1 /*
2  * Copyright (c) 2002, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
26 #define SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
27 
28 #include "gc/shared/adaptiveSizePolicy.hpp"
29 #include "gc/shared/gcCause.hpp"
30 #include "gc/shared/gcStats.hpp"
31 #include "gc/shared/gcUtil.hpp"
32 #include "utilities/align.hpp"
33 
34 // This class keeps statistical information and computes the
35 // optimal free space for both the young and old generation
36 // based on current application characteristics (based on gc cost
37 // and application footprint).
38 //
39 // It also computes an optimal tenuring threshold between the young
40 // and old generations, so as to equalize the cost of collections
41 // of those generations, as well as optimal survivor space sizes
42 // for the young generation.
43 //
44 // While this class is specifically intended for a generational system
45 // consisting of a young gen (containing an Eden and two semi-spaces)
46 // and a tenured gen, as well as a perm gen for reflective data, it
47 // makes NO references to specific generations.
48 //
49 // 05/02/2003 Update
50 // The 1.5 policy makes use of data gathered for the costs of GC on
51 // specific generations.  That data does reference specific
52 // generation.  Also diagnostics specific to generations have
53 // been added.
54 
55 // Forward decls
56 class elapsedTimer;
57 
58 class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
59  friend class PSGCAdaptivePolicyCounters;
60  private:
61   // These values are used to record decisions made during the
62   // policy.  For example, if the young generation was decreased
63   // to decrease the GC cost of minor collections the value
64   // decrease_young_gen_for_throughput_true is used.
65 
66   // Last calculated sizes, in bytes, and aligned
67   // NEEDS_CLEANUP should use sizes.hpp,  but it works in ints, not size_t's
68 
69   // Time statistics
70   AdaptivePaddedAverage* _avg_major_pause;
71 
72   // Footprint statistics
73   AdaptiveWeightedAverage* _avg_base_footprint;
74 
75   // Statistical data gathered for GC
76   GCStats _gc_stats;
77 
78   const double _collection_cost_margin_fraction;
79 
80   // Variable for estimating the major and minor pause times.
81   // These variables represent linear least-squares fits of
82   // the data.
83   //   major pause time vs. old gen size
84   LinearLeastSquareFit* _major_pause_old_estimator;
85   //   major pause time vs. young gen size
86   LinearLeastSquareFit* _major_pause_young_estimator;
87 
88 
89   // These record the most recent collection times.  They
90   // are available as an alternative to using the averages
91   // for making ergonomic decisions.
92   double _latest_major_mutator_interval_seconds;
93 
94   const size_t _space_alignment; // alignment for eden, survivors
95 
96   const double _gc_minor_pause_goal_sec;    // goal for maximum minor gc pause
97 
98   // The amount of live data in the heap at the last full GC, used
99   // as a baseline to help us determine when we need to perform the
100   // next full GC.
101   size_t _live_at_last_full_gc;
102 
103   // decrease/increase the old generation for minor pause time
104   int _change_old_gen_for_min_pauses;
105 
106   // increase/decrease the young generation for major pause time
107   int _change_young_gen_for_maj_pauses;
108 
109 
110   // Flag indicating that the adaptive policy is ready to use
111   bool _old_gen_policy_is_ready;
112 
113   // To facilitate faster growth at start up, supplement the normal
114   // growth percentage for the young gen eden and the
115   // old gen space for promotion with these value which decay
116   // with increasing collections.
117   uint _young_gen_size_increment_supplement;
118   uint _old_gen_size_increment_supplement;
119 
120  private:
121 
122   // Accessors
avg_major_pause() const123   AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
gc_minor_pause_goal_sec() const124   double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
125 
126   void adjust_eden_for_minor_pause_time(bool is_full_gc,
127                                    size_t* desired_eden_size_ptr);
128   // Change the generation sizes to achieve a GC pause time goal
129   // Returned sizes are not necessarily aligned.
130   void adjust_promo_for_pause_time(bool is_full_gc,
131                          size_t* desired_promo_size_ptr,
132                          size_t* desired_eden_size_ptr);
133   void adjust_eden_for_pause_time(bool is_full_gc,
134                          size_t* desired_promo_size_ptr,
135                          size_t* desired_eden_size_ptr);
136   // Change the generation sizes to achieve an application throughput goal
137   // Returned sizes are not necessarily aligned.
138   void adjust_promo_for_throughput(bool is_full_gc,
139                              size_t* desired_promo_size_ptr);
140   void adjust_eden_for_throughput(bool is_full_gc,
141                              size_t* desired_eden_size_ptr);
142   // Change the generation sizes to achieve minimum footprint
143   // Returned sizes are not aligned.
144   size_t adjust_promo_for_footprint(size_t desired_promo_size,
145                                     size_t desired_total);
146   size_t adjust_eden_for_footprint(size_t desired_promo_size,
147                                    size_t desired_total);
148 
149   // Size in bytes for an increment or decrement of eden.
150   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
151   virtual size_t eden_decrement(size_t cur_eden);
152   size_t eden_decrement_aligned_down(size_t cur_eden);
153   size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
154 
155   // Size in bytes for an increment or decrement of the promotion area
156   virtual size_t promo_increment(size_t cur_promo, uint percent_change);
157   virtual size_t promo_decrement(size_t cur_promo);
158   size_t promo_decrement_aligned_down(size_t cur_promo);
159   size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
160 
161   // Returns a change that has been scaled down.  Result
162   // is not aligned.  (If useful, move to some shared
163   // location.)
164   size_t scale_down(size_t change, double part, double total);
165 
166  protected:
167   // Time accessors
168 
169   // Footprint accessors
live_space() const170   size_t live_space() const {
171     return (size_t)(avg_base_footprint()->average() +
172                     avg_young_live()->average() +
173                     avg_old_live()->average());
174   }
free_space() const175   size_t free_space() const {
176     return _eden_size + _promo_size;
177   }
178 
set_promo_size(size_t new_size)179   void set_promo_size(size_t new_size) {
180     _promo_size = new_size;
181   }
set_survivor_size(size_t new_size)182   void set_survivor_size(size_t new_size) {
183     _survivor_size = new_size;
184   }
185 
186   // Update estimators
187   void update_minor_pause_old_estimator(double minor_pause_in_ms);
188 
kind() const189   virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
190 
191  public:
192   virtual size_t eden_increment(size_t cur_eden);
193   virtual size_t promo_increment(size_t cur_promo);
194 
195   // Accessors for use by performance counters
avg_promoted() const196   AdaptivePaddedNoZeroDevAverage*  avg_promoted() const {
197     return _gc_stats.avg_promoted();
198   }
avg_base_footprint() const199   AdaptiveWeightedAverage* avg_base_footprint() const {
200     return _avg_base_footprint;
201   }
202 
203   // Input arguments are initial free space sizes for young and old
204   // generations, the initial survivor space size, the
205   // alignment values and the pause & throughput goals.
206   //
207   // NEEDS_CLEANUP this is a singleton object
208   PSAdaptiveSizePolicy(size_t init_eden_size,
209                        size_t init_promo_size,
210                        size_t init_survivor_size,
211                        size_t space_alignment,
212                        double gc_pause_goal_sec,
213                        double gc_minor_pause_goal_sec,
214                        uint gc_time_ratio);
215 
216   // Methods indicating events of interest to the adaptive size policy,
217   // called by GC algorithms. It is the responsibility of users of this
218   // policy to call these methods at the correct times!
219   void major_collection_begin();
220   void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
221 
tenured_allocation(size_t size)222   void tenured_allocation(size_t size) {
223     _avg_pretenured->sample(size);
224   }
225 
226   // Accessors
227   // NEEDS_CLEANUP   should use sizes.hpp
228 
229   static size_t calculate_free_based_on_live(size_t live, uintx ratio_as_percentage);
230 
231   size_t calculated_old_free_size_in_bytes() const;
232 
average_old_live_in_bytes() const233   size_t average_old_live_in_bytes() const {
234     return (size_t) avg_old_live()->average();
235   }
236 
average_promoted_in_bytes() const237   size_t average_promoted_in_bytes() const {
238     return (size_t)avg_promoted()->average();
239   }
240 
padded_average_promoted_in_bytes() const241   size_t padded_average_promoted_in_bytes() const {
242     return (size_t)avg_promoted()->padded_average();
243   }
244 
change_young_gen_for_maj_pauses()245   int change_young_gen_for_maj_pauses() {
246     return _change_young_gen_for_maj_pauses;
247   }
set_change_young_gen_for_maj_pauses(int v)248   void set_change_young_gen_for_maj_pauses(int v) {
249     _change_young_gen_for_maj_pauses = v;
250   }
251 
change_old_gen_for_min_pauses()252   int change_old_gen_for_min_pauses() {
253     return _change_old_gen_for_min_pauses;
254   }
set_change_old_gen_for_min_pauses(int v)255   void set_change_old_gen_for_min_pauses(int v) {
256     _change_old_gen_for_min_pauses = v;
257   }
258 
259   // Return true if the old generation size was changed
260   // to try to reach a pause time goal.
old_gen_changed_for_pauses()261   bool old_gen_changed_for_pauses() {
262     bool result = _change_old_gen_for_maj_pauses != 0 ||
263                   _change_old_gen_for_min_pauses != 0;
264     return result;
265   }
266 
267   // Return true if the young generation size was changed
268   // to try to reach a pause time goal.
young_gen_changed_for_pauses()269   bool young_gen_changed_for_pauses() {
270     bool result = _change_young_gen_for_min_pauses != 0 ||
271                   _change_young_gen_for_maj_pauses != 0;
272     return result;
273   }
274   // end flags for pause goal
275 
276   // Return true if the old generation size was changed
277   // to try to reach a throughput goal.
old_gen_changed_for_throughput()278   bool old_gen_changed_for_throughput() {
279     bool result = _change_old_gen_for_throughput != 0;
280     return result;
281   }
282 
283   // Return true if the young generation size was changed
284   // to try to reach a throughput goal.
young_gen_changed_for_throughput()285   bool young_gen_changed_for_throughput() {
286     bool result = _change_young_gen_for_throughput != 0;
287     return result;
288   }
289 
decrease_for_footprint()290   int decrease_for_footprint() { return _decrease_for_footprint; }
291 
292 
293   // Accessors for estimators.  The slope of the linear fit is
294   // currently all that is used for making decisions.
295 
major_pause_old_estimator()296   LinearLeastSquareFit* major_pause_old_estimator() {
297     return _major_pause_old_estimator;
298   }
299 
major_pause_young_estimator()300   LinearLeastSquareFit* major_pause_young_estimator() {
301     return _major_pause_young_estimator;
302   }
303 
304 
305   virtual void clear_generation_free_space_flags();
306 
major_pause_old_slope()307   float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
major_pause_young_slope()308   float major_pause_young_slope() {
309     return _major_pause_young_estimator->slope();
310   }
major_collection_slope()311   float major_collection_slope() { return _major_collection_estimator->slope();}
312 
old_gen_policy_is_ready()313   bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
314 
315   // Given the amount of live data in the heap, should we
316   // perform a Full GC?
317   bool should_full_GC(size_t live_in_old_gen);
318 
319   // Calculates optimal (free) space sizes for both the young and old
320   // generations.  Stores results in _eden_size and _promo_size.
321   // Takes current used space in all generations as input, as well
322   // as an indication if a full gc has just been performed, for use
323   // in deciding if an OOM error should be thrown.
324   void compute_generations_free_space(size_t young_live,
325                                       size_t eden_live,
326                                       size_t old_live,
327                                       size_t cur_eden,  // current eden in bytes
328                                       size_t max_old_gen_size,
329                                       size_t max_eden_size,
330                                       bool   is_full_gc);
331 
332   void compute_eden_space_size(size_t young_live,
333                                size_t eden_live,
334                                size_t cur_eden,  // current eden in bytes
335                                size_t max_eden_size,
336                                bool   is_full_gc);
337 
338   void compute_old_gen_free_space(size_t old_live,
339                                              size_t cur_eden,  // current eden in bytes
340                                              size_t max_old_gen_size,
341                                              bool   is_full_gc);
342 
343   // Calculates new survivor space size;  returns a new tenuring threshold
344   // value. Stores new survivor size in _survivor_size.
345   uint compute_survivor_space_size_and_threshold(bool   is_survivor_overflow,
346                                                  uint    tenuring_threshold,
347                                                  size_t survivor_limit);
348 
349   // Return the maximum size of a survivor space if the young generation were of
350   // size gen_size.
max_survivor_size(size_t gen_size)351   size_t max_survivor_size(size_t gen_size) {
352     // Never allow the target survivor size to grow more than MinSurvivorRatio
353     // of the young generation size.  We cannot grow into a two semi-space
354     // system, with Eden zero sized.  Even if the survivor space grows, from()
355     // might grow by moving the bottom boundary "down" -- so from space will
356     // remain almost full anyway (top() will be near end(), but there will be a
357     // large filler object at the bottom).
358     const size_t sz = gen_size / MinSurvivorRatio;
359     const size_t alignment = _space_alignment;
360     return sz > alignment ? align_down(sz, alignment) : alignment;
361   }
362 
live_at_last_full_gc()363   size_t live_at_last_full_gc() {
364     return _live_at_last_full_gc;
365   }
366 
367   // Update averages that are always used (even
368   // if adaptive sizing is turned off).
369   void update_averages(bool is_survivor_overflow,
370                        size_t survived,
371                        size_t promoted);
372 
373   // Printing support
374   virtual bool print() const;
375 
376   // Decay the supplemental growth additive.
377   void decay_supplemental_growth(bool is_full_gc);
378 };
379 
380 #endif // SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
381