1 /*
2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 // no precompiled headers
26 #include "jvm.h"
27 #include "classfile/classLoader.hpp"
28 #include "classfile/systemDictionary.hpp"
29 #include "classfile/vmSymbols.hpp"
30 #include "code/icBuffer.hpp"
31 #include "code/vtableStubs.hpp"
32 #include "compiler/compileBroker.hpp"
33 #include "compiler/disassembler.hpp"
34 #include "interpreter/interpreter.hpp"
35 #include "logging/log.hpp"
36 #include "logging/logStream.hpp"
37 #include "memory/allocation.inline.hpp"
38 #include "memory/filemap.hpp"
39 #include "oops/oop.inline.hpp"
40 #include "os_linux.inline.hpp"
41 #include "os_posix.inline.hpp"
42 #include "os_share_linux.hpp"
43 #include "osContainer_linux.hpp"
44 #include "prims/jniFastGetField.hpp"
45 #include "prims/jvm_misc.hpp"
46 #include "runtime/arguments.hpp"
47 #include "runtime/atomic.hpp"
48 #include "runtime/extendedPC.hpp"
49 #include "runtime/globals.hpp"
50 #include "runtime/interfaceSupport.inline.hpp"
51 #include "runtime/init.hpp"
52 #include "runtime/java.hpp"
53 #include "runtime/javaCalls.hpp"
54 #include "runtime/mutexLocker.hpp"
55 #include "runtime/objectMonitor.hpp"
56 #include "runtime/osThread.hpp"
57 #include "runtime/perfMemory.hpp"
58 #include "runtime/sharedRuntime.hpp"
59 #include "runtime/statSampler.hpp"
60 #include "runtime/stubRoutines.hpp"
61 #include "runtime/thread.inline.hpp"
62 #include "runtime/threadCritical.hpp"
63 #include "runtime/threadSMR.hpp"
64 #include "runtime/timer.hpp"
65 #include "runtime/vm_version.hpp"
66 #include "semaphore_posix.hpp"
67 #include "services/attachListener.hpp"
68 #include "services/memTracker.hpp"
69 #include "services/runtimeService.hpp"
70 #include "utilities/align.hpp"
71 #include "utilities/decoder.hpp"
72 #include "utilities/defaultStream.hpp"
73 #include "utilities/events.hpp"
74 #include "utilities/elfFile.hpp"
75 #include "utilities/growableArray.hpp"
76 #include "utilities/macros.hpp"
77 #include "utilities/vmError.hpp"
78 
79 // put OS-includes here
80 # include <sys/types.h>
81 # include <sys/mman.h>
82 # include <sys/stat.h>
83 # include <sys/select.h>
84 # include <pthread.h>
85 # include <signal.h>
86 # include <endian.h>
87 # include <errno.h>
88 # include <dlfcn.h>
89 # include <stdio.h>
90 # include <unistd.h>
91 # include <sys/resource.h>
92 # include <pthread.h>
93 # include <sys/stat.h>
94 # include <sys/time.h>
95 # include <sys/times.h>
96 # include <sys/utsname.h>
97 # include <sys/socket.h>
98 # include <sys/wait.h>
99 # include <pwd.h>
100 # include <poll.h>
101 # include <fcntl.h>
102 # include <string.h>
103 # include <syscall.h>
104 # include <sys/sysinfo.h>
105 # include <gnu/libc-version.h>
106 # include <sys/ipc.h>
107 # include <sys/shm.h>
108 # include <link.h>
109 # include <stdint.h>
110 # include <inttypes.h>
111 # include <sys/ioctl.h>
112 
113 #ifndef _GNU_SOURCE
114   #define _GNU_SOURCE
115   #include <sched.h>
116   #undef _GNU_SOURCE
117 #else
118   #include <sched.h>
119 #endif
120 
121 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
122 // getrusage() is prepared to handle the associated failure.
123 #ifndef RUSAGE_THREAD
124   #define RUSAGE_THREAD   (1)               /* only the calling thread */
125 #endif
126 
127 #define MAX_PATH    (2 * K)
128 
129 #define MAX_SECS 100000000
130 
131 // for timer info max values which include all bits
132 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
133 
134 enum CoredumpFilterBit {
135   FILE_BACKED_PVT_BIT = 1 << 2,
136   FILE_BACKED_SHARED_BIT = 1 << 3,
137   LARGEPAGES_BIT = 1 << 6,
138   DAX_SHARED_BIT = 1 << 8
139 };
140 
141 ////////////////////////////////////////////////////////////////////////////////
142 // global variables
143 julong os::Linux::_physical_memory = 0;
144 
145 address   os::Linux::_initial_thread_stack_bottom = NULL;
146 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
147 
148 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
149 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
150 pthread_t os::Linux::_main_thread;
151 int os::Linux::_page_size = -1;
152 bool os::Linux::_supports_fast_thread_cpu_time = false;
153 const char * os::Linux::_glibc_version = NULL;
154 const char * os::Linux::_libpthread_version = NULL;
155 
156 static jlong initial_time_count=0;
157 
158 static int clock_tics_per_sec = 100;
159 
160 // If the VM might have been created on the primordial thread, we need to resolve the
161 // primordial thread stack bounds and check if the current thread might be the
162 // primordial thread in places. If we know that the primordial thread is never used,
163 // such as when the VM was created by one of the standard java launchers, we can
164 // avoid this
165 static bool suppress_primordial_thread_resolution = false;
166 
167 // For diagnostics to print a message once. see run_periodic_checks
168 static sigset_t check_signal_done;
169 static bool check_signals = true;
170 
171 // Signal number used to suspend/resume a thread
172 
173 // do not use any signal number less than SIGSEGV, see 4355769
174 static int SR_signum = SIGUSR2;
175 sigset_t SR_sigset;
176 
177 // utility functions
178 
179 static int SR_initialize();
180 
available_memory()181 julong os::available_memory() {
182   return Linux::available_memory();
183 }
184 
available_memory()185 julong os::Linux::available_memory() {
186   // values in struct sysinfo are "unsigned long"
187   struct sysinfo si;
188   julong avail_mem;
189 
190   if (OSContainer::is_containerized()) {
191     jlong mem_limit, mem_usage;
192     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
193       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
194                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
195     }
196     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
197       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
198     }
199     if (mem_limit > 0 && mem_usage > 0 ) {
200       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
201       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
202       return avail_mem;
203     }
204   }
205 
206   sysinfo(&si);
207   avail_mem = (julong)si.freeram * si.mem_unit;
208   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
209   return avail_mem;
210 }
211 
physical_memory()212 julong os::physical_memory() {
213   jlong phys_mem = 0;
214   if (OSContainer::is_containerized()) {
215     jlong mem_limit;
216     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
217       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
218       return mem_limit;
219     }
220     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
221                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
222   }
223 
224   phys_mem = Linux::physical_memory();
225   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
226   return phys_mem;
227 }
228 
229 static uint64_t initial_total_ticks = 0;
230 static uint64_t initial_steal_ticks = 0;
231 static bool     has_initial_tick_info = false;
232 
next_line(FILE * f)233 static void next_line(FILE *f) {
234   int c;
235   do {
236     c = fgetc(f);
237   } while (c != '\n' && c != EOF);
238 }
239 
get_tick_information(CPUPerfTicks * pticks,int which_logical_cpu)240 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
241   FILE*         fh;
242   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
243   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
244   // irq: time  servicing interrupts; softirq: time servicing softirqs
245   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
246   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
247   uint64_t      stealTicks = 0;
248   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
249   // control of the Linux kernel
250   uint64_t      guestNiceTicks = 0;
251   int           logical_cpu = -1;
252   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
253   int           n;
254 
255   memset(pticks, 0, sizeof(CPUPerfTicks));
256 
257   if ((fh = fopen("/proc/stat", "r")) == NULL) {
258     return false;
259   }
260 
261   if (which_logical_cpu == -1) {
262     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
263             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
264             UINT64_FORMAT " " UINT64_FORMAT " ",
265             &userTicks, &niceTicks, &systemTicks, &idleTicks,
266             &iowTicks, &irqTicks, &sirqTicks,
267             &stealTicks, &guestNiceTicks);
268   } else {
269     // Move to next line
270     next_line(fh);
271 
272     // find the line for requested cpu faster to just iterate linefeeds?
273     for (int i = 0; i < which_logical_cpu; i++) {
274       next_line(fh);
275     }
276 
277     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
278                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
279                UINT64_FORMAT " " UINT64_FORMAT " ",
280                &logical_cpu, &userTicks, &niceTicks,
281                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
282                &stealTicks, &guestNiceTicks);
283   }
284 
285   fclose(fh);
286   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
287     return false;
288   }
289   pticks->used       = userTicks + niceTicks;
290   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
291   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
292                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
293 
294   if (n > required_tickinfo_count + 3) {
295     pticks->steal = stealTicks;
296     pticks->has_steal_ticks = true;
297   } else {
298     pticks->steal = 0;
299     pticks->has_steal_ticks = false;
300   }
301 
302   return true;
303 }
304 
305 // Return true if user is running as root.
306 
have_special_privileges()307 bool os::have_special_privileges() {
308   static bool init = false;
309   static bool privileges = false;
310   if (!init) {
311     privileges = (getuid() != geteuid()) || (getgid() != getegid());
312     init = true;
313   }
314   return privileges;
315 }
316 
317 
318 #ifndef SYS_gettid
319 // i386: 224, ia64: 1105, amd64: 186, sparc 143
320   #ifdef __ia64__
321     #define SYS_gettid 1105
322   #else
323     #ifdef __i386__
324       #define SYS_gettid 224
325     #else
326       #ifdef __amd64__
327         #define SYS_gettid 186
328       #else
329         #ifdef __sparc__
330           #define SYS_gettid 143
331         #else
332           #error define gettid for the arch
333         #endif
334       #endif
335     #endif
336   #endif
337 #endif
338 
339 
340 // pid_t gettid()
341 //
342 // Returns the kernel thread id of the currently running thread. Kernel
343 // thread id is used to access /proc.
gettid()344 pid_t os::Linux::gettid() {
345   int rslt = syscall(SYS_gettid);
346   assert(rslt != -1, "must be."); // old linuxthreads implementation?
347   return (pid_t)rslt;
348 }
349 
350 // Most versions of linux have a bug where the number of processors are
351 // determined by looking at the /proc file system.  In a chroot environment,
352 // the system call returns 1.
353 static bool unsafe_chroot_detected = false;
354 static const char *unstable_chroot_error = "/proc file system not found.\n"
355                      "Java may be unstable running multithreaded in a chroot "
356                      "environment on Linux when /proc filesystem is not mounted.";
357 
initialize_system_info()358 void os::Linux::initialize_system_info() {
359   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
360   if (processor_count() == 1) {
361     pid_t pid = os::Linux::gettid();
362     char fname[32];
363     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
364     FILE *fp = fopen(fname, "r");
365     if (fp == NULL) {
366       unsafe_chroot_detected = true;
367     } else {
368       fclose(fp);
369     }
370   }
371   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
372   assert(processor_count() > 0, "linux error");
373 }
374 
init_system_properties_values()375 void os::init_system_properties_values() {
376   // The next steps are taken in the product version:
377   //
378   // Obtain the JAVA_HOME value from the location of libjvm.so.
379   // This library should be located at:
380   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
381   //
382   // If "/jre/lib/" appears at the right place in the path, then we
383   // assume libjvm.so is installed in a JDK and we use this path.
384   //
385   // Otherwise exit with message: "Could not create the Java virtual machine."
386   //
387   // The following extra steps are taken in the debugging version:
388   //
389   // If "/jre/lib/" does NOT appear at the right place in the path
390   // instead of exit check for $JAVA_HOME environment variable.
391   //
392   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
393   // then we append a fake suffix "hotspot/libjvm.so" to this path so
394   // it looks like libjvm.so is installed there
395   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
396   //
397   // Otherwise exit.
398   //
399   // Important note: if the location of libjvm.so changes this
400   // code needs to be changed accordingly.
401 
402   // See ld(1):
403   //      The linker uses the following search paths to locate required
404   //      shared libraries:
405   //        1: ...
406   //        ...
407   //        7: The default directories, normally /lib and /usr/lib.
408 #ifndef OVERRIDE_LIBPATH
409   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
410     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
411   #else
412     #define DEFAULT_LIBPATH "/lib:/usr/lib"
413   #endif
414 #else
415   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
416 #endif
417 
418 // Base path of extensions installed on the system.
419 #define SYS_EXT_DIR     "/usr/java/packages"
420 #define EXTENSIONS_DIR  "/lib/ext"
421 
422   // Buffer that fits several sprintfs.
423   // Note that the space for the colon and the trailing null are provided
424   // by the nulls included by the sizeof operator.
425   const size_t bufsize =
426     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
427          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
428   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
429 
430   // sysclasspath, java_home, dll_dir
431   {
432     char *pslash;
433     os::jvm_path(buf, bufsize);
434 
435     // Found the full path to libjvm.so.
436     // Now cut the path to <java_home>/jre if we can.
437     pslash = strrchr(buf, '/');
438     if (pslash != NULL) {
439       *pslash = '\0';            // Get rid of /libjvm.so.
440     }
441     pslash = strrchr(buf, '/');
442     if (pslash != NULL) {
443       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
444     }
445     Arguments::set_dll_dir(buf);
446 
447     if (pslash != NULL) {
448       pslash = strrchr(buf, '/');
449       if (pslash != NULL) {
450         *pslash = '\0';        // Get rid of /lib.
451       }
452     }
453     Arguments::set_java_home(buf);
454     if (!set_boot_path('/', ':')) {
455       vm_exit_during_initialization("Failed setting boot class path.", NULL);
456     }
457   }
458 
459   // Where to look for native libraries.
460   //
461   // Note: Due to a legacy implementation, most of the library path
462   // is set in the launcher. This was to accomodate linking restrictions
463   // on legacy Linux implementations (which are no longer supported).
464   // Eventually, all the library path setting will be done here.
465   //
466   // However, to prevent the proliferation of improperly built native
467   // libraries, the new path component /usr/java/packages is added here.
468   // Eventually, all the library path setting will be done here.
469   {
470     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
471     // should always exist (until the legacy problem cited above is
472     // addressed).
473     const char *v = ::getenv("LD_LIBRARY_PATH");
474     const char *v_colon = ":";
475     if (v == NULL) { v = ""; v_colon = ""; }
476     // That's +1 for the colon and +1 for the trailing '\0'.
477     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
478                                              strlen(v) + 1 +
479                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
480                                              mtInternal);
481     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
482     Arguments::set_library_path(ld_library_path);
483     FREE_C_HEAP_ARRAY(char, ld_library_path);
484   }
485 
486   // Extensions directories.
487   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
488   Arguments::set_ext_dirs(buf);
489 
490   FREE_C_HEAP_ARRAY(char, buf);
491 
492 #undef DEFAULT_LIBPATH
493 #undef SYS_EXT_DIR
494 #undef EXTENSIONS_DIR
495 }
496 
497 ////////////////////////////////////////////////////////////////////////////////
498 // breakpoint support
499 
breakpoint()500 void os::breakpoint() {
501   BREAKPOINT;
502 }
503 
breakpoint()504 extern "C" void breakpoint() {
505   // use debugger to set breakpoint here
506 }
507 
508 ////////////////////////////////////////////////////////////////////////////////
509 // signal support
510 
511 debug_only(static bool signal_sets_initialized = false);
512 static sigset_t unblocked_sigs, vm_sigs;
513 
signal_sets_init()514 void os::Linux::signal_sets_init() {
515   // Should also have an assertion stating we are still single-threaded.
516   assert(!signal_sets_initialized, "Already initialized");
517   // Fill in signals that are necessarily unblocked for all threads in
518   // the VM. Currently, we unblock the following signals:
519   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
520   //                         by -Xrs (=ReduceSignalUsage));
521   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
522   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
523   // the dispositions or masks wrt these signals.
524   // Programs embedding the VM that want to use the above signals for their
525   // own purposes must, at this time, use the "-Xrs" option to prevent
526   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
527   // (See bug 4345157, and other related bugs).
528   // In reality, though, unblocking these signals is really a nop, since
529   // these signals are not blocked by default.
530   sigemptyset(&unblocked_sigs);
531   sigaddset(&unblocked_sigs, SIGILL);
532   sigaddset(&unblocked_sigs, SIGSEGV);
533   sigaddset(&unblocked_sigs, SIGBUS);
534   sigaddset(&unblocked_sigs, SIGFPE);
535 #if defined(PPC64)
536   sigaddset(&unblocked_sigs, SIGTRAP);
537 #endif
538   sigaddset(&unblocked_sigs, SR_signum);
539 
540   if (!ReduceSignalUsage) {
541     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
542       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
543     }
544     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
545       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
546     }
547     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
548       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
549     }
550   }
551   // Fill in signals that are blocked by all but the VM thread.
552   sigemptyset(&vm_sigs);
553   if (!ReduceSignalUsage) {
554     sigaddset(&vm_sigs, BREAK_SIGNAL);
555   }
556   debug_only(signal_sets_initialized = true);
557 
558 }
559 
560 // These are signals that are unblocked while a thread is running Java.
561 // (For some reason, they get blocked by default.)
unblocked_signals()562 sigset_t* os::Linux::unblocked_signals() {
563   assert(signal_sets_initialized, "Not initialized");
564   return &unblocked_sigs;
565 }
566 
567 // These are the signals that are blocked while a (non-VM) thread is
568 // running Java. Only the VM thread handles these signals.
vm_signals()569 sigset_t* os::Linux::vm_signals() {
570   assert(signal_sets_initialized, "Not initialized");
571   return &vm_sigs;
572 }
573 
hotspot_sigmask(Thread * thread)574 void os::Linux::hotspot_sigmask(Thread* thread) {
575 
576   //Save caller's signal mask before setting VM signal mask
577   sigset_t caller_sigmask;
578   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
579 
580   OSThread* osthread = thread->osthread();
581   osthread->set_caller_sigmask(caller_sigmask);
582 
583   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
584 
585   if (!ReduceSignalUsage) {
586     if (thread->is_VM_thread()) {
587       // Only the VM thread handles BREAK_SIGNAL ...
588       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
589     } else {
590       // ... all other threads block BREAK_SIGNAL
591       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
592     }
593   }
594 }
595 
596 //////////////////////////////////////////////////////////////////////////////
597 // detecting pthread library
598 
libpthread_init()599 void os::Linux::libpthread_init() {
600   // Save glibc and pthread version strings.
601 #if !defined(_CS_GNU_LIBC_VERSION) || \
602     !defined(_CS_GNU_LIBPTHREAD_VERSION)
603   #error "glibc too old (< 2.3.2)"
604 #endif
605 
606   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
607   assert(n > 0, "cannot retrieve glibc version");
608   char *str = (char *)malloc(n, mtInternal);
609   confstr(_CS_GNU_LIBC_VERSION, str, n);
610   os::Linux::set_glibc_version(str);
611 
612   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
613   assert(n > 0, "cannot retrieve pthread version");
614   str = (char *)malloc(n, mtInternal);
615   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
616   os::Linux::set_libpthread_version(str);
617 }
618 
619 /////////////////////////////////////////////////////////////////////////////
620 // thread stack expansion
621 
622 // os::Linux::manually_expand_stack() takes care of expanding the thread
623 // stack. Note that this is normally not needed: pthread stacks allocate
624 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
625 // committed. Therefore it is not necessary to expand the stack manually.
626 //
627 // Manually expanding the stack was historically needed on LinuxThreads
628 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
629 // it is kept to deal with very rare corner cases:
630 //
631 // For one, user may run the VM on an own implementation of threads
632 // whose stacks are - like the old LinuxThreads - implemented using
633 // mmap(MAP_GROWSDOWN).
634 //
635 // Also, this coding may be needed if the VM is running on the primordial
636 // thread. Normally we avoid running on the primordial thread; however,
637 // user may still invoke the VM on the primordial thread.
638 //
639 // The following historical comment describes the details about running
640 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
641 
642 
643 // Force Linux kernel to expand current thread stack. If "bottom" is close
644 // to the stack guard, caller should block all signals.
645 //
646 // MAP_GROWSDOWN:
647 //   A special mmap() flag that is used to implement thread stacks. It tells
648 //   kernel that the memory region should extend downwards when needed. This
649 //   allows early versions of LinuxThreads to only mmap the first few pages
650 //   when creating a new thread. Linux kernel will automatically expand thread
651 //   stack as needed (on page faults).
652 //
653 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
654 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
655 //   region, it's hard to tell if the fault is due to a legitimate stack
656 //   access or because of reading/writing non-exist memory (e.g. buffer
657 //   overrun). As a rule, if the fault happens below current stack pointer,
658 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
659 //   application (see Linux kernel fault.c).
660 //
661 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
662 //   stack overflow detection.
663 //
664 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
665 //   not use MAP_GROWSDOWN.
666 //
667 // To get around the problem and allow stack banging on Linux, we need to
668 // manually expand thread stack after receiving the SIGSEGV.
669 //
670 // There are two ways to expand thread stack to address "bottom", we used
671 // both of them in JVM before 1.5:
672 //   1. adjust stack pointer first so that it is below "bottom", and then
673 //      touch "bottom"
674 //   2. mmap() the page in question
675 //
676 // Now alternate signal stack is gone, it's harder to use 2. For instance,
677 // if current sp is already near the lower end of page 101, and we need to
678 // call mmap() to map page 100, it is possible that part of the mmap() frame
679 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
680 // That will destroy the mmap() frame and cause VM to crash.
681 //
682 // The following code works by adjusting sp first, then accessing the "bottom"
683 // page to force a page fault. Linux kernel will then automatically expand the
684 // stack mapping.
685 //
686 // _expand_stack_to() assumes its frame size is less than page size, which
687 // should always be true if the function is not inlined.
688 
_expand_stack_to(address bottom)689 static void NOINLINE _expand_stack_to(address bottom) {
690   address sp;
691   size_t size;
692   volatile char *p;
693 
694   // Adjust bottom to point to the largest address within the same page, it
695   // gives us a one-page buffer if alloca() allocates slightly more memory.
696   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
697   bottom += os::Linux::page_size() - 1;
698 
699   // sp might be slightly above current stack pointer; if that's the case, we
700   // will alloca() a little more space than necessary, which is OK. Don't use
701   // os::current_stack_pointer(), as its result can be slightly below current
702   // stack pointer, causing us to not alloca enough to reach "bottom".
703   sp = (address)&sp;
704 
705   if (sp > bottom) {
706     size = sp - bottom;
707     p = (volatile char *)alloca(size);
708     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
709     p[0] = '\0';
710   }
711 }
712 
expand_stack_to(address bottom)713 void os::Linux::expand_stack_to(address bottom) {
714   _expand_stack_to(bottom);
715 }
716 
manually_expand_stack(JavaThread * t,address addr)717 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
718   assert(t!=NULL, "just checking");
719   assert(t->osthread()->expanding_stack(), "expand should be set");
720   assert(t->stack_base() != NULL, "stack_base was not initialized");
721 
722   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
723     sigset_t mask_all, old_sigset;
724     sigfillset(&mask_all);
725     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
726     _expand_stack_to(addr);
727     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
728     return true;
729   }
730   return false;
731 }
732 
733 //////////////////////////////////////////////////////////////////////////////
734 // create new thread
735 
736 // Thread start routine for all newly created threads
thread_native_entry(Thread * thread)737 static void *thread_native_entry(Thread *thread) {
738 
739   thread->record_stack_base_and_size();
740 
741   // Try to randomize the cache line index of hot stack frames.
742   // This helps when threads of the same stack traces evict each other's
743   // cache lines. The threads can be either from the same JVM instance, or
744   // from different JVM instances. The benefit is especially true for
745   // processors with hyperthreading technology.
746   static int counter = 0;
747   int pid = os::current_process_id();
748   alloca(((pid ^ counter++) & 7) * 128);
749 
750   thread->initialize_thread_current();
751 
752   OSThread* osthread = thread->osthread();
753   Monitor* sync = osthread->startThread_lock();
754 
755   osthread->set_thread_id(os::current_thread_id());
756 
757   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
758     os::current_thread_id(), (uintx) pthread_self());
759 
760   if (UseNUMA) {
761     int lgrp_id = os::numa_get_group_id();
762     if (lgrp_id != -1) {
763       thread->set_lgrp_id(lgrp_id);
764     }
765   }
766   // initialize signal mask for this thread
767   os::Linux::hotspot_sigmask(thread);
768 
769   // initialize floating point control register
770   os::Linux::init_thread_fpu_state();
771 
772   // handshaking with parent thread
773   {
774     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
775 
776     // notify parent thread
777     osthread->set_state(INITIALIZED);
778     sync->notify_all();
779 
780     // wait until os::start_thread()
781     while (osthread->get_state() == INITIALIZED) {
782       sync->wait_without_safepoint_check();
783     }
784   }
785 
786   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
787 
788   // call one more level start routine
789   thread->call_run();
790 
791   // Note: at this point the thread object may already have deleted itself.
792   // Prevent dereferencing it from here on out.
793   thread = NULL;
794 
795   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
796     os::current_thread_id(), (uintx) pthread_self());
797 
798   return 0;
799 }
800 
801 // On Linux, glibc places static TLS blocks (for __thread variables) on
802 // the thread stack. This decreases the stack size actually available
803 // to threads.
804 //
805 // For large static TLS sizes, this may cause threads to malfunction due
806 // to insufficient stack space. This is a well-known issue in glibc:
807 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
808 //
809 // As a workaround, we call a private but assumed-stable glibc function,
810 // __pthread_get_minstack() to obtain the minstack size and derive the
811 // static TLS size from it. We then increase the user requested stack
812 // size by this TLS size.
813 //
814 // Due to compatibility concerns, this size adjustment is opt-in and
815 // controlled via AdjustStackSizeForTLS.
816 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
817 
818 GetMinStack _get_minstack_func = NULL;
819 
get_minstack_init()820 static void get_minstack_init() {
821   _get_minstack_func =
822         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
823   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
824                        _get_minstack_func == NULL ? "failed" : "succeeded");
825 }
826 
827 // Returns the size of the static TLS area glibc puts on thread stacks.
828 // The value is cached on first use, which occurs when the first thread
829 // is created during VM initialization.
get_static_tls_area_size(const pthread_attr_t * attr)830 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
831   size_t tls_size = 0;
832   if (_get_minstack_func != NULL) {
833     // Obtain the pthread minstack size by calling __pthread_get_minstack.
834     size_t minstack_size = _get_minstack_func(attr);
835 
836     // Remove non-TLS area size included in minstack size returned
837     // by __pthread_get_minstack() to get the static TLS size.
838     // In glibc before 2.27, minstack size includes guard_size.
839     // In glibc 2.27 and later, guard_size is automatically added
840     // to the stack size by pthread_create and is no longer included
841     // in minstack size. In both cases, the guard_size is taken into
842     // account, so there is no need to adjust the result for that.
843     //
844     // Although __pthread_get_minstack() is a private glibc function,
845     // it is expected to have a stable behavior across future glibc
846     // versions while glibc still allocates the static TLS blocks off
847     // the stack. Following is glibc 2.28 __pthread_get_minstack():
848     //
849     // size_t
850     // __pthread_get_minstack (const pthread_attr_t *attr)
851     // {
852     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
853     // }
854     //
855     //
856     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
857     // if check is done for precaution.
858     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
859       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
860     }
861   }
862 
863   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
864                        tls_size);
865   return tls_size;
866 }
867 
create_thread(Thread * thread,ThreadType thr_type,size_t req_stack_size)868 bool os::create_thread(Thread* thread, ThreadType thr_type,
869                        size_t req_stack_size) {
870   assert(thread->osthread() == NULL, "caller responsible");
871 
872   // Allocate the OSThread object
873   OSThread* osthread = new OSThread(NULL, NULL);
874   if (osthread == NULL) {
875     return false;
876   }
877 
878   // set the correct thread state
879   osthread->set_thread_type(thr_type);
880 
881   // Initial state is ALLOCATED but not INITIALIZED
882   osthread->set_state(ALLOCATED);
883 
884   thread->set_osthread(osthread);
885 
886   // init thread attributes
887   pthread_attr_t attr;
888   pthread_attr_init(&attr);
889   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
890 
891   // Calculate stack size if it's not specified by caller.
892   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
893   // In glibc versions prior to 2.7 the guard size mechanism
894   // is not implemented properly. The posix standard requires adding
895   // the size of the guard pages to the stack size, instead Linux
896   // takes the space out of 'stacksize'. Thus we adapt the requested
897   // stack_size by the size of the guard pages to mimick proper
898   // behaviour. However, be careful not to end up with a size
899   // of zero due to overflow. Don't add the guard page in that case.
900   size_t guard_size = os::Linux::default_guard_size(thr_type);
901   // Configure glibc guard page. Must happen before calling
902   // get_static_tls_area_size(), which uses the guard_size.
903   pthread_attr_setguardsize(&attr, guard_size);
904 
905   size_t stack_adjust_size = 0;
906   if (AdjustStackSizeForTLS) {
907     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
908     stack_adjust_size += get_static_tls_area_size(&attr);
909   } else {
910     stack_adjust_size += guard_size;
911   }
912 
913   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
914   if (stack_size <= SIZE_MAX - stack_adjust_size) {
915     stack_size += stack_adjust_size;
916   }
917   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
918 
919   int status = pthread_attr_setstacksize(&attr, stack_size);
920   assert_status(status == 0, status, "pthread_attr_setstacksize");
921 
922   ThreadState state;
923 
924   {
925     pthread_t tid;
926     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
927 
928     char buf[64];
929     if (ret == 0) {
930       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
931         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
932     } else {
933       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
934         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
935       // Log some OS information which might explain why creating the thread failed.
936       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
937       LogStream st(Log(os, thread)::info());
938       os::Posix::print_rlimit_info(&st);
939       os::print_memory_info(&st);
940       os::Linux::print_proc_sys_info(&st);
941       os::Linux::print_container_info(&st);
942     }
943 
944     pthread_attr_destroy(&attr);
945 
946     if (ret != 0) {
947       // Need to clean up stuff we've allocated so far
948       thread->set_osthread(NULL);
949       delete osthread;
950       return false;
951     }
952 
953     // Store pthread info into the OSThread
954     osthread->set_pthread_id(tid);
955 
956     // Wait until child thread is either initialized or aborted
957     {
958       Monitor* sync_with_child = osthread->startThread_lock();
959       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
960       while ((state = osthread->get_state()) == ALLOCATED) {
961         sync_with_child->wait_without_safepoint_check();
962       }
963     }
964   }
965 
966   // Aborted due to thread limit being reached
967   if (state == ZOMBIE) {
968     thread->set_osthread(NULL);
969     delete osthread;
970     return false;
971   }
972 
973   // The thread is returned suspended (in state INITIALIZED),
974   // and is started higher up in the call chain
975   assert(state == INITIALIZED, "race condition");
976   return true;
977 }
978 
979 /////////////////////////////////////////////////////////////////////////////
980 // attach existing thread
981 
982 // bootstrap the main thread
create_main_thread(JavaThread * thread)983 bool os::create_main_thread(JavaThread* thread) {
984   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
985   return create_attached_thread(thread);
986 }
987 
create_attached_thread(JavaThread * thread)988 bool os::create_attached_thread(JavaThread* thread) {
989 #ifdef ASSERT
990   thread->verify_not_published();
991 #endif
992 
993   // Allocate the OSThread object
994   OSThread* osthread = new OSThread(NULL, NULL);
995 
996   if (osthread == NULL) {
997     return false;
998   }
999 
1000   // Store pthread info into the OSThread
1001   osthread->set_thread_id(os::Linux::gettid());
1002   osthread->set_pthread_id(::pthread_self());
1003 
1004   // initialize floating point control register
1005   os::Linux::init_thread_fpu_state();
1006 
1007   // Initial thread state is RUNNABLE
1008   osthread->set_state(RUNNABLE);
1009 
1010   thread->set_osthread(osthread);
1011 
1012   if (UseNUMA) {
1013     int lgrp_id = os::numa_get_group_id();
1014     if (lgrp_id != -1) {
1015       thread->set_lgrp_id(lgrp_id);
1016     }
1017   }
1018 
1019   if (os::is_primordial_thread()) {
1020     // If current thread is primordial thread, its stack is mapped on demand,
1021     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1022     // the entire stack region to avoid SEGV in stack banging.
1023     // It is also useful to get around the heap-stack-gap problem on SuSE
1024     // kernel (see 4821821 for details). We first expand stack to the top
1025     // of yellow zone, then enable stack yellow zone (order is significant,
1026     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1027     // is no gap between the last two virtual memory regions.
1028 
1029     JavaThread *jt = (JavaThread *)thread;
1030     address addr = jt->stack_reserved_zone_base();
1031     assert(addr != NULL, "initialization problem?");
1032     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1033 
1034     osthread->set_expanding_stack();
1035     os::Linux::manually_expand_stack(jt, addr);
1036     osthread->clear_expanding_stack();
1037   }
1038 
1039   // initialize signal mask for this thread
1040   // and save the caller's signal mask
1041   os::Linux::hotspot_sigmask(thread);
1042 
1043   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1044     os::current_thread_id(), (uintx) pthread_self());
1045 
1046   return true;
1047 }
1048 
pd_start_thread(Thread * thread)1049 void os::pd_start_thread(Thread* thread) {
1050   OSThread * osthread = thread->osthread();
1051   assert(osthread->get_state() != INITIALIZED, "just checking");
1052   Monitor* sync_with_child = osthread->startThread_lock();
1053   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1054   sync_with_child->notify();
1055 }
1056 
1057 // Free Linux resources related to the OSThread
free_thread(OSThread * osthread)1058 void os::free_thread(OSThread* osthread) {
1059   assert(osthread != NULL, "osthread not set");
1060 
1061   // We are told to free resources of the argument thread,
1062   // but we can only really operate on the current thread.
1063   assert(Thread::current()->osthread() == osthread,
1064          "os::free_thread but not current thread");
1065 
1066 #ifdef ASSERT
1067   sigset_t current;
1068   sigemptyset(&current);
1069   pthread_sigmask(SIG_SETMASK, NULL, &current);
1070   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1071 #endif
1072 
1073   // Restore caller's signal mask
1074   sigset_t sigmask = osthread->caller_sigmask();
1075   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1076 
1077   delete osthread;
1078 }
1079 
1080 //////////////////////////////////////////////////////////////////////////////
1081 // primordial thread
1082 
1083 // Check if current thread is the primordial thread, similar to Solaris thr_main.
is_primordial_thread(void)1084 bool os::is_primordial_thread(void) {
1085   if (suppress_primordial_thread_resolution) {
1086     return false;
1087   }
1088   char dummy;
1089   // If called before init complete, thread stack bottom will be null.
1090   // Can be called if fatal error occurs before initialization.
1091   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1092   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1093          os::Linux::initial_thread_stack_size()   != 0,
1094          "os::init did not locate primordial thread's stack region");
1095   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1096       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1097                         os::Linux::initial_thread_stack_size()) {
1098     return true;
1099   } else {
1100     return false;
1101   }
1102 }
1103 
1104 // Find the virtual memory area that contains addr
find_vma(address addr,address * vma_low,address * vma_high)1105 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1106   FILE *fp = fopen("/proc/self/maps", "r");
1107   if (fp) {
1108     address low, high;
1109     while (!feof(fp)) {
1110       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1111         if (low <= addr && addr < high) {
1112           if (vma_low)  *vma_low  = low;
1113           if (vma_high) *vma_high = high;
1114           fclose(fp);
1115           return true;
1116         }
1117       }
1118       for (;;) {
1119         int ch = fgetc(fp);
1120         if (ch == EOF || ch == (int)'\n') break;
1121       }
1122     }
1123     fclose(fp);
1124   }
1125   return false;
1126 }
1127 
1128 // Locate primordial thread stack. This special handling of primordial thread stack
1129 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1130 // bogus value for the primordial process thread. While the launcher has created
1131 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1132 // JNI invocation API from a primordial thread.
capture_initial_stack(size_t max_size)1133 void os::Linux::capture_initial_stack(size_t max_size) {
1134 
1135   // max_size is either 0 (which means accept OS default for thread stacks) or
1136   // a user-specified value known to be at least the minimum needed. If we
1137   // are actually on the primordial thread we can make it appear that we have a
1138   // smaller max_size stack by inserting the guard pages at that location. But we
1139   // cannot do anything to emulate a larger stack than what has been provided by
1140   // the OS or threading library. In fact if we try to use a stack greater than
1141   // what is set by rlimit then we will crash the hosting process.
1142 
1143   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1144   // If this is "unlimited" then it will be a huge value.
1145   struct rlimit rlim;
1146   getrlimit(RLIMIT_STACK, &rlim);
1147   size_t stack_size = rlim.rlim_cur;
1148 
1149   // 6308388: a bug in ld.so will relocate its own .data section to the
1150   //   lower end of primordial stack; reduce ulimit -s value a little bit
1151   //   so we won't install guard page on ld.so's data section.
1152   //   But ensure we don't underflow the stack size - allow 1 page spare
1153   if (stack_size >= (size_t)(3 * page_size())) {
1154     stack_size -= 2 * page_size();
1155   }
1156 
1157   // Try to figure out where the stack base (top) is. This is harder.
1158   //
1159   // When an application is started, glibc saves the initial stack pointer in
1160   // a global variable "__libc_stack_end", which is then used by system
1161   // libraries. __libc_stack_end should be pretty close to stack top. The
1162   // variable is available since the very early days. However, because it is
1163   // a private interface, it could disappear in the future.
1164   //
1165   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1166   // to __libc_stack_end, it is very close to stack top, but isn't the real
1167   // stack top. Note that /proc may not exist if VM is running as a chroot
1168   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1169   // /proc/<pid>/stat could change in the future (though unlikely).
1170   //
1171   // We try __libc_stack_end first. If that doesn't work, look for
1172   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1173   // as a hint, which should work well in most cases.
1174 
1175   uintptr_t stack_start;
1176 
1177   // try __libc_stack_end first
1178   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1179   if (p && *p) {
1180     stack_start = *p;
1181   } else {
1182     // see if we can get the start_stack field from /proc/self/stat
1183     FILE *fp;
1184     int pid;
1185     char state;
1186     int ppid;
1187     int pgrp;
1188     int session;
1189     int nr;
1190     int tpgrp;
1191     unsigned long flags;
1192     unsigned long minflt;
1193     unsigned long cminflt;
1194     unsigned long majflt;
1195     unsigned long cmajflt;
1196     unsigned long utime;
1197     unsigned long stime;
1198     long cutime;
1199     long cstime;
1200     long prio;
1201     long nice;
1202     long junk;
1203     long it_real;
1204     uintptr_t start;
1205     uintptr_t vsize;
1206     intptr_t rss;
1207     uintptr_t rsslim;
1208     uintptr_t scodes;
1209     uintptr_t ecode;
1210     int i;
1211 
1212     // Figure what the primordial thread stack base is. Code is inspired
1213     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1214     // followed by command name surrounded by parentheses, state, etc.
1215     char stat[2048];
1216     int statlen;
1217 
1218     fp = fopen("/proc/self/stat", "r");
1219     if (fp) {
1220       statlen = fread(stat, 1, 2047, fp);
1221       stat[statlen] = '\0';
1222       fclose(fp);
1223 
1224       // Skip pid and the command string. Note that we could be dealing with
1225       // weird command names, e.g. user could decide to rename java launcher
1226       // to "java 1.4.2 :)", then the stat file would look like
1227       //                1234 (java 1.4.2 :)) R ... ...
1228       // We don't really need to know the command string, just find the last
1229       // occurrence of ")" and then start parsing from there. See bug 4726580.
1230       char * s = strrchr(stat, ')');
1231 
1232       i = 0;
1233       if (s) {
1234         // Skip blank chars
1235         do { s++; } while (s && isspace(*s));
1236 
1237 #define _UFM UINTX_FORMAT
1238 #define _DFM INTX_FORMAT
1239 
1240         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1241         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1242         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1243                    &state,          // 3  %c
1244                    &ppid,           // 4  %d
1245                    &pgrp,           // 5  %d
1246                    &session,        // 6  %d
1247                    &nr,             // 7  %d
1248                    &tpgrp,          // 8  %d
1249                    &flags,          // 9  %lu
1250                    &minflt,         // 10 %lu
1251                    &cminflt,        // 11 %lu
1252                    &majflt,         // 12 %lu
1253                    &cmajflt,        // 13 %lu
1254                    &utime,          // 14 %lu
1255                    &stime,          // 15 %lu
1256                    &cutime,         // 16 %ld
1257                    &cstime,         // 17 %ld
1258                    &prio,           // 18 %ld
1259                    &nice,           // 19 %ld
1260                    &junk,           // 20 %ld
1261                    &it_real,        // 21 %ld
1262                    &start,          // 22 UINTX_FORMAT
1263                    &vsize,          // 23 UINTX_FORMAT
1264                    &rss,            // 24 INTX_FORMAT
1265                    &rsslim,         // 25 UINTX_FORMAT
1266                    &scodes,         // 26 UINTX_FORMAT
1267                    &ecode,          // 27 UINTX_FORMAT
1268                    &stack_start);   // 28 UINTX_FORMAT
1269       }
1270 
1271 #undef _UFM
1272 #undef _DFM
1273 
1274       if (i != 28 - 2) {
1275         assert(false, "Bad conversion from /proc/self/stat");
1276         // product mode - assume we are the primordial thread, good luck in the
1277         // embedded case.
1278         warning("Can't detect primordial thread stack location - bad conversion");
1279         stack_start = (uintptr_t) &rlim;
1280       }
1281     } else {
1282       // For some reason we can't open /proc/self/stat (for example, running on
1283       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1284       // most cases, so don't abort:
1285       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1286       stack_start = (uintptr_t) &rlim;
1287     }
1288   }
1289 
1290   // Now we have a pointer (stack_start) very close to the stack top, the
1291   // next thing to do is to figure out the exact location of stack top. We
1292   // can find out the virtual memory area that contains stack_start by
1293   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1294   // and its upper limit is the real stack top. (again, this would fail if
1295   // running inside chroot, because /proc may not exist.)
1296 
1297   uintptr_t stack_top;
1298   address low, high;
1299   if (find_vma((address)stack_start, &low, &high)) {
1300     // success, "high" is the true stack top. (ignore "low", because initial
1301     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1302     stack_top = (uintptr_t)high;
1303   } else {
1304     // failed, likely because /proc/self/maps does not exist
1305     warning("Can't detect primordial thread stack location - find_vma failed");
1306     // best effort: stack_start is normally within a few pages below the real
1307     // stack top, use it as stack top, and reduce stack size so we won't put
1308     // guard page outside stack.
1309     stack_top = stack_start;
1310     stack_size -= 16 * page_size();
1311   }
1312 
1313   // stack_top could be partially down the page so align it
1314   stack_top = align_up(stack_top, page_size());
1315 
1316   // Allowed stack value is minimum of max_size and what we derived from rlimit
1317   if (max_size > 0) {
1318     _initial_thread_stack_size = MIN2(max_size, stack_size);
1319   } else {
1320     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1321     // clamp it at 8MB as we do on Solaris
1322     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1323   }
1324   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1325   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1326 
1327   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1328 
1329   if (log_is_enabled(Info, os, thread)) {
1330     // See if we seem to be on primordial process thread
1331     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1332                       uintptr_t(&rlim) < stack_top;
1333 
1334     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1335                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1336                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1337                          stack_top, intptr_t(_initial_thread_stack_bottom));
1338   }
1339 }
1340 
1341 ////////////////////////////////////////////////////////////////////////////////
1342 // time support
1343 
1344 #ifndef SUPPORTS_CLOCK_MONOTONIC
1345 #error "Build platform doesn't support clock_gettime and related functionality"
1346 #endif
1347 
1348 // Time since start-up in seconds to a fine granularity.
1349 // Used by VMSelfDestructTimer and the MemProfiler.
elapsedTime()1350 double os::elapsedTime() {
1351 
1352   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1353 }
1354 
elapsed_counter()1355 jlong os::elapsed_counter() {
1356   return javaTimeNanos() - initial_time_count;
1357 }
1358 
elapsed_frequency()1359 jlong os::elapsed_frequency() {
1360   return NANOSECS_PER_SEC; // nanosecond resolution
1361 }
1362 
supports_vtime()1363 bool os::supports_vtime() { return true; }
1364 
elapsedVTime()1365 double os::elapsedVTime() {
1366   struct rusage usage;
1367   int retval = getrusage(RUSAGE_THREAD, &usage);
1368   if (retval == 0) {
1369     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1370   } else {
1371     // better than nothing, but not much
1372     return elapsedTime();
1373   }
1374 }
1375 
javaTimeMillis()1376 jlong os::javaTimeMillis() {
1377   timeval time;
1378   int status = gettimeofday(&time, NULL);
1379   assert(status != -1, "linux error");
1380   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1381 }
1382 
javaTimeSystemUTC(jlong & seconds,jlong & nanos)1383 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1384   timeval time;
1385   int status = gettimeofday(&time, NULL);
1386   assert(status != -1, "linux error");
1387   seconds = jlong(time.tv_sec);
1388   nanos = jlong(time.tv_usec) * 1000;
1389 }
1390 
fast_thread_clock_init()1391 void os::Linux::fast_thread_clock_init() {
1392   if (!UseLinuxPosixThreadCPUClocks) {
1393     return;
1394   }
1395   clockid_t clockid;
1396   struct timespec tp;
1397   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1398       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1399 
1400   // Switch to using fast clocks for thread cpu time if
1401   // the clock_getres() returns 0 error code.
1402   // Note, that some kernels may support the current thread
1403   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1404   // returned by the pthread_getcpuclockid().
1405   // If the fast Posix clocks are supported then the clock_getres()
1406   // must return at least tp.tv_sec == 0 which means a resolution
1407   // better than 1 sec. This is extra check for reliability.
1408 
1409   if (pthread_getcpuclockid_func &&
1410       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1411       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1412     _supports_fast_thread_cpu_time = true;
1413     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1414   }
1415 }
1416 
javaTimeNanos()1417 jlong os::javaTimeNanos() {
1418   if (os::supports_monotonic_clock()) {
1419     struct timespec tp;
1420     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1421     assert(status == 0, "gettime error");
1422     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1423     return result;
1424   } else {
1425     timeval time;
1426     int status = gettimeofday(&time, NULL);
1427     assert(status != -1, "linux error");
1428     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1429     return 1000 * usecs;
1430   }
1431 }
1432 
javaTimeNanos_info(jvmtiTimerInfo * info_ptr)1433 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1434   if (os::supports_monotonic_clock()) {
1435     info_ptr->max_value = ALL_64_BITS;
1436 
1437     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1438     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1439     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1440   } else {
1441     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1442     info_ptr->max_value = ALL_64_BITS;
1443 
1444     // gettimeofday is a real time clock so it skips
1445     info_ptr->may_skip_backward = true;
1446     info_ptr->may_skip_forward = true;
1447   }
1448 
1449   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1450 }
1451 
1452 // Return the real, user, and system times in seconds from an
1453 // arbitrary fixed point in the past.
getTimesSecs(double * process_real_time,double * process_user_time,double * process_system_time)1454 bool os::getTimesSecs(double* process_real_time,
1455                       double* process_user_time,
1456                       double* process_system_time) {
1457   struct tms ticks;
1458   clock_t real_ticks = times(&ticks);
1459 
1460   if (real_ticks == (clock_t) (-1)) {
1461     return false;
1462   } else {
1463     double ticks_per_second = (double) clock_tics_per_sec;
1464     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1465     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1466     *process_real_time = ((double) real_ticks) / ticks_per_second;
1467 
1468     return true;
1469   }
1470 }
1471 
1472 
local_time_string(char * buf,size_t buflen)1473 char * os::local_time_string(char *buf, size_t buflen) {
1474   struct tm t;
1475   time_t long_time;
1476   time(&long_time);
1477   localtime_r(&long_time, &t);
1478   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1479                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1480                t.tm_hour, t.tm_min, t.tm_sec);
1481   return buf;
1482 }
1483 
localtime_pd(const time_t * clock,struct tm * res)1484 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1485   return localtime_r(clock, res);
1486 }
1487 
1488 ////////////////////////////////////////////////////////////////////////////////
1489 // runtime exit support
1490 
1491 // Note: os::shutdown() might be called very early during initialization, or
1492 // called from signal handler. Before adding something to os::shutdown(), make
1493 // sure it is async-safe and can handle partially initialized VM.
shutdown()1494 void os::shutdown() {
1495 
1496   // allow PerfMemory to attempt cleanup of any persistent resources
1497   perfMemory_exit();
1498 
1499   // needs to remove object in file system
1500   AttachListener::abort();
1501 
1502   // flush buffered output, finish log files
1503   ostream_abort();
1504 
1505   // Check for abort hook
1506   abort_hook_t abort_hook = Arguments::abort_hook();
1507   if (abort_hook != NULL) {
1508     abort_hook();
1509   }
1510 
1511 }
1512 
1513 // Note: os::abort() might be called very early during initialization, or
1514 // called from signal handler. Before adding something to os::abort(), make
1515 // sure it is async-safe and can handle partially initialized VM.
abort(bool dump_core,void * siginfo,const void * context)1516 void os::abort(bool dump_core, void* siginfo, const void* context) {
1517   os::shutdown();
1518   if (dump_core) {
1519     if (DumpPrivateMappingsInCore) {
1520       ClassLoader::close_jrt_image();
1521     }
1522 #ifndef PRODUCT
1523     fdStream out(defaultStream::output_fd());
1524     out.print_raw("Current thread is ");
1525     char buf[16];
1526     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1527     out.print_raw_cr(buf);
1528     out.print_raw_cr("Dumping core ...");
1529 #endif
1530     ::abort(); // dump core
1531   }
1532 
1533   ::exit(1);
1534 }
1535 
1536 // Die immediately, no exit hook, no abort hook, no cleanup.
1537 // Dump a core file, if possible, for debugging.
die()1538 void os::die() {
1539   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1540     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1541     // and don't take the time to generate a core file.
1542     os::signal_raise(SIGKILL);
1543   } else {
1544     ::abort();
1545   }
1546 }
1547 
1548 // thread_id is kernel thread id (similar to Solaris LWP id)
current_thread_id()1549 intx os::current_thread_id() { return os::Linux::gettid(); }
current_process_id()1550 int os::current_process_id() {
1551   return ::getpid();
1552 }
1553 
1554 // DLL functions
1555 
dll_file_extension()1556 const char* os::dll_file_extension() { return ".so"; }
1557 
1558 // This must be hard coded because it's the system's temporary
1559 // directory not the java application's temp directory, ala java.io.tmpdir.
get_temp_directory()1560 const char* os::get_temp_directory() { return "/tmp"; }
1561 
file_exists(const char * filename)1562 static bool file_exists(const char* filename) {
1563   struct stat statbuf;
1564   if (filename == NULL || strlen(filename) == 0) {
1565     return false;
1566   }
1567   return os::stat(filename, &statbuf) == 0;
1568 }
1569 
1570 // check if addr is inside libjvm.so
address_is_in_vm(address addr)1571 bool os::address_is_in_vm(address addr) {
1572   static address libjvm_base_addr;
1573   Dl_info dlinfo;
1574 
1575   if (libjvm_base_addr == NULL) {
1576     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1577       libjvm_base_addr = (address)dlinfo.dli_fbase;
1578     }
1579     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1580   }
1581 
1582   if (dladdr((void *)addr, &dlinfo) != 0) {
1583     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1584   }
1585 
1586   return false;
1587 }
1588 
dll_address_to_function_name(address addr,char * buf,int buflen,int * offset,bool demangle)1589 bool os::dll_address_to_function_name(address addr, char *buf,
1590                                       int buflen, int *offset,
1591                                       bool demangle) {
1592   // buf is not optional, but offset is optional
1593   assert(buf != NULL, "sanity check");
1594 
1595   Dl_info dlinfo;
1596 
1597   if (dladdr((void*)addr, &dlinfo) != 0) {
1598     // see if we have a matching symbol
1599     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1600       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1601         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1602       }
1603       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1604       return true;
1605     }
1606     // no matching symbol so try for just file info
1607     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1608       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1609                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1610         return true;
1611       }
1612     }
1613   }
1614 
1615   buf[0] = '\0';
1616   if (offset != NULL) *offset = -1;
1617   return false;
1618 }
1619 
1620 struct _address_to_library_name {
1621   address addr;          // input : memory address
1622   size_t  buflen;        //         size of fname
1623   char*   fname;         // output: library name
1624   address base;          //         library base addr
1625 };
1626 
address_to_library_name_callback(struct dl_phdr_info * info,size_t size,void * data)1627 static int address_to_library_name_callback(struct dl_phdr_info *info,
1628                                             size_t size, void *data) {
1629   int i;
1630   bool found = false;
1631   address libbase = NULL;
1632   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1633 
1634   // iterate through all loadable segments
1635   for (i = 0; i < info->dlpi_phnum; i++) {
1636     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1637     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1638       // base address of a library is the lowest address of its loaded
1639       // segments.
1640       if (libbase == NULL || libbase > segbase) {
1641         libbase = segbase;
1642       }
1643       // see if 'addr' is within current segment
1644       if (segbase <= d->addr &&
1645           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1646         found = true;
1647       }
1648     }
1649   }
1650 
1651   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1652   // so dll_address_to_library_name() can fall through to use dladdr() which
1653   // can figure out executable name from argv[0].
1654   if (found && info->dlpi_name && info->dlpi_name[0]) {
1655     d->base = libbase;
1656     if (d->fname) {
1657       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1658     }
1659     return 1;
1660   }
1661   return 0;
1662 }
1663 
dll_address_to_library_name(address addr,char * buf,int buflen,int * offset)1664 bool os::dll_address_to_library_name(address addr, char* buf,
1665                                      int buflen, int* offset) {
1666   // buf is not optional, but offset is optional
1667   assert(buf != NULL, "sanity check");
1668 
1669   Dl_info dlinfo;
1670   struct _address_to_library_name data;
1671 
1672   // There is a bug in old glibc dladdr() implementation that it could resolve
1673   // to wrong library name if the .so file has a base address != NULL. Here
1674   // we iterate through the program headers of all loaded libraries to find
1675   // out which library 'addr' really belongs to. This workaround can be
1676   // removed once the minimum requirement for glibc is moved to 2.3.x.
1677   data.addr = addr;
1678   data.fname = buf;
1679   data.buflen = buflen;
1680   data.base = NULL;
1681   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1682 
1683   if (rslt) {
1684     // buf already contains library name
1685     if (offset) *offset = addr - data.base;
1686     return true;
1687   }
1688   if (dladdr((void*)addr, &dlinfo) != 0) {
1689     if (dlinfo.dli_fname != NULL) {
1690       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1691     }
1692     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1693       *offset = addr - (address)dlinfo.dli_fbase;
1694     }
1695     return true;
1696   }
1697 
1698   buf[0] = '\0';
1699   if (offset) *offset = -1;
1700   return false;
1701 }
1702 
1703 // Loads .dll/.so and
1704 // in case of error it checks if .dll/.so was built for the
1705 // same architecture as Hotspot is running on
1706 
1707 
1708 // Remember the stack's state. The Linux dynamic linker will change
1709 // the stack to 'executable' at most once, so we must safepoint only once.
1710 bool os::Linux::_stack_is_executable = false;
1711 
1712 // VM operation that loads a library.  This is necessary if stack protection
1713 // of the Java stacks can be lost during loading the library.  If we
1714 // do not stop the Java threads, they can stack overflow before the stacks
1715 // are protected again.
1716 class VM_LinuxDllLoad: public VM_Operation {
1717  private:
1718   const char *_filename;
1719   char *_ebuf;
1720   int _ebuflen;
1721   void *_lib;
1722  public:
VM_LinuxDllLoad(const char * fn,char * ebuf,int ebuflen)1723   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1724     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
type() const1725   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
doit()1726   void doit() {
1727     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1728     os::Linux::_stack_is_executable = true;
1729   }
loaded_library()1730   void* loaded_library() { return _lib; }
1731 };
1732 
dll_load(const char * filename,char * ebuf,int ebuflen)1733 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1734   void * result = NULL;
1735   bool load_attempted = false;
1736 
1737   log_info(os)("attempting shared library load of %s", filename);
1738 
1739   // Check whether the library to load might change execution rights
1740   // of the stack. If they are changed, the protection of the stack
1741   // guard pages will be lost. We need a safepoint to fix this.
1742   //
1743   // See Linux man page execstack(8) for more info.
1744   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1745     if (!ElfFile::specifies_noexecstack(filename)) {
1746       if (!is_init_completed()) {
1747         os::Linux::_stack_is_executable = true;
1748         // This is OK - No Java threads have been created yet, and hence no
1749         // stack guard pages to fix.
1750         //
1751         // Dynamic loader will make all stacks executable after
1752         // this function returns, and will not do that again.
1753         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1754       } else {
1755         warning("You have loaded library %s which might have disabled stack guard. "
1756                 "The VM will try to fix the stack guard now.\n"
1757                 "It's highly recommended that you fix the library with "
1758                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1759                 filename);
1760 
1761         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1762         JavaThread *jt = JavaThread::current();
1763         if (jt->thread_state() != _thread_in_native) {
1764           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1765           // that requires ExecStack. Cannot enter safe point. Let's give up.
1766           warning("Unable to fix stack guard. Giving up.");
1767         } else {
1768           if (!LoadExecStackDllInVMThread) {
1769             // This is for the case where the DLL has an static
1770             // constructor function that executes JNI code. We cannot
1771             // load such DLLs in the VMThread.
1772             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1773           }
1774 
1775           ThreadInVMfromNative tiv(jt);
1776           debug_only(VMNativeEntryWrapper vew;)
1777 
1778           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1779           VMThread::execute(&op);
1780           if (LoadExecStackDllInVMThread) {
1781             result = op.loaded_library();
1782           }
1783           load_attempted = true;
1784         }
1785       }
1786     }
1787   }
1788 
1789   if (!load_attempted) {
1790     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1791   }
1792 
1793   if (result != NULL) {
1794     // Successful loading
1795     return result;
1796   }
1797 
1798   Elf32_Ehdr elf_head;
1799   int diag_msg_max_length=ebuflen-strlen(ebuf);
1800   char* diag_msg_buf=ebuf+strlen(ebuf);
1801 
1802   if (diag_msg_max_length==0) {
1803     // No more space in ebuf for additional diagnostics message
1804     return NULL;
1805   }
1806 
1807 
1808   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1809 
1810   if (file_descriptor < 0) {
1811     // Can't open library, report dlerror() message
1812     return NULL;
1813   }
1814 
1815   bool failed_to_read_elf_head=
1816     (sizeof(elf_head)!=
1817      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1818 
1819   ::close(file_descriptor);
1820   if (failed_to_read_elf_head) {
1821     // file i/o error - report dlerror() msg
1822     return NULL;
1823   }
1824 
1825   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1826     // handle invalid/out of range endianness values
1827     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1828       return NULL;
1829     }
1830 
1831 #if defined(VM_LITTLE_ENDIAN)
1832     // VM is LE, shared object BE
1833     elf_head.e_machine = be16toh(elf_head.e_machine);
1834 #else
1835     // VM is BE, shared object LE
1836     elf_head.e_machine = le16toh(elf_head.e_machine);
1837 #endif
1838   }
1839 
1840   typedef struct {
1841     Elf32_Half    code;         // Actual value as defined in elf.h
1842     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1843     unsigned char elf_class;    // 32 or 64 bit
1844     unsigned char endianness;   // MSB or LSB
1845     char*         name;         // String representation
1846   } arch_t;
1847 
1848 #ifndef EM_486
1849   #define EM_486          6               /* Intel 80486 */
1850 #endif
1851 #ifndef EM_AARCH64
1852   #define EM_AARCH64    183               /* ARM AARCH64 */
1853 #endif
1854 
1855   static const arch_t arch_array[]={
1856     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1857     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1858     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1859     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1860     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1861     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1862     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1863     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1864 #if defined(VM_LITTLE_ENDIAN)
1865     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1866     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1867 #else
1868     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1869     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1870 #endif
1871     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1872     // we only support 64 bit z architecture
1873     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1874     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1875     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1876     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1877     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1878     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1879     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1880   };
1881 
1882 #if  (defined IA32)
1883   static  Elf32_Half running_arch_code=EM_386;
1884 #elif   (defined AMD64) || (defined X32)
1885   static  Elf32_Half running_arch_code=EM_X86_64;
1886 #elif  (defined IA64)
1887   static  Elf32_Half running_arch_code=EM_IA_64;
1888 #elif  (defined __sparc) && (defined _LP64)
1889   static  Elf32_Half running_arch_code=EM_SPARCV9;
1890 #elif  (defined __sparc) && (!defined _LP64)
1891   static  Elf32_Half running_arch_code=EM_SPARC;
1892 #elif  (defined __powerpc64__)
1893   static  Elf32_Half running_arch_code=EM_PPC64;
1894 #elif  (defined __powerpc__)
1895   static  Elf32_Half running_arch_code=EM_PPC;
1896 #elif  (defined AARCH64)
1897   static  Elf32_Half running_arch_code=EM_AARCH64;
1898 #elif  (defined ARM)
1899   static  Elf32_Half running_arch_code=EM_ARM;
1900 #elif  (defined S390)
1901   static  Elf32_Half running_arch_code=EM_S390;
1902 #elif  (defined ALPHA)
1903   static  Elf32_Half running_arch_code=EM_ALPHA;
1904 #elif  (defined MIPSEL)
1905   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1906 #elif  (defined PARISC)
1907   static  Elf32_Half running_arch_code=EM_PARISC;
1908 #elif  (defined MIPS)
1909   static  Elf32_Half running_arch_code=EM_MIPS;
1910 #elif  (defined M68K)
1911   static  Elf32_Half running_arch_code=EM_68K;
1912 #elif  (defined SH)
1913   static  Elf32_Half running_arch_code=EM_SH;
1914 #else
1915     #error Method os::dll_load requires that one of following is defined:\
1916         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1917 #endif
1918 
1919   // Identify compatibility class for VM's architecture and library's architecture
1920   // Obtain string descriptions for architectures
1921 
1922   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1923   int running_arch_index=-1;
1924 
1925   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1926     if (running_arch_code == arch_array[i].code) {
1927       running_arch_index    = i;
1928     }
1929     if (lib_arch.code == arch_array[i].code) {
1930       lib_arch.compat_class = arch_array[i].compat_class;
1931       lib_arch.name         = arch_array[i].name;
1932     }
1933   }
1934 
1935   assert(running_arch_index != -1,
1936          "Didn't find running architecture code (running_arch_code) in arch_array");
1937   if (running_arch_index == -1) {
1938     // Even though running architecture detection failed
1939     // we may still continue with reporting dlerror() message
1940     return NULL;
1941   }
1942 
1943   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1944     if (lib_arch.name != NULL) {
1945       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1946                  " (Possible cause: can't load %s .so on a %s platform)",
1947                  lib_arch.name, arch_array[running_arch_index].name);
1948     } else {
1949       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1950                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1951                  lib_arch.code, arch_array[running_arch_index].name);
1952     }
1953     return NULL;
1954   }
1955 
1956   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1957     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1958     return NULL;
1959   }
1960 
1961   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1962   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1963     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1964     return NULL;
1965   }
1966 
1967   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1968     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1969                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1970                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1971     return NULL;
1972   }
1973 
1974   return NULL;
1975 }
1976 
dlopen_helper(const char * filename,char * ebuf,int ebuflen)1977 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1978                                 int ebuflen) {
1979   void * result = ::dlopen(filename, RTLD_LAZY);
1980   if (result == NULL) {
1981     const char* error_report = ::dlerror();
1982     if (error_report == NULL) {
1983       error_report = "dlerror returned no error description";
1984     }
1985     if (ebuf != NULL && ebuflen > 0) {
1986       ::strncpy(ebuf, error_report, ebuflen-1);
1987       ebuf[ebuflen-1]='\0';
1988     }
1989     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1990     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1991   } else {
1992     Events::log(NULL, "Loaded shared library %s", filename);
1993     log_info(os)("shared library load of %s was successful", filename);
1994   }
1995   return result;
1996 }
1997 
dll_load_in_vmthread(const char * filename,char * ebuf,int ebuflen)1998 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1999                                        int ebuflen) {
2000   void * result = NULL;
2001   if (LoadExecStackDllInVMThread) {
2002     result = dlopen_helper(filename, ebuf, ebuflen);
2003   }
2004 
2005   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2006   // library that requires an executable stack, or which does not have this
2007   // stack attribute set, dlopen changes the stack attribute to executable. The
2008   // read protection of the guard pages gets lost.
2009   //
2010   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2011   // may have been queued at the same time.
2012 
2013   if (!_stack_is_executable) {
2014     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2015       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2016           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2017         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2018           warning("Attempt to reguard stack yellow zone failed.");
2019         }
2020       }
2021     }
2022   }
2023 
2024   return result;
2025 }
2026 
dll_lookup(void * handle,const char * name)2027 void* os::dll_lookup(void* handle, const char* name) {
2028   void* res = dlsym(handle, name);
2029   return res;
2030 }
2031 
get_default_process_handle()2032 void* os::get_default_process_handle() {
2033   return (void*)::dlopen(NULL, RTLD_LAZY);
2034 }
2035 
_print_ascii_file(const char * filename,outputStream * st,const char * hdr=NULL)2036 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2037   int fd = ::open(filename, O_RDONLY);
2038   if (fd == -1) {
2039     return false;
2040   }
2041 
2042   if (hdr != NULL) {
2043     st->print_cr("%s", hdr);
2044   }
2045 
2046   char buf[33];
2047   int bytes;
2048   buf[32] = '\0';
2049   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2050     st->print_raw(buf, bytes);
2051   }
2052 
2053   ::close(fd);
2054 
2055   return true;
2056 }
2057 
print_dll_info(outputStream * st)2058 void os::print_dll_info(outputStream *st) {
2059   st->print_cr("Dynamic libraries:");
2060 
2061   char fname[32];
2062   pid_t pid = os::Linux::gettid();
2063 
2064   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2065 
2066   if (!_print_ascii_file(fname, st)) {
2067     st->print("Can not get library information for pid = %d\n", pid);
2068   }
2069 }
2070 
get_loaded_modules_info(os::LoadedModulesCallbackFunc callback,void * param)2071 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2072   FILE *procmapsFile = NULL;
2073 
2074   // Open the procfs maps file for the current process
2075   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2076     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2077     char line[PATH_MAX + 100];
2078 
2079     // Read line by line from 'file'
2080     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2081       u8 base, top, offset, inode;
2082       char permissions[5];
2083       char device[6];
2084       char name[sizeof(line)];
2085 
2086       // Parse fields from line
2087       int matches = sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
2088              &base, &top, permissions, &offset, device, &inode, name);
2089       // the last entry 'name' is empty for some entries, so we might have 6 matches instead of 7 for some lines
2090       if (matches < 6) continue;
2091       if (matches == 6) name[0] = '\0';
2092 
2093       // Filter by device id '00:00' so that we only get file system mapped files.
2094       if (strcmp(device, "00:00") != 0) {
2095 
2096         // Call callback with the fields of interest
2097         if(callback(name, (address)base, (address)top, param)) {
2098           // Oops abort, callback aborted
2099           fclose(procmapsFile);
2100           return 1;
2101         }
2102       }
2103     }
2104     fclose(procmapsFile);
2105   }
2106   return 0;
2107 }
2108 
print_os_info_brief(outputStream * st)2109 void os::print_os_info_brief(outputStream* st) {
2110   os::Linux::print_distro_info(st);
2111 
2112   os::Posix::print_uname_info(st);
2113 
2114   os::Linux::print_libversion_info(st);
2115 
2116 }
2117 
print_os_info(outputStream * st)2118 void os::print_os_info(outputStream* st) {
2119   st->print("OS:");
2120 
2121   os::Linux::print_distro_info(st);
2122 
2123   os::Posix::print_uname_info(st);
2124 
2125   os::Linux::print_uptime_info(st);
2126 
2127   // Print warning if unsafe chroot environment detected
2128   if (unsafe_chroot_detected) {
2129     st->print("WARNING!! ");
2130     st->print_cr("%s", unstable_chroot_error);
2131   }
2132 
2133   os::Linux::print_libversion_info(st);
2134 
2135   os::Posix::print_rlimit_info(st);
2136 
2137   os::Posix::print_load_average(st);
2138 
2139   os::Linux::print_full_memory_info(st);
2140 
2141   os::Linux::print_proc_sys_info(st);
2142 
2143   os::Linux::print_ld_preload_file(st);
2144 
2145   os::Linux::print_container_info(st);
2146 
2147   VM_Version::print_platform_virtualization_info(st);
2148 
2149   os::Linux::print_steal_info(st);
2150 }
2151 
2152 // Try to identify popular distros.
2153 // Most Linux distributions have a /etc/XXX-release file, which contains
2154 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2155 // file that also contains the OS version string. Some have more than one
2156 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2157 // /etc/redhat-release.), so the order is important.
2158 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2159 // their own specific XXX-release file as well as a redhat-release file.
2160 // Because of this the XXX-release file needs to be searched for before the
2161 // redhat-release file.
2162 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2163 // search for redhat-release / SuSE-release needs to be before lsb-release.
2164 // Since the lsb-release file is the new standard it needs to be searched
2165 // before the older style release files.
2166 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2167 // next to last resort.  The os-release file is a new standard that contains
2168 // distribution information and the system-release file seems to be an old
2169 // standard that has been replaced by the lsb-release and os-release files.
2170 // Searching for the debian_version file is the last resort.  It contains
2171 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2172 // "Debian " is printed before the contents of the debian_version file.
2173 
2174 const char* distro_files[] = {
2175   "/etc/oracle-release",
2176   "/etc/mandriva-release",
2177   "/etc/mandrake-release",
2178   "/etc/sun-release",
2179   "/etc/redhat-release",
2180   "/etc/SuSE-release",
2181   "/etc/lsb-release",
2182   "/etc/turbolinux-release",
2183   "/etc/gentoo-release",
2184   "/etc/ltib-release",
2185   "/etc/angstrom-version",
2186   "/etc/system-release",
2187   "/etc/os-release",
2188   NULL };
2189 
print_distro_info(outputStream * st)2190 void os::Linux::print_distro_info(outputStream* st) {
2191   for (int i = 0;; i++) {
2192     const char* file = distro_files[i];
2193     if (file == NULL) {
2194       break;  // done
2195     }
2196     // If file prints, we found it.
2197     if (_print_ascii_file(file, st)) {
2198       return;
2199     }
2200   }
2201 
2202   if (file_exists("/etc/debian_version")) {
2203     st->print("Debian ");
2204     _print_ascii_file("/etc/debian_version", st);
2205   } else {
2206     st->print("Linux");
2207   }
2208   st->cr();
2209 }
2210 
parse_os_info_helper(FILE * fp,char * distro,size_t length,bool get_first_line)2211 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2212   char buf[256];
2213   while (fgets(buf, sizeof(buf), fp)) {
2214     // Edit out extra stuff in expected format
2215     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2216       char* ptr = strstr(buf, "\"");  // the name is in quotes
2217       if (ptr != NULL) {
2218         ptr++; // go beyond first quote
2219         char* nl = strchr(ptr, '\"');
2220         if (nl != NULL) *nl = '\0';
2221         strncpy(distro, ptr, length);
2222       } else {
2223         ptr = strstr(buf, "=");
2224         ptr++; // go beyond equals then
2225         char* nl = strchr(ptr, '\n');
2226         if (nl != NULL) *nl = '\0';
2227         strncpy(distro, ptr, length);
2228       }
2229       return;
2230     } else if (get_first_line) {
2231       char* nl = strchr(buf, '\n');
2232       if (nl != NULL) *nl = '\0';
2233       strncpy(distro, buf, length);
2234       return;
2235     }
2236   }
2237   // print last line and close
2238   char* nl = strchr(buf, '\n');
2239   if (nl != NULL) *nl = '\0';
2240   strncpy(distro, buf, length);
2241 }
2242 
parse_os_info(char * distro,size_t length,const char * file)2243 static void parse_os_info(char* distro, size_t length, const char* file) {
2244   FILE* fp = fopen(file, "r");
2245   if (fp != NULL) {
2246     // if suse format, print out first line
2247     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2248     parse_os_info_helper(fp, distro, length, get_first_line);
2249     fclose(fp);
2250   }
2251 }
2252 
get_summary_os_info(char * buf,size_t buflen)2253 void os::get_summary_os_info(char* buf, size_t buflen) {
2254   for (int i = 0;; i++) {
2255     const char* file = distro_files[i];
2256     if (file == NULL) {
2257       break; // ran out of distro_files
2258     }
2259     if (file_exists(file)) {
2260       parse_os_info(buf, buflen, file);
2261       return;
2262     }
2263   }
2264   // special case for debian
2265   if (file_exists("/etc/debian_version")) {
2266     strncpy(buf, "Debian ", buflen);
2267     if (buflen > 7) {
2268       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2269     }
2270   } else {
2271     strncpy(buf, "Linux", buflen);
2272   }
2273 }
2274 
print_libversion_info(outputStream * st)2275 void os::Linux::print_libversion_info(outputStream* st) {
2276   // libc, pthread
2277   st->print("libc:");
2278   st->print("%s ", os::Linux::glibc_version());
2279   st->print("%s ", os::Linux::libpthread_version());
2280   st->cr();
2281 }
2282 
print_proc_sys_info(outputStream * st)2283 void os::Linux::print_proc_sys_info(outputStream* st) {
2284   st->cr();
2285   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2286   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2287   st->cr();
2288   st->cr();
2289 
2290   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2291   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2292   st->cr();
2293   st->cr();
2294 
2295   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2296   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2297   st->cr();
2298   st->cr();
2299 }
2300 
print_full_memory_info(outputStream * st)2301 void os::Linux::print_full_memory_info(outputStream* st) {
2302   st->print("\n/proc/meminfo:\n");
2303   _print_ascii_file("/proc/meminfo", st);
2304   st->cr();
2305 }
2306 
print_ld_preload_file(outputStream * st)2307 void os::Linux::print_ld_preload_file(outputStream* st) {
2308   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2309   st->cr();
2310 }
2311 
print_uptime_info(outputStream * st)2312 void os::Linux::print_uptime_info(outputStream* st) {
2313   struct sysinfo sinfo;
2314   int ret = sysinfo(&sinfo);
2315   if (ret == 0) {
2316     os::print_dhm(st, "OS uptime:", (long) sinfo.uptime);
2317   }
2318 }
2319 
2320 
print_container_info(outputStream * st)2321 void os::Linux::print_container_info(outputStream* st) {
2322   if (!OSContainer::is_containerized()) {
2323     return;
2324   }
2325 
2326   st->print("container (cgroup) information:\n");
2327 
2328   const char *p_ct = OSContainer::container_type();
2329   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2330 
2331   char *p = OSContainer::cpu_cpuset_cpus();
2332   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2333   free(p);
2334 
2335   p = OSContainer::cpu_cpuset_memory_nodes();
2336   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2337   free(p);
2338 
2339   int i = OSContainer::active_processor_count();
2340   st->print("active_processor_count: ");
2341   if (i > 0) {
2342     st->print("%d\n", i);
2343   } else {
2344     st->print("not supported\n");
2345   }
2346 
2347   i = OSContainer::cpu_quota();
2348   st->print("cpu_quota: ");
2349   if (i > 0) {
2350     st->print("%d\n", i);
2351   } else {
2352     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2353   }
2354 
2355   i = OSContainer::cpu_period();
2356   st->print("cpu_period: ");
2357   if (i > 0) {
2358     st->print("%d\n", i);
2359   } else {
2360     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2361   }
2362 
2363   i = OSContainer::cpu_shares();
2364   st->print("cpu_shares: ");
2365   if (i > 0) {
2366     st->print("%d\n", i);
2367   } else {
2368     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2369   }
2370 
2371   jlong j = OSContainer::memory_limit_in_bytes();
2372   st->print("memory_limit_in_bytes: ");
2373   if (j > 0) {
2374     st->print(JLONG_FORMAT "\n", j);
2375   } else {
2376     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2377   }
2378 
2379   j = OSContainer::memory_and_swap_limit_in_bytes();
2380   st->print("memory_and_swap_limit_in_bytes: ");
2381   if (j > 0) {
2382     st->print(JLONG_FORMAT "\n", j);
2383   } else {
2384     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2385   }
2386 
2387   j = OSContainer::memory_soft_limit_in_bytes();
2388   st->print("memory_soft_limit_in_bytes: ");
2389   if (j > 0) {
2390     st->print(JLONG_FORMAT "\n", j);
2391   } else {
2392     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2393   }
2394 
2395   j = OSContainer::OSContainer::memory_usage_in_bytes();
2396   st->print("memory_usage_in_bytes: ");
2397   if (j > 0) {
2398     st->print(JLONG_FORMAT "\n", j);
2399   } else {
2400     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2401   }
2402 
2403   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2404   st->print("memory_max_usage_in_bytes: ");
2405   if (j > 0) {
2406     st->print(JLONG_FORMAT "\n", j);
2407   } else {
2408     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2409   }
2410   st->cr();
2411 }
2412 
print_steal_info(outputStream * st)2413 void os::Linux::print_steal_info(outputStream* st) {
2414   if (has_initial_tick_info) {
2415     CPUPerfTicks pticks;
2416     bool res = os::Linux::get_tick_information(&pticks, -1);
2417 
2418     if (res && pticks.has_steal_ticks) {
2419       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2420       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2421       double steal_ticks_perc = 0.0;
2422       if (total_ticks_difference != 0) {
2423         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2424       }
2425       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2426       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2427     }
2428   }
2429 }
2430 
print_memory_info(outputStream * st)2431 void os::print_memory_info(outputStream* st) {
2432 
2433   st->print("Memory:");
2434   st->print(" %dk page", os::vm_page_size()>>10);
2435 
2436   // values in struct sysinfo are "unsigned long"
2437   struct sysinfo si;
2438   sysinfo(&si);
2439 
2440   st->print(", physical " UINT64_FORMAT "k",
2441             os::physical_memory() >> 10);
2442   st->print("(" UINT64_FORMAT "k free)",
2443             os::available_memory() >> 10);
2444   st->print(", swap " UINT64_FORMAT "k",
2445             ((jlong)si.totalswap * si.mem_unit) >> 10);
2446   st->print("(" UINT64_FORMAT "k free)",
2447             ((jlong)si.freeswap * si.mem_unit) >> 10);
2448   st->cr();
2449 }
2450 
2451 // Print the first "model name" line and the first "flags" line
2452 // that we find and nothing more. We assume "model name" comes
2453 // before "flags" so if we find a second "model name", then the
2454 // "flags" field is considered missing.
print_model_name_and_flags(outputStream * st,char * buf,size_t buflen)2455 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2456 #if defined(IA32) || defined(AMD64)
2457   // Other platforms have less repetitive cpuinfo files
2458   FILE *fp = fopen("/proc/cpuinfo", "r");
2459   if (fp) {
2460     while (!feof(fp)) {
2461       if (fgets(buf, buflen, fp)) {
2462         // Assume model name comes before flags
2463         bool model_name_printed = false;
2464         if (strstr(buf, "model name") != NULL) {
2465           if (!model_name_printed) {
2466             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2467             st->print_raw(buf);
2468             model_name_printed = true;
2469           } else {
2470             // model name printed but not flags?  Odd, just return
2471             fclose(fp);
2472             return true;
2473           }
2474         }
2475         // print the flags line too
2476         if (strstr(buf, "flags") != NULL) {
2477           st->print_raw(buf);
2478           fclose(fp);
2479           return true;
2480         }
2481       }
2482     }
2483     fclose(fp);
2484   }
2485 #endif // x86 platforms
2486   return false;
2487 }
2488 
pd_print_cpu_info(outputStream * st,char * buf,size_t buflen)2489 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2490   // Only print the model name if the platform provides this as a summary
2491   if (!print_model_name_and_flags(st, buf, buflen)) {
2492     st->print("\n/proc/cpuinfo:\n");
2493     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2494       st->print_cr("  <Not Available>");
2495     }
2496   }
2497 }
2498 
2499 #if defined(AMD64) || defined(IA32) || defined(X32)
2500 const char* search_string = "model name";
2501 #elif defined(M68K)
2502 const char* search_string = "CPU";
2503 #elif defined(PPC64)
2504 const char* search_string = "cpu";
2505 #elif defined(S390)
2506 const char* search_string = "machine =";
2507 #elif defined(SPARC)
2508 const char* search_string = "cpu";
2509 #else
2510 const char* search_string = "Processor";
2511 #endif
2512 
2513 // Parses the cpuinfo file for string representing the model name.
get_summary_cpu_info(char * cpuinfo,size_t length)2514 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2515   FILE* fp = fopen("/proc/cpuinfo", "r");
2516   if (fp != NULL) {
2517     while (!feof(fp)) {
2518       char buf[256];
2519       if (fgets(buf, sizeof(buf), fp)) {
2520         char* start = strstr(buf, search_string);
2521         if (start != NULL) {
2522           char *ptr = start + strlen(search_string);
2523           char *end = buf + strlen(buf);
2524           while (ptr != end) {
2525              // skip whitespace and colon for the rest of the name.
2526              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2527                break;
2528              }
2529              ptr++;
2530           }
2531           if (ptr != end) {
2532             // reasonable string, get rid of newline and keep the rest
2533             char* nl = strchr(buf, '\n');
2534             if (nl != NULL) *nl = '\0';
2535             strncpy(cpuinfo, ptr, length);
2536             fclose(fp);
2537             return;
2538           }
2539         }
2540       }
2541     }
2542     fclose(fp);
2543   }
2544   // cpuinfo not found or parsing failed, just print generic string.  The entire
2545   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2546 #if   defined(AARCH64)
2547   strncpy(cpuinfo, "AArch64", length);
2548 #elif defined(AMD64)
2549   strncpy(cpuinfo, "x86_64", length);
2550 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2551   strncpy(cpuinfo, "ARM", length);
2552 #elif defined(IA32)
2553   strncpy(cpuinfo, "x86_32", length);
2554 #elif defined(IA64)
2555   strncpy(cpuinfo, "IA64", length);
2556 #elif defined(PPC)
2557   strncpy(cpuinfo, "PPC64", length);
2558 #elif defined(S390)
2559   strncpy(cpuinfo, "S390", length);
2560 #elif defined(SPARC)
2561   strncpy(cpuinfo, "sparcv9", length);
2562 #elif defined(ZERO_LIBARCH)
2563   strncpy(cpuinfo, ZERO_LIBARCH, length);
2564 #else
2565   strncpy(cpuinfo, "unknown", length);
2566 #endif
2567 }
2568 
2569 static void print_signal_handler(outputStream* st, int sig,
2570                                  char* buf, size_t buflen);
2571 
print_signal_handlers(outputStream * st,char * buf,size_t buflen)2572 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2573   st->print_cr("Signal Handlers:");
2574   print_signal_handler(st, SIGSEGV, buf, buflen);
2575   print_signal_handler(st, SIGBUS , buf, buflen);
2576   print_signal_handler(st, SIGFPE , buf, buflen);
2577   print_signal_handler(st, SIGPIPE, buf, buflen);
2578   print_signal_handler(st, SIGXFSZ, buf, buflen);
2579   print_signal_handler(st, SIGILL , buf, buflen);
2580   print_signal_handler(st, SR_signum, buf, buflen);
2581   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2582   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2583   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2584   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2585 #if defined(PPC64)
2586   print_signal_handler(st, SIGTRAP, buf, buflen);
2587 #endif
2588 }
2589 
2590 static char saved_jvm_path[MAXPATHLEN] = {0};
2591 
2592 // Find the full path to the current module, libjvm.so
jvm_path(char * buf,jint buflen)2593 void os::jvm_path(char *buf, jint buflen) {
2594   // Error checking.
2595   if (buflen < MAXPATHLEN) {
2596     assert(false, "must use a large-enough buffer");
2597     buf[0] = '\0';
2598     return;
2599   }
2600   // Lazy resolve the path to current module.
2601   if (saved_jvm_path[0] != 0) {
2602     strcpy(buf, saved_jvm_path);
2603     return;
2604   }
2605 
2606   char dli_fname[MAXPATHLEN];
2607   bool ret = dll_address_to_library_name(
2608                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2609                                          dli_fname, sizeof(dli_fname), NULL);
2610   assert(ret, "cannot locate libjvm");
2611   char *rp = NULL;
2612   if (ret && dli_fname[0] != '\0') {
2613     rp = os::Posix::realpath(dli_fname, buf, buflen);
2614   }
2615   if (rp == NULL) {
2616     return;
2617   }
2618 
2619   if (Arguments::sun_java_launcher_is_altjvm()) {
2620     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2621     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2622     // If "/jre/lib/" appears at the right place in the string, then
2623     // assume we are installed in a JDK and we're done. Otherwise, check
2624     // for a JAVA_HOME environment variable and fix up the path so it
2625     // looks like libjvm.so is installed there (append a fake suffix
2626     // hotspot/libjvm.so).
2627     const char *p = buf + strlen(buf) - 1;
2628     for (int count = 0; p > buf && count < 5; ++count) {
2629       for (--p; p > buf && *p != '/'; --p)
2630         /* empty */ ;
2631     }
2632 
2633     if (strncmp(p, "/jre/lib/", 9) != 0) {
2634       // Look for JAVA_HOME in the environment.
2635       char* java_home_var = ::getenv("JAVA_HOME");
2636       if (java_home_var != NULL && java_home_var[0] != 0) {
2637         char* jrelib_p;
2638         int len;
2639 
2640         // Check the current module name "libjvm.so".
2641         p = strrchr(buf, '/');
2642         if (p == NULL) {
2643           return;
2644         }
2645         assert(strstr(p, "/libjvm") == p, "invalid library name");
2646 
2647         rp = os::Posix::realpath(java_home_var, buf, buflen);
2648         if (rp == NULL) {
2649           return;
2650         }
2651 
2652         // determine if this is a legacy image or modules image
2653         // modules image doesn't have "jre" subdirectory
2654         len = strlen(buf);
2655         assert(len < buflen, "Ran out of buffer room");
2656         jrelib_p = buf + len;
2657         snprintf(jrelib_p, buflen-len, "/jre/lib");
2658         if (0 != access(buf, F_OK)) {
2659           snprintf(jrelib_p, buflen-len, "/lib");
2660         }
2661 
2662         if (0 == access(buf, F_OK)) {
2663           // Use current module name "libjvm.so"
2664           len = strlen(buf);
2665           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2666         } else {
2667           // Go back to path of .so
2668           rp = os::Posix::realpath(dli_fname, buf, buflen);
2669           if (rp == NULL) {
2670             return;
2671           }
2672         }
2673       }
2674     }
2675   }
2676 
2677   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2678   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2679 }
2680 
print_jni_name_prefix_on(outputStream * st,int args_size)2681 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2682   // no prefix required, not even "_"
2683 }
2684 
print_jni_name_suffix_on(outputStream * st,int args_size)2685 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2686   // no suffix required
2687 }
2688 
2689 ////////////////////////////////////////////////////////////////////////////////
2690 // sun.misc.Signal support
2691 
UserHandler(int sig,void * siginfo,void * context)2692 static void UserHandler(int sig, void *siginfo, void *context) {
2693   // Ctrl-C is pressed during error reporting, likely because the error
2694   // handler fails to abort. Let VM die immediately.
2695   if (sig == SIGINT && VMError::is_error_reported()) {
2696     os::die();
2697   }
2698 
2699   os::signal_notify(sig);
2700 }
2701 
user_handler()2702 void* os::user_handler() {
2703   return CAST_FROM_FN_PTR(void*, UserHandler);
2704 }
2705 
2706 extern "C" {
2707   typedef void (*sa_handler_t)(int);
2708   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2709 }
2710 
signal(int signal_number,void * handler)2711 void* os::signal(int signal_number, void* handler) {
2712   struct sigaction sigAct, oldSigAct;
2713 
2714   sigfillset(&(sigAct.sa_mask));
2715   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2716   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2717 
2718   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2719     // -1 means registration failed
2720     return (void *)-1;
2721   }
2722 
2723   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2724 }
2725 
signal_raise(int signal_number)2726 void os::signal_raise(int signal_number) {
2727   ::raise(signal_number);
2728 }
2729 
2730 // The following code is moved from os.cpp for making this
2731 // code platform specific, which it is by its very nature.
2732 
2733 // Will be modified when max signal is changed to be dynamic
sigexitnum_pd()2734 int os::sigexitnum_pd() {
2735   return NSIG;
2736 }
2737 
2738 // a counter for each possible signal value
2739 static volatile jint pending_signals[NSIG+1] = { 0 };
2740 
2741 // Linux(POSIX) specific hand shaking semaphore.
2742 static Semaphore* sig_sem = NULL;
2743 static PosixSemaphore sr_semaphore;
2744 
jdk_misc_signal_init()2745 static void jdk_misc_signal_init() {
2746   // Initialize signal structures
2747   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2748 
2749   // Initialize signal semaphore
2750   sig_sem = new Semaphore();
2751 }
2752 
signal_notify(int sig)2753 void os::signal_notify(int sig) {
2754   if (sig_sem != NULL) {
2755     Atomic::inc(&pending_signals[sig]);
2756     sig_sem->signal();
2757   } else {
2758     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2759     // initialization isn't called.
2760     assert(ReduceSignalUsage, "signal semaphore should be created");
2761   }
2762 }
2763 
check_pending_signals()2764 static int check_pending_signals() {
2765   for (;;) {
2766     for (int i = 0; i < NSIG + 1; i++) {
2767       jint n = pending_signals[i];
2768       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
2769         return i;
2770       }
2771     }
2772     JavaThread *thread = JavaThread::current();
2773     ThreadBlockInVM tbivm(thread);
2774 
2775     bool threadIsSuspended;
2776     do {
2777       thread->set_suspend_equivalent();
2778       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2779       sig_sem->wait();
2780 
2781       // were we externally suspended while we were waiting?
2782       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2783       if (threadIsSuspended) {
2784         // The semaphore has been incremented, but while we were waiting
2785         // another thread suspended us. We don't want to continue running
2786         // while suspended because that would surprise the thread that
2787         // suspended us.
2788         sig_sem->signal();
2789 
2790         thread->java_suspend_self();
2791       }
2792     } while (threadIsSuspended);
2793   }
2794 }
2795 
signal_wait()2796 int os::signal_wait() {
2797   return check_pending_signals();
2798 }
2799 
2800 ////////////////////////////////////////////////////////////////////////////////
2801 // Virtual Memory
2802 
vm_page_size()2803 int os::vm_page_size() {
2804   // Seems redundant as all get out
2805   assert(os::Linux::page_size() != -1, "must call os::init");
2806   return os::Linux::page_size();
2807 }
2808 
2809 // Solaris allocates memory by pages.
vm_allocation_granularity()2810 int os::vm_allocation_granularity() {
2811   assert(os::Linux::page_size() != -1, "must call os::init");
2812   return os::Linux::page_size();
2813 }
2814 
2815 // Rationale behind this function:
2816 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2817 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2818 //  samples for JITted code. Here we create private executable mapping over the code cache
2819 //  and then we can use standard (well, almost, as mapping can change) way to provide
2820 //  info for the reporting script by storing timestamp and location of symbol
linux_wrap_code(char * base,size_t size)2821 void linux_wrap_code(char* base, size_t size) {
2822   static volatile jint cnt = 0;
2823 
2824   if (!UseOprofile) {
2825     return;
2826   }
2827 
2828   char buf[PATH_MAX+1];
2829   int num = Atomic::add(&cnt, 1);
2830 
2831   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2832            os::get_temp_directory(), os::current_process_id(), num);
2833   unlink(buf);
2834 
2835   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2836 
2837   if (fd != -1) {
2838     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2839     if (rv != (off_t)-1) {
2840       if (::write(fd, "", 1) == 1) {
2841         mmap(base, size,
2842              PROT_READ|PROT_WRITE|PROT_EXEC,
2843              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2844       }
2845     }
2846     ::close(fd);
2847     unlink(buf);
2848   }
2849 }
2850 
recoverable_mmap_error(int err)2851 static bool recoverable_mmap_error(int err) {
2852   // See if the error is one we can let the caller handle. This
2853   // list of errno values comes from JBS-6843484. I can't find a
2854   // Linux man page that documents this specific set of errno
2855   // values so while this list currently matches Solaris, it may
2856   // change as we gain experience with this failure mode.
2857   switch (err) {
2858   case EBADF:
2859   case EINVAL:
2860   case ENOTSUP:
2861     // let the caller deal with these errors
2862     return true;
2863 
2864   default:
2865     // Any remaining errors on this OS can cause our reserved mapping
2866     // to be lost. That can cause confusion where different data
2867     // structures think they have the same memory mapped. The worst
2868     // scenario is if both the VM and a library think they have the
2869     // same memory mapped.
2870     return false;
2871   }
2872 }
2873 
warn_fail_commit_memory(char * addr,size_t size,bool exec,int err)2874 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2875                                     int err) {
2876   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2877           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2878           os::strerror(err), err);
2879 }
2880 
warn_fail_commit_memory(char * addr,size_t size,size_t alignment_hint,bool exec,int err)2881 static void warn_fail_commit_memory(char* addr, size_t size,
2882                                     size_t alignment_hint, bool exec,
2883                                     int err) {
2884   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2885           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2886           alignment_hint, exec, os::strerror(err), err);
2887 }
2888 
2889 // NOTE: Linux kernel does not really reserve the pages for us.
2890 //       All it does is to check if there are enough free pages
2891 //       left at the time of mmap(). This could be a potential
2892 //       problem.
commit_memory_impl(char * addr,size_t size,bool exec)2893 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2894   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2895   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2896                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2897   if (res != (uintptr_t) MAP_FAILED) {
2898     if (UseNUMAInterleaving) {
2899       numa_make_global(addr, size);
2900     }
2901     return 0;
2902   }
2903 
2904   int err = errno;  // save errno from mmap() call above
2905 
2906   if (!recoverable_mmap_error(err)) {
2907     warn_fail_commit_memory(addr, size, exec, err);
2908     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2909   }
2910 
2911   return err;
2912 }
2913 
pd_commit_memory(char * addr,size_t size,bool exec)2914 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2915   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2916 }
2917 
pd_commit_memory_or_exit(char * addr,size_t size,bool exec,const char * mesg)2918 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2919                                   const char* mesg) {
2920   assert(mesg != NULL, "mesg must be specified");
2921   int err = os::Linux::commit_memory_impl(addr, size, exec);
2922   if (err != 0) {
2923     // the caller wants all commit errors to exit with the specified mesg:
2924     warn_fail_commit_memory(addr, size, exec, err);
2925     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2926   }
2927 }
2928 
2929 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2930 #ifndef MAP_HUGETLB
2931   #define MAP_HUGETLB 0x40000
2932 #endif
2933 
2934 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2935 #ifndef MADV_HUGEPAGE
2936   #define MADV_HUGEPAGE 14
2937 #endif
2938 
commit_memory_impl(char * addr,size_t size,size_t alignment_hint,bool exec)2939 int os::Linux::commit_memory_impl(char* addr, size_t size,
2940                                   size_t alignment_hint, bool exec) {
2941   int err = os::Linux::commit_memory_impl(addr, size, exec);
2942   if (err == 0) {
2943     realign_memory(addr, size, alignment_hint);
2944   }
2945   return err;
2946 }
2947 
pd_commit_memory(char * addr,size_t size,size_t alignment_hint,bool exec)2948 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2949                           bool exec) {
2950   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2951 }
2952 
pd_commit_memory_or_exit(char * addr,size_t size,size_t alignment_hint,bool exec,const char * mesg)2953 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2954                                   size_t alignment_hint, bool exec,
2955                                   const char* mesg) {
2956   assert(mesg != NULL, "mesg must be specified");
2957   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2958   if (err != 0) {
2959     // the caller wants all commit errors to exit with the specified mesg:
2960     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2961     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2962   }
2963 }
2964 
pd_realign_memory(char * addr,size_t bytes,size_t alignment_hint)2965 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2966   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2967     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2968     // be supported or the memory may already be backed by huge pages.
2969     ::madvise(addr, bytes, MADV_HUGEPAGE);
2970   }
2971 }
2972 
pd_free_memory(char * addr,size_t bytes,size_t alignment_hint)2973 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2974   // This method works by doing an mmap over an existing mmaping and effectively discarding
2975   // the existing pages. However it won't work for SHM-based large pages that cannot be
2976   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2977   // small pages on top of the SHM segment. This method always works for small pages, so we
2978   // allow that in any case.
2979   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2980     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2981   }
2982 }
2983 
numa_make_global(char * addr,size_t bytes)2984 void os::numa_make_global(char *addr, size_t bytes) {
2985   Linux::numa_interleave_memory(addr, bytes);
2986 }
2987 
2988 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2989 // bind policy to MPOL_PREFERRED for the current thread.
2990 #define USE_MPOL_PREFERRED 0
2991 
numa_make_local(char * addr,size_t bytes,int lgrp_hint)2992 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2993   // To make NUMA and large pages more robust when both enabled, we need to ease
2994   // the requirements on where the memory should be allocated. MPOL_BIND is the
2995   // default policy and it will force memory to be allocated on the specified
2996   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2997   // the specified node, but will not force it. Using this policy will prevent
2998   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2999   // free large pages.
3000   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
3001   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
3002 }
3003 
numa_topology_changed()3004 bool os::numa_topology_changed() { return false; }
3005 
numa_get_groups_num()3006 size_t os::numa_get_groups_num() {
3007   // Return just the number of nodes in which it's possible to allocate memory
3008   // (in numa terminology, configured nodes).
3009   return Linux::numa_num_configured_nodes();
3010 }
3011 
numa_get_group_id()3012 int os::numa_get_group_id() {
3013   int cpu_id = Linux::sched_getcpu();
3014   if (cpu_id != -1) {
3015     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3016     if (lgrp_id != -1) {
3017       return lgrp_id;
3018     }
3019   }
3020   return 0;
3021 }
3022 
numa_get_group_id_for_address(const void * address)3023 int os::numa_get_group_id_for_address(const void* address) {
3024   void** pages = const_cast<void**>(&address);
3025   int id = -1;
3026 
3027   if (os::Linux::numa_move_pages(0, 1, pages, NULL, &id, 0) == -1) {
3028     return -1;
3029   }
3030   if (id < 0) {
3031     return -1;
3032   }
3033   return id;
3034 }
3035 
get_existing_num_nodes()3036 int os::Linux::get_existing_num_nodes() {
3037   int node;
3038   int highest_node_number = Linux::numa_max_node();
3039   int num_nodes = 0;
3040 
3041   // Get the total number of nodes in the system including nodes without memory.
3042   for (node = 0; node <= highest_node_number; node++) {
3043     if (is_node_in_existing_nodes(node)) {
3044       num_nodes++;
3045     }
3046   }
3047   return num_nodes;
3048 }
3049 
numa_get_leaf_groups(int * ids,size_t size)3050 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3051   int highest_node_number = Linux::numa_max_node();
3052   size_t i = 0;
3053 
3054   // Map all node ids in which it is possible to allocate memory. Also nodes are
3055   // not always consecutively available, i.e. available from 0 to the highest
3056   // node number. If the nodes have been bound explicitly using numactl membind,
3057   // then allocate memory from those nodes only.
3058   for (int node = 0; node <= highest_node_number; node++) {
3059     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3060       ids[i++] = node;
3061     }
3062   }
3063   return i;
3064 }
3065 
get_page_info(char * start,page_info * info)3066 bool os::get_page_info(char *start, page_info* info) {
3067   return false;
3068 }
3069 
scan_pages(char * start,char * end,page_info * page_expected,page_info * page_found)3070 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3071                      page_info* page_found) {
3072   return end;
3073 }
3074 
3075 
sched_getcpu_syscall(void)3076 int os::Linux::sched_getcpu_syscall(void) {
3077   unsigned int cpu = 0;
3078   int retval = -1;
3079 
3080 #if defined(IA32)
3081   #ifndef SYS_getcpu
3082     #define SYS_getcpu 318
3083   #endif
3084   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3085 #elif defined(AMD64)
3086 // Unfortunately we have to bring all these macros here from vsyscall.h
3087 // to be able to compile on old linuxes.
3088   #define __NR_vgetcpu 2
3089   #define VSYSCALL_START (-10UL << 20)
3090   #define VSYSCALL_SIZE 1024
3091   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3092   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3093   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3094   retval = vgetcpu(&cpu, NULL, NULL);
3095 #endif
3096 
3097   return (retval == -1) ? retval : cpu;
3098 }
3099 
sched_getcpu_init()3100 void os::Linux::sched_getcpu_init() {
3101   // sched_getcpu() should be in libc.
3102   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3103                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3104 
3105   // If it's not, try a direct syscall.
3106   if (sched_getcpu() == -1) {
3107     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3108                                     (void*)&sched_getcpu_syscall));
3109   }
3110 
3111   if (sched_getcpu() == -1) {
3112     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3113   }
3114 }
3115 
3116 // Something to do with the numa-aware allocator needs these symbols
numa_warn(int number,char * where,...)3117 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
numa_error(char * where)3118 extern "C" JNIEXPORT void numa_error(char *where) { }
3119 
3120 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3121 // load symbol from base version instead.
libnuma_dlsym(void * handle,const char * name)3122 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3123   void *f = dlvsym(handle, name, "libnuma_1.1");
3124   if (f == NULL) {
3125     f = dlsym(handle, name);
3126   }
3127   return f;
3128 }
3129 
3130 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3131 // Return NULL if the symbol is not defined in this particular version.
libnuma_v2_dlsym(void * handle,const char * name)3132 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3133   return dlvsym(handle, name, "libnuma_1.2");
3134 }
3135 
libnuma_init()3136 bool os::Linux::libnuma_init() {
3137   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3138     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3139     if (handle != NULL) {
3140       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3141                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3142       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3143                                        libnuma_dlsym(handle, "numa_max_node")));
3144       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3145                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3146       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3147                                         libnuma_dlsym(handle, "numa_available")));
3148       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3149                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3150       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3151                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3152       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3153                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3154       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3155                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3156       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3157                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3158       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3159                                        libnuma_dlsym(handle, "numa_distance")));
3160       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3161                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3162       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3163                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3164       set_numa_move_pages(CAST_TO_FN_PTR(numa_move_pages_func_t,
3165                                          libnuma_dlsym(handle, "numa_move_pages")));
3166 
3167       if (numa_available() != -1) {
3168         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3169         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3170         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3171         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3172         set_numa_membind_bitmask(_numa_get_membind());
3173         // Create an index -> node mapping, since nodes are not always consecutive
3174         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3175         rebuild_nindex_to_node_map();
3176         // Create a cpu -> node mapping
3177         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3178         rebuild_cpu_to_node_map();
3179         return true;
3180       }
3181     }
3182   }
3183   return false;
3184 }
3185 
default_guard_size(os::ThreadType thr_type)3186 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3187   // Creating guard page is very expensive. Java thread has HotSpot
3188   // guard pages, only enable glibc guard page for non-Java threads.
3189   // (Remember: compiler thread is a Java thread, too!)
3190   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3191 }
3192 
rebuild_nindex_to_node_map()3193 void os::Linux::rebuild_nindex_to_node_map() {
3194   int highest_node_number = Linux::numa_max_node();
3195 
3196   nindex_to_node()->clear();
3197   for (int node = 0; node <= highest_node_number; node++) {
3198     if (Linux::is_node_in_existing_nodes(node)) {
3199       nindex_to_node()->append(node);
3200     }
3201   }
3202 }
3203 
3204 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3205 // The table is later used in get_node_by_cpu().
rebuild_cpu_to_node_map()3206 void os::Linux::rebuild_cpu_to_node_map() {
3207   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3208                               // in libnuma (possible values are starting from 16,
3209                               // and continuing up with every other power of 2, but less
3210                               // than the maximum number of CPUs supported by kernel), and
3211                               // is a subject to change (in libnuma version 2 the requirements
3212                               // are more reasonable) we'll just hardcode the number they use
3213                               // in the library.
3214   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3215 
3216   size_t cpu_num = processor_count();
3217   size_t cpu_map_size = NCPUS / BitsPerCLong;
3218   size_t cpu_map_valid_size =
3219     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3220 
3221   cpu_to_node()->clear();
3222   cpu_to_node()->at_grow(cpu_num - 1);
3223 
3224   size_t node_num = get_existing_num_nodes();
3225 
3226   int distance = 0;
3227   int closest_distance = INT_MAX;
3228   int closest_node = 0;
3229   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3230   for (size_t i = 0; i < node_num; i++) {
3231     // Check if node is configured (not a memory-less node). If it is not, find
3232     // the closest configured node. Check also if node is bound, i.e. it's allowed
3233     // to allocate memory from the node. If it's not allowed, map cpus in that node
3234     // to the closest node from which memory allocation is allowed.
3235     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3236         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3237       closest_distance = INT_MAX;
3238       // Check distance from all remaining nodes in the system. Ignore distance
3239       // from itself, from another non-configured node, and from another non-bound
3240       // node.
3241       for (size_t m = 0; m < node_num; m++) {
3242         if (m != i &&
3243             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3244             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3245           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3246           // If a closest node is found, update. There is always at least one
3247           // configured and bound node in the system so there is always at least
3248           // one node close.
3249           if (distance != 0 && distance < closest_distance) {
3250             closest_distance = distance;
3251             closest_node = nindex_to_node()->at(m);
3252           }
3253         }
3254       }
3255      } else {
3256        // Current node is already a configured node.
3257        closest_node = nindex_to_node()->at(i);
3258      }
3259 
3260     // Get cpus from the original node and map them to the closest node. If node
3261     // is a configured node (not a memory-less node), then original node and
3262     // closest node are the same.
3263     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3264       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3265         if (cpu_map[j] != 0) {
3266           for (size_t k = 0; k < BitsPerCLong; k++) {
3267             if (cpu_map[j] & (1UL << k)) {
3268               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3269             }
3270           }
3271         }
3272       }
3273     }
3274   }
3275   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3276 }
3277 
get_node_by_cpu(int cpu_id)3278 int os::Linux::get_node_by_cpu(int cpu_id) {
3279   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3280     return cpu_to_node()->at(cpu_id);
3281   }
3282   return -1;
3283 }
3284 
3285 GrowableArray<int>* os::Linux::_cpu_to_node;
3286 GrowableArray<int>* os::Linux::_nindex_to_node;
3287 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3288 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3289 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3290 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3291 os::Linux::numa_available_func_t os::Linux::_numa_available;
3292 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3293 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3294 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3295 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3296 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3297 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3298 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3299 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3300 os::Linux::numa_move_pages_func_t os::Linux::_numa_move_pages;
3301 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3302 unsigned long* os::Linux::_numa_all_nodes;
3303 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3304 struct bitmask* os::Linux::_numa_nodes_ptr;
3305 struct bitmask* os::Linux::_numa_interleave_bitmask;
3306 struct bitmask* os::Linux::_numa_membind_bitmask;
3307 
pd_uncommit_memory(char * addr,size_t size)3308 bool os::pd_uncommit_memory(char* addr, size_t size) {
3309   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3310                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3311   return res  != (uintptr_t) MAP_FAILED;
3312 }
3313 
get_stack_commited_bottom(address bottom,size_t size)3314 static address get_stack_commited_bottom(address bottom, size_t size) {
3315   address nbot = bottom;
3316   address ntop = bottom + size;
3317 
3318   size_t page_sz = os::vm_page_size();
3319   unsigned pages = size / page_sz;
3320 
3321   unsigned char vec[1];
3322   unsigned imin = 1, imax = pages + 1, imid;
3323   int mincore_return_value = 0;
3324 
3325   assert(imin <= imax, "Unexpected page size");
3326 
3327   while (imin < imax) {
3328     imid = (imax + imin) / 2;
3329     nbot = ntop - (imid * page_sz);
3330 
3331     // Use a trick with mincore to check whether the page is mapped or not.
3332     // mincore sets vec to 1 if page resides in memory and to 0 if page
3333     // is swapped output but if page we are asking for is unmapped
3334     // it returns -1,ENOMEM
3335     mincore_return_value = mincore(nbot, page_sz, vec);
3336 
3337     if (mincore_return_value == -1) {
3338       // Page is not mapped go up
3339       // to find first mapped page
3340       if (errno != EAGAIN) {
3341         assert(errno == ENOMEM, "Unexpected mincore errno");
3342         imax = imid;
3343       }
3344     } else {
3345       // Page is mapped go down
3346       // to find first not mapped page
3347       imin = imid + 1;
3348     }
3349   }
3350 
3351   nbot = nbot + page_sz;
3352 
3353   // Adjust stack bottom one page up if last checked page is not mapped
3354   if (mincore_return_value == -1) {
3355     nbot = nbot + page_sz;
3356   }
3357 
3358   return nbot;
3359 }
3360 
committed_in_range(address start,size_t size,address & committed_start,size_t & committed_size)3361 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3362   int mincore_return_value;
3363   const size_t stripe = 1024;  // query this many pages each time
3364   unsigned char vec[stripe + 1];
3365   // set a guard
3366   vec[stripe] = 'X';
3367 
3368   const size_t page_sz = os::vm_page_size();
3369   size_t pages = size / page_sz;
3370 
3371   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3372   assert(is_aligned(size, page_sz), "Size must be page aligned");
3373 
3374   committed_start = NULL;
3375 
3376   int loops = (pages + stripe - 1) / stripe;
3377   int committed_pages = 0;
3378   address loop_base = start;
3379   bool found_range = false;
3380 
3381   for (int index = 0; index < loops && !found_range; index ++) {
3382     assert(pages > 0, "Nothing to do");
3383     int pages_to_query = (pages >= stripe) ? stripe : pages;
3384     pages -= pages_to_query;
3385 
3386     // Get stable read
3387     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3388 
3389     // During shutdown, some memory goes away without properly notifying NMT,
3390     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3391     // Bailout and return as not committed for now.
3392     if (mincore_return_value == -1 && errno == ENOMEM) {
3393       return false;
3394     }
3395 
3396     assert(vec[stripe] == 'X', "overflow guard");
3397     assert(mincore_return_value == 0, "Range must be valid");
3398     // Process this stripe
3399     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3400       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3401         // End of current contiguous region
3402         if (committed_start != NULL) {
3403           found_range = true;
3404           break;
3405         }
3406       } else { // committed
3407         // Start of region
3408         if (committed_start == NULL) {
3409           committed_start = loop_base + page_sz * vecIdx;
3410         }
3411         committed_pages ++;
3412       }
3413     }
3414 
3415     loop_base += pages_to_query * page_sz;
3416   }
3417 
3418   if (committed_start != NULL) {
3419     assert(committed_pages > 0, "Must have committed region");
3420     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3421     assert(committed_start >= start && committed_start < start + size, "Out of range");
3422     committed_size = page_sz * committed_pages;
3423     return true;
3424   } else {
3425     assert(committed_pages == 0, "Should not have committed region");
3426     return false;
3427   }
3428 }
3429 
3430 
3431 // Linux uses a growable mapping for the stack, and if the mapping for
3432 // the stack guard pages is not removed when we detach a thread the
3433 // stack cannot grow beyond the pages where the stack guard was
3434 // mapped.  If at some point later in the process the stack expands to
3435 // that point, the Linux kernel cannot expand the stack any further
3436 // because the guard pages are in the way, and a segfault occurs.
3437 //
3438 // However, it's essential not to split the stack region by unmapping
3439 // a region (leaving a hole) that's already part of the stack mapping,
3440 // so if the stack mapping has already grown beyond the guard pages at
3441 // the time we create them, we have to truncate the stack mapping.
3442 // So, we need to know the extent of the stack mapping when
3443 // create_stack_guard_pages() is called.
3444 
3445 // We only need this for stacks that are growable: at the time of
3446 // writing thread stacks don't use growable mappings (i.e. those
3447 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3448 // only applies to the main thread.
3449 
3450 // If the (growable) stack mapping already extends beyond the point
3451 // where we're going to put our guard pages, truncate the mapping at
3452 // that point by munmap()ping it.  This ensures that when we later
3453 // munmap() the guard pages we don't leave a hole in the stack
3454 // mapping. This only affects the main/primordial thread
3455 
pd_create_stack_guard_pages(char * addr,size_t size)3456 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3457   if (os::is_primordial_thread()) {
3458     // As we manually grow stack up to bottom inside create_attached_thread(),
3459     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3460     // we don't need to do anything special.
3461     // Check it first, before calling heavy function.
3462     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3463     unsigned char vec[1];
3464 
3465     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3466       // Fallback to slow path on all errors, including EAGAIN
3467       stack_extent = (uintptr_t) get_stack_commited_bottom(
3468                                                            os::Linux::initial_thread_stack_bottom(),
3469                                                            (size_t)addr - stack_extent);
3470     }
3471 
3472     if (stack_extent < (uintptr_t)addr) {
3473       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3474     }
3475   }
3476 
3477   return os::commit_memory(addr, size, !ExecMem);
3478 }
3479 
3480 // If this is a growable mapping, remove the guard pages entirely by
3481 // munmap()ping them.  If not, just call uncommit_memory(). This only
3482 // affects the main/primordial thread, but guard against future OS changes.
3483 // It's safe to always unmap guard pages for primordial thread because we
3484 // always place it right after end of the mapped region.
3485 
remove_stack_guard_pages(char * addr,size_t size)3486 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3487   uintptr_t stack_extent, stack_base;
3488 
3489   if (os::is_primordial_thread()) {
3490     return ::munmap(addr, size) == 0;
3491   }
3492 
3493   return os::uncommit_memory(addr, size);
3494 }
3495 
3496 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3497 // at 'requested_addr'. If there are existing memory mappings at the same
3498 // location, however, they will be overwritten. If 'fixed' is false,
3499 // 'requested_addr' is only treated as a hint, the return value may or
3500 // may not start from the requested address. Unlike Linux mmap(), this
3501 // function returns NULL to indicate failure.
anon_mmap(char * requested_addr,size_t bytes,bool fixed)3502 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3503   char * addr;
3504   int flags;
3505 
3506   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3507   if (fixed) {
3508     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3509     flags |= MAP_FIXED;
3510   }
3511 
3512   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3513   // touch an uncommitted page. Otherwise, the read/write might
3514   // succeed if we have enough swap space to back the physical page.
3515   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3516                        flags, -1, 0);
3517 
3518   return addr == MAP_FAILED ? NULL : addr;
3519 }
3520 
3521 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3522 //   (req_addr != NULL) or with a given alignment.
3523 //  - bytes shall be a multiple of alignment.
3524 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3525 //  - alignment sets the alignment at which memory shall be allocated.
3526 //     It must be a multiple of allocation granularity.
3527 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3528 //  req_addr or NULL.
anon_mmap_aligned(size_t bytes,size_t alignment,char * req_addr)3529 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3530 
3531   size_t extra_size = bytes;
3532   if (req_addr == NULL && alignment > 0) {
3533     extra_size += alignment;
3534   }
3535 
3536   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3537     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3538     -1, 0);
3539   if (start == MAP_FAILED) {
3540     start = NULL;
3541   } else {
3542     if (req_addr != NULL) {
3543       if (start != req_addr) {
3544         ::munmap(start, extra_size);
3545         start = NULL;
3546       }
3547     } else {
3548       char* const start_aligned = align_up(start, alignment);
3549       char* const end_aligned = start_aligned + bytes;
3550       char* const end = start + extra_size;
3551       if (start_aligned > start) {
3552         ::munmap(start, start_aligned - start);
3553       }
3554       if (end_aligned < end) {
3555         ::munmap(end_aligned, end - end_aligned);
3556       }
3557       start = start_aligned;
3558     }
3559   }
3560   return start;
3561 }
3562 
anon_munmap(char * addr,size_t size)3563 static int anon_munmap(char * addr, size_t size) {
3564   return ::munmap(addr, size) == 0;
3565 }
3566 
pd_reserve_memory(size_t bytes,char * requested_addr,size_t alignment_hint)3567 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3568                             size_t alignment_hint) {
3569   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3570 }
3571 
pd_release_memory(char * addr,size_t size)3572 bool os::pd_release_memory(char* addr, size_t size) {
3573   return anon_munmap(addr, size);
3574 }
3575 
linux_mprotect(char * addr,size_t size,int prot)3576 static bool linux_mprotect(char* addr, size_t size, int prot) {
3577   // Linux wants the mprotect address argument to be page aligned.
3578   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3579 
3580   // According to SUSv3, mprotect() should only be used with mappings
3581   // established by mmap(), and mmap() always maps whole pages. Unaligned
3582   // 'addr' likely indicates problem in the VM (e.g. trying to change
3583   // protection of malloc'ed or statically allocated memory). Check the
3584   // caller if you hit this assert.
3585   assert(addr == bottom, "sanity check");
3586 
3587   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3588   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3589   return ::mprotect(bottom, size, prot) == 0;
3590 }
3591 
3592 // Set protections specified
protect_memory(char * addr,size_t bytes,ProtType prot,bool is_committed)3593 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3594                         bool is_committed) {
3595   unsigned int p = 0;
3596   switch (prot) {
3597   case MEM_PROT_NONE: p = PROT_NONE; break;
3598   case MEM_PROT_READ: p = PROT_READ; break;
3599   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3600   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3601   default:
3602     ShouldNotReachHere();
3603   }
3604   // is_committed is unused.
3605   return linux_mprotect(addr, bytes, p);
3606 }
3607 
guard_memory(char * addr,size_t size)3608 bool os::guard_memory(char* addr, size_t size) {
3609   return linux_mprotect(addr, size, PROT_NONE);
3610 }
3611 
unguard_memory(char * addr,size_t size)3612 bool os::unguard_memory(char* addr, size_t size) {
3613   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3614 }
3615 
transparent_huge_pages_sanity_check(bool warn,size_t page_size)3616 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3617                                                     size_t page_size) {
3618   bool result = false;
3619   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3620                  MAP_ANONYMOUS|MAP_PRIVATE,
3621                  -1, 0);
3622   if (p != MAP_FAILED) {
3623     void *aligned_p = align_up(p, page_size);
3624 
3625     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3626 
3627     munmap(p, page_size * 2);
3628   }
3629 
3630   if (warn && !result) {
3631     warning("TransparentHugePages is not supported by the operating system.");
3632   }
3633 
3634   return result;
3635 }
3636 
hugetlbfs_sanity_check(bool warn,size_t page_size)3637 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3638   bool result = false;
3639   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3640                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3641                  -1, 0);
3642 
3643   if (p != MAP_FAILED) {
3644     // We don't know if this really is a huge page or not.
3645     FILE *fp = fopen("/proc/self/maps", "r");
3646     if (fp) {
3647       while (!feof(fp)) {
3648         char chars[257];
3649         long x = 0;
3650         if (fgets(chars, sizeof(chars), fp)) {
3651           if (sscanf(chars, "%lx-%*x", &x) == 1
3652               && x == (long)p) {
3653             if (strstr (chars, "hugepage")) {
3654               result = true;
3655               break;
3656             }
3657           }
3658         }
3659       }
3660       fclose(fp);
3661     }
3662     munmap(p, page_size);
3663   }
3664 
3665   if (warn && !result) {
3666     warning("HugeTLBFS is not supported by the operating system.");
3667   }
3668 
3669   return result;
3670 }
3671 
3672 // From the coredump_filter documentation:
3673 //
3674 // - (bit 0) anonymous private memory
3675 // - (bit 1) anonymous shared memory
3676 // - (bit 2) file-backed private memory
3677 // - (bit 3) file-backed shared memory
3678 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3679 //           effective only if the bit 2 is cleared)
3680 // - (bit 5) hugetlb private memory
3681 // - (bit 6) hugetlb shared memory
3682 // - (bit 7) dax private memory
3683 // - (bit 8) dax shared memory
3684 //
set_coredump_filter(CoredumpFilterBit bit)3685 static void set_coredump_filter(CoredumpFilterBit bit) {
3686   FILE *f;
3687   long cdm;
3688 
3689   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3690     return;
3691   }
3692 
3693   if (fscanf(f, "%lx", &cdm) != 1) {
3694     fclose(f);
3695     return;
3696   }
3697 
3698   long saved_cdm = cdm;
3699   rewind(f);
3700   cdm |= bit;
3701 
3702   if (cdm != saved_cdm) {
3703     fprintf(f, "%#lx", cdm);
3704   }
3705 
3706   fclose(f);
3707 }
3708 
3709 // Large page support
3710 
3711 static size_t _large_page_size = 0;
3712 
find_large_page_size()3713 size_t os::Linux::find_large_page_size() {
3714   size_t large_page_size = 0;
3715 
3716   // large_page_size on Linux is used to round up heap size. x86 uses either
3717   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3718   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3719   // page as large as 256M.
3720   //
3721   // Here we try to figure out page size by parsing /proc/meminfo and looking
3722   // for a line with the following format:
3723   //    Hugepagesize:     2048 kB
3724   //
3725   // If we can't determine the value (e.g. /proc is not mounted, or the text
3726   // format has been changed), we'll use the largest page size supported by
3727   // the processor.
3728 
3729 #ifndef ZERO
3730   large_page_size =
3731     AARCH64_ONLY(2 * M)
3732     AMD64_ONLY(2 * M)
3733     ARM32_ONLY(2 * M)
3734     IA32_ONLY(4 * M)
3735     IA64_ONLY(256 * M)
3736     PPC_ONLY(4 * M)
3737     S390_ONLY(1 * M)
3738     SPARC_ONLY(4 * M);
3739 #endif // ZERO
3740 
3741   FILE *fp = fopen("/proc/meminfo", "r");
3742   if (fp) {
3743     while (!feof(fp)) {
3744       int x = 0;
3745       char buf[16];
3746       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3747         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3748           large_page_size = x * K;
3749           break;
3750         }
3751       } else {
3752         // skip to next line
3753         for (;;) {
3754           int ch = fgetc(fp);
3755           if (ch == EOF || ch == (int)'\n') break;
3756         }
3757       }
3758     }
3759     fclose(fp);
3760   }
3761 
3762   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3763     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3764             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3765             proper_unit_for_byte_size(large_page_size));
3766   }
3767 
3768   return large_page_size;
3769 }
3770 
setup_large_page_size()3771 size_t os::Linux::setup_large_page_size() {
3772   _large_page_size = Linux::find_large_page_size();
3773   const size_t default_page_size = (size_t)Linux::page_size();
3774   if (_large_page_size > default_page_size) {
3775     _page_sizes[0] = _large_page_size;
3776     _page_sizes[1] = default_page_size;
3777     _page_sizes[2] = 0;
3778   }
3779 
3780   return _large_page_size;
3781 }
3782 
setup_large_page_type(size_t page_size)3783 bool os::Linux::setup_large_page_type(size_t page_size) {
3784   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3785       FLAG_IS_DEFAULT(UseSHM) &&
3786       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3787 
3788     // The type of large pages has not been specified by the user.
3789 
3790     // Try UseHugeTLBFS and then UseSHM.
3791     UseHugeTLBFS = UseSHM = true;
3792 
3793     // Don't try UseTransparentHugePages since there are known
3794     // performance issues with it turned on. This might change in the future.
3795     UseTransparentHugePages = false;
3796   }
3797 
3798   if (UseTransparentHugePages) {
3799     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3800     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3801       UseHugeTLBFS = false;
3802       UseSHM = false;
3803       return true;
3804     }
3805     UseTransparentHugePages = false;
3806   }
3807 
3808   if (UseHugeTLBFS) {
3809     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3810     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3811       UseSHM = false;
3812       return true;
3813     }
3814     UseHugeTLBFS = false;
3815   }
3816 
3817   return UseSHM;
3818 }
3819 
large_page_init()3820 void os::large_page_init() {
3821   if (!UseLargePages &&
3822       !UseTransparentHugePages &&
3823       !UseHugeTLBFS &&
3824       !UseSHM) {
3825     // Not using large pages.
3826     return;
3827   }
3828 
3829   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3830     // The user explicitly turned off large pages.
3831     // Ignore the rest of the large pages flags.
3832     UseTransparentHugePages = false;
3833     UseHugeTLBFS = false;
3834     UseSHM = false;
3835     return;
3836   }
3837 
3838   size_t large_page_size = Linux::setup_large_page_size();
3839   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3840 
3841   set_coredump_filter(LARGEPAGES_BIT);
3842 }
3843 
3844 #ifndef SHM_HUGETLB
3845   #define SHM_HUGETLB 04000
3846 #endif
3847 
3848 #define shm_warning_format(format, ...)              \
3849   do {                                               \
3850     if (UseLargePages &&                             \
3851         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3852          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3853          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3854       warning(format, __VA_ARGS__);                  \
3855     }                                                \
3856   } while (0)
3857 
3858 #define shm_warning(str) shm_warning_format("%s", str)
3859 
3860 #define shm_warning_with_errno(str)                \
3861   do {                                             \
3862     int err = errno;                               \
3863     shm_warning_format(str " (error = %d)", err);  \
3864   } while (0)
3865 
shmat_with_alignment(int shmid,size_t bytes,size_t alignment)3866 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3867   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3868 
3869   if (!is_aligned(alignment, SHMLBA)) {
3870     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3871     return NULL;
3872   }
3873 
3874   // To ensure that we get 'alignment' aligned memory from shmat,
3875   // we pre-reserve aligned virtual memory and then attach to that.
3876 
3877   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3878   if (pre_reserved_addr == NULL) {
3879     // Couldn't pre-reserve aligned memory.
3880     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3881     return NULL;
3882   }
3883 
3884   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3885   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3886 
3887   if ((intptr_t)addr == -1) {
3888     int err = errno;
3889     shm_warning_with_errno("Failed to attach shared memory.");
3890 
3891     assert(err != EACCES, "Unexpected error");
3892     assert(err != EIDRM,  "Unexpected error");
3893     assert(err != EINVAL, "Unexpected error");
3894 
3895     // Since we don't know if the kernel unmapped the pre-reserved memory area
3896     // we can't unmap it, since that would potentially unmap memory that was
3897     // mapped from other threads.
3898     return NULL;
3899   }
3900 
3901   return addr;
3902 }
3903 
shmat_at_address(int shmid,char * req_addr)3904 static char* shmat_at_address(int shmid, char* req_addr) {
3905   if (!is_aligned(req_addr, SHMLBA)) {
3906     assert(false, "Requested address needs to be SHMLBA aligned");
3907     return NULL;
3908   }
3909 
3910   char* addr = (char*)shmat(shmid, req_addr, 0);
3911 
3912   if ((intptr_t)addr == -1) {
3913     shm_warning_with_errno("Failed to attach shared memory.");
3914     return NULL;
3915   }
3916 
3917   return addr;
3918 }
3919 
shmat_large_pages(int shmid,size_t bytes,size_t alignment,char * req_addr)3920 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3921   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3922   if (req_addr != NULL) {
3923     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3924     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3925     return shmat_at_address(shmid, req_addr);
3926   }
3927 
3928   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3929   // return large page size aligned memory addresses when req_addr == NULL.
3930   // However, if the alignment is larger than the large page size, we have
3931   // to manually ensure that the memory returned is 'alignment' aligned.
3932   if (alignment > os::large_page_size()) {
3933     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3934     return shmat_with_alignment(shmid, bytes, alignment);
3935   } else {
3936     return shmat_at_address(shmid, NULL);
3937   }
3938 }
3939 
reserve_memory_special_shm(size_t bytes,size_t alignment,char * req_addr,bool exec)3940 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3941                                             char* req_addr, bool exec) {
3942   // "exec" is passed in but not used.  Creating the shared image for
3943   // the code cache doesn't have an SHM_X executable permission to check.
3944   assert(UseLargePages && UseSHM, "only for SHM large pages");
3945   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3946   assert(is_aligned(req_addr, alignment), "Unaligned address");
3947 
3948   if (!is_aligned(bytes, os::large_page_size())) {
3949     return NULL; // Fallback to small pages.
3950   }
3951 
3952   // Create a large shared memory region to attach to based on size.
3953   // Currently, size is the total size of the heap.
3954   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3955   if (shmid == -1) {
3956     // Possible reasons for shmget failure:
3957     // 1. shmmax is too small for Java heap.
3958     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3959     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3960     // 2. not enough large page memory.
3961     //    > check available large pages: cat /proc/meminfo
3962     //    > increase amount of large pages:
3963     //          echo new_value > /proc/sys/vm/nr_hugepages
3964     //      Note 1: different Linux may use different name for this property,
3965     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3966     //      Note 2: it's possible there's enough physical memory available but
3967     //            they are so fragmented after a long run that they can't
3968     //            coalesce into large pages. Try to reserve large pages when
3969     //            the system is still "fresh".
3970     shm_warning_with_errno("Failed to reserve shared memory.");
3971     return NULL;
3972   }
3973 
3974   // Attach to the region.
3975   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3976 
3977   // Remove shmid. If shmat() is successful, the actual shared memory segment
3978   // will be deleted when it's detached by shmdt() or when the process
3979   // terminates. If shmat() is not successful this will remove the shared
3980   // segment immediately.
3981   shmctl(shmid, IPC_RMID, NULL);
3982 
3983   return addr;
3984 }
3985 
warn_on_large_pages_failure(char * req_addr,size_t bytes,int error)3986 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3987                                         int error) {
3988   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3989 
3990   bool warn_on_failure = UseLargePages &&
3991       (!FLAG_IS_DEFAULT(UseLargePages) ||
3992        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3993        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3994 
3995   if (warn_on_failure) {
3996     char msg[128];
3997     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3998                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3999     warning("%s", msg);
4000   }
4001 }
4002 
reserve_memory_special_huge_tlbfs_only(size_t bytes,char * req_addr,bool exec)4003 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
4004                                                         char* req_addr,
4005                                                         bool exec) {
4006   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4007   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
4008   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
4009 
4010   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4011   char* addr = (char*)::mmap(req_addr, bytes, prot,
4012                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
4013                              -1, 0);
4014 
4015   if (addr == MAP_FAILED) {
4016     warn_on_large_pages_failure(req_addr, bytes, errno);
4017     return NULL;
4018   }
4019 
4020   assert(is_aligned(addr, os::large_page_size()), "Must be");
4021 
4022   return addr;
4023 }
4024 
4025 // Reserve memory using mmap(MAP_HUGETLB).
4026 //  - bytes shall be a multiple of alignment.
4027 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4028 //  - alignment sets the alignment at which memory shall be allocated.
4029 //     It must be a multiple of allocation granularity.
4030 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4031 //  req_addr or NULL.
reserve_memory_special_huge_tlbfs_mixed(size_t bytes,size_t alignment,char * req_addr,bool exec)4032 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4033                                                          size_t alignment,
4034                                                          char* req_addr,
4035                                                          bool exec) {
4036   size_t large_page_size = os::large_page_size();
4037   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4038 
4039   assert(is_aligned(req_addr, alignment), "Must be");
4040   assert(is_aligned(bytes, alignment), "Must be");
4041 
4042   // First reserve - but not commit - the address range in small pages.
4043   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4044 
4045   if (start == NULL) {
4046     return NULL;
4047   }
4048 
4049   assert(is_aligned(start, alignment), "Must be");
4050 
4051   char* end = start + bytes;
4052 
4053   // Find the regions of the allocated chunk that can be promoted to large pages.
4054   char* lp_start = align_up(start, large_page_size);
4055   char* lp_end   = align_down(end, large_page_size);
4056 
4057   size_t lp_bytes = lp_end - lp_start;
4058 
4059   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4060 
4061   if (lp_bytes == 0) {
4062     // The mapped region doesn't even span the start and the end of a large page.
4063     // Fall back to allocate a non-special area.
4064     ::munmap(start, end - start);
4065     return NULL;
4066   }
4067 
4068   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4069 
4070   void* result;
4071 
4072   // Commit small-paged leading area.
4073   if (start != lp_start) {
4074     result = ::mmap(start, lp_start - start, prot,
4075                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4076                     -1, 0);
4077     if (result == MAP_FAILED) {
4078       ::munmap(lp_start, end - lp_start);
4079       return NULL;
4080     }
4081   }
4082 
4083   // Commit large-paged area.
4084   result = ::mmap(lp_start, lp_bytes, prot,
4085                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4086                   -1, 0);
4087   if (result == MAP_FAILED) {
4088     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4089     // If the mmap above fails, the large pages region will be unmapped and we
4090     // have regions before and after with small pages. Release these regions.
4091     //
4092     // |  mapped  |  unmapped  |  mapped  |
4093     // ^          ^            ^          ^
4094     // start      lp_start     lp_end     end
4095     //
4096     ::munmap(start, lp_start - start);
4097     ::munmap(lp_end, end - lp_end);
4098     return NULL;
4099   }
4100 
4101   // Commit small-paged trailing area.
4102   if (lp_end != end) {
4103     result = ::mmap(lp_end, end - lp_end, prot,
4104                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4105                     -1, 0);
4106     if (result == MAP_FAILED) {
4107       ::munmap(start, lp_end - start);
4108       return NULL;
4109     }
4110   }
4111 
4112   return start;
4113 }
4114 
reserve_memory_special_huge_tlbfs(size_t bytes,size_t alignment,char * req_addr,bool exec)4115 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4116                                                    size_t alignment,
4117                                                    char* req_addr,
4118                                                    bool exec) {
4119   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4120   assert(is_aligned(req_addr, alignment), "Must be");
4121   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4122   assert(is_power_of_2(os::large_page_size()), "Must be");
4123   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4124 
4125   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4126     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4127   } else {
4128     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4129   }
4130 }
4131 
reserve_memory_special(size_t bytes,size_t alignment,char * req_addr,bool exec)4132 char* os::reserve_memory_special(size_t bytes, size_t alignment,
4133                                  char* req_addr, bool exec) {
4134   assert(UseLargePages, "only for large pages");
4135 
4136   char* addr;
4137   if (UseSHM) {
4138     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4139   } else {
4140     assert(UseHugeTLBFS, "must be");
4141     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4142   }
4143 
4144   if (addr != NULL) {
4145     if (UseNUMAInterleaving) {
4146       numa_make_global(addr, bytes);
4147     }
4148 
4149     // The memory is committed
4150     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4151   }
4152 
4153   return addr;
4154 }
4155 
release_memory_special_shm(char * base,size_t bytes)4156 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4157   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4158   return shmdt(base) == 0;
4159 }
4160 
release_memory_special_huge_tlbfs(char * base,size_t bytes)4161 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4162   return pd_release_memory(base, bytes);
4163 }
4164 
release_memory_special(char * base,size_t bytes)4165 bool os::release_memory_special(char* base, size_t bytes) {
4166   bool res;
4167   if (MemTracker::tracking_level() > NMT_minimal) {
4168     Tracker tkr(Tracker::release);
4169     res = os::Linux::release_memory_special_impl(base, bytes);
4170     if (res) {
4171       tkr.record((address)base, bytes);
4172     }
4173 
4174   } else {
4175     res = os::Linux::release_memory_special_impl(base, bytes);
4176   }
4177   return res;
4178 }
4179 
release_memory_special_impl(char * base,size_t bytes)4180 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
4181   assert(UseLargePages, "only for large pages");
4182   bool res;
4183 
4184   if (UseSHM) {
4185     res = os::Linux::release_memory_special_shm(base, bytes);
4186   } else {
4187     assert(UseHugeTLBFS, "must be");
4188     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4189   }
4190   return res;
4191 }
4192 
large_page_size()4193 size_t os::large_page_size() {
4194   return _large_page_size;
4195 }
4196 
4197 // With SysV SHM the entire memory region must be allocated as shared
4198 // memory.
4199 // HugeTLBFS allows application to commit large page memory on demand.
4200 // However, when committing memory with HugeTLBFS fails, the region
4201 // that was supposed to be committed will lose the old reservation
4202 // and allow other threads to steal that memory region. Because of this
4203 // behavior we can't commit HugeTLBFS memory.
can_commit_large_page_memory()4204 bool os::can_commit_large_page_memory() {
4205   return UseTransparentHugePages;
4206 }
4207 
can_execute_large_page_memory()4208 bool os::can_execute_large_page_memory() {
4209   return UseTransparentHugePages || UseHugeTLBFS;
4210 }
4211 
pd_attempt_reserve_memory_at(size_t bytes,char * requested_addr,int file_desc)4212 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4213   assert(file_desc >= 0, "file_desc is not valid");
4214   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4215   if (result != NULL) {
4216     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4217       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4218     }
4219   }
4220   return result;
4221 }
4222 
4223 // Reserve memory at an arbitrary address, only if that area is
4224 // available (and not reserved for something else).
4225 
pd_attempt_reserve_memory_at(size_t bytes,char * requested_addr)4226 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4227   // Assert only that the size is a multiple of the page size, since
4228   // that's all that mmap requires, and since that's all we really know
4229   // about at this low abstraction level.  If we need higher alignment,
4230   // we can either pass an alignment to this method or verify alignment
4231   // in one of the methods further up the call chain.  See bug 5044738.
4232   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4233 
4234   // Repeatedly allocate blocks until the block is allocated at the
4235   // right spot.
4236 
4237   // Linux mmap allows caller to pass an address as hint; give it a try first,
4238   // if kernel honors the hint then we can return immediately.
4239   char * addr = anon_mmap(requested_addr, bytes, false);
4240   if (addr == requested_addr) {
4241     return requested_addr;
4242   }
4243 
4244   if (addr != NULL) {
4245     // mmap() is successful but it fails to reserve at the requested address
4246     anon_munmap(addr, bytes);
4247   }
4248 
4249   return NULL;
4250 }
4251 
4252 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
infinite_sleep()4253 void os::infinite_sleep() {
4254   while (true) {    // sleep forever ...
4255     ::sleep(100);   // ... 100 seconds at a time
4256   }
4257 }
4258 
4259 // Used to convert frequent JVM_Yield() to nops
dont_yield()4260 bool os::dont_yield() {
4261   return DontYieldALot;
4262 }
4263 
4264 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4265 // actually give up the CPU. Since skip buddy (v2.6.28):
4266 //
4267 // * Sets the yielding task as skip buddy for current CPU's run queue.
4268 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4269 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4270 //
4271 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4272 // getting re-scheduled immediately.
4273 //
naked_yield()4274 void os::naked_yield() {
4275   sched_yield();
4276 }
4277 
4278 ////////////////////////////////////////////////////////////////////////////////
4279 // thread priority support
4280 
4281 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4282 // only supports dynamic priority, static priority must be zero. For real-time
4283 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4284 // However, for large multi-threaded applications, SCHED_RR is not only slower
4285 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4286 // of 5 runs - Sep 2005).
4287 //
4288 // The following code actually changes the niceness of kernel-thread/LWP. It
4289 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4290 // not the entire user process, and user level threads are 1:1 mapped to kernel
4291 // threads. It has always been the case, but could change in the future. For
4292 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4293 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4294 // (e.g., root privilege or CAP_SYS_NICE capability).
4295 
4296 int os::java_to_os_priority[CriticalPriority + 1] = {
4297   19,              // 0 Entry should never be used
4298 
4299    4,              // 1 MinPriority
4300    3,              // 2
4301    2,              // 3
4302 
4303    1,              // 4
4304    0,              // 5 NormPriority
4305   -1,              // 6
4306 
4307   -2,              // 7
4308   -3,              // 8
4309   -4,              // 9 NearMaxPriority
4310 
4311   -5,              // 10 MaxPriority
4312 
4313   -5               // 11 CriticalPriority
4314 };
4315 
prio_init()4316 static int prio_init() {
4317   if (ThreadPriorityPolicy == 1) {
4318     if (geteuid() != 0) {
4319       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4320         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4321                 "e.g., being the root user. If the necessary permission is not " \
4322                 "possessed, changes to priority will be silently ignored.");
4323       }
4324     }
4325   }
4326   if (UseCriticalJavaThreadPriority) {
4327     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4328   }
4329   return 0;
4330 }
4331 
set_native_priority(Thread * thread,int newpri)4332 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4333   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4334 
4335   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4336   return (ret == 0) ? OS_OK : OS_ERR;
4337 }
4338 
get_native_priority(const Thread * const thread,int * priority_ptr)4339 OSReturn os::get_native_priority(const Thread* const thread,
4340                                  int *priority_ptr) {
4341   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4342     *priority_ptr = java_to_os_priority[NormPriority];
4343     return OS_OK;
4344   }
4345 
4346   errno = 0;
4347   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4348   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4349 }
4350 
4351 ////////////////////////////////////////////////////////////////////////////////
4352 // suspend/resume support
4353 
4354 //  The low-level signal-based suspend/resume support is a remnant from the
4355 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4356 //  within hotspot. Currently used by JFR's OSThreadSampler
4357 //
4358 //  The remaining code is greatly simplified from the more general suspension
4359 //  code that used to be used.
4360 //
4361 //  The protocol is quite simple:
4362 //  - suspend:
4363 //      - sends a signal to the target thread
4364 //      - polls the suspend state of the osthread using a yield loop
4365 //      - target thread signal handler (SR_handler) sets suspend state
4366 //        and blocks in sigsuspend until continued
4367 //  - resume:
4368 //      - sets target osthread state to continue
4369 //      - sends signal to end the sigsuspend loop in the SR_handler
4370 //
4371 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4372 //  but is checked for NULL in SR_handler as a thread termination indicator.
4373 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4374 //
4375 //  Note that resume_clear_context() and suspend_save_context() are needed
4376 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4377 //  which in part is used by:
4378 //    - Forte Analyzer: AsyncGetCallTrace()
4379 //    - StackBanging: get_frame_at_stack_banging_point()
4380 
resume_clear_context(OSThread * osthread)4381 static void resume_clear_context(OSThread *osthread) {
4382   osthread->set_ucontext(NULL);
4383   osthread->set_siginfo(NULL);
4384 }
4385 
suspend_save_context(OSThread * osthread,siginfo_t * siginfo,ucontext_t * context)4386 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4387                                  ucontext_t* context) {
4388   osthread->set_ucontext(context);
4389   osthread->set_siginfo(siginfo);
4390 }
4391 
4392 // Handler function invoked when a thread's execution is suspended or
4393 // resumed. We have to be careful that only async-safe functions are
4394 // called here (Note: most pthread functions are not async safe and
4395 // should be avoided.)
4396 //
4397 // Note: sigwait() is a more natural fit than sigsuspend() from an
4398 // interface point of view, but sigwait() prevents the signal hander
4399 // from being run. libpthread would get very confused by not having
4400 // its signal handlers run and prevents sigwait()'s use with the
4401 // mutex granting granting signal.
4402 //
4403 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4404 //
SR_handler(int sig,siginfo_t * siginfo,ucontext_t * context)4405 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4406   // Save and restore errno to avoid confusing native code with EINTR
4407   // after sigsuspend.
4408   int old_errno = errno;
4409 
4410   Thread* thread = Thread::current_or_null_safe();
4411   assert(thread != NULL, "Missing current thread in SR_handler");
4412 
4413   // On some systems we have seen signal delivery get "stuck" until the signal
4414   // mask is changed as part of thread termination. Check that the current thread
4415   // has not already terminated (via SR_lock()) - else the following assertion
4416   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4417   // destructor has completed.
4418 
4419   if (thread->SR_lock() == NULL) {
4420     return;
4421   }
4422 
4423   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4424 
4425   OSThread* osthread = thread->osthread();
4426 
4427   os::SuspendResume::State current = osthread->sr.state();
4428   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4429     suspend_save_context(osthread, siginfo, context);
4430 
4431     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4432     os::SuspendResume::State state = osthread->sr.suspended();
4433     if (state == os::SuspendResume::SR_SUSPENDED) {
4434       sigset_t suspend_set;  // signals for sigsuspend()
4435       sigemptyset(&suspend_set);
4436       // get current set of blocked signals and unblock resume signal
4437       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4438       sigdelset(&suspend_set, SR_signum);
4439 
4440       sr_semaphore.signal();
4441       // wait here until we are resumed
4442       while (1) {
4443         sigsuspend(&suspend_set);
4444 
4445         os::SuspendResume::State result = osthread->sr.running();
4446         if (result == os::SuspendResume::SR_RUNNING) {
4447           sr_semaphore.signal();
4448           break;
4449         }
4450       }
4451 
4452     } else if (state == os::SuspendResume::SR_RUNNING) {
4453       // request was cancelled, continue
4454     } else {
4455       ShouldNotReachHere();
4456     }
4457 
4458     resume_clear_context(osthread);
4459   } else if (current == os::SuspendResume::SR_RUNNING) {
4460     // request was cancelled, continue
4461   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4462     // ignore
4463   } else {
4464     // ignore
4465   }
4466 
4467   errno = old_errno;
4468 }
4469 
SR_initialize()4470 static int SR_initialize() {
4471   struct sigaction act;
4472   char *s;
4473 
4474   // Get signal number to use for suspend/resume
4475   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4476     int sig = ::strtol(s, 0, 10);
4477     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4478         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4479       SR_signum = sig;
4480     } else {
4481       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4482               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4483     }
4484   }
4485 
4486   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4487          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4488 
4489   sigemptyset(&SR_sigset);
4490   sigaddset(&SR_sigset, SR_signum);
4491 
4492   // Set up signal handler for suspend/resume
4493   act.sa_flags = SA_RESTART|SA_SIGINFO;
4494   act.sa_handler = (void (*)(int)) SR_handler;
4495 
4496   // SR_signum is blocked by default.
4497   // 4528190 - We also need to block pthread restart signal (32 on all
4498   // supported Linux platforms). Note that LinuxThreads need to block
4499   // this signal for all threads to work properly. So we don't have
4500   // to use hard-coded signal number when setting up the mask.
4501   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4502 
4503   if (sigaction(SR_signum, &act, 0) == -1) {
4504     return -1;
4505   }
4506 
4507   // Save signal flag
4508   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4509   return 0;
4510 }
4511 
sr_notify(OSThread * osthread)4512 static int sr_notify(OSThread* osthread) {
4513   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4514   assert_status(status == 0, status, "pthread_kill");
4515   return status;
4516 }
4517 
4518 // "Randomly" selected value for how long we want to spin
4519 // before bailing out on suspending a thread, also how often
4520 // we send a signal to a thread we want to resume
4521 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4522 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4523 
4524 // returns true on success and false on error - really an error is fatal
4525 // but this seems the normal response to library errors
do_suspend(OSThread * osthread)4526 static bool do_suspend(OSThread* osthread) {
4527   assert(osthread->sr.is_running(), "thread should be running");
4528   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4529 
4530   // mark as suspended and send signal
4531   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4532     // failed to switch, state wasn't running?
4533     ShouldNotReachHere();
4534     return false;
4535   }
4536 
4537   if (sr_notify(osthread) != 0) {
4538     ShouldNotReachHere();
4539   }
4540 
4541   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4542   while (true) {
4543     if (sr_semaphore.timedwait(2)) {
4544       break;
4545     } else {
4546       // timeout
4547       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4548       if (cancelled == os::SuspendResume::SR_RUNNING) {
4549         return false;
4550       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4551         // make sure that we consume the signal on the semaphore as well
4552         sr_semaphore.wait();
4553         break;
4554       } else {
4555         ShouldNotReachHere();
4556         return false;
4557       }
4558     }
4559   }
4560 
4561   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4562   return true;
4563 }
4564 
do_resume(OSThread * osthread)4565 static void do_resume(OSThread* osthread) {
4566   assert(osthread->sr.is_suspended(), "thread should be suspended");
4567   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4568 
4569   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4570     // failed to switch to WAKEUP_REQUEST
4571     ShouldNotReachHere();
4572     return;
4573   }
4574 
4575   while (true) {
4576     if (sr_notify(osthread) == 0) {
4577       if (sr_semaphore.timedwait(2)) {
4578         if (osthread->sr.is_running()) {
4579           return;
4580         }
4581       }
4582     } else {
4583       ShouldNotReachHere();
4584     }
4585   }
4586 
4587   guarantee(osthread->sr.is_running(), "Must be running!");
4588 }
4589 
4590 ///////////////////////////////////////////////////////////////////////////////////
4591 // signal handling (except suspend/resume)
4592 
4593 // This routine may be used by user applications as a "hook" to catch signals.
4594 // The user-defined signal handler must pass unrecognized signals to this
4595 // routine, and if it returns true (non-zero), then the signal handler must
4596 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4597 // routine will never retun false (zero), but instead will execute a VM panic
4598 // routine kill the process.
4599 //
4600 // If this routine returns false, it is OK to call it again.  This allows
4601 // the user-defined signal handler to perform checks either before or after
4602 // the VM performs its own checks.  Naturally, the user code would be making
4603 // a serious error if it tried to handle an exception (such as a null check
4604 // or breakpoint) that the VM was generating for its own correct operation.
4605 //
4606 // This routine may recognize any of the following kinds of signals:
4607 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4608 // It should be consulted by handlers for any of those signals.
4609 //
4610 // The caller of this routine must pass in the three arguments supplied
4611 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4612 // field of the structure passed to sigaction().  This routine assumes that
4613 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4614 //
4615 // Note that the VM will print warnings if it detects conflicting signal
4616 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4617 //
4618 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4619                                                  siginfo_t* siginfo,
4620                                                  void* ucontext,
4621                                                  int abort_if_unrecognized);
4622 
signalHandler(int sig,siginfo_t * info,void * uc)4623 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4624   assert(info != NULL && uc != NULL, "it must be old kernel");
4625   int orig_errno = errno;  // Preserve errno value over signal handler.
4626   JVM_handle_linux_signal(sig, info, uc, true);
4627   errno = orig_errno;
4628 }
4629 
4630 
4631 // This boolean allows users to forward their own non-matching signals
4632 // to JVM_handle_linux_signal, harmlessly.
4633 bool os::Linux::signal_handlers_are_installed = false;
4634 
4635 // For signal-chaining
4636 bool os::Linux::libjsig_is_loaded = false;
4637 typedef struct sigaction *(*get_signal_t)(int);
4638 get_signal_t os::Linux::get_signal_action = NULL;
4639 
get_chained_signal_action(int sig)4640 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4641   struct sigaction *actp = NULL;
4642 
4643   if (libjsig_is_loaded) {
4644     // Retrieve the old signal handler from libjsig
4645     actp = (*get_signal_action)(sig);
4646   }
4647   if (actp == NULL) {
4648     // Retrieve the preinstalled signal handler from jvm
4649     actp = os::Posix::get_preinstalled_handler(sig);
4650   }
4651 
4652   return actp;
4653 }
4654 
call_chained_handler(struct sigaction * actp,int sig,siginfo_t * siginfo,void * context)4655 static bool call_chained_handler(struct sigaction *actp, int sig,
4656                                  siginfo_t *siginfo, void *context) {
4657   // Call the old signal handler
4658   if (actp->sa_handler == SIG_DFL) {
4659     // It's more reasonable to let jvm treat it as an unexpected exception
4660     // instead of taking the default action.
4661     return false;
4662   } else if (actp->sa_handler != SIG_IGN) {
4663     if ((actp->sa_flags & SA_NODEFER) == 0) {
4664       // automaticlly block the signal
4665       sigaddset(&(actp->sa_mask), sig);
4666     }
4667 
4668     sa_handler_t hand = NULL;
4669     sa_sigaction_t sa = NULL;
4670     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4671     // retrieve the chained handler
4672     if (siginfo_flag_set) {
4673       sa = actp->sa_sigaction;
4674     } else {
4675       hand = actp->sa_handler;
4676     }
4677 
4678     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4679       actp->sa_handler = SIG_DFL;
4680     }
4681 
4682     // try to honor the signal mask
4683     sigset_t oset;
4684     sigemptyset(&oset);
4685     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4686 
4687     // call into the chained handler
4688     if (siginfo_flag_set) {
4689       (*sa)(sig, siginfo, context);
4690     } else {
4691       (*hand)(sig);
4692     }
4693 
4694     // restore the signal mask
4695     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4696   }
4697   // Tell jvm's signal handler the signal is taken care of.
4698   return true;
4699 }
4700 
chained_handler(int sig,siginfo_t * siginfo,void * context)4701 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4702   bool chained = false;
4703   // signal-chaining
4704   if (UseSignalChaining) {
4705     struct sigaction *actp = get_chained_signal_action(sig);
4706     if (actp != NULL) {
4707       chained = call_chained_handler(actp, sig, siginfo, context);
4708     }
4709   }
4710   return chained;
4711 }
4712 
4713 // for diagnostic
4714 int sigflags[NSIG];
4715 
get_our_sigflags(int sig)4716 int os::Linux::get_our_sigflags(int sig) {
4717   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4718   return sigflags[sig];
4719 }
4720 
set_our_sigflags(int sig,int flags)4721 void os::Linux::set_our_sigflags(int sig, int flags) {
4722   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4723   if (sig > 0 && sig < NSIG) {
4724     sigflags[sig] = flags;
4725   }
4726 }
4727 
set_signal_handler(int sig,bool set_installed)4728 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4729   // Check for overwrite.
4730   struct sigaction oldAct;
4731   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4732 
4733   void* oldhand = oldAct.sa_sigaction
4734                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4735                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4736   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4737       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4738       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4739     if (AllowUserSignalHandlers || !set_installed) {
4740       // Do not overwrite; user takes responsibility to forward to us.
4741       return;
4742     } else if (UseSignalChaining) {
4743       // save the old handler in jvm
4744       os::Posix::save_preinstalled_handler(sig, oldAct);
4745       // libjsig also interposes the sigaction() call below and saves the
4746       // old sigaction on it own.
4747     } else {
4748       fatal("Encountered unexpected pre-existing sigaction handler "
4749             "%#lx for signal %d.", (long)oldhand, sig);
4750     }
4751   }
4752 
4753   struct sigaction sigAct;
4754   sigfillset(&(sigAct.sa_mask));
4755   sigAct.sa_handler = SIG_DFL;
4756   if (!set_installed) {
4757     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4758   } else {
4759     sigAct.sa_sigaction = signalHandler;
4760     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4761   }
4762   // Save flags, which are set by ours
4763   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4764   sigflags[sig] = sigAct.sa_flags;
4765 
4766   int ret = sigaction(sig, &sigAct, &oldAct);
4767   assert(ret == 0, "check");
4768 
4769   void* oldhand2  = oldAct.sa_sigaction
4770                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4771                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4772   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4773 }
4774 
4775 // install signal handlers for signals that HotSpot needs to
4776 // handle in order to support Java-level exception handling.
4777 
install_signal_handlers()4778 void os::Linux::install_signal_handlers() {
4779   if (!signal_handlers_are_installed) {
4780     signal_handlers_are_installed = true;
4781 
4782     // signal-chaining
4783     typedef void (*signal_setting_t)();
4784     signal_setting_t begin_signal_setting = NULL;
4785     signal_setting_t end_signal_setting = NULL;
4786     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4787                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4788     if (begin_signal_setting != NULL) {
4789       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4790                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4791       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4792                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4793       libjsig_is_loaded = true;
4794       assert(UseSignalChaining, "should enable signal-chaining");
4795     }
4796     if (libjsig_is_loaded) {
4797       // Tell libjsig jvm is setting signal handlers
4798       (*begin_signal_setting)();
4799     }
4800 
4801     set_signal_handler(SIGSEGV, true);
4802     set_signal_handler(SIGPIPE, true);
4803     set_signal_handler(SIGBUS, true);
4804     set_signal_handler(SIGILL, true);
4805     set_signal_handler(SIGFPE, true);
4806 #if defined(PPC64)
4807     set_signal_handler(SIGTRAP, true);
4808 #endif
4809     set_signal_handler(SIGXFSZ, true);
4810 
4811     if (libjsig_is_loaded) {
4812       // Tell libjsig jvm finishes setting signal handlers
4813       (*end_signal_setting)();
4814     }
4815 
4816     // We don't activate signal checker if libjsig is in place, we trust ourselves
4817     // and if UserSignalHandler is installed all bets are off.
4818     // Log that signal checking is off only if -verbose:jni is specified.
4819     if (CheckJNICalls) {
4820       if (libjsig_is_loaded) {
4821         log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
4822         check_signals = false;
4823       }
4824       if (AllowUserSignalHandlers) {
4825         log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4826         check_signals = false;
4827       }
4828     }
4829   }
4830 }
4831 
4832 // This is the fastest way to get thread cpu time on Linux.
4833 // Returns cpu time (user+sys) for any thread, not only for current.
4834 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4835 // It might work on 2.6.10+ with a special kernel/glibc patch.
4836 // For reference, please, see IEEE Std 1003.1-2004:
4837 //   http://www.unix.org/single_unix_specification
4838 
fast_thread_cpu_time(clockid_t clockid)4839 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4840   struct timespec tp;
4841   int rc = os::Posix::clock_gettime(clockid, &tp);
4842   assert(rc == 0, "clock_gettime is expected to return 0 code");
4843 
4844   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4845 }
4846 
4847 /////
4848 // glibc on Linux platform uses non-documented flag
4849 // to indicate, that some special sort of signal
4850 // trampoline is used.
4851 // We will never set this flag, and we should
4852 // ignore this flag in our diagnostic
4853 #ifdef SIGNIFICANT_SIGNAL_MASK
4854   #undef SIGNIFICANT_SIGNAL_MASK
4855 #endif
4856 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4857 
get_signal_handler_name(address handler,char * buf,int buflen)4858 static const char* get_signal_handler_name(address handler,
4859                                            char* buf, int buflen) {
4860   int offset = 0;
4861   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4862   if (found) {
4863     // skip directory names
4864     const char *p1, *p2;
4865     p1 = buf;
4866     size_t len = strlen(os::file_separator());
4867     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4868     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4869   } else {
4870     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4871   }
4872   return buf;
4873 }
4874 
print_signal_handler(outputStream * st,int sig,char * buf,size_t buflen)4875 static void print_signal_handler(outputStream* st, int sig,
4876                                  char* buf, size_t buflen) {
4877   struct sigaction sa;
4878 
4879   sigaction(sig, NULL, &sa);
4880 
4881   // See comment for SIGNIFICANT_SIGNAL_MASK define
4882   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4883 
4884   st->print("%s: ", os::exception_name(sig, buf, buflen));
4885 
4886   address handler = (sa.sa_flags & SA_SIGINFO)
4887     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4888     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4889 
4890   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4891     st->print("SIG_DFL");
4892   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4893     st->print("SIG_IGN");
4894   } else {
4895     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4896   }
4897 
4898   st->print(", sa_mask[0]=");
4899   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4900 
4901   address rh = VMError::get_resetted_sighandler(sig);
4902   // May be, handler was resetted by VMError?
4903   if (rh != NULL) {
4904     handler = rh;
4905     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4906   }
4907 
4908   st->print(", sa_flags=");
4909   os::Posix::print_sa_flags(st, sa.sa_flags);
4910 
4911   // Check: is it our handler?
4912   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4913       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4914     // It is our signal handler
4915     // check for flags, reset system-used one!
4916     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4917       st->print(
4918                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4919                 os::Linux::get_our_sigflags(sig));
4920     }
4921   }
4922   st->cr();
4923 }
4924 
4925 
4926 #define DO_SIGNAL_CHECK(sig)                      \
4927   do {                                            \
4928     if (!sigismember(&check_signal_done, sig)) {  \
4929       os::Linux::check_signal_handler(sig);       \
4930     }                                             \
4931   } while (0)
4932 
4933 // This method is a periodic task to check for misbehaving JNI applications
4934 // under CheckJNI, we can add any periodic checks here
4935 
run_periodic_checks()4936 void os::run_periodic_checks() {
4937   if (check_signals == false) return;
4938 
4939   // SEGV and BUS if overridden could potentially prevent
4940   // generation of hs*.log in the event of a crash, debugging
4941   // such a case can be very challenging, so we absolutely
4942   // check the following for a good measure:
4943   DO_SIGNAL_CHECK(SIGSEGV);
4944   DO_SIGNAL_CHECK(SIGILL);
4945   DO_SIGNAL_CHECK(SIGFPE);
4946   DO_SIGNAL_CHECK(SIGBUS);
4947   DO_SIGNAL_CHECK(SIGPIPE);
4948   DO_SIGNAL_CHECK(SIGXFSZ);
4949 #if defined(PPC64)
4950   DO_SIGNAL_CHECK(SIGTRAP);
4951 #endif
4952 
4953   // ReduceSignalUsage allows the user to override these handlers
4954   // see comments at the very top and jvm_md.h
4955   if (!ReduceSignalUsage) {
4956     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4957     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4958     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4959     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4960   }
4961 
4962   DO_SIGNAL_CHECK(SR_signum);
4963 }
4964 
4965 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4966 
4967 static os_sigaction_t os_sigaction = NULL;
4968 
check_signal_handler(int sig)4969 void os::Linux::check_signal_handler(int sig) {
4970   char buf[O_BUFLEN];
4971   address jvmHandler = NULL;
4972 
4973 
4974   struct sigaction act;
4975   if (os_sigaction == NULL) {
4976     // only trust the default sigaction, in case it has been interposed
4977     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4978     if (os_sigaction == NULL) return;
4979   }
4980 
4981   os_sigaction(sig, (struct sigaction*)NULL, &act);
4982 
4983 
4984   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4985 
4986   address thisHandler = (act.sa_flags & SA_SIGINFO)
4987     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4988     : CAST_FROM_FN_PTR(address, act.sa_handler);
4989 
4990 
4991   switch (sig) {
4992   case SIGSEGV:
4993   case SIGBUS:
4994   case SIGFPE:
4995   case SIGPIPE:
4996   case SIGILL:
4997   case SIGXFSZ:
4998     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4999     break;
5000 
5001   case SHUTDOWN1_SIGNAL:
5002   case SHUTDOWN2_SIGNAL:
5003   case SHUTDOWN3_SIGNAL:
5004   case BREAK_SIGNAL:
5005     jvmHandler = (address)user_handler();
5006     break;
5007 
5008   default:
5009     if (sig == SR_signum) {
5010       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5011     } else {
5012       return;
5013     }
5014     break;
5015   }
5016 
5017   if (thisHandler != jvmHandler) {
5018     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5019     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5020     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5021     // No need to check this sig any longer
5022     sigaddset(&check_signal_done, sig);
5023     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5024     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5025       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5026                     exception_name(sig, buf, O_BUFLEN));
5027     }
5028   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5029     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5030     tty->print("expected:");
5031     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5032     tty->cr();
5033     tty->print("  found:");
5034     os::Posix::print_sa_flags(tty, act.sa_flags);
5035     tty->cr();
5036     // No need to check this sig any longer
5037     sigaddset(&check_signal_done, sig);
5038   }
5039 
5040   // Dump all the signal
5041   if (sigismember(&check_signal_done, sig)) {
5042     print_signal_handlers(tty, buf, O_BUFLEN);
5043   }
5044 }
5045 
5046 extern void report_error(char* file_name, int line_no, char* title,
5047                          char* format, ...);
5048 
5049 // this is called _before_ most of the global arguments have been parsed
init(void)5050 void os::init(void) {
5051   char dummy;   // used to get a guess on initial stack address
5052 
5053   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5054 
5055   init_random(1234567);
5056 
5057   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5058   if (Linux::page_size() == -1) {
5059     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5060           os::strerror(errno));
5061   }
5062   init_page_sizes((size_t) Linux::page_size());
5063 
5064   Linux::initialize_system_info();
5065 
5066   os::Linux::CPUPerfTicks pticks;
5067   bool res = os::Linux::get_tick_information(&pticks, -1);
5068 
5069   if (res && pticks.has_steal_ticks) {
5070     has_initial_tick_info = true;
5071     initial_total_ticks = pticks.total;
5072     initial_steal_ticks = pticks.steal;
5073   }
5074 
5075   // _main_thread points to the thread that created/loaded the JVM.
5076   Linux::_main_thread = pthread_self();
5077 
5078   // retrieve entry point for pthread_setname_np
5079   Linux::_pthread_setname_np =
5080     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5081 
5082   os::Posix::init();
5083 
5084   initial_time_count = javaTimeNanos();
5085 
5086   // Always warn if no monotonic clock available
5087   if (!os::Posix::supports_monotonic_clock()) {
5088     warning("No monotonic clock was available - timed services may "    \
5089             "be adversely affected if the time-of-day clock changes");
5090   }
5091 }
5092 
5093 // To install functions for atexit system call
5094 extern "C" {
perfMemory_exit_helper()5095   static void perfMemory_exit_helper() {
5096     perfMemory_exit();
5097   }
5098 }
5099 
pd_init_container_support()5100 void os::pd_init_container_support() {
5101   OSContainer::init();
5102 }
5103 
numa_init()5104 void os::Linux::numa_init() {
5105 
5106   // Java can be invoked as
5107   // 1. Without numactl and heap will be allocated/configured on all nodes as
5108   //    per the system policy.
5109   // 2. With numactl --interleave:
5110   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5111   //      API for membind case bitmask is reset.
5112   //      Interleave is only hint and Kernel can fallback to other nodes if
5113   //      no memory is available on the target nodes.
5114   // 3. With numactl --membind:
5115   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5116   //      interleave case returns bitmask of all nodes.
5117   // numa_all_nodes_ptr holds bitmask of all nodes.
5118   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5119   // bitmask when externally configured to run on all or fewer nodes.
5120 
5121   if (!Linux::libnuma_init()) {
5122     UseNUMA = false;
5123   } else {
5124     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5125       // If there's only one node (they start from 0) or if the process
5126       // is bound explicitly to a single node using membind, disable NUMA.
5127       UseNUMA = false;
5128     } else {
5129 
5130       LogTarget(Info,os) log;
5131       LogStream ls(log);
5132 
5133       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5134 
5135       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5136       const char* numa_mode = "membind";
5137 
5138       if (Linux::is_running_in_interleave_mode()) {
5139         bmp = Linux::_numa_interleave_bitmask;
5140         numa_mode = "interleave";
5141       }
5142 
5143       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5144                " Heap will be configured using NUMA memory nodes:", numa_mode);
5145 
5146       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5147         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5148           ls.print(" %d", node);
5149         }
5150       }
5151     }
5152   }
5153 
5154   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5155     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5156     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5157     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5158     // and disable adaptive resizing.
5159     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5160       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5161               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5162       UseAdaptiveSizePolicy = false;
5163       UseAdaptiveNUMAChunkSizing = false;
5164     }
5165   }
5166 
5167   if (!UseNUMA && ForceNUMA) {
5168     UseNUMA = true;
5169   }
5170 }
5171 
5172 // this is called _after_ the global arguments have been parsed
init_2(void)5173 jint os::init_2(void) {
5174 
5175   // This could be set after os::Posix::init() but all platforms
5176   // have to set it the same so we have to mirror Solaris.
5177   DEBUG_ONLY(os::set_mutex_init_done();)
5178 
5179   os::Posix::init_2();
5180 
5181   Linux::fast_thread_clock_init();
5182 
5183   // initialize suspend/resume support - must do this before signal_sets_init()
5184   if (SR_initialize() != 0) {
5185     perror("SR_initialize failed");
5186     return JNI_ERR;
5187   }
5188 
5189   Linux::signal_sets_init();
5190   Linux::install_signal_handlers();
5191   // Initialize data for jdk.internal.misc.Signal
5192   if (!ReduceSignalUsage) {
5193     jdk_misc_signal_init();
5194   }
5195 
5196   if (AdjustStackSizeForTLS) {
5197     get_minstack_init();
5198   }
5199 
5200   // Check and sets minimum stack sizes against command line options
5201   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5202     return JNI_ERR;
5203   }
5204 
5205 #if defined(IA32)
5206   // Need to ensure we've determined the process's initial stack to
5207   // perform the workaround
5208   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5209   workaround_expand_exec_shield_cs_limit();
5210 #else
5211   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5212   if (!suppress_primordial_thread_resolution) {
5213     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5214   }
5215 #endif
5216 
5217   Linux::libpthread_init();
5218   Linux::sched_getcpu_init();
5219   log_info(os)("HotSpot is running with %s, %s",
5220                Linux::glibc_version(), Linux::libpthread_version());
5221 
5222   if (UseNUMA) {
5223     Linux::numa_init();
5224   }
5225 
5226   if (MaxFDLimit) {
5227     // set the number of file descriptors to max. print out error
5228     // if getrlimit/setrlimit fails but continue regardless.
5229     struct rlimit nbr_files;
5230     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5231     if (status != 0) {
5232       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5233     } else {
5234       nbr_files.rlim_cur = nbr_files.rlim_max;
5235       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5236       if (status != 0) {
5237         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5238       }
5239     }
5240   }
5241 
5242   // at-exit methods are called in the reverse order of their registration.
5243   // atexit functions are called on return from main or as a result of a
5244   // call to exit(3C). There can be only 32 of these functions registered
5245   // and atexit() does not set errno.
5246 
5247   if (PerfAllowAtExitRegistration) {
5248     // only register atexit functions if PerfAllowAtExitRegistration is set.
5249     // atexit functions can be delayed until process exit time, which
5250     // can be problematic for embedded VM situations. Embedded VMs should
5251     // call DestroyJavaVM() to assure that VM resources are released.
5252 
5253     // note: perfMemory_exit_helper atexit function may be removed in
5254     // the future if the appropriate cleanup code can be added to the
5255     // VM_Exit VMOperation's doit method.
5256     if (atexit(perfMemory_exit_helper) != 0) {
5257       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5258     }
5259   }
5260 
5261   // initialize thread priority policy
5262   prio_init();
5263 
5264   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5265     set_coredump_filter(DAX_SHARED_BIT);
5266   }
5267 
5268   if (DumpPrivateMappingsInCore) {
5269     set_coredump_filter(FILE_BACKED_PVT_BIT);
5270   }
5271 
5272   if (DumpSharedMappingsInCore) {
5273     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5274   }
5275 
5276   return JNI_OK;
5277 }
5278 
5279 // Mark the polling page as unreadable
make_polling_page_unreadable(void)5280 void os::make_polling_page_unreadable(void) {
5281   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5282     fatal("Could not disable polling page");
5283   }
5284 }
5285 
5286 // Mark the polling page as readable
make_polling_page_readable(void)5287 void os::make_polling_page_readable(void) {
5288   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5289     fatal("Could not enable polling page");
5290   }
5291 }
5292 
5293 // older glibc versions don't have this macro (which expands to
5294 // an optimized bit-counting function) so we have to roll our own
5295 #ifndef CPU_COUNT
5296 
_cpu_count(const cpu_set_t * cpus)5297 static int _cpu_count(const cpu_set_t* cpus) {
5298   int count = 0;
5299   // only look up to the number of configured processors
5300   for (int i = 0; i < os::processor_count(); i++) {
5301     if (CPU_ISSET(i, cpus)) {
5302       count++;
5303     }
5304   }
5305   return count;
5306 }
5307 
5308 #define CPU_COUNT(cpus) _cpu_count(cpus)
5309 
5310 #endif // CPU_COUNT
5311 
5312 // Get the current number of available processors for this process.
5313 // This value can change at any time during a process's lifetime.
5314 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5315 // If it appears there may be more than 1024 processors then we do a
5316 // dynamic check - see 6515172 for details.
5317 // If anything goes wrong we fallback to returning the number of online
5318 // processors - which can be greater than the number available to the process.
active_processor_count()5319 int os::Linux::active_processor_count() {
5320   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5321   cpu_set_t* cpus_p = &cpus;
5322   int cpus_size = sizeof(cpu_set_t);
5323 
5324   int configured_cpus = os::processor_count();  // upper bound on available cpus
5325   int cpu_count = 0;
5326 
5327 // old build platforms may not support dynamic cpu sets
5328 #ifdef CPU_ALLOC
5329 
5330   // To enable easy testing of the dynamic path on different platforms we
5331   // introduce a diagnostic flag: UseCpuAllocPath
5332   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5333     // kernel may use a mask bigger than cpu_set_t
5334     log_trace(os)("active_processor_count: using dynamic path %s"
5335                   "- configured processors: %d",
5336                   UseCpuAllocPath ? "(forced) " : "",
5337                   configured_cpus);
5338     cpus_p = CPU_ALLOC(configured_cpus);
5339     if (cpus_p != NULL) {
5340       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5341       // zero it just to be safe
5342       CPU_ZERO_S(cpus_size, cpus_p);
5343     }
5344     else {
5345        // failed to allocate so fallback to online cpus
5346        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5347        log_trace(os)("active_processor_count: "
5348                      "CPU_ALLOC failed (%s) - using "
5349                      "online processor count: %d",
5350                      os::strerror(errno), online_cpus);
5351        return online_cpus;
5352     }
5353   }
5354   else {
5355     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5356                   configured_cpus);
5357   }
5358 #else // CPU_ALLOC
5359 // these stubs won't be executed
5360 #define CPU_COUNT_S(size, cpus) -1
5361 #define CPU_FREE(cpus)
5362 
5363   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5364                 configured_cpus);
5365 #endif // CPU_ALLOC
5366 
5367   // pid 0 means the current thread - which we have to assume represents the process
5368   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5369     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5370       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5371     }
5372     else {
5373       cpu_count = CPU_COUNT(cpus_p);
5374     }
5375     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5376   }
5377   else {
5378     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5379     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5380             "which may exceed available processors", os::strerror(errno), cpu_count);
5381   }
5382 
5383   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5384     CPU_FREE(cpus_p);
5385   }
5386 
5387   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5388   return cpu_count;
5389 }
5390 
5391 // Determine the active processor count from one of
5392 // three different sources:
5393 //
5394 // 1. User option -XX:ActiveProcessorCount
5395 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5396 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5397 //
5398 // Option 1, if specified, will always override.
5399 // If the cgroup subsystem is active and configured, we
5400 // will return the min of the cgroup and option 2 results.
5401 // This is required since tools, such as numactl, that
5402 // alter cpu affinity do not update cgroup subsystem
5403 // cpuset configuration files.
active_processor_count()5404 int os::active_processor_count() {
5405   // User has overridden the number of active processors
5406   if (ActiveProcessorCount > 0) {
5407     log_trace(os)("active_processor_count: "
5408                   "active processor count set by user : %d",
5409                   ActiveProcessorCount);
5410     return ActiveProcessorCount;
5411   }
5412 
5413   int active_cpus;
5414   if (OSContainer::is_containerized()) {
5415     active_cpus = OSContainer::active_processor_count();
5416     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5417                    active_cpus);
5418   } else {
5419     active_cpus = os::Linux::active_processor_count();
5420   }
5421 
5422   return active_cpus;
5423 }
5424 
processor_id()5425 uint os::processor_id() {
5426   const int id = Linux::sched_getcpu();
5427   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5428   return (uint)id;
5429 }
5430 
set_native_thread_name(const char * name)5431 void os::set_native_thread_name(const char *name) {
5432   if (Linux::_pthread_setname_np) {
5433     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5434     snprintf(buf, sizeof(buf), "%s", name);
5435     buf[sizeof(buf) - 1] = '\0';
5436     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5437     // ERANGE should not happen; all other errors should just be ignored.
5438     assert(rc != ERANGE, "pthread_setname_np failed");
5439   }
5440 }
5441 
bind_to_processor(uint processor_id)5442 bool os::bind_to_processor(uint processor_id) {
5443   // Not yet implemented.
5444   return false;
5445 }
5446 
5447 ///
5448 
internal_do_task()5449 void os::SuspendedThreadTask::internal_do_task() {
5450   if (do_suspend(_thread->osthread())) {
5451     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5452     do_task(context);
5453     do_resume(_thread->osthread());
5454   }
5455 }
5456 
5457 ////////////////////////////////////////////////////////////////////////////////
5458 // debug support
5459 
find(address addr,outputStream * st)5460 bool os::find(address addr, outputStream* st) {
5461   Dl_info dlinfo;
5462   memset(&dlinfo, 0, sizeof(dlinfo));
5463   if (dladdr(addr, &dlinfo) != 0) {
5464     st->print(PTR_FORMAT ": ", p2i(addr));
5465     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5466       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5467                 p2i(addr) - p2i(dlinfo.dli_saddr));
5468     } else if (dlinfo.dli_fbase != NULL) {
5469       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5470     } else {
5471       st->print("<absolute address>");
5472     }
5473     if (dlinfo.dli_fname != NULL) {
5474       st->print(" in %s", dlinfo.dli_fname);
5475     }
5476     if (dlinfo.dli_fbase != NULL) {
5477       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5478     }
5479     st->cr();
5480 
5481     if (Verbose) {
5482       // decode some bytes around the PC
5483       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5484       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5485       address       lowest = (address) dlinfo.dli_sname;
5486       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5487       if (begin < lowest)  begin = lowest;
5488       Dl_info dlinfo2;
5489       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5490           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5491         end = (address) dlinfo2.dli_saddr;
5492       }
5493       Disassembler::decode(begin, end, st);
5494     }
5495     return true;
5496   }
5497   return false;
5498 }
5499 
5500 ////////////////////////////////////////////////////////////////////////////////
5501 // misc
5502 
5503 // This does not do anything on Linux. This is basically a hook for being
5504 // able to use structured exception handling (thread-local exception filters)
5505 // on, e.g., Win32.
5506 void
os_exception_wrapper(java_call_t f,JavaValue * value,const methodHandle & method,JavaCallArguments * args,Thread * thread)5507 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5508                          JavaCallArguments* args, Thread* thread) {
5509   f(value, method, args, thread);
5510 }
5511 
print_statistics()5512 void os::print_statistics() {
5513 }
5514 
message_box(const char * title,const char * message)5515 bool os::message_box(const char* title, const char* message) {
5516   int i;
5517   fdStream err(defaultStream::error_fd());
5518   for (i = 0; i < 78; i++) err.print_raw("=");
5519   err.cr();
5520   err.print_raw_cr(title);
5521   for (i = 0; i < 78; i++) err.print_raw("-");
5522   err.cr();
5523   err.print_raw_cr(message);
5524   for (i = 0; i < 78; i++) err.print_raw("=");
5525   err.cr();
5526 
5527   char buf[16];
5528   // Prevent process from exiting upon "read error" without consuming all CPU
5529   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5530 
5531   return buf[0] == 'y' || buf[0] == 'Y';
5532 }
5533 
5534 // Is a (classpath) directory empty?
dir_is_empty(const char * path)5535 bool os::dir_is_empty(const char* path) {
5536   DIR *dir = NULL;
5537   struct dirent *ptr;
5538 
5539   dir = opendir(path);
5540   if (dir == NULL) return true;
5541 
5542   // Scan the directory
5543   bool result = true;
5544   while (result && (ptr = readdir(dir)) != NULL) {
5545     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5546       result = false;
5547     }
5548   }
5549   closedir(dir);
5550   return result;
5551 }
5552 
5553 // This code originates from JDK's sysOpen and open64_w
5554 // from src/solaris/hpi/src/system_md.c
5555 
open(const char * path,int oflag,int mode)5556 int os::open(const char *path, int oflag, int mode) {
5557   if (strlen(path) > MAX_PATH - 1) {
5558     errno = ENAMETOOLONG;
5559     return -1;
5560   }
5561 
5562   // All file descriptors that are opened in the Java process and not
5563   // specifically destined for a subprocess should have the close-on-exec
5564   // flag set.  If we don't set it, then careless 3rd party native code
5565   // might fork and exec without closing all appropriate file descriptors
5566   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5567   // turn might:
5568   //
5569   // - cause end-of-file to fail to be detected on some file
5570   //   descriptors, resulting in mysterious hangs, or
5571   //
5572   // - might cause an fopen in the subprocess to fail on a system
5573   //   suffering from bug 1085341.
5574   //
5575   // (Yes, the default setting of the close-on-exec flag is a Unix
5576   // design flaw)
5577   //
5578   // See:
5579   // 1085341: 32-bit stdio routines should support file descriptors >255
5580   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5581   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5582   //
5583   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5584   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5585   // because it saves a system call and removes a small window where the flag
5586   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5587   // and we fall back to using FD_CLOEXEC (see below).
5588 #ifdef O_CLOEXEC
5589   oflag |= O_CLOEXEC;
5590 #endif
5591 
5592   int fd = ::open64(path, oflag, mode);
5593   if (fd == -1) return -1;
5594 
5595   //If the open succeeded, the file might still be a directory
5596   {
5597     struct stat64 buf64;
5598     int ret = ::fstat64(fd, &buf64);
5599     int st_mode = buf64.st_mode;
5600 
5601     if (ret != -1) {
5602       if ((st_mode & S_IFMT) == S_IFDIR) {
5603         errno = EISDIR;
5604         ::close(fd);
5605         return -1;
5606       }
5607     } else {
5608       ::close(fd);
5609       return -1;
5610     }
5611   }
5612 
5613 #ifdef FD_CLOEXEC
5614   // Validate that the use of the O_CLOEXEC flag on open above worked.
5615   // With recent kernels, we will perform this check exactly once.
5616   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5617   if (!O_CLOEXEC_is_known_to_work) {
5618     int flags = ::fcntl(fd, F_GETFD);
5619     if (flags != -1) {
5620       if ((flags & FD_CLOEXEC) != 0)
5621         O_CLOEXEC_is_known_to_work = 1;
5622       else
5623         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5624     }
5625   }
5626 #endif
5627 
5628   return fd;
5629 }
5630 
5631 
5632 // create binary file, rewriting existing file if required
create_binary_file(const char * path,bool rewrite_existing)5633 int os::create_binary_file(const char* path, bool rewrite_existing) {
5634   int oflags = O_WRONLY | O_CREAT;
5635   if (!rewrite_existing) {
5636     oflags |= O_EXCL;
5637   }
5638   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5639 }
5640 
5641 // return current position of file pointer
current_file_offset(int fd)5642 jlong os::current_file_offset(int fd) {
5643   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5644 }
5645 
5646 // move file pointer to the specified offset
seek_to_file_offset(int fd,jlong offset)5647 jlong os::seek_to_file_offset(int fd, jlong offset) {
5648   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5649 }
5650 
5651 // This code originates from JDK's sysAvailable
5652 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5653 
available(int fd,jlong * bytes)5654 int os::available(int fd, jlong *bytes) {
5655   jlong cur, end;
5656   int mode;
5657   struct stat64 buf64;
5658 
5659   if (::fstat64(fd, &buf64) >= 0) {
5660     mode = buf64.st_mode;
5661     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5662       int n;
5663       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5664         *bytes = n;
5665         return 1;
5666       }
5667     }
5668   }
5669   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5670     return 0;
5671   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5672     return 0;
5673   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5674     return 0;
5675   }
5676   *bytes = end - cur;
5677   return 1;
5678 }
5679 
5680 // Map a block of memory.
pd_map_memory(int fd,const char * file_name,size_t file_offset,char * addr,size_t bytes,bool read_only,bool allow_exec)5681 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5682                         char *addr, size_t bytes, bool read_only,
5683                         bool allow_exec) {
5684   int prot;
5685   int flags = MAP_PRIVATE;
5686 
5687   if (read_only) {
5688     prot = PROT_READ;
5689   } else {
5690     prot = PROT_READ | PROT_WRITE;
5691   }
5692 
5693   if (allow_exec) {
5694     prot |= PROT_EXEC;
5695   }
5696 
5697   if (addr != NULL) {
5698     flags |= MAP_FIXED;
5699   }
5700 
5701   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5702                                      fd, file_offset);
5703   if (mapped_address == MAP_FAILED) {
5704     return NULL;
5705   }
5706   return mapped_address;
5707 }
5708 
5709 
5710 // Remap a block of memory.
pd_remap_memory(int fd,const char * file_name,size_t file_offset,char * addr,size_t bytes,bool read_only,bool allow_exec)5711 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5712                           char *addr, size_t bytes, bool read_only,
5713                           bool allow_exec) {
5714   // same as map_memory() on this OS
5715   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5716                         allow_exec);
5717 }
5718 
5719 
5720 // Unmap a block of memory.
pd_unmap_memory(char * addr,size_t bytes)5721 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5722   return munmap(addr, bytes) == 0;
5723 }
5724 
5725 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5726 
fast_cpu_time(Thread * thread)5727 static jlong fast_cpu_time(Thread *thread) {
5728     clockid_t clockid;
5729     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5730                                               &clockid);
5731     if (rc == 0) {
5732       return os::Linux::fast_thread_cpu_time(clockid);
5733     } else {
5734       // It's possible to encounter a terminated native thread that failed
5735       // to detach itself from the VM - which should result in ESRCH.
5736       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5737       return -1;
5738     }
5739 }
5740 
5741 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5742 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5743 // of a thread.
5744 //
5745 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5746 // the fast estimate available on the platform.
5747 
current_thread_cpu_time()5748 jlong os::current_thread_cpu_time() {
5749   if (os::Linux::supports_fast_thread_cpu_time()) {
5750     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5751   } else {
5752     // return user + sys since the cost is the same
5753     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5754   }
5755 }
5756 
thread_cpu_time(Thread * thread)5757 jlong os::thread_cpu_time(Thread* thread) {
5758   // consistent with what current_thread_cpu_time() returns
5759   if (os::Linux::supports_fast_thread_cpu_time()) {
5760     return fast_cpu_time(thread);
5761   } else {
5762     return slow_thread_cpu_time(thread, true /* user + sys */);
5763   }
5764 }
5765 
current_thread_cpu_time(bool user_sys_cpu_time)5766 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5767   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5768     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5769   } else {
5770     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5771   }
5772 }
5773 
thread_cpu_time(Thread * thread,bool user_sys_cpu_time)5774 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5775   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5776     return fast_cpu_time(thread);
5777   } else {
5778     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5779   }
5780 }
5781 
5782 //  -1 on error.
slow_thread_cpu_time(Thread * thread,bool user_sys_cpu_time)5783 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5784   pid_t  tid = thread->osthread()->thread_id();
5785   char *s;
5786   char stat[2048];
5787   int statlen;
5788   char proc_name[64];
5789   int count;
5790   long sys_time, user_time;
5791   char cdummy;
5792   int idummy;
5793   long ldummy;
5794   FILE *fp;
5795 
5796   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5797   fp = fopen(proc_name, "r");
5798   if (fp == NULL) return -1;
5799   statlen = fread(stat, 1, 2047, fp);
5800   stat[statlen] = '\0';
5801   fclose(fp);
5802 
5803   // Skip pid and the command string. Note that we could be dealing with
5804   // weird command names, e.g. user could decide to rename java launcher
5805   // to "java 1.4.2 :)", then the stat file would look like
5806   //                1234 (java 1.4.2 :)) R ... ...
5807   // We don't really need to know the command string, just find the last
5808   // occurrence of ")" and then start parsing from there. See bug 4726580.
5809   s = strrchr(stat, ')');
5810   if (s == NULL) return -1;
5811 
5812   // Skip blank chars
5813   do { s++; } while (s && isspace(*s));
5814 
5815   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5816                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5817                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5818                  &user_time, &sys_time);
5819   if (count != 13) return -1;
5820   if (user_sys_cpu_time) {
5821     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5822   } else {
5823     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5824   }
5825 }
5826 
current_thread_cpu_time_info(jvmtiTimerInfo * info_ptr)5827 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5828   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5829   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5830   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5831   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5832 }
5833 
thread_cpu_time_info(jvmtiTimerInfo * info_ptr)5834 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5835   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5836   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5837   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5838   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5839 }
5840 
is_thread_cpu_time_supported()5841 bool os::is_thread_cpu_time_supported() {
5842   return true;
5843 }
5844 
5845 // System loadavg support.  Returns -1 if load average cannot be obtained.
5846 // Linux doesn't yet have a (official) notion of processor sets,
5847 // so just return the system wide load average.
loadavg(double loadavg[],int nelem)5848 int os::loadavg(double loadavg[], int nelem) {
5849   return ::getloadavg(loadavg, nelem);
5850 }
5851 
pause()5852 void os::pause() {
5853   char filename[MAX_PATH];
5854   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5855     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5856   } else {
5857     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5858   }
5859 
5860   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5861   if (fd != -1) {
5862     struct stat buf;
5863     ::close(fd);
5864     while (::stat(filename, &buf) == 0) {
5865       (void)::poll(NULL, 0, 100);
5866     }
5867   } else {
5868     jio_fprintf(stderr,
5869                 "Could not open pause file '%s', continuing immediately.\n", filename);
5870   }
5871 }
5872 
5873 extern char** environ;
5874 
5875 // Run the specified command in a separate process. Return its exit value,
5876 // or -1 on failure (e.g. can't fork a new process).
5877 // Unlike system(), this function can be called from signal handler. It
5878 // doesn't block SIGINT et al.
fork_and_exec(char * cmd,bool use_vfork_if_available)5879 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5880   const char * argv[4] = {"sh", "-c", cmd, NULL};
5881 
5882   pid_t pid ;
5883 
5884   if (use_vfork_if_available) {
5885     pid = vfork();
5886   } else {
5887     pid = fork();
5888   }
5889 
5890   if (pid < 0) {
5891     // fork failed
5892     return -1;
5893 
5894   } else if (pid == 0) {
5895     // child process
5896 
5897     execve("/bin/sh", (char* const*)argv, environ);
5898 
5899     // execve failed
5900     _exit(-1);
5901 
5902   } else  {
5903     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5904     // care about the actual exit code, for now.
5905 
5906     int status;
5907 
5908     // Wait for the child process to exit.  This returns immediately if
5909     // the child has already exited. */
5910     while (waitpid(pid, &status, 0) < 0) {
5911       switch (errno) {
5912       case ECHILD: return 0;
5913       case EINTR: break;
5914       default: return -1;
5915       }
5916     }
5917 
5918     if (WIFEXITED(status)) {
5919       // The child exited normally; get its exit code.
5920       return WEXITSTATUS(status);
5921     } else if (WIFSIGNALED(status)) {
5922       // The child exited because of a signal
5923       // The best value to return is 0x80 + signal number,
5924       // because that is what all Unix shells do, and because
5925       // it allows callers to distinguish between process exit and
5926       // process death by signal.
5927       return 0x80 + WTERMSIG(status);
5928     } else {
5929       // Unknown exit code; pass it through
5930       return status;
5931     }
5932   }
5933 }
5934 
5935 // Get the default path to the core file
5936 // Returns the length of the string
get_core_path(char * buffer,size_t bufferSize)5937 int os::get_core_path(char* buffer, size_t bufferSize) {
5938   /*
5939    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5940    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5941    */
5942   const int core_pattern_len = 129;
5943   char core_pattern[core_pattern_len] = {0};
5944 
5945   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5946   if (core_pattern_file == -1) {
5947     return -1;
5948   }
5949 
5950   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5951   ::close(core_pattern_file);
5952   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5953     return -1;
5954   }
5955   if (core_pattern[ret-1] == '\n') {
5956     core_pattern[ret-1] = '\0';
5957   } else {
5958     core_pattern[ret] = '\0';
5959   }
5960 
5961   // Replace the %p in the core pattern with the process id. NOTE: we do this
5962   // only if the pattern doesn't start with "|", and we support only one %p in
5963   // the pattern.
5964   char *pid_pos = strstr(core_pattern, "%p");
5965   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5966   int written;
5967 
5968   if (core_pattern[0] == '/') {
5969     if (pid_pos != NULL) {
5970       *pid_pos = '\0';
5971       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5972                              current_process_id(), tail);
5973     } else {
5974       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5975     }
5976   } else {
5977     char cwd[PATH_MAX];
5978 
5979     const char* p = get_current_directory(cwd, PATH_MAX);
5980     if (p == NULL) {
5981       return -1;
5982     }
5983 
5984     if (core_pattern[0] == '|') {
5985       written = jio_snprintf(buffer, bufferSize,
5986                              "\"%s\" (or dumping to %s/core.%d)",
5987                              &core_pattern[1], p, current_process_id());
5988     } else if (pid_pos != NULL) {
5989       *pid_pos = '\0';
5990       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5991                              current_process_id(), tail);
5992     } else {
5993       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5994     }
5995   }
5996 
5997   if (written < 0) {
5998     return -1;
5999   }
6000 
6001   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6002     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6003 
6004     if (core_uses_pid_file != -1) {
6005       char core_uses_pid = 0;
6006       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6007       ::close(core_uses_pid_file);
6008 
6009       if (core_uses_pid == '1') {
6010         jio_snprintf(buffer + written, bufferSize - written,
6011                                           ".%d", current_process_id());
6012       }
6013     }
6014   }
6015 
6016   return strlen(buffer);
6017 }
6018 
start_debugging(char * buf,int buflen)6019 bool os::start_debugging(char *buf, int buflen) {
6020   int len = (int)strlen(buf);
6021   char *p = &buf[len];
6022 
6023   jio_snprintf(p, buflen-len,
6024                "\n\n"
6025                "Do you want to debug the problem?\n\n"
6026                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6027                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6028                "Otherwise, press RETURN to abort...",
6029                os::current_process_id(), os::current_process_id(),
6030                os::current_thread_id(), os::current_thread_id());
6031 
6032   bool yes = os::message_box("Unexpected Error", buf);
6033 
6034   if (yes) {
6035     // yes, user asked VM to launch debugger
6036     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6037                  os::current_process_id(), os::current_process_id());
6038 
6039     os::fork_and_exec(buf);
6040     yes = false;
6041   }
6042   return yes;
6043 }
6044 
6045 
6046 // Java/Compiler thread:
6047 //
6048 //   Low memory addresses
6049 // P0 +------------------------+
6050 //    |                        |\  Java thread created by VM does not have glibc
6051 //    |    glibc guard page    | - guard page, attached Java thread usually has
6052 //    |                        |/  1 glibc guard page.
6053 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6054 //    |                        |\
6055 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6056 //    |                        |/
6057 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6058 //    |                        |\
6059 //    |      Normal Stack      | -
6060 //    |                        |/
6061 // P2 +------------------------+ Thread::stack_base()
6062 //
6063 // Non-Java thread:
6064 //
6065 //   Low memory addresses
6066 // P0 +------------------------+
6067 //    |                        |\
6068 //    |  glibc guard page      | - usually 1 page
6069 //    |                        |/
6070 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6071 //    |                        |\
6072 //    |      Normal Stack      | -
6073 //    |                        |/
6074 // P2 +------------------------+ Thread::stack_base()
6075 //
6076 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6077 //    returned from pthread_attr_getstack().
6078 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6079 //    of the stack size given in pthread_attr. We work around this for
6080 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6081 //
6082 #ifndef ZERO
current_stack_region(address * bottom,size_t * size)6083 static void current_stack_region(address * bottom, size_t * size) {
6084   if (os::is_primordial_thread()) {
6085     // primordial thread needs special handling because pthread_getattr_np()
6086     // may return bogus value.
6087     *bottom = os::Linux::initial_thread_stack_bottom();
6088     *size   = os::Linux::initial_thread_stack_size();
6089   } else {
6090     pthread_attr_t attr;
6091 
6092     int rslt = pthread_getattr_np(pthread_self(), &attr);
6093 
6094     // JVM needs to know exact stack location, abort if it fails
6095     if (rslt != 0) {
6096       if (rslt == ENOMEM) {
6097         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6098       } else {
6099         fatal("pthread_getattr_np failed with error = %d", rslt);
6100       }
6101     }
6102 
6103     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6104       fatal("Cannot locate current stack attributes!");
6105     }
6106 
6107     // Work around NPTL stack guard error.
6108     size_t guard_size = 0;
6109     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6110     if (rslt != 0) {
6111       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6112     }
6113     *bottom += guard_size;
6114     *size   -= guard_size;
6115 
6116     pthread_attr_destroy(&attr);
6117 
6118   }
6119   assert(os::current_stack_pointer() >= *bottom &&
6120          os::current_stack_pointer() < *bottom + *size, "just checking");
6121 }
6122 
current_stack_base()6123 address os::current_stack_base() {
6124   address bottom;
6125   size_t size;
6126   current_stack_region(&bottom, &size);
6127   return (bottom + size);
6128 }
6129 
current_stack_size()6130 size_t os::current_stack_size() {
6131   // This stack size includes the usable stack and HotSpot guard pages
6132   // (for the threads that have Hotspot guard pages).
6133   address bottom;
6134   size_t size;
6135   current_stack_region(&bottom, &size);
6136   return size;
6137 }
6138 #endif
6139 
get_mtime(const char * filename)6140 static inline struct timespec get_mtime(const char* filename) {
6141   struct stat st;
6142   int ret = os::stat(filename, &st);
6143   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6144   return st.st_mtim;
6145 }
6146 
compare_file_modified_times(const char * file1,const char * file2)6147 int os::compare_file_modified_times(const char* file1, const char* file2) {
6148   struct timespec filetime1 = get_mtime(file1);
6149   struct timespec filetime2 = get_mtime(file2);
6150   int diff = filetime1.tv_sec - filetime2.tv_sec;
6151   if (diff == 0) {
6152     return filetime1.tv_nsec - filetime2.tv_nsec;
6153   }
6154   return diff;
6155 }
6156 
supports_map_sync()6157 bool os::supports_map_sync() {
6158   return true;
6159 }
6160 
6161 /////////////// Unit tests ///////////////
6162 
6163 #ifndef PRODUCT
6164 
6165 class TestReserveMemorySpecial : AllStatic {
6166  public:
small_page_write(void * addr,size_t size)6167   static void small_page_write(void* addr, size_t size) {
6168     size_t page_size = os::vm_page_size();
6169 
6170     char* end = (char*)addr + size;
6171     for (char* p = (char*)addr; p < end; p += page_size) {
6172       *p = 1;
6173     }
6174   }
6175 
test_reserve_memory_special_huge_tlbfs_only(size_t size)6176   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6177     if (!UseHugeTLBFS) {
6178       return;
6179     }
6180 
6181     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6182 
6183     if (addr != NULL) {
6184       small_page_write(addr, size);
6185 
6186       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6187     }
6188   }
6189 
test_reserve_memory_special_huge_tlbfs_only()6190   static void test_reserve_memory_special_huge_tlbfs_only() {
6191     if (!UseHugeTLBFS) {
6192       return;
6193     }
6194 
6195     size_t lp = os::large_page_size();
6196 
6197     for (size_t size = lp; size <= lp * 10; size += lp) {
6198       test_reserve_memory_special_huge_tlbfs_only(size);
6199     }
6200   }
6201 
test_reserve_memory_special_huge_tlbfs_mixed()6202   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6203     size_t lp = os::large_page_size();
6204     size_t ag = os::vm_allocation_granularity();
6205 
6206     // sizes to test
6207     const size_t sizes[] = {
6208       lp, lp + ag, lp + lp / 2, lp * 2,
6209       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6210       lp * 10, lp * 10 + lp / 2
6211     };
6212     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6213 
6214     // For each size/alignment combination, we test three scenarios:
6215     // 1) with req_addr == NULL
6216     // 2) with a non-null req_addr at which we expect to successfully allocate
6217     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6218     //    expect the allocation to either fail or to ignore req_addr
6219 
6220     // Pre-allocate two areas; they shall be as large as the largest allocation
6221     //  and aligned to the largest alignment we will be testing.
6222     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6223     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6224       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6225       -1, 0);
6226     assert(mapping1 != MAP_FAILED, "should work");
6227 
6228     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6229       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6230       -1, 0);
6231     assert(mapping2 != MAP_FAILED, "should work");
6232 
6233     // Unmap the first mapping, but leave the second mapping intact: the first
6234     // mapping will serve as a value for a "good" req_addr (case 2). The second
6235     // mapping, still intact, as "bad" req_addr (case 3).
6236     ::munmap(mapping1, mapping_size);
6237 
6238     // Case 1
6239     for (int i = 0; i < num_sizes; i++) {
6240       const size_t size = sizes[i];
6241       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6242         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6243         if (p != NULL) {
6244           assert(is_aligned(p, alignment), "must be");
6245           small_page_write(p, size);
6246           os::Linux::release_memory_special_huge_tlbfs(p, size);
6247         }
6248       }
6249     }
6250 
6251     // Case 2
6252     for (int i = 0; i < num_sizes; i++) {
6253       const size_t size = sizes[i];
6254       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6255         char* const req_addr = align_up(mapping1, alignment);
6256         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6257         if (p != NULL) {
6258           assert(p == req_addr, "must be");
6259           small_page_write(p, size);
6260           os::Linux::release_memory_special_huge_tlbfs(p, size);
6261         }
6262       }
6263     }
6264 
6265     // Case 3
6266     for (int i = 0; i < num_sizes; i++) {
6267       const size_t size = sizes[i];
6268       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6269         char* const req_addr = align_up(mapping2, alignment);
6270         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6271         // as the area around req_addr contains already existing mappings, the API should always
6272         // return NULL (as per contract, it cannot return another address)
6273         assert(p == NULL, "must be");
6274       }
6275     }
6276 
6277     ::munmap(mapping2, mapping_size);
6278 
6279   }
6280 
test_reserve_memory_special_huge_tlbfs()6281   static void test_reserve_memory_special_huge_tlbfs() {
6282     if (!UseHugeTLBFS) {
6283       return;
6284     }
6285 
6286     test_reserve_memory_special_huge_tlbfs_only();
6287     test_reserve_memory_special_huge_tlbfs_mixed();
6288   }
6289 
test_reserve_memory_special_shm(size_t size,size_t alignment)6290   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6291     if (!UseSHM) {
6292       return;
6293     }
6294 
6295     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6296 
6297     if (addr != NULL) {
6298       assert(is_aligned(addr, alignment), "Check");
6299       assert(is_aligned(addr, os::large_page_size()), "Check");
6300 
6301       small_page_write(addr, size);
6302 
6303       os::Linux::release_memory_special_shm(addr, size);
6304     }
6305   }
6306 
test_reserve_memory_special_shm()6307   static void test_reserve_memory_special_shm() {
6308     size_t lp = os::large_page_size();
6309     size_t ag = os::vm_allocation_granularity();
6310 
6311     for (size_t size = ag; size < lp * 3; size += ag) {
6312       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6313         test_reserve_memory_special_shm(size, alignment);
6314       }
6315     }
6316   }
6317 
test()6318   static void test() {
6319     test_reserve_memory_special_huge_tlbfs();
6320     test_reserve_memory_special_shm();
6321   }
6322 };
6323 
TestReserveMemorySpecial_test()6324 void TestReserveMemorySpecial_test() {
6325   TestReserveMemorySpecial::test();
6326 }
6327 
6328 #endif
6329