1 /*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/codeBuffer.hpp"
27 #include "code/oopRecorder.inline.hpp"
28 #include "compiler/disassembler.hpp"
29 #include "oops/methodData.hpp"
30 #include "oops/oop.inline.hpp"
31 #include "runtime/icache.hpp"
32 #include "runtime/safepointVerifiers.hpp"
33 #include "utilities/align.hpp"
34 #include "utilities/copy.hpp"
35 #include "utilities/powerOfTwo.hpp"
36 #include "utilities/xmlstream.hpp"
37
38 // The structure of a CodeSection:
39 //
40 // _start -> +----------------+
41 // | machine code...|
42 // _end -> |----------------|
43 // | |
44 // | (empty) |
45 // | |
46 // | |
47 // +----------------+
48 // _limit -> | |
49 //
50 // _locs_start -> +----------------+
51 // |reloc records...|
52 // |----------------|
53 // _locs_end -> | |
54 // | |
55 // | (empty) |
56 // | |
57 // | |
58 // +----------------+
59 // _locs_limit -> | |
60 // The _end (resp. _limit) pointer refers to the first
61 // unused (resp. unallocated) byte.
62
63 // The structure of the CodeBuffer while code is being accumulated:
64 //
65 // _total_start -> \
66 // _insts._start -> +----------------+
67 // | |
68 // | Code |
69 // | |
70 // _stubs._start -> |----------------|
71 // | |
72 // | Stubs | (also handlers for deopt/exception)
73 // | |
74 // _consts._start -> |----------------|
75 // | |
76 // | Constants |
77 // | |
78 // +----------------+
79 // + _total_size -> | |
80 //
81 // When the code and relocations are copied to the code cache,
82 // the empty parts of each section are removed, and everything
83 // is copied into contiguous locations.
84
85 typedef CodeBuffer::csize_t csize_t; // file-local definition
86
87 // External buffer, in a predefined CodeBlob.
88 // Important: The code_start must be taken exactly, and not realigned.
CodeBuffer(CodeBlob * blob)89 CodeBuffer::CodeBuffer(CodeBlob* blob) {
90 // Provide code buffer with meaningful name
91 initialize_misc(blob->name());
92 initialize(blob->content_begin(), blob->content_size());
93 verify_section_allocation();
94 }
95
initialize(csize_t code_size,csize_t locs_size)96 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
97 // Compute maximal alignment.
98 int align = _insts.alignment();
99 // Always allow for empty slop around each section.
100 int slop = (int) CodeSection::end_slop();
101
102 assert(blob() == NULL, "only once");
103 set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
104 if (blob() == NULL) {
105 // The assembler constructor will throw a fatal on an empty CodeBuffer.
106 return; // caller must test this
107 }
108
109 // Set up various pointers into the blob.
110 initialize(_total_start, _total_size);
111
112 assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
113
114 pd_initialize();
115
116 if (locs_size != 0) {
117 _insts.initialize_locs(locs_size / sizeof(relocInfo));
118 }
119
120 verify_section_allocation();
121 }
122
123
~CodeBuffer()124 CodeBuffer::~CodeBuffer() {
125 verify_section_allocation();
126
127 // If we allocate our code buffer from the CodeCache
128 // via a BufferBlob, and it's not permanent, then
129 // free the BufferBlob.
130 // The rest of the memory will be freed when the ResourceObj
131 // is released.
132 for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
133 // Previous incarnations of this buffer are held live, so that internal
134 // addresses constructed before expansions will not be confused.
135 cb->free_blob();
136 }
137
138 // free any overflow storage
139 delete _overflow_arena;
140
141 // Claim is that stack allocation ensures resources are cleaned up.
142 // This is resource clean up, let's hope that all were properly copied out.
143 free_strings();
144
145 #ifdef ASSERT
146 // Save allocation type to execute assert in ~ResourceObj()
147 // which is called after this destructor.
148 assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
149 ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
150 Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
151 ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
152 #endif
153 }
154
initialize_oop_recorder(OopRecorder * r)155 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
156 assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
157 DEBUG_ONLY(_default_oop_recorder.freeze()); // force unused OR to be frozen
158 _oop_recorder = r;
159 }
160
initialize_section_size(CodeSection * cs,csize_t size)161 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
162 assert(cs != &_insts, "insts is the memory provider, not the consumer");
163 csize_t slop = CodeSection::end_slop(); // margin between sections
164 int align = cs->alignment();
165 assert(is_power_of_2(align), "sanity");
166 address start = _insts._start;
167 address limit = _insts._limit;
168 address middle = limit - size;
169 middle -= (intptr_t)middle & (align-1); // align the division point downward
170 guarantee(middle - slop > start, "need enough space to divide up");
171 _insts._limit = middle - slop; // subtract desired space, plus slop
172 cs->initialize(middle, limit - middle);
173 assert(cs->start() == middle, "sanity");
174 assert(cs->limit() == limit, "sanity");
175 // give it some relocations to start with, if the main section has them
176 if (_insts.has_locs()) cs->initialize_locs(1);
177 }
178
freeze_section(CodeSection * cs)179 void CodeBuffer::freeze_section(CodeSection* cs) {
180 CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
181 csize_t frozen_size = cs->size();
182 if (next_cs != NULL) {
183 frozen_size = next_cs->align_at_start(frozen_size);
184 }
185 address old_limit = cs->limit();
186 address new_limit = cs->start() + frozen_size;
187 relocInfo* old_locs_limit = cs->locs_limit();
188 relocInfo* new_locs_limit = cs->locs_end();
189 // Patch the limits.
190 cs->_limit = new_limit;
191 cs->_locs_limit = new_locs_limit;
192 cs->_frozen = true;
193 if (next_cs != NULL && !next_cs->is_allocated() && !next_cs->is_frozen()) {
194 // Give remaining buffer space to the following section.
195 next_cs->initialize(new_limit, old_limit - new_limit);
196 next_cs->initialize_shared_locs(new_locs_limit,
197 old_locs_limit - new_locs_limit);
198 }
199 }
200
set_blob(BufferBlob * blob)201 void CodeBuffer::set_blob(BufferBlob* blob) {
202 _blob = blob;
203 if (blob != NULL) {
204 address start = blob->content_begin();
205 address end = blob->content_end();
206 // Round up the starting address.
207 int align = _insts.alignment();
208 start += (-(intptr_t)start) & (align-1);
209 _total_start = start;
210 _total_size = end - start;
211 } else {
212 #ifdef ASSERT
213 // Clean out dangling pointers.
214 _total_start = badAddress;
215 _consts._start = _consts._end = badAddress;
216 _insts._start = _insts._end = badAddress;
217 _stubs._start = _stubs._end = badAddress;
218 #endif //ASSERT
219 }
220 }
221
free_blob()222 void CodeBuffer::free_blob() {
223 if (_blob != NULL) {
224 BufferBlob::free(_blob);
225 set_blob(NULL);
226 }
227 }
228
code_section_name(int n)229 const char* CodeBuffer::code_section_name(int n) {
230 #ifdef PRODUCT
231 return NULL;
232 #else //PRODUCT
233 switch (n) {
234 case SECT_CONSTS: return "consts";
235 case SECT_INSTS: return "insts";
236 case SECT_STUBS: return "stubs";
237 default: return NULL;
238 }
239 #endif //PRODUCT
240 }
241
section_index_of(address addr) const242 int CodeBuffer::section_index_of(address addr) const {
243 for (int n = 0; n < (int)SECT_LIMIT; n++) {
244 const CodeSection* cs = code_section(n);
245 if (cs->allocates(addr)) return n;
246 }
247 return SECT_NONE;
248 }
249
locator(address addr) const250 int CodeBuffer::locator(address addr) const {
251 for (int n = 0; n < (int)SECT_LIMIT; n++) {
252 const CodeSection* cs = code_section(n);
253 if (cs->allocates(addr)) {
254 return locator(addr - cs->start(), n);
255 }
256 }
257 return -1;
258 }
259
locator_address(int locator) const260 address CodeBuffer::locator_address(int locator) const {
261 if (locator < 0) return NULL;
262 address start = code_section(locator_sect(locator))->start();
263 return start + locator_pos(locator);
264 }
265
is_backward_branch(Label & L)266 bool CodeBuffer::is_backward_branch(Label& L) {
267 return L.is_bound() && insts_end() <= locator_address(L.loc());
268 }
269
decode_begin()270 address CodeBuffer::decode_begin() {
271 address begin = _insts.start();
272 if (_decode_begin != NULL && _decode_begin > begin)
273 begin = _decode_begin;
274 return begin;
275 }
276
277
create_patch_overflow()278 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
279 if (_overflow_arena == NULL) {
280 _overflow_arena = new (mtCode) Arena(mtCode);
281 }
282 return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
283 }
284
285
286 // Helper function for managing labels and their target addresses.
287 // Returns a sensible address, and if it is not the label's final
288 // address, notes the dependency (at 'branch_pc') on the label.
target(Label & L,address branch_pc)289 address CodeSection::target(Label& L, address branch_pc) {
290 if (L.is_bound()) {
291 int loc = L.loc();
292 if (index() == CodeBuffer::locator_sect(loc)) {
293 return start() + CodeBuffer::locator_pos(loc);
294 } else {
295 return outer()->locator_address(loc);
296 }
297 } else {
298 assert(allocates2(branch_pc), "sanity");
299 address base = start();
300 int patch_loc = CodeBuffer::locator(branch_pc - base, index());
301 L.add_patch_at(outer(), patch_loc);
302
303 // Need to return a pc, doesn't matter what it is since it will be
304 // replaced during resolution later.
305 // Don't return NULL or badAddress, since branches shouldn't overflow.
306 // Don't return base either because that could overflow displacements
307 // for shorter branches. It will get checked when bound.
308 return branch_pc;
309 }
310 }
311
relocate(address at,relocInfo::relocType rtype,int format,jint method_index)312 void CodeSection::relocate(address at, relocInfo::relocType rtype, int format, jint method_index) {
313 RelocationHolder rh;
314 switch (rtype) {
315 case relocInfo::none: return;
316 case relocInfo::opt_virtual_call_type: {
317 rh = opt_virtual_call_Relocation::spec(method_index);
318 break;
319 }
320 case relocInfo::static_call_type: {
321 rh = static_call_Relocation::spec(method_index);
322 break;
323 }
324 case relocInfo::virtual_call_type: {
325 assert(method_index == 0, "resolved method overriding is not supported");
326 rh = Relocation::spec_simple(rtype);
327 break;
328 }
329 default: {
330 rh = Relocation::spec_simple(rtype);
331 break;
332 }
333 }
334 relocate(at, rh, format);
335 }
336
relocate(address at,RelocationHolder const & spec,int format)337 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
338 // Do not relocate in scratch buffers.
339 if (scratch_emit()) { return; }
340 Relocation* reloc = spec.reloc();
341 relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
342 if (rtype == relocInfo::none) return;
343
344 // The assertion below has been adjusted, to also work for
345 // relocation for fixup. Sometimes we want to put relocation
346 // information for the next instruction, since it will be patched
347 // with a call.
348 assert(start() <= at && at <= end()+1,
349 "cannot relocate data outside code boundaries");
350
351 if (!has_locs()) {
352 // no space for relocation information provided => code cannot be
353 // relocated. Make sure that relocate is only called with rtypes
354 // that can be ignored for this kind of code.
355 assert(rtype == relocInfo::none ||
356 rtype == relocInfo::runtime_call_type ||
357 rtype == relocInfo::internal_word_type||
358 rtype == relocInfo::section_word_type ||
359 rtype == relocInfo::external_word_type,
360 "code needs relocation information");
361 // leave behind an indication that we attempted a relocation
362 DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
363 return;
364 }
365
366 // Advance the point, noting the offset we'll have to record.
367 csize_t offset = at - locs_point();
368 set_locs_point(at);
369
370 // Test for a couple of overflow conditions; maybe expand the buffer.
371 relocInfo* end = locs_end();
372 relocInfo* req = end + relocInfo::length_limit;
373 // Check for (potential) overflow
374 if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
375 req += (uint)offset / (uint)relocInfo::offset_limit();
376 if (req >= locs_limit()) {
377 // Allocate or reallocate.
378 expand_locs(locs_count() + (req - end));
379 // reload pointer
380 end = locs_end();
381 }
382 }
383
384 // If the offset is giant, emit filler relocs, of type 'none', but
385 // each carrying the largest possible offset, to advance the locs_point.
386 while (offset >= relocInfo::offset_limit()) {
387 assert(end < locs_limit(), "adjust previous paragraph of code");
388 *end++ = filler_relocInfo();
389 offset -= filler_relocInfo().addr_offset();
390 }
391
392 // If it's a simple reloc with no data, we'll just write (rtype | offset).
393 (*end) = relocInfo(rtype, offset, format);
394
395 // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
396 end->initialize(this, reloc);
397 }
398
initialize_locs(int locs_capacity)399 void CodeSection::initialize_locs(int locs_capacity) {
400 assert(_locs_start == NULL, "only one locs init step, please");
401 // Apply a priori lower limits to relocation size:
402 csize_t min_locs = MAX2(size() / 16, (csize_t)4);
403 if (locs_capacity < min_locs) locs_capacity = min_locs;
404 relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
405 _locs_start = locs_start;
406 _locs_end = locs_start;
407 _locs_limit = locs_start + locs_capacity;
408 _locs_own = true;
409 }
410
initialize_shared_locs(relocInfo * buf,int length)411 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
412 assert(_locs_start == NULL, "do this before locs are allocated");
413 // Internal invariant: locs buf must be fully aligned.
414 // See copy_relocations_to() below.
415 while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
416 ++buf; --length;
417 }
418 if (length > 0) {
419 _locs_start = buf;
420 _locs_end = buf;
421 _locs_limit = buf + length;
422 _locs_own = false;
423 }
424 }
425
initialize_locs_from(const CodeSection * source_cs)426 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
427 int lcount = source_cs->locs_count();
428 if (lcount != 0) {
429 initialize_shared_locs(source_cs->locs_start(), lcount);
430 _locs_end = _locs_limit = _locs_start + lcount;
431 assert(is_allocated(), "must have copied code already");
432 set_locs_point(start() + source_cs->locs_point_off());
433 }
434 assert(this->locs_count() == source_cs->locs_count(), "sanity");
435 }
436
expand_locs(int new_capacity)437 void CodeSection::expand_locs(int new_capacity) {
438 if (_locs_start == NULL) {
439 initialize_locs(new_capacity);
440 return;
441 } else {
442 int old_count = locs_count();
443 int old_capacity = locs_capacity();
444 if (new_capacity < old_capacity * 2)
445 new_capacity = old_capacity * 2;
446 relocInfo* locs_start;
447 if (_locs_own) {
448 locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
449 } else {
450 locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
451 Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
452 _locs_own = true;
453 }
454 _locs_start = locs_start;
455 _locs_end = locs_start + old_count;
456 _locs_limit = locs_start + new_capacity;
457 }
458 }
459
460
461 /// Support for emitting the code to its final location.
462 /// The pattern is the same for all functions.
463 /// We iterate over all the sections, padding each to alignment.
464
total_content_size() const465 csize_t CodeBuffer::total_content_size() const {
466 csize_t size_so_far = 0;
467 for (int n = 0; n < (int)SECT_LIMIT; n++) {
468 const CodeSection* cs = code_section(n);
469 if (cs->is_empty()) continue; // skip trivial section
470 size_so_far = cs->align_at_start(size_so_far);
471 size_so_far += cs->size();
472 }
473 return size_so_far;
474 }
475
compute_final_layout(CodeBuffer * dest) const476 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
477 address buf = dest->_total_start;
478 csize_t buf_offset = 0;
479 assert(dest->_total_size >= total_content_size(), "must be big enough");
480
481 {
482 // not sure why this is here, but why not...
483 int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
484 assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
485 }
486
487 const CodeSection* prev_cs = NULL;
488 CodeSection* prev_dest_cs = NULL;
489
490 for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
491 // figure compact layout of each section
492 const CodeSection* cs = code_section(n);
493 csize_t csize = cs->size();
494
495 CodeSection* dest_cs = dest->code_section(n);
496 if (!cs->is_empty()) {
497 // Compute initial padding; assign it to the previous non-empty guy.
498 // Cf. figure_expanded_capacities.
499 csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
500 if (prev_dest_cs != NULL) {
501 if (padding != 0) {
502 buf_offset += padding;
503 prev_dest_cs->_limit += padding;
504 }
505 } else {
506 guarantee(padding == 0, "In first iteration no padding should be needed.");
507 }
508 #ifdef ASSERT
509 if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
510 // Make sure the ends still match up.
511 // This is important because a branch in a frozen section
512 // might target code in a following section, via a Label,
513 // and without a relocation record. See Label::patch_instructions.
514 address dest_start = buf+buf_offset;
515 csize_t start2start = cs->start() - prev_cs->start();
516 csize_t dest_start2start = dest_start - prev_dest_cs->start();
517 assert(start2start == dest_start2start, "cannot stretch frozen sect");
518 }
519 #endif //ASSERT
520 prev_dest_cs = dest_cs;
521 prev_cs = cs;
522 }
523
524 debug_only(dest_cs->_start = NULL); // defeat double-initialization assert
525 dest_cs->initialize(buf+buf_offset, csize);
526 dest_cs->set_end(buf+buf_offset+csize);
527 assert(dest_cs->is_allocated(), "must always be allocated");
528 assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
529
530 buf_offset += csize;
531 }
532
533 // Done calculating sections; did it come out to the right end?
534 assert(buf_offset == total_content_size(), "sanity");
535 dest->verify_section_allocation();
536 }
537
538 // Append an oop reference that keeps the class alive.
append_oop_references(GrowableArray<oop> * oops,Klass * k)539 static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
540 oop cl = k->klass_holder();
541 if (cl != NULL && !oops->contains(cl)) {
542 oops->append(cl);
543 }
544 }
545
finalize_oop_references(const methodHandle & mh)546 void CodeBuffer::finalize_oop_references(const methodHandle& mh) {
547 NoSafepointVerifier nsv;
548
549 GrowableArray<oop> oops;
550
551 // Make sure that immediate metadata records something in the OopRecorder
552 for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
553 // pull code out of each section
554 CodeSection* cs = code_section(n);
555 if (cs->is_empty()) continue; // skip trivial section
556 RelocIterator iter(cs);
557 while (iter.next()) {
558 if (iter.type() == relocInfo::metadata_type) {
559 metadata_Relocation* md = iter.metadata_reloc();
560 if (md->metadata_is_immediate()) {
561 Metadata* m = md->metadata_value();
562 if (oop_recorder()->is_real(m)) {
563 if (m->is_methodData()) {
564 m = ((MethodData*)m)->method();
565 }
566 if (m->is_method()) {
567 m = ((Method*)m)->method_holder();
568 }
569 if (m->is_klass()) {
570 append_oop_references(&oops, (Klass*)m);
571 } else {
572 // XXX This will currently occur for MDO which don't
573 // have a backpointer. This has to be fixed later.
574 m->print();
575 ShouldNotReachHere();
576 }
577 }
578 }
579 }
580 }
581 }
582
583 if (!oop_recorder()->is_unused()) {
584 for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
585 Metadata* m = oop_recorder()->metadata_at(i);
586 if (oop_recorder()->is_real(m)) {
587 if (m->is_methodData()) {
588 m = ((MethodData*)m)->method();
589 }
590 if (m->is_method()) {
591 m = ((Method*)m)->method_holder();
592 }
593 if (m->is_klass()) {
594 append_oop_references(&oops, (Klass*)m);
595 } else {
596 m->print();
597 ShouldNotReachHere();
598 }
599 }
600 }
601
602 }
603
604 // Add the class loader of Method* for the nmethod itself
605 append_oop_references(&oops, mh->method_holder());
606
607 // Add any oops that we've found
608 Thread* thread = Thread::current();
609 for (int i = 0; i < oops.length(); i++) {
610 oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
611 }
612 }
613
614
615
total_offset_of(const CodeSection * cs) const616 csize_t CodeBuffer::total_offset_of(const CodeSection* cs) const {
617 csize_t size_so_far = 0;
618 for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
619 const CodeSection* cur_cs = code_section(n);
620 if (!cur_cs->is_empty()) {
621 size_so_far = cur_cs->align_at_start(size_so_far);
622 }
623 if (cur_cs->index() == cs->index()) {
624 return size_so_far;
625 }
626 size_so_far += cur_cs->size();
627 }
628 ShouldNotReachHere();
629 return -1;
630 }
631
total_relocation_size() const632 csize_t CodeBuffer::total_relocation_size() const {
633 csize_t total = copy_relocations_to(NULL); // dry run only
634 return (csize_t) align_up(total, HeapWordSize);
635 }
636
copy_relocations_to(address buf,csize_t buf_limit,bool only_inst) const637 csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const {
638 csize_t buf_offset = 0;
639 csize_t code_end_so_far = 0;
640 csize_t code_point_so_far = 0;
641
642 assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
643 assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
644
645 for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
646 if (only_inst && (n != (int)SECT_INSTS)) {
647 // Need only relocation info for code.
648 continue;
649 }
650 // pull relocs out of each section
651 const CodeSection* cs = code_section(n);
652 assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
653 if (cs->is_empty()) continue; // skip trivial section
654 relocInfo* lstart = cs->locs_start();
655 relocInfo* lend = cs->locs_end();
656 csize_t lsize = (csize_t)( (address)lend - (address)lstart );
657 csize_t csize = cs->size();
658 code_end_so_far = cs->align_at_start(code_end_so_far);
659
660 if (lsize > 0) {
661 // Figure out how to advance the combined relocation point
662 // first to the beginning of this section.
663 // We'll insert one or more filler relocs to span that gap.
664 // (Don't bother to improve this by editing the first reloc's offset.)
665 csize_t new_code_point = code_end_so_far;
666 for (csize_t jump;
667 code_point_so_far < new_code_point;
668 code_point_so_far += jump) {
669 jump = new_code_point - code_point_so_far;
670 relocInfo filler = filler_relocInfo();
671 if (jump >= filler.addr_offset()) {
672 jump = filler.addr_offset();
673 } else { // else shrink the filler to fit
674 filler = relocInfo(relocInfo::none, jump);
675 }
676 if (buf != NULL) {
677 assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
678 *(relocInfo*)(buf+buf_offset) = filler;
679 }
680 buf_offset += sizeof(filler);
681 }
682
683 // Update code point and end to skip past this section:
684 csize_t last_code_point = code_end_so_far + cs->locs_point_off();
685 assert(code_point_so_far <= last_code_point, "sanity");
686 code_point_so_far = last_code_point; // advance past this guy's relocs
687 }
688 code_end_so_far += csize; // advance past this guy's instructions too
689
690 // Done with filler; emit the real relocations:
691 if (buf != NULL && lsize != 0) {
692 assert(buf_offset + lsize <= buf_limit, "target in bounds");
693 assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
694 if (buf_offset % HeapWordSize == 0) {
695 // Use wordwise copies if possible:
696 Copy::disjoint_words((HeapWord*)lstart,
697 (HeapWord*)(buf+buf_offset),
698 (lsize + HeapWordSize-1) / HeapWordSize);
699 } else {
700 Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
701 }
702 }
703 buf_offset += lsize;
704 }
705
706 // Align end of relocation info in target.
707 while (buf_offset % HeapWordSize != 0) {
708 if (buf != NULL) {
709 relocInfo padding = relocInfo(relocInfo::none, 0);
710 assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
711 *(relocInfo*)(buf+buf_offset) = padding;
712 }
713 buf_offset += sizeof(relocInfo);
714 }
715
716 assert(only_inst || code_end_so_far == total_content_size(), "sanity");
717
718 return buf_offset;
719 }
720
copy_relocations_to(CodeBlob * dest) const721 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
722 address buf = NULL;
723 csize_t buf_offset = 0;
724 csize_t buf_limit = 0;
725
726 if (dest != NULL) {
727 buf = (address)dest->relocation_begin();
728 buf_limit = (address)dest->relocation_end() - buf;
729 }
730 // if dest == NULL, this is just the sizing pass
731 //
732 buf_offset = copy_relocations_to(buf, buf_limit, false);
733
734 return buf_offset;
735 }
736
copy_code_to(CodeBlob * dest_blob)737 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
738 #ifndef PRODUCT
739 if (PrintNMethods && (WizardMode || Verbose)) {
740 tty->print("done with CodeBuffer:");
741 ((CodeBuffer*)this)->print();
742 }
743 #endif //PRODUCT
744
745 CodeBuffer dest(dest_blob);
746 assert(dest_blob->content_size() >= total_content_size(), "good sizing");
747 this->compute_final_layout(&dest);
748
749 // Set beginning of constant table before relocating.
750 dest_blob->set_ctable_begin(dest.consts()->start());
751
752 relocate_code_to(&dest);
753
754 // transfer strings and comments from buffer to blob
755 dest_blob->set_strings(_code_strings);
756
757 // Done moving code bytes; were they the right size?
758 assert((int)align_up(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
759
760 // Flush generated code
761 ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
762 }
763
764 // Move all my code into another code buffer. Consult applicable
765 // relocs to repair embedded addresses. The layout in the destination
766 // CodeBuffer is different to the source CodeBuffer: the destination
767 // CodeBuffer gets the final layout (consts, insts, stubs in order of
768 // ascending address).
relocate_code_to(CodeBuffer * dest) const769 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
770 address dest_end = dest->_total_start + dest->_total_size;
771 address dest_filled = NULL;
772 for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
773 // pull code out of each section
774 const CodeSection* cs = code_section(n);
775 if (cs->is_empty()) continue; // skip trivial section
776 CodeSection* dest_cs = dest->code_section(n);
777 assert(cs->size() == dest_cs->size(), "sanity");
778 csize_t usize = dest_cs->size();
779 csize_t wsize = align_up(usize, HeapWordSize);
780 assert(dest_cs->start() + wsize <= dest_end, "no overflow");
781 // Copy the code as aligned machine words.
782 // This may also include an uninitialized partial word at the end.
783 Copy::disjoint_words((HeapWord*)cs->start(),
784 (HeapWord*)dest_cs->start(),
785 wsize / HeapWordSize);
786
787 if (dest->blob() == NULL) {
788 // Destination is a final resting place, not just another buffer.
789 // Normalize uninitialized bytes in the final padding.
790 Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
791 Assembler::code_fill_byte());
792 }
793 // Keep track of the highest filled address
794 dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
795
796 assert(cs->locs_start() != (relocInfo*)badAddress,
797 "this section carries no reloc storage, but reloc was attempted");
798
799 // Make the new code copy use the old copy's relocations:
800 dest_cs->initialize_locs_from(cs);
801 }
802
803 // Do relocation after all sections are copied.
804 // This is necessary if the code uses constants in stubs, which are
805 // relocated when the corresponding instruction in the code (e.g., a
806 // call) is relocated. Stubs are placed behind the main code
807 // section, so that section has to be copied before relocating.
808 for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
809 // pull code out of each section
810 const CodeSection* cs = code_section(n);
811 if (cs->is_empty()) continue; // skip trivial section
812 CodeSection* dest_cs = dest->code_section(n);
813 { // Repair the pc relative information in the code after the move
814 RelocIterator iter(dest_cs);
815 while (iter.next()) {
816 iter.reloc()->fix_relocation_after_move(this, dest);
817 }
818 }
819 }
820
821 if (dest->blob() == NULL && dest_filled != NULL) {
822 // Destination is a final resting place, not just another buffer.
823 // Normalize uninitialized bytes in the final padding.
824 Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
825 Assembler::code_fill_byte());
826
827 }
828 }
829
figure_expanded_capacities(CodeSection * which_cs,csize_t amount,csize_t * new_capacity)830 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
831 csize_t amount,
832 csize_t* new_capacity) {
833 csize_t new_total_cap = 0;
834
835 for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
836 const CodeSection* sect = code_section(n);
837
838 if (!sect->is_empty()) {
839 // Compute initial padding; assign it to the previous section,
840 // even if it's empty (e.g. consts section can be empty).
841 // Cf. compute_final_layout
842 csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
843 if (padding != 0) {
844 new_total_cap += padding;
845 assert(n - 1 >= SECT_FIRST, "sanity");
846 new_capacity[n - 1] += padding;
847 }
848 }
849
850 csize_t exp = sect->size(); // 100% increase
851 if ((uint)exp < 4*K) exp = 4*K; // minimum initial increase
852 if (sect == which_cs) {
853 if (exp < amount) exp = amount;
854 if (StressCodeBuffers) exp = amount; // expand only slightly
855 } else if (n == SECT_INSTS) {
856 // scale down inst increases to a more modest 25%
857 exp = 4*K + ((exp - 4*K) >> 2);
858 if (StressCodeBuffers) exp = amount / 2; // expand only slightly
859 } else if (sect->is_empty()) {
860 // do not grow an empty secondary section
861 exp = 0;
862 }
863 // Allow for inter-section slop:
864 exp += CodeSection::end_slop();
865 csize_t new_cap = sect->size() + exp;
866 if (new_cap < sect->capacity()) {
867 // No need to expand after all.
868 new_cap = sect->capacity();
869 }
870 new_capacity[n] = new_cap;
871 new_total_cap += new_cap;
872 }
873
874 return new_total_cap;
875 }
876
expand(CodeSection * which_cs,csize_t amount)877 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
878 #ifndef PRODUCT
879 if (PrintNMethods && (WizardMode || Verbose)) {
880 tty->print("expanding CodeBuffer:");
881 this->print();
882 }
883
884 if (StressCodeBuffers && blob() != NULL) {
885 static int expand_count = 0;
886 if (expand_count >= 0) expand_count += 1;
887 if (expand_count > 100 && is_power_of_2(expand_count)) {
888 tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
889 // simulate an occasional allocation failure:
890 free_blob();
891 }
892 }
893 #endif //PRODUCT
894
895 // Resizing must be allowed
896 {
897 if (blob() == NULL) return; // caller must check for blob == NULL
898 for (int n = 0; n < (int)SECT_LIMIT; n++) {
899 guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
900 }
901 }
902
903 // Figure new capacity for each section.
904 csize_t new_capacity[SECT_LIMIT];
905 memset(new_capacity, 0, sizeof(csize_t) * SECT_LIMIT);
906 csize_t new_total_cap
907 = figure_expanded_capacities(which_cs, amount, new_capacity);
908
909 // Create a new (temporary) code buffer to hold all the new data
910 CodeBuffer cb(name(), new_total_cap, 0);
911 if (cb.blob() == NULL) {
912 // Failed to allocate in code cache.
913 free_blob();
914 return;
915 }
916
917 // Create an old code buffer to remember which addresses used to go where.
918 // This will be useful when we do final assembly into the code cache,
919 // because we will need to know how to warp any internal address that
920 // has been created at any time in this CodeBuffer's past.
921 CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
922 bxp->take_over_code_from(this); // remember the old undersized blob
923 DEBUG_ONLY(this->_blob = NULL); // silence a later assert
924 bxp->_before_expand = this->_before_expand;
925 this->_before_expand = bxp;
926
927 // Give each section its required (expanded) capacity.
928 for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
929 CodeSection* cb_sect = cb.code_section(n);
930 CodeSection* this_sect = code_section(n);
931 if (new_capacity[n] == 0) continue; // already nulled out
932 if (n != SECT_INSTS) {
933 cb.initialize_section_size(cb_sect, new_capacity[n]);
934 }
935 assert(cb_sect->capacity() >= new_capacity[n], "big enough");
936 address cb_start = cb_sect->start();
937 cb_sect->set_end(cb_start + this_sect->size());
938 if (this_sect->mark() == NULL) {
939 cb_sect->clear_mark();
940 } else {
941 cb_sect->set_mark(cb_start + this_sect->mark_off());
942 }
943 }
944
945 // Needs to be initialized when calling fix_relocation_after_move.
946 cb.blob()->set_ctable_begin(cb.consts()->start());
947
948 // Move all the code and relocations to the new blob:
949 relocate_code_to(&cb);
950
951 // Copy the temporary code buffer into the current code buffer.
952 // Basically, do {*this = cb}, except for some control information.
953 this->take_over_code_from(&cb);
954 cb.set_blob(NULL);
955
956 // Zap the old code buffer contents, to avoid mistakenly using them.
957 debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
958 badCodeHeapFreeVal));
959
960 _decode_begin = NULL; // sanity
961
962 // Make certain that the new sections are all snugly inside the new blob.
963 verify_section_allocation();
964
965 #ifndef PRODUCT
966 if (PrintNMethods && (WizardMode || Verbose)) {
967 tty->print("expanded CodeBuffer:");
968 this->print();
969 }
970 #endif //PRODUCT
971 }
972
take_over_code_from(CodeBuffer * cb)973 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
974 // Must already have disposed of the old blob somehow.
975 assert(blob() == NULL, "must be empty");
976 // Take the new blob away from cb.
977 set_blob(cb->blob());
978 // Take over all the section pointers.
979 for (int n = 0; n < (int)SECT_LIMIT; n++) {
980 CodeSection* cb_sect = cb->code_section(n);
981 CodeSection* this_sect = code_section(n);
982 this_sect->take_over_code_from(cb_sect);
983 }
984 _overflow_arena = cb->_overflow_arena;
985 // Make sure the old cb won't try to use it or free it.
986 DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
987 }
988
verify_section_allocation()989 void CodeBuffer::verify_section_allocation() {
990 address tstart = _total_start;
991 if (tstart == badAddress) return; // smashed by set_blob(NULL)
992 address tend = tstart + _total_size;
993 if (_blob != NULL) {
994
995 guarantee(tstart >= _blob->content_begin(), "sanity");
996 guarantee(tend <= _blob->content_end(), "sanity");
997 }
998 // Verify disjointness.
999 for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
1000 CodeSection* sect = code_section(n);
1001 if (!sect->is_allocated() || sect->is_empty()) continue;
1002 guarantee((intptr_t)sect->start() % sect->alignment() == 0
1003 || sect->is_empty() || _blob == NULL,
1004 "start is aligned");
1005 for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
1006 CodeSection* other = code_section(m);
1007 if (!other->is_allocated() || other == sect) continue;
1008 guarantee(!other->contains(sect->start() ), "sanity");
1009 // limit is an exclusive address and can be the start of another
1010 // section.
1011 guarantee(!other->contains(sect->limit() - 1), "sanity");
1012 }
1013 guarantee(sect->end() <= tend, "sanity");
1014 guarantee(sect->end() <= sect->limit(), "sanity");
1015 }
1016 }
1017
log_section_sizes(const char * name)1018 void CodeBuffer::log_section_sizes(const char* name) {
1019 if (xtty != NULL) {
1020 ttyLocker ttyl;
1021 // log info about buffer usage
1022 xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
1023 for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
1024 CodeSection* sect = code_section(n);
1025 if (!sect->is_allocated() || sect->is_empty()) continue;
1026 xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
1027 n, sect->limit() - sect->start(), sect->limit() - sect->end());
1028 }
1029 xtty->print_cr("</blob>");
1030 }
1031 }
1032
1033 #ifndef PRODUCT
1034
decode()1035 void CodeSection::decode() {
1036 Disassembler::decode(start(), end());
1037 }
1038
block_comment(intptr_t offset,const char * comment)1039 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1040 if (_collect_comments) {
1041 _code_strings.add_comment(offset, comment);
1042 }
1043 }
1044
code_string(const char * str)1045 const char* CodeBuffer::code_string(const char* str) {
1046 return _code_strings.add_string(str);
1047 }
1048
1049 class CodeString: public CHeapObj<mtCode> {
1050 private:
1051 friend class CodeStrings;
1052 const char * _string;
1053 CodeString* _next;
1054 CodeString* _prev;
1055 intptr_t _offset;
1056
~CodeString()1057 ~CodeString() {
1058 assert(_next == NULL && _prev == NULL, "wrong interface for freeing list");
1059 os::free((void*)_string);
1060 }
1061
is_comment() const1062 bool is_comment() const { return _offset >= 0; }
1063
1064 public:
CodeString(const char * string,intptr_t offset=-1)1065 CodeString(const char * string, intptr_t offset = -1)
1066 : _next(NULL), _prev(NULL), _offset(offset) {
1067 _string = os::strdup(string, mtCode);
1068 }
1069
string() const1070 const char * string() const { return _string; }
offset() const1071 intptr_t offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset; }
next() const1072 CodeString* next() const { return _next; }
1073
set_next(CodeString * next)1074 void set_next(CodeString* next) {
1075 _next = next;
1076 if (next != NULL) {
1077 next->_prev = this;
1078 }
1079 }
1080
first_comment()1081 CodeString* first_comment() {
1082 if (is_comment()) {
1083 return this;
1084 } else {
1085 return next_comment();
1086 }
1087 }
next_comment() const1088 CodeString* next_comment() const {
1089 CodeString* s = _next;
1090 while (s != NULL && !s->is_comment()) {
1091 s = s->_next;
1092 }
1093 return s;
1094 }
1095 };
1096
find(intptr_t offset) const1097 CodeString* CodeStrings::find(intptr_t offset) const {
1098 CodeString* a = _strings->first_comment();
1099 while (a != NULL && a->offset() != offset) {
1100 a = a->next_comment();
1101 }
1102 return a;
1103 }
1104
1105 // Convenience for add_comment.
find_last(intptr_t offset) const1106 CodeString* CodeStrings::find_last(intptr_t offset) const {
1107 CodeString* a = _strings_last;
1108 while (a != NULL && !(a->is_comment() && a->offset() == offset)) {
1109 a = a->_prev;
1110 }
1111 return a;
1112 }
1113
add_comment(intptr_t offset,const char * comment)1114 void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1115 check_valid();
1116 CodeString* c = new CodeString(comment, offset);
1117 CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1118
1119 if (inspos) {
1120 // insert after already existing comments with same offset
1121 c->set_next(inspos->next());
1122 inspos->set_next(c);
1123 } else {
1124 // no comments with such offset, yet. Insert before anything else.
1125 c->set_next(_strings);
1126 _strings = c;
1127 }
1128 if (c->next() == NULL) {
1129 _strings_last = c;
1130 }
1131 }
1132
assign(CodeStrings & other)1133 void CodeStrings::assign(CodeStrings& other) {
1134 other.check_valid();
1135 assert(is_null(), "Cannot assign onto non-empty CodeStrings");
1136 _strings = other._strings;
1137 _strings_last = other._strings_last;
1138 #ifdef ASSERT
1139 _defunct = false;
1140 #endif
1141 other.set_null_and_invalidate();
1142 }
1143
1144 // Deep copy of CodeStrings for consistent memory management.
1145 // Only used for actual disassembly so this is cheaper than reference counting
1146 // for the "normal" fastdebug case.
copy(CodeStrings & other)1147 void CodeStrings::copy(CodeStrings& other) {
1148 other.check_valid();
1149 check_valid();
1150 assert(is_null(), "Cannot copy onto non-empty CodeStrings");
1151 CodeString* n = other._strings;
1152 CodeString** ps = &_strings;
1153 CodeString* prev = NULL;
1154 while (n != NULL) {
1155 *ps = new CodeString(n->string(),n->offset());
1156 (*ps)->_prev = prev;
1157 prev = *ps;
1158 ps = &((*ps)->_next);
1159 n = n->next();
1160 }
1161 }
1162
1163 const char* CodeStrings::_prefix = " ;; "; // default: can be changed via set_prefix
1164
1165 // Check if any block comments are pending for the given offset.
has_block_comment(intptr_t offset) const1166 bool CodeStrings::has_block_comment(intptr_t offset) const {
1167 if (_strings == NULL) return false;
1168 CodeString* c = find(offset);
1169 return c != NULL;
1170 }
1171
print_block_comment(outputStream * stream,intptr_t offset) const1172 void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1173 check_valid();
1174 if (_strings != NULL) {
1175 CodeString* c = find(offset);
1176 while (c && c->offset() == offset) {
1177 stream->bol();
1178 stream->print("%s", _prefix);
1179 // Don't interpret as format strings since it could contain %
1180 stream->print_raw(c->string());
1181 stream->bol(); // advance to next line only if string didn't contain a cr() at the end.
1182 c = c->next_comment();
1183 }
1184 }
1185 }
1186
1187 // Also sets isNull()
free()1188 void CodeStrings::free() {
1189 CodeString* n = _strings;
1190 while (n) {
1191 // unlink the node from the list saving a pointer to the next
1192 CodeString* p = n->next();
1193 n->set_next(NULL);
1194 if (p != NULL) {
1195 assert(p->_prev == n, "missing prev link");
1196 p->_prev = NULL;
1197 }
1198 delete n;
1199 n = p;
1200 }
1201 set_null_and_invalidate();
1202 }
1203
add_string(const char * string)1204 const char* CodeStrings::add_string(const char * string) {
1205 check_valid();
1206 CodeString* s = new CodeString(string);
1207 s->set_next(_strings);
1208 if (_strings == NULL) {
1209 _strings_last = s;
1210 }
1211 _strings = s;
1212 assert(s->string() != NULL, "should have a string");
1213 return s->string();
1214 }
1215
decode()1216 void CodeBuffer::decode() {
1217 ttyLocker ttyl;
1218 Disassembler::decode(decode_begin(), insts_end(), tty);
1219 _decode_begin = insts_end();
1220 }
1221
print(const char * name)1222 void CodeSection::print(const char* name) {
1223 csize_t locs_size = locs_end() - locs_start();
1224 tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1225 name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1226 is_frozen()? " [frozen]": "");
1227 tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1228 name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1229 if (PrintRelocations) {
1230 RelocIterator iter(this);
1231 iter.print();
1232 }
1233 }
1234
print()1235 void CodeBuffer::print() {
1236 if (this == NULL) {
1237 tty->print_cr("NULL CodeBuffer pointer");
1238 return;
1239 }
1240
1241 tty->print_cr("CodeBuffer:");
1242 for (int n = 0; n < (int)SECT_LIMIT; n++) {
1243 // print each section
1244 CodeSection* cs = code_section(n);
1245 cs->print(code_section_name(n));
1246 }
1247 }
1248
1249 // Directly disassemble code buffer.
decode(address start,address end)1250 void CodeBuffer::decode(address start, address end) {
1251 ttyLocker ttyl;
1252 Disassembler::decode(this, start, end, tty);
1253 }
1254
1255 #endif // PRODUCT
1256