // depth.
4065 JVMState* caller_jvms = jvms();
4066
4067 // Cf. JVM_GetCallerClass
4068 // NOTE: Start the loop at depth 1 because the current JVM state does
4069 // not include the Reflection.getCallerClass() frame.
4070 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4071 ciMethod* m = caller_jvms->method();
4072 switch (n) {
4073 case 0:
4074 fatal("current JVM state does not include the Reflection.getCallerClass frame");
4075 break;
4076 case 1:
4077 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4078 if (!m->caller_sensitive()) {
4079 #ifndef PRODUCT
4080 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4081 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n);
4082 }
4083 #endif
4084 return false; // bail-out; let JVM_GetCallerClass do the work
4085 }
4086 break;
4087 default:
4088 if (!m->is_ignored_by_security_stack_walk()) {
4089 // We have reached the desired frame; return the holder class.
4090 // Acquire method holder as java.lang.Class and push as constant.
4091 ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4092 ciInstance* caller_mirror = caller_klass->java_mirror();
4093 set_result(makecon(TypeInstPtr::make(caller_mirror)));
4094
4095 #ifndef PRODUCT
4096 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4097 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4098 tty->print_cr(" JVM state at this point:");
4099 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4100 ciMethod* m = jvms()->of_depth(i)->method();
4101 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4102 }
4103 }
4104 #endif
4105 return true;
4106 }
4107 break;
4108 }
4109 }
4110
4111 #ifndef PRODUCT
4112 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4113 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4114 tty->print_cr(" JVM state at this point:");
4115 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4116 ciMethod* m = jvms()->of_depth(i)->method();
4117 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4118 }
4119 }
4120 #endif
4121
4122 return false; // bail-out; let JVM_GetCallerClass do the work
4123 }
4124
inline_fp_conversions(vmIntrinsics::ID id)4125 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4126 Node* arg = argument(0);
4127 Node* result = NULL;
4128
4129 switch (id) {
4130 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break;
4131 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break;
4132 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break;
4133 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break;
4134
4135 case vmIntrinsics::_doubleToLongBits: {
4136 // two paths (plus control) merge in a wood
4137 RegionNode *r = new RegionNode(3);
4138 Node *phi = new PhiNode(r, TypeLong::LONG);
4139
4140 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4141 // Build the boolean node
4142 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4143
4144 // Branch either way.
4145 // NaN case is less traveled, which makes all the difference.
4146 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4147 Node *opt_isnan = _gvn.transform(ifisnan);
4148 assert( opt_isnan->is_If(), "Expect an IfNode");
4149 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4150 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4151
4152 set_control(iftrue);
4153
4154 static const jlong nan_bits = CONST64(0x7ff8000000000000);
4155 Node *slow_result = longcon(nan_bits); // return NaN
4156 phi->init_req(1, _gvn.transform( slow_result ));
4157 r->init_req(1, iftrue);
4158
4159 // Else fall through
4160 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4161 set_control(iffalse);
4162
4163 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4164 r->init_req(2, iffalse);
4165
4166 // Post merge
4167 set_control(_gvn.transform(r));
4168 record_for_igvn(r);
4169
4170 C->set_has_split_ifs(true); // Has chance for split-if optimization
4171 result = phi;
4172 assert(result->bottom_type()->isa_long(), "must be");
4173 break;
4174 }
4175
4176 case vmIntrinsics::_floatToIntBits: {
4177 // two paths (plus control) merge in a wood
4178 RegionNode *r = new RegionNode(3);
4179 Node *phi = new PhiNode(r, TypeInt::INT);
4180
4181 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4182 // Build the boolean node
4183 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4184
4185 // Branch either way.
4186 // NaN case is less traveled, which makes all the difference.
4187 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4188 Node *opt_isnan = _gvn.transform(ifisnan);
4189 assert( opt_isnan->is_If(), "Expect an IfNode");
4190 IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4191 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4192
4193 set_control(iftrue);
4194
4195 static const jint nan_bits = 0x7fc00000;
4196 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4197 phi->init_req(1, _gvn.transform( slow_result ));
4198 r->init_req(1, iftrue);
4199
4200 // Else fall through
4201 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4202 set_control(iffalse);
4203
4204 phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4205 r->init_req(2, iffalse);
4206
4207 // Post merge
4208 set_control(_gvn.transform(r));
4209 record_for_igvn(r);
4210
4211 C->set_has_split_ifs(true); // Has chance for split-if optimization
4212 result = phi;
4213 assert(result->bottom_type()->isa_int(), "must be");
4214 break;
4215 }
4216
4217 default:
4218 fatal_unexpected_iid(id);
4219 break;
4220 }
4221 set_result(_gvn.transform(result));
4222 return true;
4223 }
4224
4225 //----------------------inline_unsafe_copyMemory-------------------------
4226 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
inline_unsafe_copyMemory()4227 bool LibraryCallKit::inline_unsafe_copyMemory() {
4228 if (callee()->is_static()) return false; // caller must have the capability!
4229 null_check_receiver(); // null-check receiver
4230 if (stopped()) return true;
4231
4232 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe".
4233
4234 Node* src_ptr = argument(1); // type: oop
4235 Node* src_off = ConvL2X(argument(2)); // type: long
4236 Node* dst_ptr = argument(4); // type: oop
4237 Node* dst_off = ConvL2X(argument(5)); // type: long
4238 Node* size = ConvL2X(argument(7)); // type: long
4239
4240 assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4241 "fieldOffset must be byte-scaled");
4242
4243 src_ptr = access_resolve(src_ptr, ACCESS_READ);
4244 dst_ptr = access_resolve(dst_ptr, ACCESS_WRITE);
4245 Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ);
4246 Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE);
4247
4248 // Conservatively insert a memory barrier on all memory slices.
4249 // Do not let writes of the copy source or destination float below the copy.
4250 insert_mem_bar(Op_MemBarCPUOrder);
4251
4252 Node* thread = _gvn.transform(new ThreadLocalNode());
4253 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
4254 BasicType doing_unsafe_access_bt = T_BYTE;
4255 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
4256
4257 // update volatile field
4258 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4259
4260 // Call it. Note that the length argument is not scaled.
4261 make_runtime_call(RC_LEAF|RC_NO_FP,
4262 OptoRuntime::fast_arraycopy_Type(),
4263 StubRoutines::unsafe_arraycopy(),
4264 "unsafe_arraycopy",
4265 TypeRawPtr::BOTTOM,
4266 src, dst, size XTOP);
4267
4268 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4269
4270 // Do not let reads of the copy destination float above the copy.
4271 insert_mem_bar(Op_MemBarCPUOrder);
4272
4273 return true;
4274 }
4275
4276 //------------------------clone_coping-----------------------------------
4277 // Helper function for inline_native_clone.
copy_to_clone(Node * obj,Node * alloc_obj,Node * obj_size,bool is_array)4278 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
4279 assert(obj_size != NULL, "");
4280 Node* raw_obj = alloc_obj->in(1);
4281 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4282
4283 AllocateNode* alloc = NULL;
4284 if (ReduceBulkZeroing) {
4285 // We will be completely responsible for initializing this object -
4286 // mark Initialize node as complete.
4287 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4288 // The object was just allocated - there should be no any stores!
4289 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4290 // Mark as complete_with_arraycopy so that on AllocateNode
4291 // expansion, we know this AllocateNode is initialized by an array
4292 // copy and a StoreStore barrier exists after the array copy.
4293 alloc->initialization()->set_complete_with_arraycopy();
4294 }
4295
4296 // Copy the fastest available way.
4297 // TODO: generate fields copies for small objects instead.
4298 Node* size = _gvn.transform(obj_size);
4299
4300 access_clone(obj, alloc_obj, size, is_array);
4301
4302 // Do not let reads from the cloned object float above the arraycopy.
4303 if (alloc != NULL) {
4304 // Do not let stores that initialize this object be reordered with
4305 // a subsequent store that would make this object accessible by
4306 // other threads.
4307 // Record what AllocateNode this StoreStore protects so that
4308 // escape analysis can go from the MemBarStoreStoreNode to the
4309 // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4310 // based on the escape status of the AllocateNode.
4311 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4312 } else {
4313 insert_mem_bar(Op_MemBarCPUOrder);
4314 }
4315 }
4316
4317 //------------------------inline_native_clone----------------------------
4318 // protected native Object java.lang.Object.clone();
4319 //
4320 // Here are the simple edge cases:
4321 // null receiver => normal trap
4322 // virtual and clone was overridden => slow path to out-of-line clone
4323 // not cloneable or finalizer => slow path to out-of-line Object.clone
4324 //
4325 // The general case has two steps, allocation and copying.
4326 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4327 //
4328 // Copying also has two cases, oop arrays and everything else.
4329 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4330 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4331 //
4332 // These steps fold up nicely if and when the cloned object's klass
4333 // can be sharply typed as an object array, a type array, or an instance.
4334 //
inline_native_clone(bool is_virtual)4335 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4336 PhiNode* result_val;
4337
4338 // Set the reexecute bit for the interpreter to reexecute
4339 // the bytecode that invokes Object.clone if deoptimization happens.
4340 { PreserveReexecuteState preexecs(this);
4341 jvms()->set_should_reexecute(true);
4342
4343 Node* obj = null_check_receiver();
4344 if (stopped()) return true;
4345
4346 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4347
4348 // If we are going to clone an instance, we need its exact type to
4349 // know the number and types of fields to convert the clone to
4350 // loads/stores. Maybe a speculative type can help us.
4351 if (!obj_type->klass_is_exact() &&
4352 obj_type->speculative_type() != NULL &&
4353 obj_type->speculative_type()->is_instance_klass()) {
4354 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4355 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4356 !spec_ik->has_injected_fields()) {
4357 ciKlass* k = obj_type->klass();
4358 if (!k->is_instance_klass() ||
4359 k->as_instance_klass()->is_interface() ||
4360 k->as_instance_klass()->has_subklass()) {
4361 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4362 }
4363 }
4364 }
4365
4366 Node* obj_klass = load_object_klass(obj);
4367 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4368 const TypeOopPtr* toop = ((tklass != NULL)
4369 ? tklass->as_instance_type()
4370 : TypeInstPtr::NOTNULL);
4371
4372 // Conservatively insert a memory barrier on all memory slices.
4373 // Do not let writes into the original float below the clone.
4374 insert_mem_bar(Op_MemBarCPUOrder);
4375
4376 // paths into result_reg:
4377 enum {
4378 _slow_path = 1, // out-of-line call to clone method (virtual or not)
4379 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy
4380 _array_path, // plain array allocation, plus arrayof_long_arraycopy
4381 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy
4382 PATH_LIMIT
4383 };
4384 RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4385 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4386 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO);
4387 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4388 record_for_igvn(result_reg);
4389
4390 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4391 if (array_ctl != NULL) {
4392 // It's an array.
4393 PreserveJVMState pjvms(this);
4394 set_control(array_ctl);
4395 Node* obj_length = load_array_length(obj);
4396 Node* obj_size = NULL;
4397 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push
4398
4399 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4400 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) {
4401 // If it is an oop array, it requires very special treatment,
4402 // because gc barriers are required when accessing the array.
4403 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4404 if (is_obja != NULL) {
4405 PreserveJVMState pjvms2(this);
4406 set_control(is_obja);
4407 obj = access_resolve(obj, ACCESS_READ);
4408 // Generate a direct call to the right arraycopy function(s).
4409 // Clones are always tightly coupled.
4410 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
4411 ac->set_cloneoop();
4412 Node* n = _gvn.transform(ac);
4413 assert(n == ac, "cannot disappear");
4414 ac->connect_outputs(this);
4415
4416 result_reg->init_req(_objArray_path, control());
4417 result_val->init_req(_objArray_path, alloc_obj);
4418 result_i_o ->set_req(_objArray_path, i_o());
4419 result_mem ->set_req(_objArray_path, reset_memory());
4420 }
4421 }
4422 // Otherwise, there are no barriers to worry about.
4423 // (We can dispense with card marks if we know the allocation
4424 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks
4425 // causes the non-eden paths to take compensating steps to
4426 // simulate a fresh allocation, so that no further
4427 // card marks are required in compiled code to initialize
4428 // the object.)
4429
4430 if (!stopped()) {
4431 copy_to_clone(obj, alloc_obj, obj_size, true);
4432
4433 // Present the results of the copy.
4434 result_reg->init_req(_array_path, control());
4435 result_val->init_req(_array_path, alloc_obj);
4436 result_i_o ->set_req(_array_path, i_o());
4437 result_mem ->set_req(_array_path, reset_memory());
4438 }
4439 }
4440
4441 // We only go to the instance fast case code if we pass a number of guards.
4442 // The paths which do not pass are accumulated in the slow_region.
4443 RegionNode* slow_region = new RegionNode(1);
4444 record_for_igvn(slow_region);
4445 if (!stopped()) {
4446 // It's an instance (we did array above). Make the slow-path tests.
4447 // If this is a virtual call, we generate a funny guard. We grab
4448 // the vtable entry corresponding to clone() from the target object.
4449 // If the target method which we are calling happens to be the
4450 // Object clone() method, we pass the guard. We do not need this
4451 // guard for non-virtual calls; the caller is known to be the native
4452 // Object clone().
4453 if (is_virtual) {
4454 generate_virtual_guard(obj_klass, slow_region);
4455 }
4456
4457 // The object must be easily cloneable and must not have a finalizer.
4458 // Both of these conditions may be checked in a single test.
4459 // We could optimize the test further, but we don't care.
4460 generate_access_flags_guard(obj_klass,
4461 // Test both conditions:
4462 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4463 // Must be cloneable but not finalizer:
4464 JVM_ACC_IS_CLONEABLE_FAST,
4465 slow_region);
4466 }
4467
4468 if (!stopped()) {
4469 // It's an instance, and it passed the slow-path tests.
4470 PreserveJVMState pjvms(this);
4471 Node* obj_size = NULL;
4472 // Need to deoptimize on exception from allocation since Object.clone intrinsic
4473 // is reexecuted if deoptimization occurs and there could be problems when merging
4474 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4475 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4476
4477 copy_to_clone(obj, alloc_obj, obj_size, false);
4478
4479 // Present the results of the slow call.
4480 result_reg->init_req(_instance_path, control());
4481 result_val->init_req(_instance_path, alloc_obj);
4482 result_i_o ->set_req(_instance_path, i_o());
4483 result_mem ->set_req(_instance_path, reset_memory());
4484 }
4485
4486 // Generate code for the slow case. We make a call to clone().
4487 set_control(_gvn.transform(slow_region));
4488 if (!stopped()) {
4489 PreserveJVMState pjvms(this);
4490 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4491 // We need to deoptimize on exception (see comment above)
4492 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
4493 // this->control() comes from set_results_for_java_call
4494 result_reg->init_req(_slow_path, control());
4495 result_val->init_req(_slow_path, slow_result);
4496 result_i_o ->set_req(_slow_path, i_o());
4497 result_mem ->set_req(_slow_path, reset_memory());
4498 }
4499
4500 // Return the combined state.
4501 set_control( _gvn.transform(result_reg));
4502 set_i_o( _gvn.transform(result_i_o));
4503 set_all_memory( _gvn.transform(result_mem));
4504 } // original reexecute is set back here
4505
4506 set_result(_gvn.transform(result_val));
4507 return true;
4508 }
4509
4510 // If we have a tightly coupled allocation, the arraycopy may take care
4511 // of the array initialization. If one of the guards we insert between
4512 // the allocation and the arraycopy causes a deoptimization, an
4513 // unitialized array will escape the compiled method. To prevent that
4514 // we set the JVM state for uncommon traps between the allocation and
4515 // the arraycopy to the state before the allocation so, in case of
4516 // deoptimization, we'll reexecute the allocation and the
4517 // initialization.
arraycopy_restore_alloc_state(AllocateArrayNode * alloc,int & saved_reexecute_sp)4518 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4519 if (alloc != NULL) {
4520 ciMethod* trap_method = alloc->jvms()->method();
4521 int trap_bci = alloc->jvms()->bci();
4522
4523 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4524 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4525 // Make sure there's no store between the allocation and the
4526 // arraycopy otherwise visible side effects could be rexecuted
4527 // in case of deoptimization and cause incorrect execution.
4528 bool no_interfering_store = true;
4529 Node* mem = alloc->in(TypeFunc::Memory);
4530 if (mem->is_MergeMem()) {
4531 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4532 Node* n = mms.memory();
4533 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4534 assert(n->is_Store(), "what else?");
4535 no_interfering_store = false;
4536 break;
4537 }
4538 }
4539 } else {
4540 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4541 Node* n = mms.memory();
4542 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4543 assert(n->is_Store(), "what else?");
4544 no_interfering_store = false;
4545 break;
4546 }
4547 }
4548 }
4549
4550 if (no_interfering_store) {
4551 JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4552 uint size = alloc->req();
4553 SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4554 old_jvms->set_map(sfpt);
4555 for (uint i = 0; i < size; i++) {
4556 sfpt->init_req(i, alloc->in(i));
4557 }
4558 // re-push array length for deoptimization
4559 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4560 old_jvms->set_sp(old_jvms->sp()+1);
4561 old_jvms->set_monoff(old_jvms->monoff()+1);
4562 old_jvms->set_scloff(old_jvms->scloff()+1);
4563 old_jvms->set_endoff(old_jvms->endoff()+1);
4564 old_jvms->set_should_reexecute(true);
4565
4566 sfpt->set_i_o(map()->i_o());
4567 sfpt->set_memory(map()->memory());
4568 sfpt->set_control(map()->control());
4569
4570 JVMState* saved_jvms = jvms();
4571 saved_reexecute_sp = _reexecute_sp;
4572
4573 set_jvms(sfpt->jvms());
4574 _reexecute_sp = jvms()->sp();
4575
4576 return saved_jvms;
4577 }
4578 }
4579 }
4580 return NULL;
4581 }
4582
4583 // In case of a deoptimization, we restart execution at the
4584 // allocation, allocating a new array. We would leave an uninitialized
4585 // array in the heap that GCs wouldn't expect. Move the allocation
4586 // after the traps so we don't allocate the array if we
4587 // deoptimize. This is possible because tightly_coupled_allocation()
4588 // guarantees there's no observer of the allocated array at this point
4589 // and the control flow is simple enough.
arraycopy_move_allocation_here(AllocateArrayNode * alloc,Node * dest,JVMState * saved_jvms,int saved_reexecute_sp,uint new_idx)4590 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4591 int saved_reexecute_sp, uint new_idx) {
4592 if (saved_jvms != NULL && !stopped()) {
4593 assert(alloc != NULL, "only with a tightly coupled allocation");
4594 // restore JVM state to the state at the arraycopy
4595 saved_jvms->map()->set_control(map()->control());
4596 assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4597 assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4598 // If we've improved the types of some nodes (null check) while
4599 // emitting the guards, propagate them to the current state
4600 map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4601 set_jvms(saved_jvms);
4602 _reexecute_sp = saved_reexecute_sp;
4603
4604 // Remove the allocation from above the guards
4605 CallProjections callprojs;
4606 alloc->extract_projections(&callprojs, true);
4607 InitializeNode* init = alloc->initialization();
4608 Node* alloc_mem = alloc->in(TypeFunc::Memory);
4609 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4610 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4611 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4612
4613 // move the allocation here (after the guards)
4614 _gvn.hash_delete(alloc);
4615 alloc->set_req(TypeFunc::Control, control());
4616 alloc->set_req(TypeFunc::I_O, i_o());
4617 Node *mem = reset_memory();
4618 set_all_memory(mem);
4619 alloc->set_req(TypeFunc::Memory, mem);
4620 set_control(init->proj_out_or_null(TypeFunc::Control));
4621 set_i_o(callprojs.fallthrough_ioproj);
4622
4623 // Update memory as done in GraphKit::set_output_for_allocation()
4624 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4625 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4626 if (ary_type->isa_aryptr() && length_type != NULL) {
4627 ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4628 }
4629 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4630 int elemidx = C->get_alias_index(telemref);
4631 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
4632 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
4633
4634 Node* allocx = _gvn.transform(alloc);
4635 assert(allocx == alloc, "where has the allocation gone?");
4636 assert(dest->is_CheckCastPP(), "not an allocation result?");
4637
4638 _gvn.hash_delete(dest);
4639 dest->set_req(0, control());
4640 Node* destx = _gvn.transform(dest);
4641 assert(destx == dest, "where has the allocation result gone?");
4642 }
4643 }
4644
4645
4646 //------------------------------inline_arraycopy-----------------------
4647 // public static native void java.lang.System.arraycopy(Object src, int srcPos,
4648 // Object dest, int destPos,
4649 // int length);
inline_arraycopy()4650 bool LibraryCallKit::inline_arraycopy() {
4651 // Get the arguments.
4652 Node* src = argument(0); // type: oop
4653 Node* src_offset = argument(1); // type: int
4654 Node* dest = argument(2); // type: oop
4655 Node* dest_offset = argument(3); // type: int
4656 Node* length = argument(4); // type: int
4657
4658 uint new_idx = C->unique();
4659
4660 // Check for allocation before we add nodes that would confuse
4661 // tightly_coupled_allocation()
4662 AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4663
4664 int saved_reexecute_sp = -1;
4665 JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4666 // See arraycopy_restore_alloc_state() comment
4667 // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4668 // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4669 // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
4670 bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4671
4672 // The following tests must be performed
4673 // (1) src and dest are arrays.
4674 // (2) src and dest arrays must have elements of the same BasicType
4675 // (3) src and dest must not be null.
4676 // (4) src_offset must not be negative.
4677 // (5) dest_offset must not be negative.
4678 // (6) length must not be negative.
4679 // (7) src_offset + length must not exceed length of src.
4680 // (8) dest_offset + length must not exceed length of dest.
4681 // (9) each element of an oop array must be assignable
4682
4683 // (3) src and dest must not be null.
4684 // always do this here because we need the JVM state for uncommon traps
4685 Node* null_ctl = top();
4686 src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
4687 assert(null_ctl->is_top(), "no null control here");
4688 dest = null_check(dest, T_ARRAY);
4689
4690 if (!can_emit_guards) {
4691 // if saved_jvms == NULL and alloc != NULL, we don't emit any
4692 // guards but the arraycopy node could still take advantage of a
4693 // tightly allocated allocation. tightly_coupled_allocation() is
4694 // called again to make sure it takes the null check above into
4695 // account: the null check is mandatory and if it caused an
4696 // uncommon trap to be emitted then the allocation can't be
4697 // considered tightly coupled in this context.
4698 alloc = tightly_coupled_allocation(dest, NULL);
4699 }
4700
4701 bool validated = false;
4702
4703 const Type* src_type = _gvn.type(src);
4704 const Type* dest_type = _gvn.type(dest);
4705 const TypeAryPtr* top_src = src_type->isa_aryptr();
4706 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4707
4708 // Do we have the type of src?
4709 bool has_src = (top_src != NULL && top_src->klass() != NULL);
4710 // Do we have the type of dest?
4711 bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4712 // Is the type for src from speculation?
4713 bool src_spec = false;
4714 // Is the type for dest from speculation?
4715 bool dest_spec = false;
4716
4717 if ((!has_src || !has_dest) && can_emit_guards) {
4718 // We don't have sufficient type information, let's see if
4719 // speculative types can help. We need to have types for both src
4720 // and dest so that it pays off.
4721
4722 // Do we already have or could we have type information for src
4723 bool could_have_src = has_src;
4724 // Do we already have or could we have type information for dest
4725 bool could_have_dest = has_dest;
4726
4727 ciKlass* src_k = NULL;
4728 if (!has_src) {
4729 src_k = src_type->speculative_type_not_null();
4730 if (src_k != NULL && src_k->is_array_klass()) {
4731 could_have_src = true;
4732 }
4733 }
4734
4735 ciKlass* dest_k = NULL;
4736 if (!has_dest) {
4737 dest_k = dest_type->speculative_type_not_null();
4738 if (dest_k != NULL && dest_k->is_array_klass()) {
4739 could_have_dest = true;
4740 }
4741 }
4742
4743 if (could_have_src && could_have_dest) {
4744 // This is going to pay off so emit the required guards
4745 if (!has_src) {
4746 src = maybe_cast_profiled_obj(src, src_k, true);
4747 src_type = _gvn.type(src);
4748 top_src = src_type->isa_aryptr();
4749 has_src = (top_src != NULL && top_src->klass() != NULL);
4750 src_spec = true;
4751 }
4752 if (!has_dest) {
4753 dest = maybe_cast_profiled_obj(dest, dest_k, true);
4754 dest_type = _gvn.type(dest);
4755 top_dest = dest_type->isa_aryptr();
4756 has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4757 dest_spec = true;
4758 }
4759 }
4760 }
4761
4762 if (has_src && has_dest && can_emit_guards) {
4763 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type();
4764 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4765 if (src_elem == T_ARRAY) src_elem = T_OBJECT;
4766 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT;
4767
4768 if (src_elem == dest_elem && src_elem == T_OBJECT) {
4769 // If both arrays are object arrays then having the exact types
4770 // for both will remove the need for a subtype check at runtime
4771 // before the call and may make it possible to pick a faster copy
4772 // routine (without a subtype check on every element)
4773 // Do we have the exact type of src?
4774 bool could_have_src = src_spec;
4775 // Do we have the exact type of dest?
4776 bool could_have_dest = dest_spec;
4777 ciKlass* src_k = top_src->klass();
4778 ciKlass* dest_k = top_dest->klass();
4779 if (!src_spec) {
4780 src_k = src_type->speculative_type_not_null();
4781 if (src_k != NULL && src_k->is_array_klass()) {
4782 could_have_src = true;
4783 }
4784 }
4785 if (!dest_spec) {
4786 dest_k = dest_type->speculative_type_not_null();
4787 if (dest_k != NULL && dest_k->is_array_klass()) {
4788 could_have_dest = true;
4789 }
4790 }
4791 if (could_have_src && could_have_dest) {
4792 // If we can have both exact types, emit the missing guards
4793 if (could_have_src && !src_spec) {
4794 src = maybe_cast_profiled_obj(src, src_k, true);
4795 }
4796 if (could_have_dest && !dest_spec) {
4797 dest = maybe_cast_profiled_obj(dest, dest_k, true);
4798 }
4799 }
4800 }
4801 }
4802
4803 ciMethod* trap_method = method();
4804 int trap_bci = bci();
4805 if (saved_jvms != NULL) {
4806 trap_method = alloc->jvms()->method();
4807 trap_bci = alloc->jvms()->bci();
4808 }
4809
4810 bool negative_length_guard_generated = false;
4811
4812 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4813 can_emit_guards &&
4814 !src->is_top() && !dest->is_top()) {
4815 // validate arguments: enables transformation the ArrayCopyNode
4816 validated = true;
4817
4818 RegionNode* slow_region = new RegionNode(1);
4819 record_for_igvn(slow_region);
4820
4821 // (1) src and dest are arrays.
4822 generate_non_array_guard(load_object_klass(src), slow_region);
4823 generate_non_array_guard(load_object_klass(dest), slow_region);
4824
4825 // (2) src and dest arrays must have elements of the same BasicType
4826 // done at macro expansion or at Ideal transformation time
4827
4828 // (4) src_offset must not be negative.
4829 generate_negative_guard(src_offset, slow_region);
4830
4831 // (5) dest_offset must not be negative.
4832 generate_negative_guard(dest_offset, slow_region);
4833
4834 // (7) src_offset + length must not exceed length of src.
4835 generate_limit_guard(src_offset, length,
4836 load_array_length(src),
4837 slow_region);
4838
4839 // (8) dest_offset + length must not exceed length of dest.
4840 generate_limit_guard(dest_offset, length,
4841 load_array_length(dest),
4842 slow_region);
4843
4844 // (6) length must not be negative.
4845 // This is also checked in generate_arraycopy() during macro expansion, but
4846 // we also have to check it here for the case where the ArrayCopyNode will
4847 // be eliminated by Escape Analysis.
4848 if (EliminateAllocations) {
4849 generate_negative_guard(length, slow_region);
4850 negative_length_guard_generated = true;
4851 }
4852
4853 // (9) each element of an oop array must be assignable
4854 Node* src_klass = load_object_klass(src);
4855 Node* dest_klass = load_object_klass(dest);
4856 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4857
4858 if (not_subtype_ctrl != top()) {
4859 PreserveJVMState pjvms(this);
4860 set_control(not_subtype_ctrl);
4861 uncommon_trap(Deoptimization::Reason_intrinsic,
4862 Deoptimization::Action_make_not_entrant);
4863 assert(stopped(), "Should be stopped");
4864 }
4865 {
4866 PreserveJVMState pjvms(this);
4867 set_control(_gvn.transform(slow_region));
4868 uncommon_trap(Deoptimization::Reason_intrinsic,
4869 Deoptimization::Action_make_not_entrant);
4870 assert(stopped(), "Should be stopped");
4871 }
4872
4873 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
4874 const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
4875 src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
4876 }
4877
4878 arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
4879
4880 if (stopped()) {
4881 return true;
4882 }
4883
4884 Node* new_src = access_resolve(src, ACCESS_READ);
4885 Node* new_dest = access_resolve(dest, ACCESS_WRITE);
4886
4887 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, new_src, src_offset, new_dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
4888 // Create LoadRange and LoadKlass nodes for use during macro expansion here
4889 // so the compiler has a chance to eliminate them: during macro expansion,
4890 // we have to set their control (CastPP nodes are eliminated).
4891 load_object_klass(src), load_object_klass(dest),
4892 load_array_length(src), load_array_length(dest));
4893
4894 ac->set_arraycopy(validated);
4895
4896 Node* n = _gvn.transform(ac);
4897 if (n == ac) {
4898 ac->connect_outputs(this);
4899 } else {
4900 assert(validated, "shouldn't transform if all arguments not validated");
4901 set_all_memory(n);
4902 }
4903 clear_upper_avx();
4904
4905
4906 return true;
4907 }
4908
4909
4910 // Helper function which determines if an arraycopy immediately follows
4911 // an allocation, with no intervening tests or other escapes for the object.
4912 AllocateArrayNode*
tightly_coupled_allocation(Node * ptr,RegionNode * slow_region)4913 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4914 RegionNode* slow_region) {
4915 if (stopped()) return NULL; // no fast path
4916 if (C->AliasLevel() == 0) return NULL; // no MergeMems around
4917
4918 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4919 if (alloc == NULL) return NULL;
4920
4921 Node* rawmem = memory(Compile::AliasIdxRaw);
4922 // Is the allocation's memory state untouched?
4923 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4924 // Bail out if there have been raw-memory effects since the allocation.
4925 // (Example: There might have been a call or safepoint.)
4926 return NULL;
4927 }
4928 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4929 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4930 return NULL;
4931 }
4932
4933 // There must be no unexpected observers of this allocation.
4934 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4935 Node* obs = ptr->fast_out(i);
4936 if (obs != this->map()) {
4937 return NULL;
4938 }
4939 }
4940
4941 // This arraycopy must unconditionally follow the allocation of the ptr.
4942 Node* alloc_ctl = ptr->in(0);
4943 Node* ctl = control();
4944 while (ctl != alloc_ctl) {
4945 // There may be guards which feed into the slow_region.
4946 // Any other control flow means that we might not get a chance
4947 // to finish initializing the allocated object.
4948 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4949 IfNode* iff = ctl->in(0)->as_If();
4950 Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
4951 assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4952 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4953 ctl = iff->in(0); // This test feeds the known slow_region.
4954 continue;
4955 }
4956 // One more try: Various low-level checks bottom out in
4957 // uncommon traps. If the debug-info of the trap omits
4958 // any reference to the allocation, as we've already
4959 // observed, then there can be no objection to the trap.
4960 bool found_trap = false;
4961 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4962 Node* obs = not_ctl->fast_out(j);
4963 if (obs->in(0) == not_ctl && obs->is_Call() &&
4964 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4965 found_trap = true; break;
4966 }
4967 }
4968 if (found_trap) {
4969 ctl = iff->in(0); // This test feeds a harmless uncommon trap.
4970 continue;
4971 }
4972 }
4973 return NULL;
4974 }
4975
4976 // If we get this far, we have an allocation which immediately
4977 // precedes the arraycopy, and we can take over zeroing the new object.
4978 // The arraycopy will finish the initialization, and provide
4979 // a new control state to which we will anchor the destination pointer.
4980
4981 return alloc;
4982 }
4983
4984 //-------------inline_encodeISOArray-----------------------------------
4985 // encode char[] to byte[] in ISO_8859_1
inline_encodeISOArray()4986 bool LibraryCallKit::inline_encodeISOArray() {
4987 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4988 // no receiver since it is static method
4989 Node *src = argument(0);
4990 Node *src_offset = argument(1);
4991 Node *dst = argument(2);
4992 Node *dst_offset = argument(3);
4993 Node *length = argument(4);
4994
4995 src = must_be_not_null(src, true);
4996 dst = must_be_not_null(dst, true);
4997
4998 src = access_resolve(src, ACCESS_READ);
4999 dst = access_resolve(dst, ACCESS_WRITE);
5000
5001 const Type* src_type = src->Value(&_gvn);
5002 const Type* dst_type = dst->Value(&_gvn);
5003 const TypeAryPtr* top_src = src_type->isa_aryptr();
5004 const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5005 if (top_src == NULL || top_src->klass() == NULL ||
5006 top_dest == NULL || top_dest->klass() == NULL) {
5007 // failed array check
5008 return false;
5009 }
5010
5011 // Figure out the size and type of the elements we will be copying.
5012 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5013 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5014 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5015 return false;
5016 }
5017
5018 Node* src_start = array_element_address(src, src_offset, T_CHAR);
5019 Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5020 // 'src_start' points to src array + scaled offset
5021 // 'dst_start' points to dst array + scaled offset
5022
5023 const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5024 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5025 enc = _gvn.transform(enc);
5026 Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5027 set_memory(res_mem, mtype);
5028 set_result(enc);
5029 clear_upper_avx();
5030
5031 return true;
5032 }
5033
5034 //-------------inline_multiplyToLen-----------------------------------
inline_multiplyToLen()5035 bool LibraryCallKit::inline_multiplyToLen() {
5036 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5037
5038 address stubAddr = StubRoutines::multiplyToLen();
5039 if (stubAddr == NULL) {
5040 return false; // Intrinsic's stub is not implemented on this platform
5041 }
5042 const char* stubName = "multiplyToLen";
5043
5044 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5045
5046 // no receiver because it is a static method
5047 Node* x = argument(0);
5048 Node* xlen = argument(1);
5049 Node* y = argument(2);
5050 Node* ylen = argument(3);
5051 Node* z = argument(4);
5052
5053 x = must_be_not_null(x, true);
5054 y = must_be_not_null(y, true);
5055
5056 x = access_resolve(x, ACCESS_READ);
5057 y = access_resolve(y, ACCESS_READ);
5058 z = access_resolve(z, ACCESS_WRITE);
5059
5060 const Type* x_type = x->Value(&_gvn);
5061 const Type* y_type = y->Value(&_gvn);
5062 const TypeAryPtr* top_x = x_type->isa_aryptr();
5063 const TypeAryPtr* top_y = y_type->isa_aryptr();
5064 if (top_x == NULL || top_x->klass() == NULL ||
5065 top_y == NULL || top_y->klass() == NULL) {
5066 // failed array check
5067 return false;
5068 }
5069
5070 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5071 BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5072 if (x_elem != T_INT || y_elem != T_INT) {
5073 return false;
5074 }
5075
5076 // Set the original stack and the reexecute bit for the interpreter to reexecute
5077 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5078 // on the return from z array allocation in runtime.
5079 { PreserveReexecuteState preexecs(this);
5080 jvms()->set_should_reexecute(true);
5081
5082 Node* x_start = array_element_address(x, intcon(0), x_elem);
5083 Node* y_start = array_element_address(y, intcon(0), y_elem);
5084 // 'x_start' points to x array + scaled xlen
5085 // 'y_start' points to y array + scaled ylen
5086
5087 // Allocate the result array
5088 Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5089 ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5090 Node* klass_node = makecon(TypeKlassPtr::make(klass));
5091
5092 IdealKit ideal(this);
5093
5094 #define __ ideal.
5095 Node* one = __ ConI(1);
5096 Node* zero = __ ConI(0);
5097 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done();
5098 __ set(need_alloc, zero);
5099 __ set(z_alloc, z);
5100 __ if_then(z, BoolTest::eq, null()); {
5101 __ increment (need_alloc, one);
5102 } __ else_(); {
5103 // Update graphKit memory and control from IdealKit.
5104 sync_kit(ideal);
5105 Node *cast = new CastPPNode(z, TypePtr::NOTNULL);
5106 cast->init_req(0, control());
5107 _gvn.set_type(cast, cast->bottom_type());
5108 C->record_for_igvn(cast);
5109
5110 Node* zlen_arg = load_array_length(cast);
5111 // Update IdealKit memory and control from graphKit.
5112 __ sync_kit(this);
5113 __ if_then(zlen_arg, BoolTest::lt, zlen); {
5114 __ increment (need_alloc, one);
5115 } __ end_if();
5116 } __ end_if();
5117
5118 __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5119 // Update graphKit memory and control from IdealKit.
5120 sync_kit(ideal);
5121 Node * narr = new_array(klass_node, zlen, 1);
5122 // Update IdealKit memory and control from graphKit.
5123 __ sync_kit(this);
5124 __ set(z_alloc, narr);
5125 } __ end_if();
5126
5127 sync_kit(ideal);
5128 z = __ value(z_alloc);
5129 // Can't use TypeAryPtr::INTS which uses Bottom offset.
5130 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5131 // Final sync IdealKit and GraphKit.
5132 final_sync(ideal);
5133 #undef __
5134
5135 Node* z_start = array_element_address(z, intcon(0), T_INT);
5136
5137 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5138 OptoRuntime::multiplyToLen_Type(),
5139 stubAddr, stubName, TypePtr::BOTTOM,
5140 x_start, xlen, y_start, ylen, z_start, zlen);
5141 } // original reexecute is set back here
5142
5143 C->set_has_split_ifs(true); // Has chance for split-if optimization
5144 set_result(z);
5145 return true;
5146 }
5147
5148 //-------------inline_squareToLen------------------------------------
inline_squareToLen()5149 bool LibraryCallKit::inline_squareToLen() {
5150 assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5151
5152 address stubAddr = StubRoutines::squareToLen();
5153 if (stubAddr == NULL) {
5154 return false; // Intrinsic's stub is not implemented on this platform
5155 }
5156 const char* stubName = "squareToLen";
5157
5158 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5159
5160 Node* x = argument(0);
5161 Node* len = argument(1);
5162 Node* z = argument(2);
5163 Node* zlen = argument(3);
5164
5165 x = must_be_not_null(x, true);
5166 z = must_be_not_null(z, true);
5167
5168 x = access_resolve(x, ACCESS_READ);
5169 z = access_resolve(z, ACCESS_WRITE);
5170
5171 const Type* x_type = x->Value(&_gvn);
5172 const Type* z_type = z->Value(&_gvn);
5173 const TypeAryPtr* top_x = x_type->isa_aryptr();
5174 const TypeAryPtr* top_z = z_type->isa_aryptr();
5175 if (top_x == NULL || top_x->klass() == NULL ||
5176 top_z == NULL || top_z->klass() == NULL) {
5177 // failed array check
5178 return false;
5179 }
5180
5181 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5182 BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5183 if (x_elem != T_INT || z_elem != T_INT) {
5184 return false;
5185 }
5186
5187
5188 Node* x_start = array_element_address(x, intcon(0), x_elem);
5189 Node* z_start = array_element_address(z, intcon(0), z_elem);
5190
5191 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5192 OptoRuntime::squareToLen_Type(),
5193 stubAddr, stubName, TypePtr::BOTTOM,
5194 x_start, len, z_start, zlen);
5195
5196 set_result(z);
5197 return true;
5198 }
5199
5200 //-------------inline_mulAdd------------------------------------------
inline_mulAdd()5201 bool LibraryCallKit::inline_mulAdd() {
5202 assert(UseMulAddIntrinsic, "not implemented on this platform");
5203
5204 address stubAddr = StubRoutines::mulAdd();
5205 if (stubAddr == NULL) {
5206 return false; // Intrinsic's stub is not implemented on this platform
5207 }
5208 const char* stubName = "mulAdd";
5209
5210 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5211
5212 Node* out = argument(0);
5213 Node* in = argument(1);
5214 Node* offset = argument(2);
5215 Node* len = argument(3);
5216 Node* k = argument(4);
5217
5218 out = must_be_not_null(out, true);
5219
5220 in = access_resolve(in, ACCESS_READ);
5221 out = access_resolve(out, ACCESS_WRITE);
5222
5223 const Type* out_type = out->Value(&_gvn);
5224 const Type* in_type = in->Value(&_gvn);
5225 const TypeAryPtr* top_out = out_type->isa_aryptr();
5226 const TypeAryPtr* top_in = in_type->isa_aryptr();
5227 if (top_out == NULL || top_out->klass() == NULL ||
5228 top_in == NULL || top_in->klass() == NULL) {
5229 // failed array check
5230 return false;
5231 }
5232
5233 BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5234 BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5235 if (out_elem != T_INT || in_elem != T_INT) {
5236 return false;
5237 }
5238
5239 Node* outlen = load_array_length(out);
5240 Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5241 Node* out_start = array_element_address(out, intcon(0), out_elem);
5242 Node* in_start = array_element_address(in, intcon(0), in_elem);
5243
5244 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5245 OptoRuntime::mulAdd_Type(),
5246 stubAddr, stubName, TypePtr::BOTTOM,
5247 out_start,in_start, new_offset, len, k);
5248 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5249 set_result(result);
5250 return true;
5251 }
5252
5253 //-------------inline_montgomeryMultiply-----------------------------------
inline_montgomeryMultiply()5254 bool LibraryCallKit::inline_montgomeryMultiply() {
5255 address stubAddr = StubRoutines::montgomeryMultiply();
5256 if (stubAddr == NULL) {
5257 return false; // Intrinsic's stub is not implemented on this platform
5258 }
5259
5260 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5261 const char* stubName = "montgomery_multiply";
5262
5263 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5264
5265 Node* a = argument(0);
5266 Node* b = argument(1);
5267 Node* n = argument(2);
5268 Node* len = argument(3);
5269 Node* inv = argument(4);
5270 Node* m = argument(6);
5271
5272 a = access_resolve(a, ACCESS_READ);
5273 b = access_resolve(b, ACCESS_READ);
5274 n = access_resolve(n, ACCESS_READ);
5275 m = access_resolve(m, ACCESS_WRITE);
5276
5277 const Type* a_type = a->Value(&_gvn);
5278 const TypeAryPtr* top_a = a_type->isa_aryptr();
5279 const Type* b_type = b->Value(&_gvn);
5280 const TypeAryPtr* top_b = b_type->isa_aryptr();
5281 const Type* n_type = a->Value(&_gvn);
5282 const TypeAryPtr* top_n = n_type->isa_aryptr();
5283 const Type* m_type = a->Value(&_gvn);
5284 const TypeAryPtr* top_m = m_type->isa_aryptr();
5285 if (top_a == NULL || top_a->klass() == NULL ||
5286 top_b == NULL || top_b->klass() == NULL ||
5287 top_n == NULL || top_n->klass() == NULL ||
5288 top_m == NULL || top_m->klass() == NULL) {
5289 // failed array check
5290 return false;
5291 }
5292
5293 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5294 BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5295 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5296 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5297 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5298 return false;
5299 }
5300
5301 // Make the call
5302 {
5303 Node* a_start = array_element_address(a, intcon(0), a_elem);
5304 Node* b_start = array_element_address(b, intcon(0), b_elem);
5305 Node* n_start = array_element_address(n, intcon(0), n_elem);
5306 Node* m_start = array_element_address(m, intcon(0), m_elem);
5307
5308 Node* call = make_runtime_call(RC_LEAF,
5309 OptoRuntime::montgomeryMultiply_Type(),
5310 stubAddr, stubName, TypePtr::BOTTOM,
5311 a_start, b_start, n_start, len, inv, top(),
5312 m_start);
5313 set_result(m);
5314 }
5315
5316 return true;
5317 }
5318
inline_montgomerySquare()5319 bool LibraryCallKit::inline_montgomerySquare() {
5320 address stubAddr = StubRoutines::montgomerySquare();
5321 if (stubAddr == NULL) {
5322 return false; // Intrinsic's stub is not implemented on this platform
5323 }
5324
5325 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5326 const char* stubName = "montgomery_square";
5327
5328 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5329
5330 Node* a = argument(0);
5331 Node* n = argument(1);
5332 Node* len = argument(2);
5333 Node* inv = argument(3);
5334 Node* m = argument(5);
5335
5336 a = access_resolve(a, ACCESS_READ);
5337 n = access_resolve(n, ACCESS_READ);
5338 m = access_resolve(m, ACCESS_WRITE);
5339
5340 const Type* a_type = a->Value(&_gvn);
5341 const TypeAryPtr* top_a = a_type->isa_aryptr();
5342 const Type* n_type = a->Value(&_gvn);
5343 const TypeAryPtr* top_n = n_type->isa_aryptr();
5344 const Type* m_type = a->Value(&_gvn);
5345 const TypeAryPtr* top_m = m_type->isa_aryptr();
5346 if (top_a == NULL || top_a->klass() == NULL ||
5347 top_n == NULL || top_n->klass() == NULL ||
5348 top_m == NULL || top_m->klass() == NULL) {
5349 // failed array check
5350 return false;
5351 }
5352
5353 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5354 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5355 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5356 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5357 return false;
5358 }
5359
5360 // Make the call
5361 {
5362 Node* a_start = array_element_address(a, intcon(0), a_elem);
5363 Node* n_start = array_element_address(n, intcon(0), n_elem);
5364 Node* m_start = array_element_address(m, intcon(0), m_elem);
5365
5366 Node* call = make_runtime_call(RC_LEAF,
5367 OptoRuntime::montgomerySquare_Type(),
5368 stubAddr, stubName, TypePtr::BOTTOM,
5369 a_start, n_start, len, inv, top(),
5370 m_start);
5371 set_result(m);
5372 }
5373
5374 return true;
5375 }
5376
5377 //-------------inline_vectorizedMismatch------------------------------
inline_vectorizedMismatch()5378 bool LibraryCallKit::inline_vectorizedMismatch() {
5379 assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5380
5381 address stubAddr = StubRoutines::vectorizedMismatch();
5382 if (stubAddr == NULL) {
5383 return false; // Intrinsic's stub is not implemented on this platform
5384 }
5385 const char* stubName = "vectorizedMismatch";
5386 int size_l = callee()->signature()->size();
5387 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5388
5389 Node* obja = argument(0);
5390 Node* aoffset = argument(1);
5391 Node* objb = argument(3);
5392 Node* boffset = argument(4);
5393 Node* length = argument(6);
5394 Node* scale = argument(7);
5395
5396 const Type* a_type = obja->Value(&_gvn);
5397 const Type* b_type = objb->Value(&_gvn);
5398 const TypeAryPtr* top_a = a_type->isa_aryptr();
5399 const TypeAryPtr* top_b = b_type->isa_aryptr();
5400 if (top_a == NULL || top_a->klass() == NULL ||
5401 top_b == NULL || top_b->klass() == NULL) {
5402 // failed array check
5403 return false;
5404 }
5405
5406 Node* call;
5407 jvms()->set_should_reexecute(true);
5408
5409 obja = access_resolve(obja, ACCESS_READ);
5410 objb = access_resolve(objb, ACCESS_READ);
5411 Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ);
5412 Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ);
5413
5414 call = make_runtime_call(RC_LEAF,
5415 OptoRuntime::vectorizedMismatch_Type(),
5416 stubAddr, stubName, TypePtr::BOTTOM,
5417 obja_adr, objb_adr, length, scale);
5418
5419 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5420 set_result(result);
5421 return true;
5422 }
5423
5424 /**
5425 * Calculate CRC32 for byte.
5426 * int java.util.zip.CRC32.update(int crc, int b)
5427 */
inline_updateCRC32()5428 bool LibraryCallKit::inline_updateCRC32() {
5429 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5430 assert(callee()->signature()->size() == 2, "update has 2 parameters");
5431 // no receiver since it is static method
5432 Node* crc = argument(0); // type: int
5433 Node* b = argument(1); // type: int
5434
5435 /*
5436 * int c = ~ crc;
5437 * b = timesXtoThe32[(b ^ c) & 0xFF];
5438 * b = b ^ (c >>> 8);
5439 * crc = ~b;
5440 */
5441
5442 Node* M1 = intcon(-1);
5443 crc = _gvn.transform(new XorINode(crc, M1));
5444 Node* result = _gvn.transform(new XorINode(crc, b));
5445 result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5446
5447 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5448 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5449 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5450 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5451
5452 crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5453 result = _gvn.transform(new XorINode(crc, result));
5454 result = _gvn.transform(new XorINode(result, M1));
5455 set_result(result);
5456 return true;
5457 }
5458
5459 /**
5460 * Calculate CRC32 for byte[] array.
5461 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5462 */
inline_updateBytesCRC32()5463 bool LibraryCallKit::inline_updateBytesCRC32() {
5464 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5465 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5466 // no receiver since it is static method
5467 Node* crc = argument(0); // type: int
5468 Node* src = argument(1); // type: oop
5469 Node* offset = argument(2); // type: int
5470 Node* length = argument(3); // type: int
5471
5472 const Type* src_type = src->Value(&_gvn);
5473 const TypeAryPtr* top_src = src_type->isa_aryptr();
5474 if (top_src == NULL || top_src->klass() == NULL) {
5475 // failed array check
5476 return false;
5477 }
5478
5479 // Figure out the size and type of the elements we will be copying.
5480 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5481 if (src_elem != T_BYTE) {
5482 return false;
5483 }
5484
5485 // 'src_start' points to src array + scaled offset
5486 src = must_be_not_null(src, true);
5487 src = access_resolve(src, ACCESS_READ);
5488 Node* src_start = array_element_address(src, offset, src_elem);
5489
5490 // We assume that range check is done by caller.
5491 // TODO: generate range check (offset+length < src.length) in debug VM.
5492
5493 // Call the stub.
5494 address stubAddr = StubRoutines::updateBytesCRC32();
5495 const char *stubName = "updateBytesCRC32";
5496
5497 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5498 stubAddr, stubName, TypePtr::BOTTOM,
5499 crc, src_start, length);
5500 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5501 set_result(result);
5502 return true;
5503 }
5504
5505 /**
5506 * Calculate CRC32 for ByteBuffer.
5507 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5508 */
inline_updateByteBufferCRC32()5509 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5510 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5511 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5512 // no receiver since it is static method
5513 Node* crc = argument(0); // type: int
5514 Node* src = argument(1); // type: long
5515 Node* offset = argument(3); // type: int
5516 Node* length = argument(4); // type: int
5517
5518 src = ConvL2X(src); // adjust Java long to machine word
5519 Node* base = _gvn.transform(new CastX2PNode(src));
5520 offset = ConvI2X(offset);
5521
5522 // 'src_start' points to src array + scaled offset
5523 Node* src_start = basic_plus_adr(top(), base, offset);
5524
5525 // Call the stub.
5526 address stubAddr = StubRoutines::updateBytesCRC32();
5527 const char *stubName = "updateBytesCRC32";
5528
5529 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5530 stubAddr, stubName, TypePtr::BOTTOM,
5531 crc, src_start, length);
5532 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5533 set_result(result);
5534 return true;
5535 }
5536
5537 //------------------------------get_table_from_crc32c_class-----------------------
get_table_from_crc32c_class(ciInstanceKlass * crc32c_class)5538 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5539 Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5540 assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5541
5542 return table;
5543 }
5544
5545 //------------------------------inline_updateBytesCRC32C-----------------------
5546 //
5547 // Calculate CRC32C for byte[] array.
5548 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5549 //
inline_updateBytesCRC32C()5550 bool LibraryCallKit::inline_updateBytesCRC32C() {
5551 assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5552 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5553 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5554 // no receiver since it is a static method
5555 Node* crc = argument(0); // type: int
5556 Node* src = argument(1); // type: oop
5557 Node* offset = argument(2); // type: int
5558 Node* end = argument(3); // type: int
5559
5560 Node* length = _gvn.transform(new SubINode(end, offset));
5561
5562 const Type* src_type = src->Value(&_gvn);
5563 const TypeAryPtr* top_src = src_type->isa_aryptr();
5564 if (top_src == NULL || top_src->klass() == NULL) {
5565 // failed array check
5566 return false;
5567 }
5568
5569 // Figure out the size and type of the elements we will be copying.
5570 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5571 if (src_elem != T_BYTE) {
5572 return false;
5573 }
5574
5575 // 'src_start' points to src array + scaled offset
5576 src = must_be_not_null(src, true);
5577 src = access_resolve(src, ACCESS_READ);
5578 Node* src_start = array_element_address(src, offset, src_elem);
5579
5580 // static final int[] byteTable in class CRC32C
5581 Node* table = get_table_from_crc32c_class(callee()->holder());
5582 table = must_be_not_null(table, true);
5583 table = access_resolve(table, ACCESS_READ);
5584 Node* table_start = array_element_address(table, intcon(0), T_INT);
5585
5586 // We assume that range check is done by caller.
5587 // TODO: generate range check (offset+length < src.length) in debug VM.
5588
5589 // Call the stub.
5590 address stubAddr = StubRoutines::updateBytesCRC32C();
5591 const char *stubName = "updateBytesCRC32C";
5592
5593 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5594 stubAddr, stubName, TypePtr::BOTTOM,
5595 crc, src_start, length, table_start);
5596 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5597 set_result(result);
5598 return true;
5599 }
5600
5601 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5602 //
5603 // Calculate CRC32C for DirectByteBuffer.
5604 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5605 //
inline_updateDirectByteBufferCRC32C()5606 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5607 assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5608 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5609 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5610 // no receiver since it is a static method
5611 Node* crc = argument(0); // type: int
5612 Node* src = argument(1); // type: long
5613 Node* offset = argument(3); // type: int
5614 Node* end = argument(4); // type: int
5615
5616 Node* length = _gvn.transform(new SubINode(end, offset));
5617
5618 src = ConvL2X(src); // adjust Java long to machine word
5619 Node* base = _gvn.transform(new CastX2PNode(src));
5620 offset = ConvI2X(offset);
5621
5622 // 'src_start' points to src array + scaled offset
5623 Node* src_start = basic_plus_adr(top(), base, offset);
5624
5625 // static final int[] byteTable in class CRC32C
5626 Node* table = get_table_from_crc32c_class(callee()->holder());
5627 table = must_be_not_null(table, true);
5628 table = access_resolve(table, ACCESS_READ);
5629 Node* table_start = array_element_address(table, intcon(0), T_INT);
5630
5631 // Call the stub.
5632 address stubAddr = StubRoutines::updateBytesCRC32C();
5633 const char *stubName = "updateBytesCRC32C";
5634
5635 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5636 stubAddr, stubName, TypePtr::BOTTOM,
5637 crc, src_start, length, table_start);
5638 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5639 set_result(result);
5640 return true;
5641 }
5642
5643 //------------------------------inline_updateBytesAdler32----------------------
5644 //
5645 // Calculate Adler32 checksum for byte[] array.
5646 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5647 //
inline_updateBytesAdler32()5648 bool LibraryCallKit::inline_updateBytesAdler32() {
5649 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5650 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5651 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5652 // no receiver since it is static method
5653 Node* crc = argument(0); // type: int
5654 Node* src = argument(1); // type: oop
5655 Node* offset = argument(2); // type: int
5656 Node* length = argument(3); // type: int
5657
5658 const Type* src_type = src->Value(&_gvn);
5659 const TypeAryPtr* top_src = src_type->isa_aryptr();
5660 if (top_src == NULL || top_src->klass() == NULL) {
5661 // failed array check
5662 return false;
5663 }
5664
5665 // Figure out the size and type of the elements we will be copying.
5666 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5667 if (src_elem != T_BYTE) {
5668 return false;
5669 }
5670
5671 // 'src_start' points to src array + scaled offset
5672 src = access_resolve(src, ACCESS_READ);
5673 Node* src_start = array_element_address(src, offset, src_elem);
5674
5675 // We assume that range check is done by caller.
5676 // TODO: generate range check (offset+length < src.length) in debug VM.
5677
5678 // Call the stub.
5679 address stubAddr = StubRoutines::updateBytesAdler32();
5680 const char *stubName = "updateBytesAdler32";
5681
5682 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5683 stubAddr, stubName, TypePtr::BOTTOM,
5684 crc, src_start, length);
5685 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5686 set_result(result);
5687 return true;
5688 }
5689
5690 //------------------------------inline_updateByteBufferAdler32---------------
5691 //
5692 // Calculate Adler32 checksum for DirectByteBuffer.
5693 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5694 //
inline_updateByteBufferAdler32()5695 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5696 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5697 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5698 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5699 // no receiver since it is static method
5700 Node* crc = argument(0); // type: int
5701 Node* src = argument(1); // type: long
5702 Node* offset = argument(3); // type: int
5703 Node* length = argument(4); // type: int
5704
5705 src = ConvL2X(src); // adjust Java long to machine word
5706 Node* base = _gvn.transform(new CastX2PNode(src));
5707 offset = ConvI2X(offset);
5708
5709 // 'src_start' points to src array + scaled offset
5710 Node* src_start = basic_plus_adr(top(), base, offset);
5711
5712 // Call the stub.
5713 address stubAddr = StubRoutines::updateBytesAdler32();
5714 const char *stubName = "updateBytesAdler32";
5715
5716 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5717 stubAddr, stubName, TypePtr::BOTTOM,
5718 crc, src_start, length);
5719
5720 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5721 set_result(result);
5722 return true;
5723 }
5724
5725 //----------------------------inline_reference_get----------------------------
5726 // public T java.lang.ref.Reference.get();
inline_reference_get()5727 bool LibraryCallKit::inline_reference_get() {
5728 const int referent_offset = java_lang_ref_Reference::referent_offset;
5729 guarantee(referent_offset > 0, "should have already been set");
5730
5731 // Get the argument:
5732 Node* reference_obj = null_check_receiver();
5733 if (stopped()) return true;
5734
5735 const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr();
5736 assert(tinst != NULL, "obj is null");
5737 assert(tinst->klass()->is_loaded(), "obj is not loaded");
5738 ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass();
5739 ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"),
5740 ciSymbol::make("Ljava/lang/Object;"),
5741 false);
5742 assert (field != NULL, "undefined field");
5743
5744 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5745 const TypePtr* adr_type = C->alias_type(field)->adr_type();
5746
5747 ciInstanceKlass* klass = env()->Object_klass();
5748 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5749
5750 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
5751 Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators);
5752 // Add memory barrier to prevent commoning reads from this field
5753 // across safepoint since GC can change its value.
5754 insert_mem_bar(Op_MemBarCPUOrder);
5755
5756 set_result(result);
5757 return true;
5758 }
5759
5760
load_field_from_object(Node * fromObj,const char * fieldName,const char * fieldTypeString,bool is_exact=true,bool is_static=false,ciInstanceKlass * fromKls=NULL)5761 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5762 bool is_exact=true, bool is_static=false,
5763 ciInstanceKlass * fromKls=NULL) {
5764 if (fromKls == NULL) {
5765 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5766 assert(tinst != NULL, "obj is null");
5767 assert(tinst->klass()->is_loaded(), "obj is not loaded");
5768 assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5769 fromKls = tinst->klass()->as_instance_klass();
5770 } else {
5771 assert(is_static, "only for static field access");
5772 }
5773 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5774 ciSymbol::make(fieldTypeString),
5775 is_static);
5776
5777 assert (field != NULL, "undefined field");
5778 if (field == NULL) return (Node *) NULL;
5779
5780 if (is_static) {
5781 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5782 fromObj = makecon(tip);
5783 }
5784
5785 // Next code copied from Parse::do_get_xxx():
5786
5787 // Compute address and memory type.
5788 int offset = field->offset_in_bytes();
5789 bool is_vol = field->is_volatile();
5790 ciType* field_klass = field->type();
5791 assert(field_klass->is_loaded(), "should be loaded");
5792 const TypePtr* adr_type = C->alias_type(field)->adr_type();
5793 Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5794 BasicType bt = field->layout_type();
5795
5796 // Build the resultant type of the load
5797 const Type *type;
5798 if (bt == T_OBJECT) {
5799 type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5800 } else {
5801 type = Type::get_const_basic_type(bt);
5802 }
5803
5804 DecoratorSet decorators = IN_HEAP;
5805
5806 if (is_vol) {
5807 decorators |= MO_SEQ_CST;
5808 }
5809
5810 return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
5811 }
5812
field_address_from_object(Node * fromObj,const char * fieldName,const char * fieldTypeString,bool is_exact=true,bool is_static=false,ciInstanceKlass * fromKls=NULL)5813 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5814 bool is_exact = true, bool is_static = false,
5815 ciInstanceKlass * fromKls = NULL) {
5816 if (fromKls == NULL) {
5817 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5818 assert(tinst != NULL, "obj is null");
5819 assert(tinst->klass()->is_loaded(), "obj is not loaded");
5820 assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5821 fromKls = tinst->klass()->as_instance_klass();
5822 }
5823 else {
5824 assert(is_static, "only for static field access");
5825 }
5826 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5827 ciSymbol::make(fieldTypeString),
5828 is_static);
5829
5830 assert(field != NULL, "undefined field");
5831 assert(!field->is_volatile(), "not defined for volatile fields");
5832
5833 if (is_static) {
5834 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5835 fromObj = makecon(tip);
5836 }
5837
5838 // Next code copied from Parse::do_get_xxx():
5839
5840 // Compute address and memory type.
5841 int offset = field->offset_in_bytes();
5842 Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5843
5844 return adr;
5845 }
5846
5847 //------------------------------inline_aescrypt_Block-----------------------
inline_aescrypt_Block(vmIntrinsics::ID id)5848 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5849 address stubAddr = NULL;
5850 const char *stubName;
5851 assert(UseAES, "need AES instruction support");
5852
5853 switch(id) {
5854 case vmIntrinsics::_aescrypt_encryptBlock:
5855 stubAddr = StubRoutines::aescrypt_encryptBlock();
5856 stubName = "aescrypt_encryptBlock";
5857 break;
5858 case vmIntrinsics::_aescrypt_decryptBlock:
5859 stubAddr = StubRoutines::aescrypt_decryptBlock();
5860 stubName = "aescrypt_decryptBlock";
5861 break;
5862 default:
5863 break;
5864 }
5865 if (stubAddr == NULL) return false;
5866
5867 Node* aescrypt_object = argument(0);
5868 Node* src = argument(1);
5869 Node* src_offset = argument(2);
5870 Node* dest = argument(3);
5871 Node* dest_offset = argument(4);
5872
5873 src = must_be_not_null(src, true);
5874 dest = must_be_not_null(dest, true);
5875
5876 src = access_resolve(src, ACCESS_READ);
5877 dest = access_resolve(dest, ACCESS_WRITE);
5878
5879 // (1) src and dest are arrays.
5880 const Type* src_type = src->Value(&_gvn);
5881 const Type* dest_type = dest->Value(&_gvn);
5882 const TypeAryPtr* top_src = src_type->isa_aryptr();
5883 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5884 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5885
5886 // for the quick and dirty code we will skip all the checks.
5887 // we are just trying to get the call to be generated.
5888 Node* src_start = src;
5889 Node* dest_start = dest;
5890 if (src_offset != NULL || dest_offset != NULL) {
5891 assert(src_offset != NULL && dest_offset != NULL, "");
5892 src_start = array_element_address(src, src_offset, T_BYTE);
5893 dest_start = array_element_address(dest, dest_offset, T_BYTE);
5894 }
5895
5896 // now need to get the start of its expanded key array
5897 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5898 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5899 if (k_start == NULL) return false;
5900
5901 if (Matcher::pass_original_key_for_aes()) {
5902 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5903 // compatibility issues between Java key expansion and SPARC crypto instructions
5904 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5905 if (original_k_start == NULL) return false;
5906
5907 // Call the stub.
5908 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5909 stubAddr, stubName, TypePtr::BOTTOM,
5910 src_start, dest_start, k_start, original_k_start);
5911 } else {
5912 // Call the stub.
5913 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5914 stubAddr, stubName, TypePtr::BOTTOM,
5915 src_start, dest_start, k_start);
5916 }
5917
5918 return true;
5919 }
5920
5921 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id)5922 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5923 address stubAddr = NULL;
5924 const char *stubName = NULL;
5925
5926 assert(UseAES, "need AES instruction support");
5927
5928 switch(id) {
5929 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5930 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5931 stubName = "cipherBlockChaining_encryptAESCrypt";
5932 break;
5933 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5934 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5935 stubName = "cipherBlockChaining_decryptAESCrypt";
5936 break;
5937 default:
5938 break;
5939 }
5940 if (stubAddr == NULL) return false;
5941
5942 Node* cipherBlockChaining_object = argument(0);
5943 Node* src = argument(1);
5944 Node* src_offset = argument(2);
5945 Node* len = argument(3);
5946 Node* dest = argument(4);
5947 Node* dest_offset = argument(5);
5948
5949 src = must_be_not_null(src, false);
5950 dest = must_be_not_null(dest, false);
5951
5952 src = access_resolve(src, ACCESS_READ);
5953 dest = access_resolve(dest, ACCESS_WRITE);
5954
5955 // (1) src and dest are arrays.
5956 const Type* src_type = src->Value(&_gvn);
5957 const Type* dest_type = dest->Value(&_gvn);
5958 const TypeAryPtr* top_src = src_type->isa_aryptr();
5959 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5960 assert (top_src != NULL && top_src->klass() != NULL
5961 && top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5962
5963 // checks are the responsibility of the caller
5964 Node* src_start = src;
5965 Node* dest_start = dest;
5966 if (src_offset != NULL || dest_offset != NULL) {
5967 assert(src_offset != NULL && dest_offset != NULL, "");
5968 src_start = array_element_address(src, src_offset, T_BYTE);
5969 dest_start = array_element_address(dest, dest_offset, T_BYTE);
5970 }
5971
5972 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5973 // (because of the predicated logic executed earlier).
5974 // so we cast it here safely.
5975 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5976
5977 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5978 if (embeddedCipherObj == NULL) return false;
5979
5980 // cast it to what we know it will be at runtime
5981 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5982 assert(tinst != NULL, "CBC obj is null");
5983 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5984 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5985 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5986
5987 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5988 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5989 const TypeOopPtr* xtype = aklass->as_instance_type();
5990 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5991 aescrypt_object = _gvn.transform(aescrypt_object);
5992
5993 // we need to get the start of the aescrypt_object's expanded key array
5994 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5995 if (k_start == NULL) return false;
5996
5997 // similarly, get the start address of the r vector
5998 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5999 if (objRvec == NULL) return false;
6000 objRvec = access_resolve(objRvec, ACCESS_WRITE);
6001 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6002
6003 Node* cbcCrypt;
6004 if (Matcher::pass_original_key_for_aes()) {
6005 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6006 // compatibility issues between Java key expansion and SPARC crypto instructions
6007 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6008 if (original_k_start == NULL) return false;
6009
6010 // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6011 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6012 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6013 stubAddr, stubName, TypePtr::BOTTOM,
6014 src_start, dest_start, k_start, r_start, len, original_k_start);
6015 } else {
6016 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6017 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6018 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6019 stubAddr, stubName, TypePtr::BOTTOM,
6020 src_start, dest_start, k_start, r_start, len);
6021 }
6022
6023 // return cipher length (int)
6024 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6025 set_result(retvalue);
6026 return true;
6027 }
6028
6029 //------------------------------inline_counterMode_AESCrypt-----------------------
inline_counterMode_AESCrypt(vmIntrinsics::ID id)6030 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6031 assert(UseAES, "need AES instruction support");
6032 if (!UseAESCTRIntrinsics) return false;
6033
6034 address stubAddr = NULL;
6035 const char *stubName = NULL;
6036 if (id == vmIntrinsics::_counterMode_AESCrypt) {
6037 stubAddr = StubRoutines::counterMode_AESCrypt();
6038 stubName = "counterMode_AESCrypt";
6039 }
6040 if (stubAddr == NULL) return false;
6041
6042 Node* counterMode_object = argument(0);
6043 Node* src = argument(1);
6044 Node* src_offset = argument(2);
6045 Node* len = argument(3);
6046 Node* dest = argument(4);
6047 Node* dest_offset = argument(5);
6048
6049 src = access_resolve(src, ACCESS_READ);
6050 dest = access_resolve(dest, ACCESS_WRITE);
6051 counterMode_object = access_resolve(counterMode_object, ACCESS_WRITE);
6052
6053 // (1) src and dest are arrays.
6054 const Type* src_type = src->Value(&_gvn);
6055 const Type* dest_type = dest->Value(&_gvn);
6056 const TypeAryPtr* top_src = src_type->isa_aryptr();
6057 const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6058 assert(top_src != NULL && top_src->klass() != NULL &&
6059 top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6060
6061 // checks are the responsibility of the caller
6062 Node* src_start = src;
6063 Node* dest_start = dest;
6064 if (src_offset != NULL || dest_offset != NULL) {
6065 assert(src_offset != NULL && dest_offset != NULL, "");
6066 src_start = array_element_address(src, src_offset, T_BYTE);
6067 dest_start = array_element_address(dest, dest_offset, T_BYTE);
6068 }
6069
6070 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6071 // (because of the predicated logic executed earlier).
6072 // so we cast it here safely.
6073 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6074 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6075 if (embeddedCipherObj == NULL) return false;
6076 // cast it to what we know it will be at runtime
6077 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6078 assert(tinst != NULL, "CTR obj is null");
6079 assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6080 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6081 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6082 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6083 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6084 const TypeOopPtr* xtype = aklass->as_instance_type();
6085 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6086 aescrypt_object = _gvn.transform(aescrypt_object);
6087 // we need to get the start of the aescrypt_object's expanded key array
6088 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6089 if (k_start == NULL) return false;
6090 // similarly, get the start address of the r vector
6091 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6092 if (obj_counter == NULL) return false;
6093 obj_counter = access_resolve(obj_counter, ACCESS_WRITE);
6094 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6095
6096 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6097 if (saved_encCounter == NULL) return false;
6098 saved_encCounter = access_resolve(saved_encCounter, ACCESS_WRITE);
6099 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6100 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6101
6102 Node* ctrCrypt;
6103 if (Matcher::pass_original_key_for_aes()) {
6104 // no SPARC version for AES/CTR intrinsics now.
6105 return false;
6106 }
6107 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6108 ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6109 OptoRuntime::counterMode_aescrypt_Type(),
6110 stubAddr, stubName, TypePtr::BOTTOM,
6111 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6112
6113 // return cipher length (int)
6114 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6115 set_result(retvalue);
6116 return true;
6117 }
6118
6119 //------------------------------get_key_start_from_aescrypt_object-----------------------
get_key_start_from_aescrypt_object(Node * aescrypt_object)6120 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6121 #if defined(PPC64) || defined(S390)
6122 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6123 // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6124 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6125 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6126 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6127 assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6128 if (objSessionK == NULL) {
6129 return (Node *) NULL;
6130 }
6131 Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6132 #else
6133 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6134 #endif // PPC64
6135 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6136 if (objAESCryptKey == NULL) return (Node *) NULL;
6137
6138 // now have the array, need to get the start address of the K array
6139 objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6140 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6141 return k_start;
6142 }
6143
6144 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
get_original_key_start_from_aescrypt_object(Node * aescrypt_object)6145 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6146 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6147 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6148 if (objAESCryptKey == NULL) return (Node *) NULL;
6149
6150 // now have the array, need to get the start address of the lastKey array
6151 objAESCryptKey = access_resolve(objAESCryptKey, ACCESS_READ);
6152 Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6153 return original_k_start;
6154 }
6155
6156 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6157 // Return node representing slow path of predicate check.
6158 // the pseudo code we want to emulate with this predicate is:
6159 // for encryption:
6160 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6161 // for decryption:
6162 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6163 // note cipher==plain is more conservative than the original java code but that's OK
6164 //
inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting)6165 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6166 // The receiver was checked for NULL already.
6167 Node* objCBC = argument(0);
6168
6169 Node* src = argument(1);
6170 Node* dest = argument(4);
6171
6172 // Load embeddedCipher field of CipherBlockChaining object.
6173 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6174
6175 // get AESCrypt klass for instanceOf check
6176 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6177 // will have same classloader as CipherBlockChaining object
6178 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6179 assert(tinst != NULL, "CBCobj is null");
6180 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6181
6182 // we want to do an instanceof comparison against the AESCrypt class
6183 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6184 if (!klass_AESCrypt->is_loaded()) {
6185 // if AESCrypt is not even loaded, we never take the intrinsic fast path
6186 Node* ctrl = control();
6187 set_control(top()); // no regular fast path
6188 return ctrl;
6189 }
6190
6191 src = must_be_not_null(src, true);
6192 dest = must_be_not_null(dest, true);
6193
6194 // Resolve oops to stable for CmpP below.
6195 src = access_resolve(src, 0);
6196 dest = access_resolve(dest, 0);
6197
6198 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6199
6200 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6201 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6202 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6203
6204 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6205
6206 // for encryption, we are done
6207 if (!decrypting)
6208 return instof_false; // even if it is NULL
6209
6210 // for decryption, we need to add a further check to avoid
6211 // taking the intrinsic path when cipher and plain are the same
6212 // see the original java code for why.
6213 RegionNode* region = new RegionNode(3);
6214 region->init_req(1, instof_false);
6215
6216 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6217 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6218 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6219 region->init_req(2, src_dest_conjoint);
6220
6221 record_for_igvn(region);
6222 return _gvn.transform(region);
6223 }
6224
6225 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6226 // Return node representing slow path of predicate check.
6227 // the pseudo code we want to emulate with this predicate is:
6228 // for encryption:
6229 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6230 // for decryption:
6231 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6232 // note cipher==plain is more conservative than the original java code but that's OK
6233 //
6234
inline_counterMode_AESCrypt_predicate()6235 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6236 // The receiver was checked for NULL already.
6237 Node* objCTR = argument(0);
6238
6239 // Load embeddedCipher field of CipherBlockChaining object.
6240 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6241
6242 // get AESCrypt klass for instanceOf check
6243 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6244 // will have same classloader as CipherBlockChaining object
6245 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6246 assert(tinst != NULL, "CTRobj is null");
6247 assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6248
6249 // we want to do an instanceof comparison against the AESCrypt class
6250 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6251 if (!klass_AESCrypt->is_loaded()) {
6252 // if AESCrypt is not even loaded, we never take the intrinsic fast path
6253 Node* ctrl = control();
6254 set_control(top()); // no regular fast path
6255 return ctrl;
6256 }
6257
6258 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6259 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6260 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6261 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6262 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6263
6264 return instof_false; // even if it is NULL
6265 }
6266
6267 //------------------------------inline_ghash_processBlocks
inline_ghash_processBlocks()6268 bool LibraryCallKit::inline_ghash_processBlocks() {
6269 address stubAddr;
6270 const char *stubName;
6271 assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6272
6273 stubAddr = StubRoutines::ghash_processBlocks();
6274 stubName = "ghash_processBlocks";
6275
6276 Node* data = argument(0);
6277 Node* offset = argument(1);
6278 Node* len = argument(2);
6279 Node* state = argument(3);
6280 Node* subkeyH = argument(4);
6281
6282 state = must_be_not_null(state, true);
6283 subkeyH = must_be_not_null(subkeyH, true);
6284 data = must_be_not_null(data, true);
6285
6286 state = access_resolve(state, ACCESS_WRITE);
6287 subkeyH = access_resolve(subkeyH, ACCESS_READ);
6288 data = access_resolve(data, ACCESS_READ);
6289
6290 Node* state_start = array_element_address(state, intcon(0), T_LONG);
6291 assert(state_start, "state is NULL");
6292 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG);
6293 assert(subkeyH_start, "subkeyH is NULL");
6294 Node* data_start = array_element_address(data, offset, T_BYTE);
6295 assert(data_start, "data is NULL");
6296
6297 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6298 OptoRuntime::ghash_processBlocks_Type(),
6299 stubAddr, stubName, TypePtr::BOTTOM,
6300 state_start, subkeyH_start, data_start, len);
6301 return true;
6302 }
6303
inline_base64_encodeBlock()6304 bool LibraryCallKit::inline_base64_encodeBlock() {
6305 address stubAddr;
6306 const char *stubName;
6307 assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6308 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
6309 stubAddr = StubRoutines::base64_encodeBlock();
6310 stubName = "encodeBlock";
6311
6312 if (!stubAddr) return false;
6313 Node* base64obj = argument(0);
6314 Node* src = argument(1);
6315 Node* offset = argument(2);
6316 Node* len = argument(3);
6317 Node* dest = argument(4);
6318 Node* dp = argument(5);
6319 Node* isURL = argument(6);
6320
6321 src = must_be_not_null(src, true);
6322 src = access_resolve(src, ACCESS_READ);
6323 dest = must_be_not_null(dest, true);
6324 dest = access_resolve(dest, ACCESS_WRITE);
6325
6326 Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6327 assert(src_start, "source array is NULL");
6328 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6329 assert(dest_start, "destination array is NULL");
6330
6331 Node* base64 = make_runtime_call(RC_LEAF,
6332 OptoRuntime::base64_encodeBlock_Type(),
6333 stubAddr, stubName, TypePtr::BOTTOM,
6334 src_start, offset, len, dest_start, dp, isURL);
6335 return true;
6336 }
6337
6338 //------------------------------inline_sha_implCompress-----------------------
6339 //
6340 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6341 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6342 //
6343 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6344 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6345 //
6346 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6347 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6348 //
inline_sha_implCompress(vmIntrinsics::ID id)6349 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6350 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6351
6352 Node* sha_obj = argument(0);
6353 Node* src = argument(1); // type oop
6354 Node* ofs = argument(2); // type int
6355
6356 const Type* src_type = src->Value(&_gvn);
6357 const TypeAryPtr* top_src = src_type->isa_aryptr();
6358 if (top_src == NULL || top_src->klass() == NULL) {
6359 // failed array check
6360 return false;
6361 }
6362 // Figure out the size and type of the elements we will be copying.
6363 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6364 if (src_elem != T_BYTE) {
6365 return false;
6366 }
6367 // 'src_start' points to src array + offset
6368 src = must_be_not_null(src, true);
6369 src = access_resolve(src, ACCESS_READ);
6370 Node* src_start = array_element_address(src, ofs, src_elem);
6371 Node* state = NULL;
6372 address stubAddr;
6373 const char *stubName;
6374
6375 switch(id) {
6376 case vmIntrinsics::_sha_implCompress:
6377 assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6378 state = get_state_from_sha_object(sha_obj);
6379 stubAddr = StubRoutines::sha1_implCompress();
6380 stubName = "sha1_implCompress";
6381 break;
6382 case vmIntrinsics::_sha2_implCompress:
6383 assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6384 state = get_state_from_sha_object(sha_obj);
6385 stubAddr = StubRoutines::sha256_implCompress();
6386 stubName = "sha256_implCompress";
6387 break;
6388 case vmIntrinsics::_sha5_implCompress:
6389 assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6390 state = get_state_from_sha5_object(sha_obj);
6391 stubAddr = StubRoutines::sha512_implCompress();
6392 stubName = "sha512_implCompress";
6393 break;
6394 default:
6395 fatal_unexpected_iid(id);
6396 return false;
6397 }
6398 if (state == NULL) return false;
6399
6400 assert(stubAddr != NULL, "Stub is generated");
6401 if (stubAddr == NULL) return false;
6402
6403 // Call the stub.
6404 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6405 stubAddr, stubName, TypePtr::BOTTOM,
6406 src_start, state);
6407
6408 return true;
6409 }
6410
6411 //------------------------------inline_digestBase_implCompressMB-----------------------
6412 //
6413 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6414 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6415 //
inline_digestBase_implCompressMB(int predicate)6416 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6417 assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6418 "need SHA1/SHA256/SHA512 instruction support");
6419 assert((uint)predicate < 3, "sanity");
6420 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6421
6422 Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6423 Node* src = argument(1); // byte[] array
6424 Node* ofs = argument(2); // type int
6425 Node* limit = argument(3); // type int
6426
6427 const Type* src_type = src->Value(&_gvn);
6428 const TypeAryPtr* top_src = src_type->isa_aryptr();
6429 if (top_src == NULL || top_src->klass() == NULL) {
6430 // failed array check
6431 return false;
6432 }
6433 // Figure out the size and type of the elements we will be copying.
6434 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6435 if (src_elem != T_BYTE) {
6436 return false;
6437 }
6438 // 'src_start' points to src array + offset
6439 src = must_be_not_null(src, false);
6440 src = access_resolve(src, ACCESS_READ);
6441 Node* src_start = array_element_address(src, ofs, src_elem);
6442
6443 const char* klass_SHA_name = NULL;
6444 const char* stub_name = NULL;
6445 address stub_addr = NULL;
6446 bool long_state = false;
6447
6448 switch (predicate) {
6449 case 0:
6450 if (UseSHA1Intrinsics) {
6451 klass_SHA_name = "sun/security/provider/SHA";
6452 stub_name = "sha1_implCompressMB";
6453 stub_addr = StubRoutines::sha1_implCompressMB();
6454 }
6455 break;
6456 case 1:
6457 if (UseSHA256Intrinsics) {
6458 klass_SHA_name = "sun/security/provider/SHA2";
6459 stub_name = "sha256_implCompressMB";
6460 stub_addr = StubRoutines::sha256_implCompressMB();
6461 }
6462 break;
6463 case 2:
6464 if (UseSHA512Intrinsics) {
6465 klass_SHA_name = "sun/security/provider/SHA5";
6466 stub_name = "sha512_implCompressMB";
6467 stub_addr = StubRoutines::sha512_implCompressMB();
6468 long_state = true;
6469 }
6470 break;
6471 default:
6472 fatal("unknown SHA intrinsic predicate: %d", predicate);
6473 }
6474 if (klass_SHA_name != NULL) {
6475 assert(stub_addr != NULL, "Stub is generated");
6476 if (stub_addr == NULL) return false;
6477
6478 // get DigestBase klass to lookup for SHA klass
6479 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6480 assert(tinst != NULL, "digestBase_obj is not instance???");
6481 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6482
6483 ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6484 assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6485 ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6486 return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6487 }
6488 return false;
6489 }
6490 //------------------------------inline_sha_implCompressMB-----------------------
inline_sha_implCompressMB(Node * digestBase_obj,ciInstanceKlass * instklass_SHA,bool long_state,address stubAddr,const char * stubName,Node * src_start,Node * ofs,Node * limit)6491 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6492 bool long_state, address stubAddr, const char *stubName,
6493 Node* src_start, Node* ofs, Node* limit) {
6494 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6495 const TypeOopPtr* xtype = aklass->as_instance_type();
6496 Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6497 sha_obj = _gvn.transform(sha_obj);
6498
6499 Node* state;
6500 if (long_state) {
6501 state = get_state_from_sha5_object(sha_obj);
6502 } else {
6503 state = get_state_from_sha_object(sha_obj);
6504 }
6505 if (state == NULL) return false;
6506
6507 // Call the stub.
6508 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6509 OptoRuntime::digestBase_implCompressMB_Type(),
6510 stubAddr, stubName, TypePtr::BOTTOM,
6511 src_start, state, ofs, limit);
6512 // return ofs (int)
6513 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6514 set_result(result);
6515
6516 return true;
6517 }
6518
6519 //------------------------------get_state_from_sha_object-----------------------
get_state_from_sha_object(Node * sha_object)6520 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6521 Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6522 assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6523 if (sha_state == NULL) return (Node *) NULL;
6524
6525 // now have the array, need to get the start address of the state array
6526 sha_state = access_resolve(sha_state, ACCESS_WRITE);
6527 Node* state = array_element_address(sha_state, intcon(0), T_INT);
6528 return state;
6529 }
6530
6531 //------------------------------get_state_from_sha5_object-----------------------
get_state_from_sha5_object(Node * sha_object)6532 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6533 Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6534 assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6535 if (sha_state == NULL) return (Node *) NULL;
6536
6537 // now have the array, need to get the start address of the state array
6538 sha_state = access_resolve(sha_state, ACCESS_WRITE);
6539 Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6540 return state;
6541 }
6542
6543 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6544 // Return node representing slow path of predicate check.
6545 // the pseudo code we want to emulate with this predicate is:
6546 // if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6547 //
inline_digestBase_implCompressMB_predicate(int predicate)6548 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6549 assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6550 "need SHA1/SHA256/SHA512 instruction support");
6551 assert((uint)predicate < 3, "sanity");
6552
6553 // The receiver was checked for NULL already.
6554 Node* digestBaseObj = argument(0);
6555
6556 // get DigestBase klass for instanceOf check
6557 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6558 assert(tinst != NULL, "digestBaseObj is null");
6559 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6560
6561 const char* klass_SHA_name = NULL;
6562 switch (predicate) {
6563 case 0:
6564 if (UseSHA1Intrinsics) {
6565 // we want to do an instanceof comparison against the SHA class
6566 klass_SHA_name = "sun/security/provider/SHA";
6567 }
6568 break;
6569 case 1:
6570 if (UseSHA256Intrinsics) {
6571 // we want to do an instanceof comparison against the SHA2 class
6572 klass_SHA_name = "sun/security/provider/SHA2";
6573 }
6574 break;
6575 case 2:
6576 if (UseSHA512Intrinsics) {
6577 // we want to do an instanceof comparison against the SHA5 class
6578 klass_SHA_name = "sun/security/provider/SHA5";
6579 }
6580 break;
6581 default:
6582 fatal("unknown SHA intrinsic predicate: %d", predicate);
6583 }
6584
6585 ciKlass* klass_SHA = NULL;
6586 if (klass_SHA_name != NULL) {
6587 klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6588 }
6589 if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6590 // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6591 Node* ctrl = control();
6592 set_control(top()); // no intrinsic path
6593 return ctrl;
6594 }
6595 ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6596
6597 Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6598 Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6599 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6600 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6601
6602 return instof_false; // even if it is NULL
6603 }
6604
6605 //-------------inline_fma-----------------------------------
inline_fma(vmIntrinsics::ID id)6606 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6607 Node *a = NULL;
6608 Node *b = NULL;
6609 Node *c = NULL;
6610 Node* result = NULL;
6611 switch (id) {
6612 case vmIntrinsics::_fmaD:
6613 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6614 // no receiver since it is static method
6615 a = round_double_node(argument(0));
6616 b = round_double_node(argument(2));
6617 c = round_double_node(argument(4));
6618 result = _gvn.transform(new FmaDNode(control(), a, b, c));
6619 break;
6620 case vmIntrinsics::_fmaF:
6621 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6622 a = argument(0);
6623 b = argument(1);
6624 c = argument(2);
6625 result = _gvn.transform(new FmaFNode(control(), a, b, c));
6626 break;
6627 default:
6628 fatal_unexpected_iid(id); break;
6629 }
6630 set_result(result);
6631 return true;
6632 }
6633
inline_character_compare(vmIntrinsics::ID id)6634 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
6635 // argument(0) is receiver
6636 Node* codePoint = argument(1);
6637 Node* n = NULL;
6638
6639 switch (id) {
6640 case vmIntrinsics::_isDigit :
6641 n = new DigitNode(control(), codePoint);
6642 break;
6643 case vmIntrinsics::_isLowerCase :
6644 n = new LowerCaseNode(control(), codePoint);
6645 break;
6646 case vmIntrinsics::_isUpperCase :
6647 n = new UpperCaseNode(control(), codePoint);
6648 break;
6649 case vmIntrinsics::_isWhitespace :
6650 n = new WhitespaceNode(control(), codePoint);
6651 break;
6652 default:
6653 fatal_unexpected_iid(id);
6654 }
6655
6656 set_result(_gvn.transform(n));
6657 return true;
6658 }
6659
6660 //------------------------------inline_fp_min_max------------------------------
inline_fp_min_max(vmIntrinsics::ID id)6661 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
6662 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
6663
6664 // The intrinsic should be used only when the API branches aren't predictable,
6665 // the last one performing the most important comparison. The following heuristic
6666 // uses the branch statistics to eventually bail out if necessary.
6667
6668 ciMethodData *md = callee()->method_data();
6669
6670 if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) {
6671 ciCallProfile cp = caller()->call_profile_at_bci(bci());
6672
6673 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
6674 // Bail out if the call-site didn't contribute enough to the statistics.
6675 return false;
6676 }
6677
6678 uint taken = 0, not_taken = 0;
6679
6680 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
6681 if (p->is_BranchData()) {
6682 taken = ((ciBranchData*)p)->taken();
6683 not_taken = ((ciBranchData*)p)->not_taken();
6684 }
6685 }
6686
6687 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
6688 balance = balance < 0 ? -balance : balance;
6689 if ( balance > 0.2 ) {
6690 // Bail out if the most important branch is predictable enough.
6691 return false;
6692 }
6693 }
6694 */
6695
6696 Node *a = NULL;
6697 Node *b = NULL;
6698 Node *n = NULL;
6699 switch (id) {
6700 case vmIntrinsics::_maxF:
6701 case vmIntrinsics::_minF:
6702 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
6703 a = argument(0);
6704 b = argument(1);
6705 break;
6706 case vmIntrinsics::_maxD:
6707 case vmIntrinsics::_minD:
6708 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
6709 a = round_double_node(argument(0));
6710 b = round_double_node(argument(2));
6711 break;
6712 default:
6713 fatal_unexpected_iid(id);
6714 break;
6715 }
6716 switch (id) {
6717 case vmIntrinsics::_maxF: n = new MaxFNode(a, b); break;
6718 case vmIntrinsics::_minF: n = new MinFNode(a, b); break;
6719 case vmIntrinsics::_maxD: n = new MaxDNode(a, b); break;
6720 case vmIntrinsics::_minD: n = new MinDNode(a, b); break;
6721 default: fatal_unexpected_iid(id); break;
6722 }
6723 set_result(_gvn.transform(n));
6724 return true;
6725 }
6726
inline_profileBoolean()6727 bool LibraryCallKit::inline_profileBoolean() {
6728 Node* counts = argument(1);
6729 const TypeAryPtr* ary = NULL;
6730 ciArray* aobj = NULL;
6731 if (counts->is_Con()
6732 && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6733 && (aobj = ary->const_oop()->as_array()) != NULL
6734 && (aobj->length() == 2)) {
6735 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6736 jint false_cnt = aobj->element_value(0).as_int();
6737 jint true_cnt = aobj->element_value(1).as_int();
6738
6739 if (C->log() != NULL) {
6740 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6741 false_cnt, true_cnt);
6742 }
6743
6744 if (false_cnt + true_cnt == 0) {
6745 // According to profile, never executed.
6746 uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6747 Deoptimization::Action_reinterpret);
6748 return true;
6749 }
6750
6751 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6752 // is a number of each value occurrences.
6753 Node* result = argument(0);
6754 if (false_cnt == 0 || true_cnt == 0) {
6755 // According to profile, one value has been never seen.
6756 int expected_val = (false_cnt == 0) ? 1 : 0;
6757
6758 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6759 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6760
6761 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6762 Node* fast_path = _gvn.transform(new IfTrueNode(check));
6763 Node* slow_path = _gvn.transform(new IfFalseNode(check));
6764
6765 { // Slow path: uncommon trap for never seen value and then reexecute
6766 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6767 // the value has been seen at least once.
6768 PreserveJVMState pjvms(this);
6769 PreserveReexecuteState preexecs(this);
6770 jvms()->set_should_reexecute(true);
6771
6772 set_control(slow_path);
6773 set_i_o(i_o());
6774
6775 uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6776 Deoptimization::Action_reinterpret);
6777 }
6778 // The guard for never seen value enables sharpening of the result and
6779 // returning a constant. It allows to eliminate branches on the same value
6780 // later on.
6781 set_control(fast_path);
6782 result = intcon(expected_val);
6783 }
6784 // Stop profiling.
6785 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6786 // By replacing method body with profile data (represented as ProfileBooleanNode
6787 // on IR level) we effectively disable profiling.
6788 // It enables full speed execution once optimized code is generated.
6789 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6790 C->record_for_igvn(profile);
6791 set_result(profile);
6792 return true;
6793 } else {
6794 // Continue profiling.
6795 // Profile data isn't available at the moment. So, execute method's bytecode version.
6796 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6797 // is compiled and counters aren't available since corresponding MethodHandle
6798 // isn't a compile-time constant.
6799 return false;
6800 }
6801 }
6802
inline_isCompileConstant()6803 bool LibraryCallKit::inline_isCompileConstant() {
6804 Node* n = argument(0);
6805 set_result(n->is_Con() ? intcon(1) : intcon(0));
6806 return true;
6807 }
6808