1 /*
2  * Copyright (c) 1994, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.math.BigDecimal;
29 import java.util.Random;
30 import jdk.internal.math.FloatConsts;
31 import jdk.internal.math.DoubleConsts;
32 import jdk.internal.HotSpotIntrinsicCandidate;
33 
34 /**
35  * The class {@code Math} contains methods for performing basic
36  * numeric operations such as the elementary exponential, logarithm,
37  * square root, and trigonometric functions.
38  *
39  * <p>Unlike some of the numeric methods of class
40  * {@code StrictMath}, all implementations of the equivalent
41  * functions of class {@code Math} are not defined to return the
42  * bit-for-bit same results.  This relaxation permits
43  * better-performing implementations where strict reproducibility is
44  * not required.
45  *
46  * <p>By default many of the {@code Math} methods simply call
47  * the equivalent method in {@code StrictMath} for their
48  * implementation.  Code generators are encouraged to use
49  * platform-specific native libraries or microprocessor instructions,
50  * where available, to provide higher-performance implementations of
51  * {@code Math} methods.  Such higher-performance
52  * implementations still must conform to the specification for
53  * {@code Math}.
54  *
55  * <p>The quality of implementation specifications concern two
56  * properties, accuracy of the returned result and monotonicity of the
57  * method.  Accuracy of the floating-point {@code Math} methods is
58  * measured in terms of <i>ulps</i>, units in the last place.  For a
59  * given floating-point format, an {@linkplain #ulp(double) ulp} of a
60  * specific real number value is the distance between the two
61  * floating-point values bracketing that numerical value.  When
62  * discussing the accuracy of a method as a whole rather than at a
63  * specific argument, the number of ulps cited is for the worst-case
64  * error at any argument.  If a method always has an error less than
65  * 0.5 ulps, the method always returns the floating-point number
66  * nearest the exact result; such a method is <i>correctly
67  * rounded</i>.  A correctly rounded method is generally the best a
68  * floating-point approximation can be; however, it is impractical for
69  * many floating-point methods to be correctly rounded.  Instead, for
70  * the {@code Math} class, a larger error bound of 1 or 2 ulps is
71  * allowed for certain methods.  Informally, with a 1 ulp error bound,
72  * when the exact result is a representable number, the exact result
73  * should be returned as the computed result; otherwise, either of the
74  * two floating-point values which bracket the exact result may be
75  * returned.  For exact results large in magnitude, one of the
76  * endpoints of the bracket may be infinite.  Besides accuracy at
77  * individual arguments, maintaining proper relations between the
78  * method at different arguments is also important.  Therefore, most
79  * methods with more than 0.5 ulp errors are required to be
80  * <i>semi-monotonic</i>: whenever the mathematical function is
81  * non-decreasing, so is the floating-point approximation, likewise,
82  * whenever the mathematical function is non-increasing, so is the
83  * floating-point approximation.  Not all approximations that have 1
84  * ulp accuracy will automatically meet the monotonicity requirements.
85  *
86  * <p>
87  * The platform uses signed two's complement integer arithmetic with
88  * int and long primitive types.  The developer should choose
89  * the primitive type to ensure that arithmetic operations consistently
90  * produce correct results, which in some cases means the operations
91  * will not overflow the range of values of the computation.
92  * The best practice is to choose the primitive type and algorithm to avoid
93  * overflow. In cases where the size is {@code int} or {@code long} and
94  * overflow errors need to be detected, the methods {@code addExact},
95  * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
96  * throw an {@code ArithmeticException} when the results overflow.
97  * For other arithmetic operations such as divide, absolute value,
98  * increment by one, decrement by one, and negation, overflow occurs only with
99  * a specific minimum or maximum value and should be checked against
100  * the minimum or maximum as appropriate.
101  *
102  * @author  unascribed
103  * @author  Joseph D. Darcy
104  * @since   1.0
105  */
106 
107 public final class Math {
108 
109     /**
110      * Don't let anyone instantiate this class.
111      */
Math()112     private Math() {}
113 
114     /**
115      * The {@code double} value that is closer than any other to
116      * <i>e</i>, the base of the natural logarithms.
117      */
118     public static final double E = 2.7182818284590452354;
119 
120     /**
121      * The {@code double} value that is closer than any other to
122      * <i>pi</i>, the ratio of the circumference of a circle to its
123      * diameter.
124      */
125     public static final double PI = 3.14159265358979323846;
126 
127     /**
128      * Constant by which to multiply an angular value in degrees to obtain an
129      * angular value in radians.
130      */
131     private static final double DEGREES_TO_RADIANS = 0.017453292519943295;
132 
133     /**
134      * Constant by which to multiply an angular value in radians to obtain an
135      * angular value in degrees.
136      */
137     private static final double RADIANS_TO_DEGREES = 57.29577951308232;
138 
139     /**
140      * Returns the trigonometric sine of an angle.  Special cases:
141      * <ul><li>If the argument is NaN or an infinity, then the
142      * result is NaN.
143      * <li>If the argument is zero, then the result is a zero with the
144      * same sign as the argument.</ul>
145      *
146      * <p>The computed result must be within 1 ulp of the exact result.
147      * Results must be semi-monotonic.
148      *
149      * @param   a   an angle, in radians.
150      * @return  the sine of the argument.
151      */
152     @HotSpotIntrinsicCandidate
sin(double a)153     public static double sin(double a) {
154         return StrictMath.sin(a); // default impl. delegates to StrictMath
155     }
156 
157     /**
158      * Returns the trigonometric cosine of an angle. Special cases:
159      * <ul><li>If the argument is NaN or an infinity, then the
160      * result is NaN.</ul>
161      *
162      * <p>The computed result must be within 1 ulp of the exact result.
163      * Results must be semi-monotonic.
164      *
165      * @param   a   an angle, in radians.
166      * @return  the cosine of the argument.
167      */
168     @HotSpotIntrinsicCandidate
cos(double a)169     public static double cos(double a) {
170         return StrictMath.cos(a); // default impl. delegates to StrictMath
171     }
172 
173     /**
174      * Returns the trigonometric tangent of an angle.  Special cases:
175      * <ul><li>If the argument is NaN or an infinity, then the result
176      * is NaN.
177      * <li>If the argument is zero, then the result is a zero with the
178      * same sign as the argument.</ul>
179      *
180      * <p>The computed result must be within 1 ulp of the exact result.
181      * Results must be semi-monotonic.
182      *
183      * @param   a   an angle, in radians.
184      * @return  the tangent of the argument.
185      */
186     @HotSpotIntrinsicCandidate
tan(double a)187     public static double tan(double a) {
188         return StrictMath.tan(a); // default impl. delegates to StrictMath
189     }
190 
191     /**
192      * Returns the arc sine of a value; the returned angle is in the
193      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
194      * <ul><li>If the argument is NaN or its absolute value is greater
195      * than 1, then the result is NaN.
196      * <li>If the argument is zero, then the result is a zero with the
197      * same sign as the argument.</ul>
198      *
199      * <p>The computed result must be within 1 ulp of the exact result.
200      * Results must be semi-monotonic.
201      *
202      * @param   a   the value whose arc sine is to be returned.
203      * @return  the arc sine of the argument.
204      */
asin(double a)205     public static double asin(double a) {
206         return StrictMath.asin(a); // default impl. delegates to StrictMath
207     }
208 
209     /**
210      * Returns the arc cosine of a value; the returned angle is in the
211      * range 0.0 through <i>pi</i>.  Special case:
212      * <ul><li>If the argument is NaN or its absolute value is greater
213      * than 1, then the result is NaN.</ul>
214      *
215      * <p>The computed result must be within 1 ulp of the exact result.
216      * Results must be semi-monotonic.
217      *
218      * @param   a   the value whose arc cosine is to be returned.
219      * @return  the arc cosine of the argument.
220      */
acos(double a)221     public static double acos(double a) {
222         return StrictMath.acos(a); // default impl. delegates to StrictMath
223     }
224 
225     /**
226      * Returns the arc tangent of a value; the returned angle is in the
227      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
228      * <ul><li>If the argument is NaN, then the result is NaN.
229      * <li>If the argument is zero, then the result is a zero with the
230      * same sign as the argument.</ul>
231      *
232      * <p>The computed result must be within 1 ulp of the exact result.
233      * Results must be semi-monotonic.
234      *
235      * @param   a   the value whose arc tangent is to be returned.
236      * @return  the arc tangent of the argument.
237      */
atan(double a)238     public static double atan(double a) {
239         return StrictMath.atan(a); // default impl. delegates to StrictMath
240     }
241 
242     /**
243      * Converts an angle measured in degrees to an approximately
244      * equivalent angle measured in radians.  The conversion from
245      * degrees to radians is generally inexact.
246      *
247      * @param   angdeg   an angle, in degrees
248      * @return  the measurement of the angle {@code angdeg}
249      *          in radians.
250      * @since   1.2
251      */
toRadians(double angdeg)252     public static double toRadians(double angdeg) {
253         return angdeg * DEGREES_TO_RADIANS;
254     }
255 
256     /**
257      * Converts an angle measured in radians to an approximately
258      * equivalent angle measured in degrees.  The conversion from
259      * radians to degrees is generally inexact; users should
260      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
261      * equal {@code 0.0}.
262      *
263      * @param   angrad   an angle, in radians
264      * @return  the measurement of the angle {@code angrad}
265      *          in degrees.
266      * @since   1.2
267      */
toDegrees(double angrad)268     public static double toDegrees(double angrad) {
269         return angrad * RADIANS_TO_DEGREES;
270     }
271 
272     /**
273      * Returns Euler's number <i>e</i> raised to the power of a
274      * {@code double} value.  Special cases:
275      * <ul><li>If the argument is NaN, the result is NaN.
276      * <li>If the argument is positive infinity, then the result is
277      * positive infinity.
278      * <li>If the argument is negative infinity, then the result is
279      * positive zero.</ul>
280      *
281      * <p>The computed result must be within 1 ulp of the exact result.
282      * Results must be semi-monotonic.
283      *
284      * @param   a   the exponent to raise <i>e</i> to.
285      * @return  the value <i>e</i><sup>{@code a}</sup>,
286      *          where <i>e</i> is the base of the natural logarithms.
287      */
288     @HotSpotIntrinsicCandidate
exp(double a)289     public static double exp(double a) {
290         return StrictMath.exp(a); // default impl. delegates to StrictMath
291     }
292 
293     /**
294      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
295      * value.  Special cases:
296      * <ul><li>If the argument is NaN or less than zero, then the result
297      * is NaN.
298      * <li>If the argument is positive infinity, then the result is
299      * positive infinity.
300      * <li>If the argument is positive zero or negative zero, then the
301      * result is negative infinity.</ul>
302      *
303      * <p>The computed result must be within 1 ulp of the exact result.
304      * Results must be semi-monotonic.
305      *
306      * @param   a   a value
307      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
308      *          {@code a}.
309      */
310     @HotSpotIntrinsicCandidate
log(double a)311     public static double log(double a) {
312         return StrictMath.log(a); // default impl. delegates to StrictMath
313     }
314 
315     /**
316      * Returns the base 10 logarithm of a {@code double} value.
317      * Special cases:
318      *
319      * <ul><li>If the argument is NaN or less than zero, then the result
320      * is NaN.
321      * <li>If the argument is positive infinity, then the result is
322      * positive infinity.
323      * <li>If the argument is positive zero or negative zero, then the
324      * result is negative infinity.
325      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
326      * integer <i>n</i>, then the result is <i>n</i>.
327      * </ul>
328      *
329      * <p>The computed result must be within 1 ulp of the exact result.
330      * Results must be semi-monotonic.
331      *
332      * @param   a   a value
333      * @return  the base 10 logarithm of  {@code a}.
334      * @since 1.5
335      */
336     @HotSpotIntrinsicCandidate
log10(double a)337     public static double log10(double a) {
338         return StrictMath.log10(a); // default impl. delegates to StrictMath
339     }
340 
341     /**
342      * Returns the correctly rounded positive square root of a
343      * {@code double} value.
344      * Special cases:
345      * <ul><li>If the argument is NaN or less than zero, then the result
346      * is NaN.
347      * <li>If the argument is positive infinity, then the result is positive
348      * infinity.
349      * <li>If the argument is positive zero or negative zero, then the
350      * result is the same as the argument.</ul>
351      * Otherwise, the result is the {@code double} value closest to
352      * the true mathematical square root of the argument value.
353      *
354      * @param   a   a value.
355      * @return  the positive square root of {@code a}.
356      *          If the argument is NaN or less than zero, the result is NaN.
357      */
358     @HotSpotIntrinsicCandidate
sqrt(double a)359     public static double sqrt(double a) {
360         return StrictMath.sqrt(a); // default impl. delegates to StrictMath
361                                    // Note that hardware sqrt instructions
362                                    // frequently can be directly used by JITs
363                                    // and should be much faster than doing
364                                    // Math.sqrt in software.
365     }
366 
367 
368     /**
369      * Returns the cube root of a {@code double} value.  For
370      * positive finite {@code x}, {@code cbrt(-x) ==
371      * -cbrt(x)}; that is, the cube root of a negative value is
372      * the negative of the cube root of that value's magnitude.
373      *
374      * Special cases:
375      *
376      * <ul>
377      *
378      * <li>If the argument is NaN, then the result is NaN.
379      *
380      * <li>If the argument is infinite, then the result is an infinity
381      * with the same sign as the argument.
382      *
383      * <li>If the argument is zero, then the result is a zero with the
384      * same sign as the argument.
385      *
386      * </ul>
387      *
388      * <p>The computed result must be within 1 ulp of the exact result.
389      *
390      * @param   a   a value.
391      * @return  the cube root of {@code a}.
392      * @since 1.5
393      */
cbrt(double a)394     public static double cbrt(double a) {
395         return StrictMath.cbrt(a);
396     }
397 
398     /**
399      * Computes the remainder operation on two arguments as prescribed
400      * by the IEEE 754 standard.
401      * The remainder value is mathematically equal to
402      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
403      * where <i>n</i> is the mathematical integer closest to the exact
404      * mathematical value of the quotient {@code f1/f2}, and if two
405      * mathematical integers are equally close to {@code f1/f2},
406      * then <i>n</i> is the integer that is even. If the remainder is
407      * zero, its sign is the same as the sign of the first argument.
408      * Special cases:
409      * <ul><li>If either argument is NaN, or the first argument is infinite,
410      * or the second argument is positive zero or negative zero, then the
411      * result is NaN.
412      * <li>If the first argument is finite and the second argument is
413      * infinite, then the result is the same as the first argument.</ul>
414      *
415      * @param   f1   the dividend.
416      * @param   f2   the divisor.
417      * @return  the remainder when {@code f1} is divided by
418      *          {@code f2}.
419      */
IEEEremainder(double f1, double f2)420     public static double IEEEremainder(double f1, double f2) {
421         return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
422     }
423 
424     /**
425      * Returns the smallest (closest to negative infinity)
426      * {@code double} value that is greater than or equal to the
427      * argument and is equal to a mathematical integer. Special cases:
428      * <ul><li>If the argument value is already equal to a
429      * mathematical integer, then the result is the same as the
430      * argument.  <li>If the argument is NaN or an infinity or
431      * positive zero or negative zero, then the result is the same as
432      * the argument.  <li>If the argument value is less than zero but
433      * greater than -1.0, then the result is negative zero.</ul> Note
434      * that the value of {@code Math.ceil(x)} is exactly the
435      * value of {@code -Math.floor(-x)}.
436      *
437      *
438      * @param   a   a value.
439      * @return  the smallest (closest to negative infinity)
440      *          floating-point value that is greater than or equal to
441      *          the argument and is equal to a mathematical integer.
442      */
443     @HotSpotIntrinsicCandidate
ceil(double a)444     public static double ceil(double a) {
445         return StrictMath.ceil(a); // default impl. delegates to StrictMath
446     }
447 
448     /**
449      * Returns the largest (closest to positive infinity)
450      * {@code double} value that is less than or equal to the
451      * argument and is equal to a mathematical integer. Special cases:
452      * <ul><li>If the argument value is already equal to a
453      * mathematical integer, then the result is the same as the
454      * argument.  <li>If the argument is NaN or an infinity or
455      * positive zero or negative zero, then the result is the same as
456      * the argument.</ul>
457      *
458      * @param   a   a value.
459      * @return  the largest (closest to positive infinity)
460      *          floating-point value that less than or equal to the argument
461      *          and is equal to a mathematical integer.
462      */
463     @HotSpotIntrinsicCandidate
floor(double a)464     public static double floor(double a) {
465         return StrictMath.floor(a); // default impl. delegates to StrictMath
466     }
467 
468     /**
469      * Returns the {@code double} value that is closest in value
470      * to the argument and is equal to a mathematical integer. If two
471      * {@code double} values that are mathematical integers are
472      * equally close, the result is the integer value that is
473      * even. Special cases:
474      * <ul><li>If the argument value is already equal to a mathematical
475      * integer, then the result is the same as the argument.
476      * <li>If the argument is NaN or an infinity or positive zero or negative
477      * zero, then the result is the same as the argument.</ul>
478      *
479      * @param   a   a {@code double} value.
480      * @return  the closest floating-point value to {@code a} that is
481      *          equal to a mathematical integer.
482      */
483     @HotSpotIntrinsicCandidate
rint(double a)484     public static double rint(double a) {
485         return StrictMath.rint(a); // default impl. delegates to StrictMath
486     }
487 
488     /**
489      * Returns the angle <i>theta</i> from the conversion of rectangular
490      * coordinates ({@code x},&nbsp;{@code y}) to polar
491      * coordinates (r,&nbsp;<i>theta</i>).
492      * This method computes the phase <i>theta</i> by computing an arc tangent
493      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
494      * cases:
495      * <ul><li>If either argument is NaN, then the result is NaN.
496      * <li>If the first argument is positive zero and the second argument
497      * is positive, or the first argument is positive and finite and the
498      * second argument is positive infinity, then the result is positive
499      * zero.
500      * <li>If the first argument is negative zero and the second argument
501      * is positive, or the first argument is negative and finite and the
502      * second argument is positive infinity, then the result is negative zero.
503      * <li>If the first argument is positive zero and the second argument
504      * is negative, or the first argument is positive and finite and the
505      * second argument is negative infinity, then the result is the
506      * {@code double} value closest to <i>pi</i>.
507      * <li>If the first argument is negative zero and the second argument
508      * is negative, or the first argument is negative and finite and the
509      * second argument is negative infinity, then the result is the
510      * {@code double} value closest to -<i>pi</i>.
511      * <li>If the first argument is positive and the second argument is
512      * positive zero or negative zero, or the first argument is positive
513      * infinity and the second argument is finite, then the result is the
514      * {@code double} value closest to <i>pi</i>/2.
515      * <li>If the first argument is negative and the second argument is
516      * positive zero or negative zero, or the first argument is negative
517      * infinity and the second argument is finite, then the result is the
518      * {@code double} value closest to -<i>pi</i>/2.
519      * <li>If both arguments are positive infinity, then the result is the
520      * {@code double} value closest to <i>pi</i>/4.
521      * <li>If the first argument is positive infinity and the second argument
522      * is negative infinity, then the result is the {@code double}
523      * value closest to 3*<i>pi</i>/4.
524      * <li>If the first argument is negative infinity and the second argument
525      * is positive infinity, then the result is the {@code double} value
526      * closest to -<i>pi</i>/4.
527      * <li>If both arguments are negative infinity, then the result is the
528      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
529      *
530      * <p>The computed result must be within 2 ulps of the exact result.
531      * Results must be semi-monotonic.
532      *
533      * @param   y   the ordinate coordinate
534      * @param   x   the abscissa coordinate
535      * @return  the <i>theta</i> component of the point
536      *          (<i>r</i>,&nbsp;<i>theta</i>)
537      *          in polar coordinates that corresponds to the point
538      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
539      */
540     @HotSpotIntrinsicCandidate
atan2(double y, double x)541     public static double atan2(double y, double x) {
542         return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
543     }
544 
545     /**
546      * Returns the value of the first argument raised to the power of the
547      * second argument. Special cases:
548      *
549      * <ul><li>If the second argument is positive or negative zero, then the
550      * result is 1.0.
551      * <li>If the second argument is 1.0, then the result is the same as the
552      * first argument.
553      * <li>If the second argument is NaN, then the result is NaN.
554      * <li>If the first argument is NaN and the second argument is nonzero,
555      * then the result is NaN.
556      *
557      * <li>If
558      * <ul>
559      * <li>the absolute value of the first argument is greater than 1
560      * and the second argument is positive infinity, or
561      * <li>the absolute value of the first argument is less than 1 and
562      * the second argument is negative infinity,
563      * </ul>
564      * then the result is positive infinity.
565      *
566      * <li>If
567      * <ul>
568      * <li>the absolute value of the first argument is greater than 1 and
569      * the second argument is negative infinity, or
570      * <li>the absolute value of the
571      * first argument is less than 1 and the second argument is positive
572      * infinity,
573      * </ul>
574      * then the result is positive zero.
575      *
576      * <li>If the absolute value of the first argument equals 1 and the
577      * second argument is infinite, then the result is NaN.
578      *
579      * <li>If
580      * <ul>
581      * <li>the first argument is positive zero and the second argument
582      * is greater than zero, or
583      * <li>the first argument is positive infinity and the second
584      * argument is less than zero,
585      * </ul>
586      * then the result is positive zero.
587      *
588      * <li>If
589      * <ul>
590      * <li>the first argument is positive zero and the second argument
591      * is less than zero, or
592      * <li>the first argument is positive infinity and the second
593      * argument is greater than zero,
594      * </ul>
595      * then the result is positive infinity.
596      *
597      * <li>If
598      * <ul>
599      * <li>the first argument is negative zero and the second argument
600      * is greater than zero but not a finite odd integer, or
601      * <li>the first argument is negative infinity and the second
602      * argument is less than zero but not a finite odd integer,
603      * </ul>
604      * then the result is positive zero.
605      *
606      * <li>If
607      * <ul>
608      * <li>the first argument is negative zero and the second argument
609      * is a positive finite odd integer, or
610      * <li>the first argument is negative infinity and the second
611      * argument is a negative finite odd integer,
612      * </ul>
613      * then the result is negative zero.
614      *
615      * <li>If
616      * <ul>
617      * <li>the first argument is negative zero and the second argument
618      * is less than zero but not a finite odd integer, or
619      * <li>the first argument is negative infinity and the second
620      * argument is greater than zero but not a finite odd integer,
621      * </ul>
622      * then the result is positive infinity.
623      *
624      * <li>If
625      * <ul>
626      * <li>the first argument is negative zero and the second argument
627      * is a negative finite odd integer, or
628      * <li>the first argument is negative infinity and the second
629      * argument is a positive finite odd integer,
630      * </ul>
631      * then the result is negative infinity.
632      *
633      * <li>If the first argument is finite and less than zero
634      * <ul>
635      * <li> if the second argument is a finite even integer, the
636      * result is equal to the result of raising the absolute value of
637      * the first argument to the power of the second argument
638      *
639      * <li>if the second argument is a finite odd integer, the result
640      * is equal to the negative of the result of raising the absolute
641      * value of the first argument to the power of the second
642      * argument
643      *
644      * <li>if the second argument is finite and not an integer, then
645      * the result is NaN.
646      * </ul>
647      *
648      * <li>If both arguments are integers, then the result is exactly equal
649      * to the mathematical result of raising the first argument to the power
650      * of the second argument if that result can in fact be represented
651      * exactly as a {@code double} value.</ul>
652      *
653      * <p>(In the foregoing descriptions, a floating-point value is
654      * considered to be an integer if and only if it is finite and a
655      * fixed point of the method {@link #ceil ceil} or,
656      * equivalently, a fixed point of the method {@link #floor
657      * floor}. A value is a fixed point of a one-argument
658      * method if and only if the result of applying the method to the
659      * value is equal to the value.)
660      *
661      * <p>The computed result must be within 1 ulp of the exact result.
662      * Results must be semi-monotonic.
663      *
664      * @param   a   the base.
665      * @param   b   the exponent.
666      * @return  the value {@code a}<sup>{@code b}</sup>.
667      */
668     @HotSpotIntrinsicCandidate
pow(double a, double b)669     public static double pow(double a, double b) {
670         return StrictMath.pow(a, b); // default impl. delegates to StrictMath
671     }
672 
673     /**
674      * Returns the closest {@code int} to the argument, with ties
675      * rounding to positive infinity.
676      *
677      * <p>
678      * Special cases:
679      * <ul><li>If the argument is NaN, the result is 0.
680      * <li>If the argument is negative infinity or any value less than or
681      * equal to the value of {@code Integer.MIN_VALUE}, the result is
682      * equal to the value of {@code Integer.MIN_VALUE}.
683      * <li>If the argument is positive infinity or any value greater than or
684      * equal to the value of {@code Integer.MAX_VALUE}, the result is
685      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
686      *
687      * @param   a   a floating-point value to be rounded to an integer.
688      * @return  the value of the argument rounded to the nearest
689      *          {@code int} value.
690      * @see     java.lang.Integer#MAX_VALUE
691      * @see     java.lang.Integer#MIN_VALUE
692      */
round(float a)693     public static int round(float a) {
694         int intBits = Float.floatToRawIntBits(a);
695         int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
696                 >> (FloatConsts.SIGNIFICAND_WIDTH - 1);
697         int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
698                 + FloatConsts.EXP_BIAS) - biasedExp;
699         if ((shift & -32) == 0) { // shift >= 0 && shift < 32
700             // a is a finite number such that pow(2,-32) <= ulp(a) < 1
701             int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
702                     | (FloatConsts.SIGNIF_BIT_MASK + 1));
703             if (intBits < 0) {
704                 r = -r;
705             }
706             // In the comments below each Java expression evaluates to the value
707             // the corresponding mathematical expression:
708             // (r) evaluates to a / ulp(a)
709             // (r >> shift) evaluates to floor(a * 2)
710             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
711             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
712             return ((r >> shift) + 1) >> 1;
713         } else {
714             // a is either
715             // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
716             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
717             // - an infinity or NaN
718             return (int) a;
719         }
720     }
721 
722     /**
723      * Returns the closest {@code long} to the argument, with ties
724      * rounding to positive infinity.
725      *
726      * <p>Special cases:
727      * <ul><li>If the argument is NaN, the result is 0.
728      * <li>If the argument is negative infinity or any value less than or
729      * equal to the value of {@code Long.MIN_VALUE}, the result is
730      * equal to the value of {@code Long.MIN_VALUE}.
731      * <li>If the argument is positive infinity or any value greater than or
732      * equal to the value of {@code Long.MAX_VALUE}, the result is
733      * equal to the value of {@code Long.MAX_VALUE}.</ul>
734      *
735      * @param   a   a floating-point value to be rounded to a
736      *          {@code long}.
737      * @return  the value of the argument rounded to the nearest
738      *          {@code long} value.
739      * @see     java.lang.Long#MAX_VALUE
740      * @see     java.lang.Long#MIN_VALUE
741      */
round(double a)742     public static long round(double a) {
743         long longBits = Double.doubleToRawLongBits(a);
744         long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
745                 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
746         long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
747                 + DoubleConsts.EXP_BIAS) - biasedExp;
748         if ((shift & -64) == 0) { // shift >= 0 && shift < 64
749             // a is a finite number such that pow(2,-64) <= ulp(a) < 1
750             long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
751                     | (DoubleConsts.SIGNIF_BIT_MASK + 1));
752             if (longBits < 0) {
753                 r = -r;
754             }
755             // In the comments below each Java expression evaluates to the value
756             // the corresponding mathematical expression:
757             // (r) evaluates to a / ulp(a)
758             // (r >> shift) evaluates to floor(a * 2)
759             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
760             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
761             return ((r >> shift) + 1) >> 1;
762         } else {
763             // a is either
764             // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
765             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
766             // - an infinity or NaN
767             return (long) a;
768         }
769     }
770 
771     private static final class RandomNumberGeneratorHolder {
772         static final Random randomNumberGenerator = new Random();
773     }
774 
775     /**
776      * Returns a {@code double} value with a positive sign, greater
777      * than or equal to {@code 0.0} and less than {@code 1.0}.
778      * Returned values are chosen pseudorandomly with (approximately)
779      * uniform distribution from that range.
780      *
781      * <p>When this method is first called, it creates a single new
782      * pseudorandom-number generator, exactly as if by the expression
783      *
784      * <blockquote>{@code new java.util.Random()}</blockquote>
785      *
786      * This new pseudorandom-number generator is used thereafter for
787      * all calls to this method and is used nowhere else.
788      *
789      * <p>This method is properly synchronized to allow correct use by
790      * more than one thread. However, if many threads need to generate
791      * pseudorandom numbers at a great rate, it may reduce contention
792      * for each thread to have its own pseudorandom-number generator.
793      *
794      * @apiNote
795      * As the largest {@code double} value less than {@code 1.0}
796      * is {@code Math.nextDown(1.0)}, a value {@code x} in the closed range
797      * {@code [x1,x2]} where {@code x1<=x2} may be defined by the statements
798      *
799      * <blockquote><pre>{@code
800      * double f = Math.random()/Math.nextDown(1.0);
801      * double x = x1*(1.0 - f) + x2*f;
802      * }</pre></blockquote>
803      *
804      * @return  a pseudorandom {@code double} greater than or equal
805      * to {@code 0.0} and less than {@code 1.0}.
806      * @see #nextDown(double)
807      * @see Random#nextDouble()
808      */
random()809     public static double random() {
810         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
811     }
812 
813     /**
814      * Returns the sum of its arguments,
815      * throwing an exception if the result overflows an {@code int}.
816      *
817      * @param x the first value
818      * @param y the second value
819      * @return the result
820      * @throws ArithmeticException if the result overflows an int
821      * @since 1.8
822      */
823     @HotSpotIntrinsicCandidate
addExact(int x, int y)824     public static int addExact(int x, int y) {
825         int r = x + y;
826         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
827         if (((x ^ r) & (y ^ r)) < 0) {
828             throw new ArithmeticException("integer overflow");
829         }
830         return r;
831     }
832 
833     /**
834      * Returns the sum of its arguments,
835      * throwing an exception if the result overflows a {@code long}.
836      *
837      * @param x the first value
838      * @param y the second value
839      * @return the result
840      * @throws ArithmeticException if the result overflows a long
841      * @since 1.8
842      */
843     @HotSpotIntrinsicCandidate
addExact(long x, long y)844     public static long addExact(long x, long y) {
845         long r = x + y;
846         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
847         if (((x ^ r) & (y ^ r)) < 0) {
848             throw new ArithmeticException("long overflow");
849         }
850         return r;
851     }
852 
853     /**
854      * Returns the difference of the arguments,
855      * throwing an exception if the result overflows an {@code int}.
856      *
857      * @param x the first value
858      * @param y the second value to subtract from the first
859      * @return the result
860      * @throws ArithmeticException if the result overflows an int
861      * @since 1.8
862      */
863     @HotSpotIntrinsicCandidate
subtractExact(int x, int y)864     public static int subtractExact(int x, int y) {
865         int r = x - y;
866         // HD 2-12 Overflow iff the arguments have different signs and
867         // the sign of the result is different from the sign of x
868         if (((x ^ y) & (x ^ r)) < 0) {
869             throw new ArithmeticException("integer overflow");
870         }
871         return r;
872     }
873 
874     /**
875      * Returns the difference of the arguments,
876      * throwing an exception if the result overflows a {@code long}.
877      *
878      * @param x the first value
879      * @param y the second value to subtract from the first
880      * @return the result
881      * @throws ArithmeticException if the result overflows a long
882      * @since 1.8
883      */
884     @HotSpotIntrinsicCandidate
subtractExact(long x, long y)885     public static long subtractExact(long x, long y) {
886         long r = x - y;
887         // HD 2-12 Overflow iff the arguments have different signs and
888         // the sign of the result is different from the sign of x
889         if (((x ^ y) & (x ^ r)) < 0) {
890             throw new ArithmeticException("long overflow");
891         }
892         return r;
893     }
894 
895     /**
896      * Returns the product of the arguments,
897      * throwing an exception if the result overflows an {@code int}.
898      *
899      * @param x the first value
900      * @param y the second value
901      * @return the result
902      * @throws ArithmeticException if the result overflows an int
903      * @since 1.8
904      */
905     @HotSpotIntrinsicCandidate
multiplyExact(int x, int y)906     public static int multiplyExact(int x, int y) {
907         long r = (long)x * (long)y;
908         if ((int)r != r) {
909             throw new ArithmeticException("integer overflow");
910         }
911         return (int)r;
912     }
913 
914     /**
915      * Returns the product of the arguments, throwing an exception if the result
916      * overflows a {@code long}.
917      *
918      * @param x the first value
919      * @param y the second value
920      * @return the result
921      * @throws ArithmeticException if the result overflows a long
922      * @since 9
923      */
multiplyExact(long x, int y)924     public static long multiplyExact(long x, int y) {
925         return multiplyExact(x, (long)y);
926     }
927 
928     /**
929      * Returns the product of the arguments,
930      * throwing an exception if the result overflows a {@code long}.
931      *
932      * @param x the first value
933      * @param y the second value
934      * @return the result
935      * @throws ArithmeticException if the result overflows a long
936      * @since 1.8
937      */
938     @HotSpotIntrinsicCandidate
multiplyExact(long x, long y)939     public static long multiplyExact(long x, long y) {
940         long r = x * y;
941         long ax = Math.abs(x);
942         long ay = Math.abs(y);
943         if (((ax | ay) >>> 31 != 0)) {
944             // Some bits greater than 2^31 that might cause overflow
945             // Check the result using the divide operator
946             // and check for the special case of Long.MIN_VALUE * -1
947            if (((y != 0) && (r / y != x)) ||
948                (x == Long.MIN_VALUE && y == -1)) {
949                 throw new ArithmeticException("long overflow");
950             }
951         }
952         return r;
953     }
954 
955     /**
956      * Returns the argument incremented by one, throwing an exception if the
957      * result overflows an {@code int}.
958      *
959      * @param a the value to increment
960      * @return the result
961      * @throws ArithmeticException if the result overflows an int
962      * @since 1.8
963      */
964     @HotSpotIntrinsicCandidate
incrementExact(int a)965     public static int incrementExact(int a) {
966         if (a == Integer.MAX_VALUE) {
967             throw new ArithmeticException("integer overflow");
968         }
969 
970         return a + 1;
971     }
972 
973     /**
974      * Returns the argument incremented by one, throwing an exception if the
975      * result overflows a {@code long}.
976      *
977      * @param a the value to increment
978      * @return the result
979      * @throws ArithmeticException if the result overflows a long
980      * @since 1.8
981      */
982     @HotSpotIntrinsicCandidate
incrementExact(long a)983     public static long incrementExact(long a) {
984         if (a == Long.MAX_VALUE) {
985             throw new ArithmeticException("long overflow");
986         }
987 
988         return a + 1L;
989     }
990 
991     /**
992      * Returns the argument decremented by one, throwing an exception if the
993      * result overflows an {@code int}.
994      *
995      * @param a the value to decrement
996      * @return the result
997      * @throws ArithmeticException if the result overflows an int
998      * @since 1.8
999      */
1000     @HotSpotIntrinsicCandidate
decrementExact(int a)1001     public static int decrementExact(int a) {
1002         if (a == Integer.MIN_VALUE) {
1003             throw new ArithmeticException("integer overflow");
1004         }
1005 
1006         return a - 1;
1007     }
1008 
1009     /**
1010      * Returns the argument decremented by one, throwing an exception if the
1011      * result overflows a {@code long}.
1012      *
1013      * @param a the value to decrement
1014      * @return the result
1015      * @throws ArithmeticException if the result overflows a long
1016      * @since 1.8
1017      */
1018     @HotSpotIntrinsicCandidate
decrementExact(long a)1019     public static long decrementExact(long a) {
1020         if (a == Long.MIN_VALUE) {
1021             throw new ArithmeticException("long overflow");
1022         }
1023 
1024         return a - 1L;
1025     }
1026 
1027     /**
1028      * Returns the negation of the argument, throwing an exception if the
1029      * result overflows an {@code int}.
1030      *
1031      * @param a the value to negate
1032      * @return the result
1033      * @throws ArithmeticException if the result overflows an int
1034      * @since 1.8
1035      */
1036     @HotSpotIntrinsicCandidate
negateExact(int a)1037     public static int negateExact(int a) {
1038         if (a == Integer.MIN_VALUE) {
1039             throw new ArithmeticException("integer overflow");
1040         }
1041 
1042         return -a;
1043     }
1044 
1045     /**
1046      * Returns the negation of the argument, throwing an exception if the
1047      * result overflows a {@code long}.
1048      *
1049      * @param a the value to negate
1050      * @return the result
1051      * @throws ArithmeticException if the result overflows a long
1052      * @since 1.8
1053      */
1054     @HotSpotIntrinsicCandidate
negateExact(long a)1055     public static long negateExact(long a) {
1056         if (a == Long.MIN_VALUE) {
1057             throw new ArithmeticException("long overflow");
1058         }
1059 
1060         return -a;
1061     }
1062 
1063     /**
1064      * Returns the value of the {@code long} argument;
1065      * throwing an exception if the value overflows an {@code int}.
1066      *
1067      * @param value the long value
1068      * @return the argument as an int
1069      * @throws ArithmeticException if the {@code argument} overflows an int
1070      * @since 1.8
1071      */
toIntExact(long value)1072     public static int toIntExact(long value) {
1073         if ((int)value != value) {
1074             throw new ArithmeticException("integer overflow");
1075         }
1076         return (int)value;
1077     }
1078 
1079     /**
1080      * Returns the exact mathematical product of the arguments.
1081      *
1082      * @param x the first value
1083      * @param y the second value
1084      * @return the result
1085      * @since 9
1086      */
multiplyFull(int x, int y)1087     public static long multiplyFull(int x, int y) {
1088         return (long)x * (long)y;
1089     }
1090 
1091     /**
1092      * Returns as a {@code long} the most significant 64 bits of the 128-bit
1093      * product of two 64-bit factors.
1094      *
1095      * @param x the first value
1096      * @param y the second value
1097      * @return the result
1098      * @since 9
1099      */
1100     @HotSpotIntrinsicCandidate
multiplyHigh(long x, long y)1101     public static long multiplyHigh(long x, long y) {
1102         if (x < 0 || y < 0) {
1103             // Use technique from section 8-2 of Henry S. Warren, Jr.,
1104             // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174.
1105             long x1 = x >> 32;
1106             long x2 = x & 0xFFFFFFFFL;
1107             long y1 = y >> 32;
1108             long y2 = y & 0xFFFFFFFFL;
1109             long z2 = x2 * y2;
1110             long t = x1 * y2 + (z2 >>> 32);
1111             long z1 = t & 0xFFFFFFFFL;
1112             long z0 = t >> 32;
1113             z1 += x2 * y1;
1114             return x1 * y1 + z0 + (z1 >> 32);
1115         } else {
1116             // Use Karatsuba technique with two base 2^32 digits.
1117             long x1 = x >>> 32;
1118             long y1 = y >>> 32;
1119             long x2 = x & 0xFFFFFFFFL;
1120             long y2 = y & 0xFFFFFFFFL;
1121             long A = x1 * y1;
1122             long B = x2 * y2;
1123             long C = (x1 + x2) * (y1 + y2);
1124             long K = C - A - B;
1125             return (((B >>> 32) + K) >>> 32) + A;
1126         }
1127     }
1128 
1129     /**
1130      * Returns the largest (closest to positive infinity)
1131      * {@code int} value that is less than or equal to the algebraic quotient.
1132      * There is one special case, if the dividend is the
1133      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1134      * then integer overflow occurs and
1135      * the result is equal to {@code Integer.MIN_VALUE}.
1136      * <p>
1137      * Normal integer division operates under the round to zero rounding mode
1138      * (truncation).  This operation instead acts under the round toward
1139      * negative infinity (floor) rounding mode.
1140      * The floor rounding mode gives different results from truncation
1141      * when the exact result is negative.
1142      * <ul>
1143      *   <li>If the signs of the arguments are the same, the results of
1144      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
1145      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
1146      *   <li>If the signs of the arguments are different,  the quotient is negative and
1147      *       {@code floorDiv} returns the integer less than or equal to the quotient
1148      *       and the {@code /} operator returns the integer closest to zero.<br>
1149      *       For example, {@code floorDiv(-4, 3) == -2},
1150      *       whereas {@code (-4 / 3) == -1}.
1151      *   </li>
1152      * </ul>
1153      *
1154      * @param x the dividend
1155      * @param y the divisor
1156      * @return the largest (closest to positive infinity)
1157      * {@code int} value that is less than or equal to the algebraic quotient.
1158      * @throws ArithmeticException if the divisor {@code y} is zero
1159      * @see #floorMod(int, int)
1160      * @see #floor(double)
1161      * @since 1.8
1162      */
floorDiv(int x, int y)1163     public static int floorDiv(int x, int y) {
1164         int r = x / y;
1165         // if the signs are different and modulo not zero, round down
1166         if ((x ^ y) < 0 && (r * y != x)) {
1167             r--;
1168         }
1169         return r;
1170     }
1171 
1172     /**
1173      * Returns the largest (closest to positive infinity)
1174      * {@code long} value that is less than or equal to the algebraic quotient.
1175      * There is one special case, if the dividend is the
1176      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1177      * then integer overflow occurs and
1178      * the result is equal to {@code Long.MIN_VALUE}.
1179      * <p>
1180      * Normal integer division operates under the round to zero rounding mode
1181      * (truncation).  This operation instead acts under the round toward
1182      * negative infinity (floor) rounding mode.
1183      * The floor rounding mode gives different results from truncation
1184      * when the exact result is negative.
1185      * <p>
1186      * For examples, see {@link #floorDiv(int, int)}.
1187      *
1188      * @param x the dividend
1189      * @param y the divisor
1190      * @return the largest (closest to positive infinity)
1191      * {@code int} value that is less than or equal to the algebraic quotient.
1192      * @throws ArithmeticException if the divisor {@code y} is zero
1193      * @see #floorMod(long, int)
1194      * @see #floor(double)
1195      * @since 9
1196      */
floorDiv(long x, int y)1197     public static long floorDiv(long x, int y) {
1198         return floorDiv(x, (long)y);
1199     }
1200 
1201     /**
1202      * Returns the largest (closest to positive infinity)
1203      * {@code long} value that is less than or equal to the algebraic quotient.
1204      * There is one special case, if the dividend is the
1205      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1206      * then integer overflow occurs and
1207      * the result is equal to {@code Long.MIN_VALUE}.
1208      * <p>
1209      * Normal integer division operates under the round to zero rounding mode
1210      * (truncation).  This operation instead acts under the round toward
1211      * negative infinity (floor) rounding mode.
1212      * The floor rounding mode gives different results from truncation
1213      * when the exact result is negative.
1214      * <p>
1215      * For examples, see {@link #floorDiv(int, int)}.
1216      *
1217      * @param x the dividend
1218      * @param y the divisor
1219      * @return the largest (closest to positive infinity)
1220      * {@code long} value that is less than or equal to the algebraic quotient.
1221      * @throws ArithmeticException if the divisor {@code y} is zero
1222      * @see #floorMod(long, long)
1223      * @see #floor(double)
1224      * @since 1.8
1225      */
floorDiv(long x, long y)1226     public static long floorDiv(long x, long y) {
1227         long r = x / y;
1228         // if the signs are different and modulo not zero, round down
1229         if ((x ^ y) < 0 && (r * y != x)) {
1230             r--;
1231         }
1232         return r;
1233     }
1234 
1235     /**
1236      * Returns the floor modulus of the {@code int} arguments.
1237      * <p>
1238      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1239      * has the same sign as the divisor {@code y}, and
1240      * is in the range of {@code -abs(y) < r < +abs(y)}.
1241      *
1242      * <p>
1243      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1244      * <ul>
1245      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1246      * </ul>
1247      * <p>
1248      * The difference in values between {@code floorMod} and
1249      * the {@code %} operator is due to the difference between
1250      * {@code floorDiv} that returns the integer less than or equal to the quotient
1251      * and the {@code /} operator that returns the integer closest to zero.
1252      * <p>
1253      * Examples:
1254      * <ul>
1255      *   <li>If the signs of the arguments are the same, the results
1256      *       of {@code floorMod} and the {@code %} operator are the same.  <br>
1257      *       <ul>
1258      *       <li>{@code floorMod(4, 3) == 1}; &nbsp; and {@code (4 % 3) == 1}</li>
1259      *       </ul>
1260      *   <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br>
1261      *      <ul>
1262      *      <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1} </li>
1263      *      <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1} </li>
1264      *      <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1 } </li>
1265      *      </ul>
1266      *   </li>
1267      * </ul>
1268      * <p>
1269      * If the signs of arguments are unknown and a positive modulus
1270      * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}.
1271      *
1272      * @param x the dividend
1273      * @param y the divisor
1274      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1275      * @throws ArithmeticException if the divisor {@code y} is zero
1276      * @see #floorDiv(int, int)
1277      * @since 1.8
1278      */
floorMod(int x, int y)1279     public static int floorMod(int x, int y) {
1280         int mod = x % y;
1281         // if the signs are different and modulo not zero, adjust result
1282         if ((mod ^ y) < 0 && mod != 0) {
1283             mod += y;
1284         }
1285         return mod;
1286     }
1287 
1288     /**
1289      * Returns the floor modulus of the {@code long} and {@code int} arguments.
1290      * <p>
1291      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1292      * has the same sign as the divisor {@code y}, and
1293      * is in the range of {@code -abs(y) < r < +abs(y)}.
1294      *
1295      * <p>
1296      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1297      * <ul>
1298      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1299      * </ul>
1300      * <p>
1301      * For examples, see {@link #floorMod(int, int)}.
1302      *
1303      * @param x the dividend
1304      * @param y the divisor
1305      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1306      * @throws ArithmeticException if the divisor {@code y} is zero
1307      * @see #floorDiv(long, int)
1308      * @since 9
1309      */
floorMod(long x, int y)1310     public static int floorMod(long x, int y) {
1311         // Result cannot overflow the range of int.
1312         return (int)floorMod(x, (long)y);
1313     }
1314 
1315     /**
1316      * Returns the floor modulus of the {@code long} arguments.
1317      * <p>
1318      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1319      * has the same sign as the divisor {@code y}, and
1320      * is in the range of {@code -abs(y) < r < +abs(y)}.
1321      *
1322      * <p>
1323      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1324      * <ul>
1325      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1326      * </ul>
1327      * <p>
1328      * For examples, see {@link #floorMod(int, int)}.
1329      *
1330      * @param x the dividend
1331      * @param y the divisor
1332      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1333      * @throws ArithmeticException if the divisor {@code y} is zero
1334      * @see #floorDiv(long, long)
1335      * @since 1.8
1336      */
floorMod(long x, long y)1337     public static long floorMod(long x, long y) {
1338         long mod = x % y;
1339         // if the signs are different and modulo not zero, adjust result
1340         if ((x ^ y) < 0 && mod != 0) {
1341             mod += y;
1342         }
1343         return mod;
1344     }
1345 
1346     /**
1347      * Returns the absolute value of an {@code int} value.
1348      * If the argument is not negative, the argument is returned.
1349      * If the argument is negative, the negation of the argument is returned.
1350      *
1351      * <p>Note that if the argument is equal to the value of
1352      * {@link Integer#MIN_VALUE}, the most negative representable
1353      * {@code int} value, the result is that same value, which is
1354      * negative.
1355      *
1356      * @param   a   the argument whose absolute value is to be determined
1357      * @return  the absolute value of the argument.
1358      */
1359     @HotSpotIntrinsicCandidate
abs(int a)1360     public static int abs(int a) {
1361         return (a < 0) ? -a : a;
1362     }
1363 
1364     /**
1365      * Returns the absolute value of a {@code long} value.
1366      * If the argument is not negative, the argument is returned.
1367      * If the argument is negative, the negation of the argument is returned.
1368      *
1369      * <p>Note that if the argument is equal to the value of
1370      * {@link Long#MIN_VALUE}, the most negative representable
1371      * {@code long} value, the result is that same value, which
1372      * is negative.
1373      *
1374      * @param   a   the argument whose absolute value is to be determined
1375      * @return  the absolute value of the argument.
1376      */
1377     @HotSpotIntrinsicCandidate
abs(long a)1378     public static long abs(long a) {
1379         return (a < 0) ? -a : a;
1380     }
1381 
1382     /**
1383      * Returns the absolute value of a {@code float} value.
1384      * If the argument is not negative, the argument is returned.
1385      * If the argument is negative, the negation of the argument is returned.
1386      * Special cases:
1387      * <ul><li>If the argument is positive zero or negative zero, the
1388      * result is positive zero.
1389      * <li>If the argument is infinite, the result is positive infinity.
1390      * <li>If the argument is NaN, the result is NaN.</ul>
1391      *
1392      * @apiNote As implied by the above, one valid implementation of
1393      * this method is given by the expression below which computes a
1394      * {@code float} with the same exponent and significand as the
1395      * argument but with a guaranteed zero sign bit indicating a
1396      * positive value:<br>
1397      * {@code Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))}
1398      *
1399      * @param   a   the argument whose absolute value is to be determined
1400      * @return  the absolute value of the argument.
1401      */
1402     @HotSpotIntrinsicCandidate
abs(float a)1403     public static float abs(float a) {
1404         return (a <= 0.0F) ? 0.0F - a : a;
1405     }
1406 
1407     /**
1408      * Returns the absolute value of a {@code double} value.
1409      * If the argument is not negative, the argument is returned.
1410      * If the argument is negative, the negation of the argument is returned.
1411      * Special cases:
1412      * <ul><li>If the argument is positive zero or negative zero, the result
1413      * is positive zero.
1414      * <li>If the argument is infinite, the result is positive infinity.
1415      * <li>If the argument is NaN, the result is NaN.</ul>
1416      *
1417      * @apiNote As implied by the above, one valid implementation of
1418      * this method is given by the expression below which computes a
1419      * {@code double} with the same exponent and significand as the
1420      * argument but with a guaranteed zero sign bit indicating a
1421      * positive value:<br>
1422      * {@code Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)}
1423      *
1424      * @param   a   the argument whose absolute value is to be determined
1425      * @return  the absolute value of the argument.
1426      */
1427     @HotSpotIntrinsicCandidate
abs(double a)1428     public static double abs(double a) {
1429         return (a <= 0.0D) ? 0.0D - a : a;
1430     }
1431 
1432     /**
1433      * Returns the greater of two {@code int} values. That is, the
1434      * result is the argument closer to the value of
1435      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1436      * the result is that same value.
1437      *
1438      * @param   a   an argument.
1439      * @param   b   another argument.
1440      * @return  the larger of {@code a} and {@code b}.
1441      */
1442     @HotSpotIntrinsicCandidate
max(int a, int b)1443     public static int max(int a, int b) {
1444         return (a >= b) ? a : b;
1445     }
1446 
1447     /**
1448      * Returns the greater of two {@code long} values. That is, the
1449      * result is the argument closer to the value of
1450      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1451      * the result is that same value.
1452      *
1453      * @param   a   an argument.
1454      * @param   b   another argument.
1455      * @return  the larger of {@code a} and {@code b}.
1456      */
max(long a, long b)1457     public static long max(long a, long b) {
1458         return (a >= b) ? a : b;
1459     }
1460 
1461     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
1462     private static final long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
1463     private static final long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
1464 
1465     /**
1466      * Returns the greater of two {@code float} values.  That is,
1467      * the result is the argument closer to positive infinity. If the
1468      * arguments have the same value, the result is that same
1469      * value. If either value is NaN, then the result is NaN.  Unlike
1470      * the numerical comparison operators, this method considers
1471      * negative zero to be strictly smaller than positive zero. If one
1472      * argument is positive zero and the other negative zero, the
1473      * result is positive zero.
1474      *
1475      * @param   a   an argument.
1476      * @param   b   another argument.
1477      * @return  the larger of {@code a} and {@code b}.
1478      */
1479     @HotSpotIntrinsicCandidate
max(float a, float b)1480     public static float max(float a, float b) {
1481         if (a != a)
1482             return a;   // a is NaN
1483         if ((a == 0.0f) &&
1484             (b == 0.0f) &&
1485             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
1486             // Raw conversion ok since NaN can't map to -0.0.
1487             return b;
1488         }
1489         return (a >= b) ? a : b;
1490     }
1491 
1492     /**
1493      * Returns the greater of two {@code double} values.  That
1494      * is, the result is the argument closer to positive infinity. If
1495      * the arguments have the same value, the result is that same
1496      * value. If either value is NaN, then the result is NaN.  Unlike
1497      * the numerical comparison operators, this method considers
1498      * negative zero to be strictly smaller than positive zero. If one
1499      * argument is positive zero and the other negative zero, the
1500      * result is positive zero.
1501      *
1502      * @param   a   an argument.
1503      * @param   b   another argument.
1504      * @return  the larger of {@code a} and {@code b}.
1505      */
1506     @HotSpotIntrinsicCandidate
max(double a, double b)1507     public static double max(double a, double b) {
1508         if (a != a)
1509             return a;   // a is NaN
1510         if ((a == 0.0d) &&
1511             (b == 0.0d) &&
1512             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
1513             // Raw conversion ok since NaN can't map to -0.0.
1514             return b;
1515         }
1516         return (a >= b) ? a : b;
1517     }
1518 
1519     /**
1520      * Returns the smaller of two {@code int} values. That is,
1521      * the result the argument closer to the value of
1522      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1523      * value, the result is that same value.
1524      *
1525      * @param   a   an argument.
1526      * @param   b   another argument.
1527      * @return  the smaller of {@code a} and {@code b}.
1528      */
1529     @HotSpotIntrinsicCandidate
min(int a, int b)1530     public static int min(int a, int b) {
1531         return (a <= b) ? a : b;
1532     }
1533 
1534     /**
1535      * Returns the smaller of two {@code long} values. That is,
1536      * the result is the argument closer to the value of
1537      * {@link Long#MIN_VALUE}. If the arguments have the same
1538      * value, the result is that same value.
1539      *
1540      * @param   a   an argument.
1541      * @param   b   another argument.
1542      * @return  the smaller of {@code a} and {@code b}.
1543      */
min(long a, long b)1544     public static long min(long a, long b) {
1545         return (a <= b) ? a : b;
1546     }
1547 
1548     /**
1549      * Returns the smaller of two {@code float} values.  That is,
1550      * the result is the value closer to negative infinity. If the
1551      * arguments have the same value, the result is that same
1552      * value. If either value is NaN, then the result is NaN.  Unlike
1553      * the numerical comparison operators, this method considers
1554      * negative zero to be strictly smaller than positive zero.  If
1555      * one argument is positive zero and the other is negative zero,
1556      * the result is negative zero.
1557      *
1558      * @param   a   an argument.
1559      * @param   b   another argument.
1560      * @return  the smaller of {@code a} and {@code b}.
1561      */
1562     @HotSpotIntrinsicCandidate
min(float a, float b)1563     public static float min(float a, float b) {
1564         if (a != a)
1565             return a;   // a is NaN
1566         if ((a == 0.0f) &&
1567             (b == 0.0f) &&
1568             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
1569             // Raw conversion ok since NaN can't map to -0.0.
1570             return b;
1571         }
1572         return (a <= b) ? a : b;
1573     }
1574 
1575     /**
1576      * Returns the smaller of two {@code double} values.  That
1577      * is, the result is the value closer to negative infinity. If the
1578      * arguments have the same value, the result is that same
1579      * value. If either value is NaN, then the result is NaN.  Unlike
1580      * the numerical comparison operators, this method considers
1581      * negative zero to be strictly smaller than positive zero. If one
1582      * argument is positive zero and the other is negative zero, the
1583      * result is negative zero.
1584      *
1585      * @param   a   an argument.
1586      * @param   b   another argument.
1587      * @return  the smaller of {@code a} and {@code b}.
1588      */
1589     @HotSpotIntrinsicCandidate
min(double a, double b)1590     public static double min(double a, double b) {
1591         if (a != a)
1592             return a;   // a is NaN
1593         if ((a == 0.0d) &&
1594             (b == 0.0d) &&
1595             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
1596             // Raw conversion ok since NaN can't map to -0.0.
1597             return b;
1598         }
1599         return (a <= b) ? a : b;
1600     }
1601 
1602     /**
1603      * Returns the fused multiply add of the three arguments; that is,
1604      * returns the exact product of the first two arguments summed
1605      * with the third argument and then rounded once to the nearest
1606      * {@code double}.
1607      *
1608      * The rounding is done using the {@linkplain
1609      * java.math.RoundingMode#HALF_EVEN round to nearest even
1610      * rounding mode}.
1611      *
1612      * In contrast, if {@code a * b + c} is evaluated as a regular
1613      * floating-point expression, two rounding errors are involved,
1614      * the first for the multiply operation, the second for the
1615      * addition operation.
1616      *
1617      * <p>Special cases:
1618      * <ul>
1619      * <li> If any argument is NaN, the result is NaN.
1620      *
1621      * <li> If one of the first two arguments is infinite and the
1622      * other is zero, the result is NaN.
1623      *
1624      * <li> If the exact product of the first two arguments is infinite
1625      * (in other words, at least one of the arguments is infinite and
1626      * the other is neither zero nor NaN) and the third argument is an
1627      * infinity of the opposite sign, the result is NaN.
1628      *
1629      * </ul>
1630      *
1631      * <p>Note that {@code fma(a, 1.0, c)} returns the same
1632      * result as ({@code a + c}).  However,
1633      * {@code fma(a, b, +0.0)} does <em>not</em> always return the
1634      * same result as ({@code a * b}) since
1635      * {@code fma(-0.0, +0.0, +0.0)} is {@code +0.0} while
1636      * ({@code -0.0 * +0.0}) is {@code -0.0}; {@code fma(a, b, -0.0)} is
1637      * equivalent to ({@code a * b}) however.
1638      *
1639      * @apiNote This method corresponds to the fusedMultiplyAdd
1640      * operation defined in IEEE 754-2008.
1641      *
1642      * @param a a value
1643      * @param b a value
1644      * @param c a value
1645      *
1646      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1647      * computed, as if with unlimited range and precision, and rounded
1648      * once to the nearest {@code double} value
1649      *
1650      * @since 9
1651      */
1652     @HotSpotIntrinsicCandidate
fma(double a, double b, double c)1653     public static double fma(double a, double b, double c) {
1654         /*
1655          * Infinity and NaN arithmetic is not quite the same with two
1656          * roundings as opposed to just one so the simple expression
1657          * "a * b + c" cannot always be used to compute the correct
1658          * result.  With two roundings, the product can overflow and
1659          * if the addend is infinite, a spurious NaN can be produced
1660          * if the infinity from the overflow and the infinite addend
1661          * have opposite signs.
1662          */
1663 
1664         // First, screen for and handle non-finite input values whose
1665         // arithmetic is not supported by BigDecimal.
1666         if (Double.isNaN(a) || Double.isNaN(b) || Double.isNaN(c)) {
1667             return Double.NaN;
1668         } else { // All inputs non-NaN
1669             boolean infiniteA = Double.isInfinite(a);
1670             boolean infiniteB = Double.isInfinite(b);
1671             boolean infiniteC = Double.isInfinite(c);
1672             double result;
1673 
1674             if (infiniteA || infiniteB || infiniteC) {
1675                 if (infiniteA && b == 0.0 ||
1676                     infiniteB && a == 0.0 ) {
1677                     return Double.NaN;
1678                 }
1679                 // Store product in a double field to cause an
1680                 // overflow even if non-strictfp evaluation is being
1681                 // used.
1682                 double product = a * b;
1683                 if (Double.isInfinite(product) && !infiniteA && !infiniteB) {
1684                     // Intermediate overflow; might cause a
1685                     // spurious NaN if added to infinite c.
1686                     assert Double.isInfinite(c);
1687                     return c;
1688                 } else {
1689                     result = product + c;
1690                     assert !Double.isFinite(result);
1691                     return result;
1692                 }
1693             } else { // All inputs finite
1694                 BigDecimal product = (new BigDecimal(a)).multiply(new BigDecimal(b));
1695                 if (c == 0.0) { // Positive or negative zero
1696                     // If the product is an exact zero, use a
1697                     // floating-point expression to compute the sign
1698                     // of the zero final result. The product is an
1699                     // exact zero if and only if at least one of a and
1700                     // b is zero.
1701                     if (a == 0.0 || b == 0.0) {
1702                         return a * b + c;
1703                     } else {
1704                         // The sign of a zero addend doesn't matter if
1705                         // the product is nonzero. The sign of a zero
1706                         // addend is not factored in the result if the
1707                         // exact product is nonzero but underflows to
1708                         // zero; see IEEE-754 2008 section 6.3 "The
1709                         // sign bit".
1710                         return product.doubleValue();
1711                     }
1712                 } else {
1713                     return product.add(new BigDecimal(c)).doubleValue();
1714                 }
1715             }
1716         }
1717     }
1718 
1719     /**
1720      * Returns the fused multiply add of the three arguments; that is,
1721      * returns the exact product of the first two arguments summed
1722      * with the third argument and then rounded once to the nearest
1723      * {@code float}.
1724      *
1725      * The rounding is done using the {@linkplain
1726      * java.math.RoundingMode#HALF_EVEN round to nearest even
1727      * rounding mode}.
1728      *
1729      * In contrast, if {@code a * b + c} is evaluated as a regular
1730      * floating-point expression, two rounding errors are involved,
1731      * the first for the multiply operation, the second for the
1732      * addition operation.
1733      *
1734      * <p>Special cases:
1735      * <ul>
1736      * <li> If any argument is NaN, the result is NaN.
1737      *
1738      * <li> If one of the first two arguments is infinite and the
1739      * other is zero, the result is NaN.
1740      *
1741      * <li> If the exact product of the first two arguments is infinite
1742      * (in other words, at least one of the arguments is infinite and
1743      * the other is neither zero nor NaN) and the third argument is an
1744      * infinity of the opposite sign, the result is NaN.
1745      *
1746      * </ul>
1747      *
1748      * <p>Note that {@code fma(a, 1.0f, c)} returns the same
1749      * result as ({@code a + c}).  However,
1750      * {@code fma(a, b, +0.0f)} does <em>not</em> always return the
1751      * same result as ({@code a * b}) since
1752      * {@code fma(-0.0f, +0.0f, +0.0f)} is {@code +0.0f} while
1753      * ({@code -0.0f * +0.0f}) is {@code -0.0f}; {@code fma(a, b, -0.0f)} is
1754      * equivalent to ({@code a * b}) however.
1755      *
1756      * @apiNote This method corresponds to the fusedMultiplyAdd
1757      * operation defined in IEEE 754-2008.
1758      *
1759      * @param a a value
1760      * @param b a value
1761      * @param c a value
1762      *
1763      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1764      * computed, as if with unlimited range and precision, and rounded
1765      * once to the nearest {@code float} value
1766      *
1767      * @since 9
1768      */
1769     @HotSpotIntrinsicCandidate
fma(float a, float b, float c)1770     public static float fma(float a, float b, float c) {
1771         if (Float.isFinite(a) && Float.isFinite(b) && Float.isFinite(c)) {
1772             if (a == 0.0 || b == 0.0) {
1773                 return a * b + c; // Handled signed zero cases
1774             } else {
1775                 return (new BigDecimal((double)a * (double)b) // Exact multiply
1776                         .add(new BigDecimal((double)c)))      // Exact sum
1777                     .floatValue();                            // One rounding
1778                                                               // to a float value
1779             }
1780         } else {
1781             // At least one of a,b, and c is non-finite. The result
1782             // will be non-finite as well and will be the same
1783             // non-finite value under double as float arithmetic.
1784             return (float)fma((double)a, (double)b, (double)c);
1785         }
1786     }
1787 
1788     /**
1789      * Returns the size of an ulp of the argument.  An ulp, unit in
1790      * the last place, of a {@code double} value is the positive
1791      * distance between this floating-point value and the {@code
1792      * double} value next larger in magnitude.  Note that for non-NaN
1793      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1794      *
1795      * <p>Special Cases:
1796      * <ul>
1797      * <li> If the argument is NaN, then the result is NaN.
1798      * <li> If the argument is positive or negative infinity, then the
1799      * result is positive infinity.
1800      * <li> If the argument is positive or negative zero, then the result is
1801      * {@code Double.MIN_VALUE}.
1802      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1803      * the result is equal to 2<sup>971</sup>.
1804      * </ul>
1805      *
1806      * @param d the floating-point value whose ulp is to be returned
1807      * @return the size of an ulp of the argument
1808      * @author Joseph D. Darcy
1809      * @since 1.5
1810      */
ulp(double d)1811     public static double ulp(double d) {
1812         int exp = getExponent(d);
1813 
1814         switch(exp) {
1815         case Double.MAX_EXPONENT + 1:       // NaN or infinity
1816             return Math.abs(d);
1817 
1818         case Double.MIN_EXPONENT - 1:       // zero or subnormal
1819             return Double.MIN_VALUE;
1820 
1821         default:
1822             assert exp <= Double.MAX_EXPONENT && exp >= Double.MIN_EXPONENT;
1823 
1824             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1825             exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1);
1826             if (exp >= Double.MIN_EXPONENT) {
1827                 return powerOfTwoD(exp);
1828             }
1829             else {
1830                 // return a subnormal result; left shift integer
1831                 // representation of Double.MIN_VALUE appropriate
1832                 // number of positions
1833                 return Double.longBitsToDouble(1L <<
1834                 (exp - (Double.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) ));
1835             }
1836         }
1837     }
1838 
1839     /**
1840      * Returns the size of an ulp of the argument.  An ulp, unit in
1841      * the last place, of a {@code float} value is the positive
1842      * distance between this floating-point value and the {@code
1843      * float} value next larger in magnitude.  Note that for non-NaN
1844      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1845      *
1846      * <p>Special Cases:
1847      * <ul>
1848      * <li> If the argument is NaN, then the result is NaN.
1849      * <li> If the argument is positive or negative infinity, then the
1850      * result is positive infinity.
1851      * <li> If the argument is positive or negative zero, then the result is
1852      * {@code Float.MIN_VALUE}.
1853      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1854      * the result is equal to 2<sup>104</sup>.
1855      * </ul>
1856      *
1857      * @param f the floating-point value whose ulp is to be returned
1858      * @return the size of an ulp of the argument
1859      * @author Joseph D. Darcy
1860      * @since 1.5
1861      */
ulp(float f)1862     public static float ulp(float f) {
1863         int exp = getExponent(f);
1864 
1865         switch(exp) {
1866         case Float.MAX_EXPONENT+1:        // NaN or infinity
1867             return Math.abs(f);
1868 
1869         case Float.MIN_EXPONENT-1:        // zero or subnormal
1870             return Float.MIN_VALUE;
1871 
1872         default:
1873             assert exp <= Float.MAX_EXPONENT && exp >= Float.MIN_EXPONENT;
1874 
1875             // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
1876             exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1);
1877             if (exp >= Float.MIN_EXPONENT) {
1878                 return powerOfTwoF(exp);
1879             } else {
1880                 // return a subnormal result; left shift integer
1881                 // representation of FloatConsts.MIN_VALUE appropriate
1882                 // number of positions
1883                 return Float.intBitsToFloat(1 <<
1884                 (exp - (Float.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) ));
1885             }
1886         }
1887     }
1888 
1889     /**
1890      * Returns the signum function of the argument; zero if the argument
1891      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1892      * argument is less than zero.
1893      *
1894      * <p>Special Cases:
1895      * <ul>
1896      * <li> If the argument is NaN, then the result is NaN.
1897      * <li> If the argument is positive zero or negative zero, then the
1898      *      result is the same as the argument.
1899      * </ul>
1900      *
1901      * @param d the floating-point value whose signum is to be returned
1902      * @return the signum function of the argument
1903      * @author Joseph D. Darcy
1904      * @since 1.5
1905      */
signum(double d)1906     public static double signum(double d) {
1907         return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d);
1908     }
1909 
1910     /**
1911      * Returns the signum function of the argument; zero if the argument
1912      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1913      * argument is less than zero.
1914      *
1915      * <p>Special Cases:
1916      * <ul>
1917      * <li> If the argument is NaN, then the result is NaN.
1918      * <li> If the argument is positive zero or negative zero, then the
1919      *      result is the same as the argument.
1920      * </ul>
1921      *
1922      * @param f the floating-point value whose signum is to be returned
1923      * @return the signum function of the argument
1924      * @author Joseph D. Darcy
1925      * @since 1.5
1926      */
signum(float f)1927     public static float signum(float f) {
1928         return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f);
1929     }
1930 
1931     /**
1932      * Returns the hyperbolic sine of a {@code double} value.
1933      * The hyperbolic sine of <i>x</i> is defined to be
1934      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1935      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1936      *
1937      * <p>Special cases:
1938      * <ul>
1939      *
1940      * <li>If the argument is NaN, then the result is NaN.
1941      *
1942      * <li>If the argument is infinite, then the result is an infinity
1943      * with the same sign as the argument.
1944      *
1945      * <li>If the argument is zero, then the result is a zero with the
1946      * same sign as the argument.
1947      *
1948      * </ul>
1949      *
1950      * <p>The computed result must be within 2.5 ulps of the exact result.
1951      *
1952      * @param   x The number whose hyperbolic sine is to be returned.
1953      * @return  The hyperbolic sine of {@code x}.
1954      * @since 1.5
1955      */
sinh(double x)1956     public static double sinh(double x) {
1957         return StrictMath.sinh(x);
1958     }
1959 
1960     /**
1961      * Returns the hyperbolic cosine of a {@code double} value.
1962      * The hyperbolic cosine of <i>x</i> is defined to be
1963      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1964      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1965      *
1966      * <p>Special cases:
1967      * <ul>
1968      *
1969      * <li>If the argument is NaN, then the result is NaN.
1970      *
1971      * <li>If the argument is infinite, then the result is positive
1972      * infinity.
1973      *
1974      * <li>If the argument is zero, then the result is {@code 1.0}.
1975      *
1976      * </ul>
1977      *
1978      * <p>The computed result must be within 2.5 ulps of the exact result.
1979      *
1980      * @param   x The number whose hyperbolic cosine is to be returned.
1981      * @return  The hyperbolic cosine of {@code x}.
1982      * @since 1.5
1983      */
cosh(double x)1984     public static double cosh(double x) {
1985         return StrictMath.cosh(x);
1986     }
1987 
1988     /**
1989      * Returns the hyperbolic tangent of a {@code double} value.
1990      * The hyperbolic tangent of <i>x</i> is defined to be
1991      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1992      * in other words, {@linkplain Math#sinh
1993      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1994      * that the absolute value of the exact tanh is always less than
1995      * 1.
1996      *
1997      * <p>Special cases:
1998      * <ul>
1999      *
2000      * <li>If the argument is NaN, then the result is NaN.
2001      *
2002      * <li>If the argument is zero, then the result is a zero with the
2003      * same sign as the argument.
2004      *
2005      * <li>If the argument is positive infinity, then the result is
2006      * {@code +1.0}.
2007      *
2008      * <li>If the argument is negative infinity, then the result is
2009      * {@code -1.0}.
2010      *
2011      * </ul>
2012      *
2013      * <p>The computed result must be within 2.5 ulps of the exact result.
2014      * The result of {@code tanh} for any finite input must have
2015      * an absolute value less than or equal to 1.  Note that once the
2016      * exact result of tanh is within 1/2 of an ulp of the limit value
2017      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
2018      * be returned.
2019      *
2020      * @param   x The number whose hyperbolic tangent is to be returned.
2021      * @return  The hyperbolic tangent of {@code x}.
2022      * @since 1.5
2023      */
tanh(double x)2024     public static double tanh(double x) {
2025         return StrictMath.tanh(x);
2026     }
2027 
2028     /**
2029      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
2030      * without intermediate overflow or underflow.
2031      *
2032      * <p>Special cases:
2033      * <ul>
2034      *
2035      * <li> If either argument is infinite, then the result
2036      * is positive infinity.
2037      *
2038      * <li> If either argument is NaN and neither argument is infinite,
2039      * then the result is NaN.
2040      *
2041      * </ul>
2042      *
2043      * <p>The computed result must be within 1 ulp of the exact
2044      * result.  If one parameter is held constant, the results must be
2045      * semi-monotonic in the other parameter.
2046      *
2047      * @param x a value
2048      * @param y a value
2049      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
2050      * without intermediate overflow or underflow
2051      * @since 1.5
2052      */
hypot(double x, double y)2053     public static double hypot(double x, double y) {
2054         return StrictMath.hypot(x, y);
2055     }
2056 
2057     /**
2058      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
2059      * <i>x</i> near 0, the exact sum of
2060      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
2061      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
2062      *
2063      * <p>Special cases:
2064      * <ul>
2065      * <li>If the argument is NaN, the result is NaN.
2066      *
2067      * <li>If the argument is positive infinity, then the result is
2068      * positive infinity.
2069      *
2070      * <li>If the argument is negative infinity, then the result is
2071      * -1.0.
2072      *
2073      * <li>If the argument is zero, then the result is a zero with the
2074      * same sign as the argument.
2075      *
2076      * </ul>
2077      *
2078      * <p>The computed result must be within 1 ulp of the exact result.
2079      * Results must be semi-monotonic.  The result of
2080      * {@code expm1} for any finite input must be greater than or
2081      * equal to {@code -1.0}.  Note that once the exact result of
2082      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
2083      * ulp of the limit value -1, {@code -1.0} should be
2084      * returned.
2085      *
2086      * @param   x   the exponent to raise <i>e</i> to in the computation of
2087      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
2088      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
2089      * @since 1.5
2090      */
expm1(double x)2091     public static double expm1(double x) {
2092         return StrictMath.expm1(x);
2093     }
2094 
2095     /**
2096      * Returns the natural logarithm of the sum of the argument and 1.
2097      * Note that for small values {@code x}, the result of
2098      * {@code log1p(x)} is much closer to the true result of ln(1
2099      * + {@code x}) than the floating-point evaluation of
2100      * {@code log(1.0+x)}.
2101      *
2102      * <p>Special cases:
2103      *
2104      * <ul>
2105      *
2106      * <li>If the argument is NaN or less than -1, then the result is
2107      * NaN.
2108      *
2109      * <li>If the argument is positive infinity, then the result is
2110      * positive infinity.
2111      *
2112      * <li>If the argument is negative one, then the result is
2113      * negative infinity.
2114      *
2115      * <li>If the argument is zero, then the result is a zero with the
2116      * same sign as the argument.
2117      *
2118      * </ul>
2119      *
2120      * <p>The computed result must be within 1 ulp of the exact result.
2121      * Results must be semi-monotonic.
2122      *
2123      * @param   x   a value
2124      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
2125      * log of {@code x}&nbsp;+&nbsp;1
2126      * @since 1.5
2127      */
log1p(double x)2128     public static double log1p(double x) {
2129         return StrictMath.log1p(x);
2130     }
2131 
2132     /**
2133      * Returns the first floating-point argument with the sign of the
2134      * second floating-point argument.  Note that unlike the {@link
2135      * StrictMath#copySign(double, double) StrictMath.copySign}
2136      * method, this method does not require NaN {@code sign}
2137      * arguments to be treated as positive values; implementations are
2138      * permitted to treat some NaN arguments as positive and other NaN
2139      * arguments as negative to allow greater performance.
2140      *
2141      * @param magnitude  the parameter providing the magnitude of the result
2142      * @param sign   the parameter providing the sign of the result
2143      * @return a value with the magnitude of {@code magnitude}
2144      * and the sign of {@code sign}.
2145      * @since 1.6
2146      */
copySign(double magnitude, double sign)2147     public static double copySign(double magnitude, double sign) {
2148         return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) &
2149                                         (DoubleConsts.SIGN_BIT_MASK)) |
2150                                        (Double.doubleToRawLongBits(magnitude) &
2151                                         (DoubleConsts.EXP_BIT_MASK |
2152                                          DoubleConsts.SIGNIF_BIT_MASK)));
2153     }
2154 
2155     /**
2156      * Returns the first floating-point argument with the sign of the
2157      * second floating-point argument.  Note that unlike the {@link
2158      * StrictMath#copySign(float, float) StrictMath.copySign}
2159      * method, this method does not require NaN {@code sign}
2160      * arguments to be treated as positive values; implementations are
2161      * permitted to treat some NaN arguments as positive and other NaN
2162      * arguments as negative to allow greater performance.
2163      *
2164      * @param magnitude  the parameter providing the magnitude of the result
2165      * @param sign   the parameter providing the sign of the result
2166      * @return a value with the magnitude of {@code magnitude}
2167      * and the sign of {@code sign}.
2168      * @since 1.6
2169      */
copySign(float magnitude, float sign)2170     public static float copySign(float magnitude, float sign) {
2171         return Float.intBitsToFloat((Float.floatToRawIntBits(sign) &
2172                                      (FloatConsts.SIGN_BIT_MASK)) |
2173                                     (Float.floatToRawIntBits(magnitude) &
2174                                      (FloatConsts.EXP_BIT_MASK |
2175                                       FloatConsts.SIGNIF_BIT_MASK)));
2176     }
2177 
2178     /**
2179      * Returns the unbiased exponent used in the representation of a
2180      * {@code float}.  Special cases:
2181      *
2182      * <ul>
2183      * <li>If the argument is NaN or infinite, then the result is
2184      * {@link Float#MAX_EXPONENT} + 1.
2185      * <li>If the argument is zero or subnormal, then the result is
2186      * {@link Float#MIN_EXPONENT} -1.
2187      * </ul>
2188      * @param f a {@code float} value
2189      * @return the unbiased exponent of the argument
2190      * @since 1.6
2191      */
getExponent(float f)2192     public static int getExponent(float f) {
2193         /*
2194          * Bitwise convert f to integer, mask out exponent bits, shift
2195          * to the right and then subtract out float's bias adjust to
2196          * get true exponent value
2197          */
2198         return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >>
2199                 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS;
2200     }
2201 
2202     /**
2203      * Returns the unbiased exponent used in the representation of a
2204      * {@code double}.  Special cases:
2205      *
2206      * <ul>
2207      * <li>If the argument is NaN or infinite, then the result is
2208      * {@link Double#MAX_EXPONENT} + 1.
2209      * <li>If the argument is zero or subnormal, then the result is
2210      * {@link Double#MIN_EXPONENT} -1.
2211      * </ul>
2212      * @param d a {@code double} value
2213      * @return the unbiased exponent of the argument
2214      * @since 1.6
2215      */
getExponent(double d)2216     public static int getExponent(double d) {
2217         /*
2218          * Bitwise convert d to long, mask out exponent bits, shift
2219          * to the right and then subtract out double's bias adjust to
2220          * get true exponent value.
2221          */
2222         return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >>
2223                       (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS);
2224     }
2225 
2226     /**
2227      * Returns the floating-point number adjacent to the first
2228      * argument in the direction of the second argument.  If both
2229      * arguments compare as equal the second argument is returned.
2230      *
2231      * <p>
2232      * Special cases:
2233      * <ul>
2234      * <li> If either argument is a NaN, then NaN is returned.
2235      *
2236      * <li> If both arguments are signed zeros, {@code direction}
2237      * is returned unchanged (as implied by the requirement of
2238      * returning the second argument if the arguments compare as
2239      * equal).
2240      *
2241      * <li> If {@code start} is
2242      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
2243      * has a value such that the result should have a smaller
2244      * magnitude, then a zero with the same sign as {@code start}
2245      * is returned.
2246      *
2247      * <li> If {@code start} is infinite and
2248      * {@code direction} has a value such that the result should
2249      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
2250      * same sign as {@code start} is returned.
2251      *
2252      * <li> If {@code start} is equal to &plusmn;
2253      * {@link Double#MAX_VALUE} and {@code direction} has a
2254      * value such that the result should have a larger magnitude, an
2255      * infinity with same sign as {@code start} is returned.
2256      * </ul>
2257      *
2258      * @param start  starting floating-point value
2259      * @param direction value indicating which of
2260      * {@code start}'s neighbors or {@code start} should
2261      * be returned
2262      * @return The floating-point number adjacent to {@code start} in the
2263      * direction of {@code direction}.
2264      * @since 1.6
2265      */
nextAfter(double start, double direction)2266     public static double nextAfter(double start, double direction) {
2267         /*
2268          * The cases:
2269          *
2270          * nextAfter(+infinity, 0)  == MAX_VALUE
2271          * nextAfter(+infinity, +infinity)  == +infinity
2272          * nextAfter(-infinity, 0)  == -MAX_VALUE
2273          * nextAfter(-infinity, -infinity)  == -infinity
2274          *
2275          * are naturally handled without any additional testing
2276          */
2277 
2278         /*
2279          * IEEE 754 floating-point numbers are lexicographically
2280          * ordered if treated as signed-magnitude integers.
2281          * Since Java's integers are two's complement,
2282          * incrementing the two's complement representation of a
2283          * logically negative floating-point value *decrements*
2284          * the signed-magnitude representation. Therefore, when
2285          * the integer representation of a floating-point value
2286          * is negative, the adjustment to the representation is in
2287          * the opposite direction from what would initially be expected.
2288          */
2289 
2290         // Branch to descending case first as it is more costly than ascending
2291         // case due to start != 0.0d conditional.
2292         if (start > direction) { // descending
2293             if (start != 0.0d) {
2294                 final long transducer = Double.doubleToRawLongBits(start);
2295                 return Double.longBitsToDouble(transducer + ((transducer > 0L) ? -1L : 1L));
2296             } else { // start == 0.0d && direction < 0.0d
2297                 return -Double.MIN_VALUE;
2298             }
2299         } else if (start < direction) { // ascending
2300             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
2301             // then bitwise convert start to integer.
2302             final long transducer = Double.doubleToRawLongBits(start + 0.0d);
2303             return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
2304         } else if (start == direction) {
2305             return direction;
2306         } else { // isNaN(start) || isNaN(direction)
2307             return start + direction;
2308         }
2309     }
2310 
2311     /**
2312      * Returns the floating-point number adjacent to the first
2313      * argument in the direction of the second argument.  If both
2314      * arguments compare as equal a value equivalent to the second argument
2315      * is returned.
2316      *
2317      * <p>
2318      * Special cases:
2319      * <ul>
2320      * <li> If either argument is a NaN, then NaN is returned.
2321      *
2322      * <li> If both arguments are signed zeros, a value equivalent
2323      * to {@code direction} is returned.
2324      *
2325      * <li> If {@code start} is
2326      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
2327      * has a value such that the result should have a smaller
2328      * magnitude, then a zero with the same sign as {@code start}
2329      * is returned.
2330      *
2331      * <li> If {@code start} is infinite and
2332      * {@code direction} has a value such that the result should
2333      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
2334      * same sign as {@code start} is returned.
2335      *
2336      * <li> If {@code start} is equal to &plusmn;
2337      * {@link Float#MAX_VALUE} and {@code direction} has a
2338      * value such that the result should have a larger magnitude, an
2339      * infinity with same sign as {@code start} is returned.
2340      * </ul>
2341      *
2342      * @param start  starting floating-point value
2343      * @param direction value indicating which of
2344      * {@code start}'s neighbors or {@code start} should
2345      * be returned
2346      * @return The floating-point number adjacent to {@code start} in the
2347      * direction of {@code direction}.
2348      * @since 1.6
2349      */
nextAfter(float start, double direction)2350     public static float nextAfter(float start, double direction) {
2351         /*
2352          * The cases:
2353          *
2354          * nextAfter(+infinity, 0)  == MAX_VALUE
2355          * nextAfter(+infinity, +infinity)  == +infinity
2356          * nextAfter(-infinity, 0)  == -MAX_VALUE
2357          * nextAfter(-infinity, -infinity)  == -infinity
2358          *
2359          * are naturally handled without any additional testing
2360          */
2361 
2362         /*
2363          * IEEE 754 floating-point numbers are lexicographically
2364          * ordered if treated as signed-magnitude integers.
2365          * Since Java's integers are two's complement,
2366          * incrementing the two's complement representation of a
2367          * logically negative floating-point value *decrements*
2368          * the signed-magnitude representation. Therefore, when
2369          * the integer representation of a floating-point value
2370          * is negative, the adjustment to the representation is in
2371          * the opposite direction from what would initially be expected.
2372          */
2373 
2374         // Branch to descending case first as it is more costly than ascending
2375         // case due to start != 0.0f conditional.
2376         if (start > direction) { // descending
2377             if (start != 0.0f) {
2378                 final int transducer = Float.floatToRawIntBits(start);
2379                 return Float.intBitsToFloat(transducer + ((transducer > 0) ? -1 : 1));
2380             } else { // start == 0.0f && direction < 0.0f
2381                 return -Float.MIN_VALUE;
2382             }
2383         } else if (start < direction) { // ascending
2384             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
2385             // then bitwise convert start to integer.
2386             final int transducer = Float.floatToRawIntBits(start + 0.0f);
2387             return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
2388         } else if (start == direction) {
2389             return (float)direction;
2390         } else { // isNaN(start) || isNaN(direction)
2391             return start + (float)direction;
2392         }
2393     }
2394 
2395     /**
2396      * Returns the floating-point value adjacent to {@code d} in
2397      * the direction of positive infinity.  This method is
2398      * semantically equivalent to {@code nextAfter(d,
2399      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
2400      * implementation may run faster than its equivalent
2401      * {@code nextAfter} call.
2402      *
2403      * <p>Special Cases:
2404      * <ul>
2405      * <li> If the argument is NaN, the result is NaN.
2406      *
2407      * <li> If the argument is positive infinity, the result is
2408      * positive infinity.
2409      *
2410      * <li> If the argument is zero, the result is
2411      * {@link Double#MIN_VALUE}
2412      *
2413      * </ul>
2414      *
2415      * @param d starting floating-point value
2416      * @return The adjacent floating-point value closer to positive
2417      * infinity.
2418      * @since 1.6
2419      */
nextUp(double d)2420     public static double nextUp(double d) {
2421         // Use a single conditional and handle the likely cases first.
2422         if (d < Double.POSITIVE_INFINITY) {
2423             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
2424             final long transducer = Double.doubleToRawLongBits(d + 0.0D);
2425             return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
2426         } else { // d is NaN or +Infinity
2427             return d;
2428         }
2429     }
2430 
2431     /**
2432      * Returns the floating-point value adjacent to {@code f} in
2433      * the direction of positive infinity.  This method is
2434      * semantically equivalent to {@code nextAfter(f,
2435      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
2436      * implementation may run faster than its equivalent
2437      * {@code nextAfter} call.
2438      *
2439      * <p>Special Cases:
2440      * <ul>
2441      * <li> If the argument is NaN, the result is NaN.
2442      *
2443      * <li> If the argument is positive infinity, the result is
2444      * positive infinity.
2445      *
2446      * <li> If the argument is zero, the result is
2447      * {@link Float#MIN_VALUE}
2448      *
2449      * </ul>
2450      *
2451      * @param f starting floating-point value
2452      * @return The adjacent floating-point value closer to positive
2453      * infinity.
2454      * @since 1.6
2455      */
nextUp(float f)2456     public static float nextUp(float f) {
2457         // Use a single conditional and handle the likely cases first.
2458         if (f < Float.POSITIVE_INFINITY) {
2459             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
2460             final int transducer = Float.floatToRawIntBits(f + 0.0F);
2461             return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
2462         } else { // f is NaN or +Infinity
2463             return f;
2464         }
2465     }
2466 
2467     /**
2468      * Returns the floating-point value adjacent to {@code d} in
2469      * the direction of negative infinity.  This method is
2470      * semantically equivalent to {@code nextAfter(d,
2471      * Double.NEGATIVE_INFINITY)}; however, a
2472      * {@code nextDown} implementation may run faster than its
2473      * equivalent {@code nextAfter} call.
2474      *
2475      * <p>Special Cases:
2476      * <ul>
2477      * <li> If the argument is NaN, the result is NaN.
2478      *
2479      * <li> If the argument is negative infinity, the result is
2480      * negative infinity.
2481      *
2482      * <li> If the argument is zero, the result is
2483      * {@code -Double.MIN_VALUE}
2484      *
2485      * </ul>
2486      *
2487      * @param d  starting floating-point value
2488      * @return The adjacent floating-point value closer to negative
2489      * infinity.
2490      * @since 1.8
2491      */
nextDown(double d)2492     public static double nextDown(double d) {
2493         if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
2494             return d;
2495         else {
2496             if (d == 0.0)
2497                 return -Double.MIN_VALUE;
2498             else
2499                 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
2500                                                ((d > 0.0d)?-1L:+1L));
2501         }
2502     }
2503 
2504     /**
2505      * Returns the floating-point value adjacent to {@code f} in
2506      * the direction of negative infinity.  This method is
2507      * semantically equivalent to {@code nextAfter(f,
2508      * Float.NEGATIVE_INFINITY)}; however, a
2509      * {@code nextDown} implementation may run faster than its
2510      * equivalent {@code nextAfter} call.
2511      *
2512      * <p>Special Cases:
2513      * <ul>
2514      * <li> If the argument is NaN, the result is NaN.
2515      *
2516      * <li> If the argument is negative infinity, the result is
2517      * negative infinity.
2518      *
2519      * <li> If the argument is zero, the result is
2520      * {@code -Float.MIN_VALUE}
2521      *
2522      * </ul>
2523      *
2524      * @param f  starting floating-point value
2525      * @return The adjacent floating-point value closer to negative
2526      * infinity.
2527      * @since 1.8
2528      */
nextDown(float f)2529     public static float nextDown(float f) {
2530         if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
2531             return f;
2532         else {
2533             if (f == 0.0f)
2534                 return -Float.MIN_VALUE;
2535             else
2536                 return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
2537                                             ((f > 0.0f)?-1:+1));
2538         }
2539     }
2540 
2541     /**
2542      * Returns {@code d} &times;
2543      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2544      * by a single correctly rounded floating-point multiply to a
2545      * member of the double value set.  See the Java
2546      * Language Specification for a discussion of floating-point
2547      * value sets.  If the exponent of the result is between {@link
2548      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
2549      * answer is calculated exactly.  If the exponent of the result
2550      * would be larger than {@code Double.MAX_EXPONENT}, an
2551      * infinity is returned.  Note that if the result is subnormal,
2552      * precision may be lost; that is, when {@code scalb(x, n)}
2553      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2554      * <i>x</i>.  When the result is non-NaN, the result has the same
2555      * sign as {@code d}.
2556      *
2557      * <p>Special cases:
2558      * <ul>
2559      * <li> If the first argument is NaN, NaN is returned.
2560      * <li> If the first argument is infinite, then an infinity of the
2561      * same sign is returned.
2562      * <li> If the first argument is zero, then a zero of the same
2563      * sign is returned.
2564      * </ul>
2565      *
2566      * @param d number to be scaled by a power of two.
2567      * @param scaleFactor power of 2 used to scale {@code d}
2568      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
2569      * @since 1.6
2570      */
scalb(double d, int scaleFactor)2571     public static double scalb(double d, int scaleFactor) {
2572         /*
2573          * This method does not need to be declared strictfp to
2574          * compute the same correct result on all platforms.  When
2575          * scaling up, it does not matter what order the
2576          * multiply-store operations are done; the result will be
2577          * finite or overflow regardless of the operation ordering.
2578          * However, to get the correct result when scaling down, a
2579          * particular ordering must be used.
2580          *
2581          * When scaling down, the multiply-store operations are
2582          * sequenced so that it is not possible for two consecutive
2583          * multiply-stores to return subnormal results.  If one
2584          * multiply-store result is subnormal, the next multiply will
2585          * round it away to zero.  This is done by first multiplying
2586          * by 2 ^ (scaleFactor % n) and then multiplying several
2587          * times by 2^n as needed where n is the exponent of number
2588          * that is a covenient power of two.  In this way, at most one
2589          * real rounding error occurs.  If the double value set is
2590          * being used exclusively, the rounding will occur on a
2591          * multiply.  If the double-extended-exponent value set is
2592          * being used, the products will (perhaps) be exact but the
2593          * stores to d are guaranteed to round to the double value
2594          * set.
2595          *
2596          * It is _not_ a valid implementation to first multiply d by
2597          * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor %
2598          * MIN_EXPONENT) since even in a strictfp program double
2599          * rounding on underflow could occur; e.g. if the scaleFactor
2600          * argument was (MIN_EXPONENT - n) and the exponent of d was a
2601          * little less than -(MIN_EXPONENT - n), meaning the final
2602          * result would be subnormal.
2603          *
2604          * Since exact reproducibility of this method can be achieved
2605          * without any undue performance burden, there is no
2606          * compelling reason to allow double rounding on underflow in
2607          * scalb.
2608          */
2609 
2610         // magnitude of a power of two so large that scaling a finite
2611         // nonzero value by it would be guaranteed to over or
2612         // underflow; due to rounding, scaling down takes an
2613         // additional power of two which is reflected here
2614         final int MAX_SCALE = Double.MAX_EXPONENT + -Double.MIN_EXPONENT +
2615                               DoubleConsts.SIGNIFICAND_WIDTH + 1;
2616         int exp_adjust = 0;
2617         int scale_increment = 0;
2618         double exp_delta = Double.NaN;
2619 
2620         // Make sure scaling factor is in a reasonable range
2621 
2622         if(scaleFactor < 0) {
2623             scaleFactor = Math.max(scaleFactor, -MAX_SCALE);
2624             scale_increment = -512;
2625             exp_delta = twoToTheDoubleScaleDown;
2626         }
2627         else {
2628             scaleFactor = Math.min(scaleFactor, MAX_SCALE);
2629             scale_increment = 512;
2630             exp_delta = twoToTheDoubleScaleUp;
2631         }
2632 
2633         // Calculate (scaleFactor % +/-512), 512 = 2^9, using
2634         // technique from "Hacker's Delight" section 10-2.
2635         int t = (scaleFactor >> 9-1) >>> 32 - 9;
2636         exp_adjust = ((scaleFactor + t) & (512 -1)) - t;
2637 
2638         d *= powerOfTwoD(exp_adjust);
2639         scaleFactor -= exp_adjust;
2640 
2641         while(scaleFactor != 0) {
2642             d *= exp_delta;
2643             scaleFactor -= scale_increment;
2644         }
2645         return d;
2646     }
2647 
2648     /**
2649      * Returns {@code f} &times;
2650      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
2651      * by a single correctly rounded floating-point multiply to a
2652      * member of the float value set.  See the Java
2653      * Language Specification for a discussion of floating-point
2654      * value sets.  If the exponent of the result is between {@link
2655      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
2656      * answer is calculated exactly.  If the exponent of the result
2657      * would be larger than {@code Float.MAX_EXPONENT}, an
2658      * infinity is returned.  Note that if the result is subnormal,
2659      * precision may be lost; that is, when {@code scalb(x, n)}
2660      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
2661      * <i>x</i>.  When the result is non-NaN, the result has the same
2662      * sign as {@code f}.
2663      *
2664      * <p>Special cases:
2665      * <ul>
2666      * <li> If the first argument is NaN, NaN is returned.
2667      * <li> If the first argument is infinite, then an infinity of the
2668      * same sign is returned.
2669      * <li> If the first argument is zero, then a zero of the same
2670      * sign is returned.
2671      * </ul>
2672      *
2673      * @param f number to be scaled by a power of two.
2674      * @param scaleFactor power of 2 used to scale {@code f}
2675      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
2676      * @since 1.6
2677      */
scalb(float f, int scaleFactor)2678     public static float scalb(float f, int scaleFactor) {
2679         // magnitude of a power of two so large that scaling a finite
2680         // nonzero value by it would be guaranteed to over or
2681         // underflow; due to rounding, scaling down takes an
2682         // additional power of two which is reflected here
2683         final int MAX_SCALE = Float.MAX_EXPONENT + -Float.MIN_EXPONENT +
2684                               FloatConsts.SIGNIFICAND_WIDTH + 1;
2685 
2686         // Make sure scaling factor is in a reasonable range
2687         scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE);
2688 
2689         /*
2690          * Since + MAX_SCALE for float fits well within the double
2691          * exponent range and + float -> double conversion is exact
2692          * the multiplication below will be exact. Therefore, the
2693          * rounding that occurs when the double product is cast to
2694          * float will be the correctly rounded float result.  Since
2695          * all operations other than the final multiply will be exact,
2696          * it is not necessary to declare this method strictfp.
2697          */
2698         return (float)((double)f*powerOfTwoD(scaleFactor));
2699     }
2700 
2701     // Constants used in scalb
2702     static double twoToTheDoubleScaleUp = powerOfTwoD(512);
2703     static double twoToTheDoubleScaleDown = powerOfTwoD(-512);
2704 
2705     /**
2706      * Returns a floating-point power of two in the normal range.
2707      */
powerOfTwoD(int n)2708     static double powerOfTwoD(int n) {
2709         assert(n >= Double.MIN_EXPONENT && n <= Double.MAX_EXPONENT);
2710         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) <<
2711                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
2712                                        & DoubleConsts.EXP_BIT_MASK);
2713     }
2714 
2715     /**
2716      * Returns a floating-point power of two in the normal range.
2717      */
powerOfTwoF(int n)2718     static float powerOfTwoF(int n) {
2719         assert(n >= Float.MIN_EXPONENT && n <= Float.MAX_EXPONENT);
2720         return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) <<
2721                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
2722                                     & FloatConsts.EXP_BIT_MASK);
2723     }
2724 }
2725