1 /*
2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package com.sun.tools.javac.comp;
27 
28 import java.util.*;
29 import java.util.function.BiConsumer;
30 import java.util.stream.Collectors;
31 
32 import javax.lang.model.element.ElementKind;
33 import javax.tools.JavaFileObject;
34 
35 import com.sun.source.tree.CaseTree;
36 import com.sun.source.tree.IdentifierTree;
37 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
38 import com.sun.source.tree.MemberSelectTree;
39 import com.sun.source.tree.TreeVisitor;
40 import com.sun.source.util.SimpleTreeVisitor;
41 import com.sun.tools.javac.code.*;
42 import com.sun.tools.javac.code.Lint.LintCategory;
43 import com.sun.tools.javac.code.Scope.WriteableScope;
44 import com.sun.tools.javac.code.Source.Feature;
45 import com.sun.tools.javac.code.Symbol.*;
46 import com.sun.tools.javac.code.Type.*;
47 import com.sun.tools.javac.code.TypeMetadata.Annotations;
48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
50 import com.sun.tools.javac.comp.Check.CheckContext;
51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings;
53 import com.sun.tools.javac.jvm.*;
54 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
57 import com.sun.tools.javac.resources.CompilerProperties.Errors;
58 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
59 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
60 import com.sun.tools.javac.tree.*;
61 import com.sun.tools.javac.tree.JCTree.*;
62 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
63 import com.sun.tools.javac.util.*;
64 import com.sun.tools.javac.util.DefinedBy.Api;
65 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
66 import com.sun.tools.javac.util.JCDiagnostic.Error;
67 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
68 import com.sun.tools.javac.util.JCDiagnostic.Warning;
69 import com.sun.tools.javac.util.List;
70 
71 import static com.sun.tools.javac.code.Flags.*;
72 import static com.sun.tools.javac.code.Flags.ANNOTATION;
73 import static com.sun.tools.javac.code.Flags.BLOCK;
74 import static com.sun.tools.javac.code.Kinds.*;
75 import static com.sun.tools.javac.code.Kinds.Kind.*;
76 import static com.sun.tools.javac.code.TypeTag.*;
77 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
78 import static com.sun.tools.javac.tree.JCTree.Tag.*;
79 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
80 
81 /** This is the main context-dependent analysis phase in GJC. It
82  *  encompasses name resolution, type checking and constant folding as
83  *  subtasks. Some subtasks involve auxiliary classes.
84  *  @see Check
85  *  @see Resolve
86  *  @see ConstFold
87  *  @see Infer
88  *
89  *  <p><b>This is NOT part of any supported API.
90  *  If you write code that depends on this, you do so at your own risk.
91  *  This code and its internal interfaces are subject to change or
92  *  deletion without notice.</b>
93  */
94 public class Attr extends JCTree.Visitor {
95     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
96 
97     final Names names;
98     final Log log;
99     final Symtab syms;
100     final Resolve rs;
101     final Operators operators;
102     final Infer infer;
103     final Analyzer analyzer;
104     final DeferredAttr deferredAttr;
105     final Check chk;
106     final Flow flow;
107     final MemberEnter memberEnter;
108     final TypeEnter typeEnter;
109     final TreeMaker make;
110     final ConstFold cfolder;
111     final Enter enter;
112     final Target target;
113     final Types types;
114     final Preview preview;
115     final JCDiagnostic.Factory diags;
116     final TypeAnnotations typeAnnotations;
117     final DeferredLintHandler deferredLintHandler;
118     final TypeEnvs typeEnvs;
119     final Dependencies dependencies;
120     final Annotate annotate;
121     final ArgumentAttr argumentAttr;
122     final MatchBindingsComputer matchBindingsComputer;
123 
instance(Context context)124     public static Attr instance(Context context) {
125         Attr instance = context.get(attrKey);
126         if (instance == null)
127             instance = new Attr(context);
128         return instance;
129     }
130 
Attr(Context context)131     protected Attr(Context context) {
132         context.put(attrKey, this);
133 
134         names = Names.instance(context);
135         log = Log.instance(context);
136         syms = Symtab.instance(context);
137         rs = Resolve.instance(context);
138         operators = Operators.instance(context);
139         chk = Check.instance(context);
140         flow = Flow.instance(context);
141         memberEnter = MemberEnter.instance(context);
142         typeEnter = TypeEnter.instance(context);
143         make = TreeMaker.instance(context);
144         enter = Enter.instance(context);
145         infer = Infer.instance(context);
146         analyzer = Analyzer.instance(context);
147         deferredAttr = DeferredAttr.instance(context);
148         cfolder = ConstFold.instance(context);
149         target = Target.instance(context);
150         types = Types.instance(context);
151         preview = Preview.instance(context);
152         diags = JCDiagnostic.Factory.instance(context);
153         annotate = Annotate.instance(context);
154         typeAnnotations = TypeAnnotations.instance(context);
155         deferredLintHandler = DeferredLintHandler.instance(context);
156         typeEnvs = TypeEnvs.instance(context);
157         dependencies = Dependencies.instance(context);
158         argumentAttr = ArgumentAttr.instance(context);
159         matchBindingsComputer = MatchBindingsComputer.instance(context);
160 
161         Options options = Options.instance(context);
162 
163         Source source = Source.instance(context);
164         allowPoly = Feature.POLY.allowedInSource(source);
165         allowTypeAnnos = Feature.TYPE_ANNOTATIONS.allowedInSource(source);
166         allowLambda = Feature.LAMBDA.allowedInSource(source);
167         allowDefaultMethods = Feature.DEFAULT_METHODS.allowedInSource(source);
168         allowStaticInterfaceMethods = Feature.STATIC_INTERFACE_METHODS.allowedInSource(source);
169         allowReifiableTypesInInstanceof =
170                 Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source) &&
171                 (!preview.isPreview(Feature.REIFIABLE_TYPES_INSTANCEOF) || preview.isEnabled());
172         sourceName = source.name;
173         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
174 
175         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
176         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
177         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
178         methodAttrInfo = new MethodAttrInfo();
179         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
180         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
181         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
182     }
183 
184     /** Switch: support target-typing inference
185      */
186     boolean allowPoly;
187 
188     /** Switch: support type annotations.
189      */
190     boolean allowTypeAnnos;
191 
192     /** Switch: support lambda expressions ?
193      */
194     boolean allowLambda;
195 
196     /** Switch: support default methods ?
197      */
198     boolean allowDefaultMethods;
199 
200     /** Switch: static interface methods enabled?
201      */
202     boolean allowStaticInterfaceMethods;
203 
204     /** Switch: reifiable types in instanceof enabled?
205      */
206     boolean allowReifiableTypesInInstanceof;
207 
208     /**
209      * Switch: warn about use of variable before declaration?
210      * RFE: 6425594
211      */
212     boolean useBeforeDeclarationWarning;
213 
214     /**
215      * Switch: name of source level; used for error reporting.
216      */
217     String sourceName;
218 
219     /** Check kind and type of given tree against protokind and prototype.
220      *  If check succeeds, store type in tree and return it.
221      *  If check fails, store errType in tree and return it.
222      *  No checks are performed if the prototype is a method type.
223      *  It is not necessary in this case since we know that kind and type
224      *  are correct.
225      *
226      *  @param tree     The tree whose kind and type is checked
227      *  @param found    The computed type of the tree
228      *  @param ownkind  The computed kind of the tree
229      *  @param resultInfo  The expected result of the tree
230      */
check(final JCTree tree, final Type found, final KindSelector ownkind, final ResultInfo resultInfo)231     Type check(final JCTree tree,
232                final Type found,
233                final KindSelector ownkind,
234                final ResultInfo resultInfo) {
235         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
236         Type owntype;
237         boolean shouldCheck = !found.hasTag(ERROR) &&
238                 !resultInfo.pt.hasTag(METHOD) &&
239                 !resultInfo.pt.hasTag(FORALL);
240         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
241             log.error(tree.pos(),
242                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
243                                             ownkind.kindNames()));
244             owntype = types.createErrorType(found);
245         } else if (allowPoly && inferenceContext.free(found)) {
246             //delay the check if there are inference variables in the found type
247             //this means we are dealing with a partially inferred poly expression
248             owntype = shouldCheck ? resultInfo.pt : found;
249             if (resultInfo.checkMode.installPostInferenceHook()) {
250                 inferenceContext.addFreeTypeListener(List.of(found),
251                         instantiatedContext -> {
252                             ResultInfo pendingResult =
253                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
254                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
255                         });
256             }
257         } else {
258             owntype = shouldCheck ?
259             resultInfo.check(tree, found) :
260             found;
261         }
262         if (resultInfo.checkMode.updateTreeType()) {
263             tree.type = owntype;
264         }
265         return owntype;
266     }
267 
268     /** Is given blank final variable assignable, i.e. in a scope where it
269      *  may be assigned to even though it is final?
270      *  @param v      The blank final variable.
271      *  @param env    The current environment.
272      */
isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env)273     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
274         Symbol owner = env.info.scope.owner;
275            // owner refers to the innermost variable, method or
276            // initializer block declaration at this point.
277         boolean isAssignable =
278             v.owner == owner
279             ||
280             ((owner.name == names.init ||    // i.e. we are in a constructor
281               owner.kind == VAR ||           // i.e. we are in a variable initializer
282               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
283              &&
284              v.owner == owner.owner
285              &&
286              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
287         boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod);
288         return isAssignable & !insideCompactConstructor;
289     }
290 
291     /** Check that variable can be assigned to.
292      *  @param pos    The current source code position.
293      *  @param v      The assigned variable
294      *  @param base   If the variable is referred to in a Select, the part
295      *                to the left of the `.', null otherwise.
296      *  @param env    The current environment.
297      */
checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env)298     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
299         if (v.name == names._this) {
300             log.error(pos, Errors.CantAssignValToThis);
301         } else if ((v.flags() & FINAL) != 0 &&
302             ((v.flags() & HASINIT) != 0
303              ||
304              !((base == null ||
305                TreeInfo.isThisQualifier(base)) &&
306                isAssignableAsBlankFinal(v, env)))) {
307             if (v.isResourceVariable()) { //TWR resource
308                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
309             } else if ((v.flags() & MATCH_BINDING) != 0) {
310                 log.error(pos, Errors.PatternBindingMayNotBeAssigned(v));
311             } else {
312                 log.error(pos, Errors.CantAssignValToFinalVar(v));
313             }
314         }
315     }
316 
317     /** Does tree represent a static reference to an identifier?
318      *  It is assumed that tree is either a SELECT or an IDENT.
319      *  We have to weed out selects from non-type names here.
320      *  @param tree    The candidate tree.
321      */
isStaticReference(JCTree tree)322     boolean isStaticReference(JCTree tree) {
323         if (tree.hasTag(SELECT)) {
324             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
325             if (lsym == null || lsym.kind != TYP) {
326                 return false;
327             }
328         }
329         return true;
330     }
331 
332     /** Is this symbol a type?
333      */
isType(Symbol sym)334     static boolean isType(Symbol sym) {
335         return sym != null && sym.kind == TYP;
336     }
337 
338     /** The current `this' symbol.
339      *  @param env    The current environment.
340      */
thisSym(DiagnosticPosition pos, Env<AttrContext> env)341     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
342         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
343     }
344 
345     /** Attribute a parsed identifier.
346      * @param tree Parsed identifier name
347      * @param topLevel The toplevel to use
348      */
attribIdent(JCTree tree, JCCompilationUnit topLevel)349     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
350         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
351         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
352                                            syms.errSymbol.name,
353                                            null, null, null, null);
354         localEnv.enclClass.sym = syms.errSymbol;
355         return attribIdent(tree, localEnv);
356     }
357 
358     /** Attribute a parsed identifier.
359      * @param tree Parsed identifier name
360      * @param env The env to use
361      */
attribIdent(JCTree tree, Env<AttrContext> env)362     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
363         return tree.accept(identAttributer, env);
364     }
365     // where
366         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
367         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
368             @Override @DefinedBy(Api.COMPILER_TREE)
visitMemberSelect(MemberSelectTree node, Env<AttrContext> env)369             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
370                 Symbol site = visit(node.getExpression(), env);
371                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
372                     return site;
373                 Name name = (Name)node.getIdentifier();
374                 if (site.kind == PCK) {
375                     env.toplevel.packge = (PackageSymbol)site;
376                     return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
377                             KindSelector.TYP_PCK);
378                 } else {
379                     env.enclClass.sym = (ClassSymbol)site;
380                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
381                 }
382             }
383 
384             @Override @DefinedBy(Api.COMPILER_TREE)
visitIdentifier(IdentifierTree node, Env<AttrContext> env)385             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
386                 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
387             }
388         }
389 
coerce(Type etype, Type ttype)390     public Type coerce(Type etype, Type ttype) {
391         return cfolder.coerce(etype, ttype);
392     }
393 
attribType(JCTree node, TypeSymbol sym)394     public Type attribType(JCTree node, TypeSymbol sym) {
395         Env<AttrContext> env = typeEnvs.get(sym);
396         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
397         return attribTree(node, localEnv, unknownTypeInfo);
398     }
399 
attribImportQualifier(JCImport tree, Env<AttrContext> env)400     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
401         // Attribute qualifying package or class.
402         JCFieldAccess s = (JCFieldAccess)tree.qualid;
403         return attribTree(s.selected, env,
404                           new ResultInfo(tree.staticImport ?
405                                          KindSelector.TYP : KindSelector.TYP_PCK,
406                        Type.noType));
407     }
408 
attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree)409     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
410         return attribToTree(expr, env, tree, unknownExprInfo);
411     }
412 
attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree)413     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
414         return attribToTree(stmt, env, tree, statInfo);
415     }
416 
attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo)417     private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
418         breakTree = tree;
419         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
420         try {
421             deferredAttr.attribSpeculative(root, env, resultInfo,
422                     null, DeferredAttr.AttributionMode.ANALYZER,
423                     argumentAttr.withLocalCacheContext());
424         } catch (BreakAttr b) {
425             return b.env;
426         } catch (AssertionError ae) {
427             if (ae.getCause() instanceof BreakAttr) {
428                 return ((BreakAttr)(ae.getCause())).env;
429             } else {
430                 throw ae;
431             }
432         } finally {
433             breakTree = null;
434             log.useSource(prev);
435         }
436         return env;
437     }
438 
439     private JCTree breakTree = null;
440 
441     private static class BreakAttr extends RuntimeException {
442         static final long serialVersionUID = -6924771130405446405L;
443         private transient Env<AttrContext> env;
BreakAttr(Env<AttrContext> env)444         private BreakAttr(Env<AttrContext> env) {
445             this.env = env;
446         }
447     }
448 
449     /**
450      * Mode controlling behavior of Attr.Check
451      */
452     enum CheckMode {
453 
454         NORMAL,
455 
456         /**
457          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
458          * that the captured var cache in {@code InferenceContext} will be used in read-only
459          * mode when performing inference checks.
460          */
461         NO_TREE_UPDATE {
462             @Override
updateTreeType()463             public boolean updateTreeType() {
464                 return false;
465             }
466         },
467         /**
468          * Mode signalling that caller will manage free types in tree decorations.
469          */
470         NO_INFERENCE_HOOK {
471             @Override
installPostInferenceHook()472             public boolean installPostInferenceHook() {
473                 return false;
474             }
475         };
476 
updateTreeType()477         public boolean updateTreeType() {
478             return true;
479         }
installPostInferenceHook()480         public boolean installPostInferenceHook() {
481             return true;
482         }
483     }
484 
485 
486     class ResultInfo {
487         final KindSelector pkind;
488         final Type pt;
489         final CheckContext checkContext;
490         final CheckMode checkMode;
491 
ResultInfo(KindSelector pkind, Type pt)492         ResultInfo(KindSelector pkind, Type pt) {
493             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
494         }
495 
ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode)496         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
497             this(pkind, pt, chk.basicHandler, checkMode);
498         }
499 
ResultInfo(KindSelector pkind, Type pt, CheckContext checkContext)500         protected ResultInfo(KindSelector pkind,
501                              Type pt, CheckContext checkContext) {
502             this(pkind, pt, checkContext, CheckMode.NORMAL);
503         }
504 
ResultInfo(KindSelector pkind, Type pt, CheckContext checkContext, CheckMode checkMode)505         protected ResultInfo(KindSelector pkind,
506                              Type pt, CheckContext checkContext, CheckMode checkMode) {
507             this.pkind = pkind;
508             this.pt = pt;
509             this.checkContext = checkContext;
510             this.checkMode = checkMode;
511         }
512 
513         /**
514          * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one?
515          * @param tree The tree to be type-checked.
516          * @return true if {@ArgumentAttr} should be used.
517          */
needsArgumentAttr(JCTree tree)518         protected boolean needsArgumentAttr(JCTree tree) { return false; }
519 
check(final DiagnosticPosition pos, final Type found)520         protected Type check(final DiagnosticPosition pos, final Type found) {
521             return chk.checkType(pos, found, pt, checkContext);
522         }
523 
dup(Type newPt)524         protected ResultInfo dup(Type newPt) {
525             return new ResultInfo(pkind, newPt, checkContext, checkMode);
526         }
527 
dup(CheckContext newContext)528         protected ResultInfo dup(CheckContext newContext) {
529             return new ResultInfo(pkind, pt, newContext, checkMode);
530         }
531 
dup(Type newPt, CheckContext newContext)532         protected ResultInfo dup(Type newPt, CheckContext newContext) {
533             return new ResultInfo(pkind, newPt, newContext, checkMode);
534         }
535 
dup(Type newPt, CheckContext newContext, CheckMode newMode)536         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
537             return new ResultInfo(pkind, newPt, newContext, newMode);
538         }
539 
dup(CheckMode newMode)540         protected ResultInfo dup(CheckMode newMode) {
541             return new ResultInfo(pkind, pt, checkContext, newMode);
542         }
543 
544         @Override
toString()545         public String toString() {
546             if (pt != null) {
547                 return pt.toString();
548             } else {
549                 return "";
550             }
551         }
552     }
553 
554     class MethodAttrInfo extends ResultInfo {
MethodAttrInfo()555         public MethodAttrInfo() {
556             this(chk.basicHandler);
557         }
558 
MethodAttrInfo(CheckContext checkContext)559         public MethodAttrInfo(CheckContext checkContext) {
560             super(KindSelector.VAL, Infer.anyPoly, checkContext);
561         }
562 
563         @Override
needsArgumentAttr(JCTree tree)564         protected boolean needsArgumentAttr(JCTree tree) {
565             return true;
566         }
567 
dup(Type newPt)568         protected ResultInfo dup(Type newPt) {
569             throw new IllegalStateException();
570         }
571 
dup(CheckContext newContext)572         protected ResultInfo dup(CheckContext newContext) {
573             return new MethodAttrInfo(newContext);
574         }
575 
dup(Type newPt, CheckContext newContext)576         protected ResultInfo dup(Type newPt, CheckContext newContext) {
577             throw new IllegalStateException();
578         }
579 
dup(Type newPt, CheckContext newContext, CheckMode newMode)580         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
581             throw new IllegalStateException();
582         }
583 
dup(CheckMode newMode)584         protected ResultInfo dup(CheckMode newMode) {
585             throw new IllegalStateException();
586         }
587     }
588 
589     class RecoveryInfo extends ResultInfo {
590 
RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext)591         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
592             this(deferredAttrContext, Type.recoveryType);
593         }
594 
RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt)595         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
596             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
597                 @Override
598                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
599                     return deferredAttrContext;
600                 }
601                 @Override
602                 public boolean compatible(Type found, Type req, Warner warn) {
603                     return true;
604                 }
605                 @Override
606                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
607                     if (pt == Type.recoveryType) {
608                         chk.basicHandler.report(pos, details);
609                     }
610                 }
611             });
612         }
613     }
614 
615     final ResultInfo statInfo;
616     final ResultInfo varAssignmentInfo;
617     final ResultInfo methodAttrInfo;
618     final ResultInfo unknownExprInfo;
619     final ResultInfo unknownTypeInfo;
620     final ResultInfo unknownTypeExprInfo;
621     final ResultInfo recoveryInfo;
622 
pt()623     Type pt() {
624         return resultInfo.pt;
625     }
626 
pkind()627     KindSelector pkind() {
628         return resultInfo.pkind;
629     }
630 
631 /* ************************************************************************
632  * Visitor methods
633  *************************************************************************/
634 
635     /** Visitor argument: the current environment.
636      */
637     Env<AttrContext> env;
638 
639     /** Visitor argument: the currently expected attribution result.
640      */
641     ResultInfo resultInfo;
642 
643     /** Visitor result: the computed type.
644      */
645     Type result;
646 
647     MatchBindings matchBindings = MatchBindingsComputer.EMPTY;
648 
649     /** Visitor method: attribute a tree, catching any completion failure
650      *  exceptions. Return the tree's type.
651      *
652      *  @param tree    The tree to be visited.
653      *  @param env     The environment visitor argument.
654      *  @param resultInfo   The result info visitor argument.
655      */
attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo)656     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
657         Env<AttrContext> prevEnv = this.env;
658         ResultInfo prevResult = this.resultInfo;
659         try {
660             this.env = env;
661             this.resultInfo = resultInfo;
662             if (resultInfo.needsArgumentAttr(tree)) {
663                 result = argumentAttr.attribArg(tree, env);
664             } else {
665                 tree.accept(this);
666             }
667             matchBindings = matchBindingsComputer.finishBindings(tree,
668                                                                  matchBindings);
669             if (tree == breakTree &&
670                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
671                 breakTreeFound(copyEnv(env));
672             }
673             return result;
674         } catch (CompletionFailure ex) {
675             tree.type = syms.errType;
676             return chk.completionError(tree.pos(), ex);
677         } finally {
678             this.env = prevEnv;
679             this.resultInfo = prevResult;
680         }
681     }
682 
breakTreeFound(Env<AttrContext> env)683     protected void breakTreeFound(Env<AttrContext> env) {
684         throw new BreakAttr(env);
685     }
686 
copyEnv(Env<AttrContext> env)687     Env<AttrContext> copyEnv(Env<AttrContext> env) {
688         Env<AttrContext> newEnv =
689                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
690         if (newEnv.outer != null) {
691             newEnv.outer = copyEnv(newEnv.outer);
692         }
693         return newEnv;
694     }
695 
copyScope(WriteableScope sc)696     WriteableScope copyScope(WriteableScope sc) {
697         WriteableScope newScope = WriteableScope.create(sc.owner);
698         List<Symbol> elemsList = List.nil();
699         for (Symbol sym : sc.getSymbols()) {
700             elemsList = elemsList.prepend(sym);
701         }
702         for (Symbol s : elemsList) {
703             newScope.enter(s);
704         }
705         return newScope;
706     }
707 
708     /** Derived visitor method: attribute an expression tree.
709      */
attribExpr(JCTree tree, Env<AttrContext> env, Type pt)710     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
711         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
712     }
713 
714     /** Derived visitor method: attribute an expression tree with
715      *  no constraints on the computed type.
716      */
attribExpr(JCTree tree, Env<AttrContext> env)717     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
718         return attribTree(tree, env, unknownExprInfo);
719     }
720 
721     /** Derived visitor method: attribute a type tree.
722      */
attribType(JCTree tree, Env<AttrContext> env)723     public Type attribType(JCTree tree, Env<AttrContext> env) {
724         Type result = attribType(tree, env, Type.noType);
725         return result;
726     }
727 
728     /** Derived visitor method: attribute a type tree.
729      */
attribType(JCTree tree, Env<AttrContext> env, Type pt)730     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
731         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
732         return result;
733     }
734 
735     /** Derived visitor method: attribute a statement or definition tree.
736      */
attribStat(JCTree tree, Env<AttrContext> env)737     public Type attribStat(JCTree tree, Env<AttrContext> env) {
738         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
739         Type result = attribTree(tree, env, statInfo);
740         analyzer.analyzeIfNeeded(tree, analyzeEnv);
741         return result;
742     }
743 
744     /** Attribute a list of expressions, returning a list of types.
745      */
attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt)746     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
747         ListBuffer<Type> ts = new ListBuffer<>();
748         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
749             ts.append(attribExpr(l.head, env, pt));
750         return ts.toList();
751     }
752 
753     /** Attribute a list of statements, returning nothing.
754      */
attribStats(List<T> trees, Env<AttrContext> env)755     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
756         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
757             attribStat(l.head, env);
758     }
759 
760     /** Attribute the arguments in a method call, returning the method kind.
761      */
attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes)762     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
763         KindSelector kind = initialKind;
764         for (JCExpression arg : trees) {
765             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
766             if (argtype.hasTag(DEFERRED)) {
767                 kind = KindSelector.of(KindSelector.POLY, kind);
768             }
769             argtypes.append(argtype);
770         }
771         return kind;
772     }
773 
774     /** Attribute a type argument list, returning a list of types.
775      *  Caller is responsible for calling checkRefTypes.
776      */
attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env)777     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
778         ListBuffer<Type> argtypes = new ListBuffer<>();
779         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
780             argtypes.append(attribType(l.head, env));
781         return argtypes.toList();
782     }
783 
784     /** Attribute a type argument list, returning a list of types.
785      *  Check that all the types are references.
786      */
attribTypes(List<JCExpression> trees, Env<AttrContext> env)787     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
788         List<Type> types = attribAnyTypes(trees, env);
789         return chk.checkRefTypes(trees, types);
790     }
791 
792     /**
793      * Attribute type variables (of generic classes or methods).
794      * Compound types are attributed later in attribBounds.
795      * @param typarams the type variables to enter
796      * @param env      the current environment
797      */
attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic)798     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
799         for (JCTypeParameter tvar : typarams) {
800             TypeVar a = (TypeVar)tvar.type;
801             a.tsym.flags_field |= UNATTRIBUTED;
802             a.setUpperBound(Type.noType);
803             if (!tvar.bounds.isEmpty()) {
804                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
805                 for (JCExpression bound : tvar.bounds.tail)
806                     bounds = bounds.prepend(attribType(bound, env));
807                 types.setBounds(a, bounds.reverse());
808             } else {
809                 // if no bounds are given, assume a single bound of
810                 // java.lang.Object.
811                 types.setBounds(a, List.of(syms.objectType));
812             }
813             a.tsym.flags_field &= ~UNATTRIBUTED;
814         }
815         if (checkCyclic) {
816             for (JCTypeParameter tvar : typarams) {
817                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
818             }
819         }
820     }
821 
822     /**
823      * Attribute the type references in a list of annotations.
824      */
attribAnnotationTypes(List<JCAnnotation> annotations, Env<AttrContext> env)825     void attribAnnotationTypes(List<JCAnnotation> annotations,
826                                Env<AttrContext> env) {
827         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
828             JCAnnotation a = al.head;
829             attribType(a.annotationType, env);
830         }
831     }
832 
833     /**
834      * Attribute a "lazy constant value".
835      *  @param env         The env for the const value
836      *  @param variable    The initializer for the const value
837      *  @param type        The expected type, or null
838      *  @see VarSymbol#setLazyConstValue
839      */
attribLazyConstantValue(Env<AttrContext> env, JCVariableDecl variable, Type type)840     public Object attribLazyConstantValue(Env<AttrContext> env,
841                                       JCVariableDecl variable,
842                                       Type type) {
843 
844         DiagnosticPosition prevLintPos
845                 = deferredLintHandler.setPos(variable.pos());
846 
847         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
848         try {
849             Type itype = attribExpr(variable.init, env, type);
850             if (variable.isImplicitlyTyped()) {
851                 //fixup local variable type
852                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype.baseType(), variable.name);
853             }
854             if (itype.constValue() != null) {
855                 return coerce(itype, type).constValue();
856             } else {
857                 return null;
858             }
859         } finally {
860             log.useSource(prevSource);
861             deferredLintHandler.setPos(prevLintPos);
862         }
863     }
864 
865     /** Attribute type reference in an `extends' or `implements' clause.
866      *  Supertypes of anonymous inner classes are usually already attributed.
867      *
868      *  @param tree              The tree making up the type reference.
869      *  @param env               The environment current at the reference.
870      *  @param classExpected     true if only a class is expected here.
871      *  @param interfaceExpected true if only an interface is expected here.
872      */
attribBase(JCTree tree, Env<AttrContext> env, boolean classExpected, boolean interfaceExpected, boolean checkExtensible)873     Type attribBase(JCTree tree,
874                     Env<AttrContext> env,
875                     boolean classExpected,
876                     boolean interfaceExpected,
877                     boolean checkExtensible) {
878         Type t = tree.type != null ?
879             tree.type :
880             attribType(tree, env);
881         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
882     }
checkBase(Type t, JCTree tree, Env<AttrContext> env, boolean classExpected, boolean interfaceExpected, boolean checkExtensible)883     Type checkBase(Type t,
884                    JCTree tree,
885                    Env<AttrContext> env,
886                    boolean classExpected,
887                    boolean interfaceExpected,
888                    boolean checkExtensible) {
889         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
890                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
891         if (t.tsym.isAnonymous()) {
892             log.error(pos, Errors.CantInheritFromAnon);
893             return types.createErrorType(t);
894         }
895         if (t.isErroneous())
896             return t;
897         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
898             // check that type variable is already visible
899             if (t.getUpperBound() == null) {
900                 log.error(pos, Errors.IllegalForwardRef);
901                 return types.createErrorType(t);
902             }
903         } else {
904             t = chk.checkClassType(pos, t, checkExtensible);
905         }
906         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
907             log.error(pos, Errors.IntfExpectedHere);
908             // return errType is necessary since otherwise there might
909             // be undetected cycles which cause attribution to loop
910             return types.createErrorType(t);
911         } else if (checkExtensible &&
912                    classExpected &&
913                    (t.tsym.flags() & INTERFACE) != 0) {
914             log.error(pos, Errors.NoIntfExpectedHere);
915             return types.createErrorType(t);
916         }
917         if (checkExtensible &&
918             ((t.tsym.flags() & FINAL) != 0)) {
919             log.error(pos,
920                       Errors.CantInheritFromFinal(t.tsym));
921         }
922         chk.checkNonCyclic(pos, t);
923         return t;
924     }
925 
attribIdentAsEnumType(Env<AttrContext> env, JCIdent id)926     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
927         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
928         id.type = env.info.scope.owner.enclClass().type;
929         id.sym = env.info.scope.owner.enclClass();
930         return id.type;
931     }
932 
visitClassDef(JCClassDecl tree)933     public void visitClassDef(JCClassDecl tree) {
934         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
935                 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
936                         argumentAttr.withLocalCacheContext() : null);
937         try {
938             // Local and anonymous classes have not been entered yet, so we need to
939             // do it now.
940             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
941                 enter.classEnter(tree, env);
942             } else {
943                 // If this class declaration is part of a class level annotation,
944                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
945                 // order to simplify later steps and allow for sensible error
946                 // messages.
947                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
948                     enter.classEnter(tree, env);
949             }
950 
951             ClassSymbol c = tree.sym;
952             if (c == null) {
953                 // exit in case something drastic went wrong during enter.
954                 result = null;
955             } else {
956                 // make sure class has been completed:
957                 c.complete();
958 
959                 // If this class appears as an anonymous class
960                 // in a superclass constructor call
961                 // disable implicit outer instance from being passed.
962                 // (This would be an illegal access to "this before super").
963                 if (env.info.isSelfCall &&
964                         env.tree.hasTag(NEWCLASS)) {
965                     c.flags_field |= NOOUTERTHIS;
966                 }
967                 attribClass(tree.pos(), c);
968                 result = tree.type = c.type;
969             }
970         } finally {
971             localCacheContext.ifPresent(LocalCacheContext::leave);
972         }
973     }
974 
visitMethodDef(JCMethodDecl tree)975     public void visitMethodDef(JCMethodDecl tree) {
976         MethodSymbol m = tree.sym;
977         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
978 
979         Lint lint = env.info.lint.augment(m);
980         Lint prevLint = chk.setLint(lint);
981         MethodSymbol prevMethod = chk.setMethod(m);
982         try {
983             deferredLintHandler.flush(tree.pos());
984             chk.checkDeprecatedAnnotation(tree.pos(), m);
985 
986 
987             // Create a new environment with local scope
988             // for attributing the method.
989             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
990             localEnv.info.lint = lint;
991 
992             attribStats(tree.typarams, localEnv);
993 
994             // If we override any other methods, check that we do so properly.
995             // JLS ???
996             if (m.isStatic()) {
997                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
998             } else {
999                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
1000             }
1001             chk.checkOverride(env, tree, m);
1002 
1003             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
1004                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
1005             }
1006 
1007             // Enter all type parameters into the local method scope.
1008             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1009                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1010 
1011             ClassSymbol owner = env.enclClass.sym;
1012             if ((owner.flags() & ANNOTATION) != 0 &&
1013                     (tree.params.nonEmpty() ||
1014                     tree.recvparam != null))
1015                 log.error(tree.params.nonEmpty() ?
1016                         tree.params.head.pos() :
1017                         tree.recvparam.pos(),
1018                         Errors.IntfAnnotationMembersCantHaveParams);
1019 
1020             // Attribute all value parameters.
1021             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1022                 attribStat(l.head, localEnv);
1023             }
1024 
1025             chk.checkVarargsMethodDecl(localEnv, tree);
1026 
1027             // Check that type parameters are well-formed.
1028             chk.validate(tree.typarams, localEnv);
1029 
1030             // Check that result type is well-formed.
1031             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1032                 chk.validate(tree.restype, localEnv);
1033 
1034             // Check that receiver type is well-formed.
1035             if (tree.recvparam != null) {
1036                 // Use a new environment to check the receiver parameter.
1037                 // Otherwise I get "might not have been initialized" errors.
1038                 // Is there a better way?
1039                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1040                 attribType(tree.recvparam, newEnv);
1041                 chk.validate(tree.recvparam, newEnv);
1042             }
1043 
1044             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1045                 // lets find if this method is an accessor
1046                 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1047                         .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1048                 if (recordComponent.isPresent()) {
1049                     // the method is a user defined accessor lets check that everything is fine
1050                     if (!tree.sym.isPublic()) {
1051                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1052                     }
1053                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1054                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1055                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1056                     }
1057                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1058                         log.error(tree,
1059                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1060                     }
1061                     if (!tree.typarams.isEmpty()) {
1062                         log.error(tree,
1063                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1064                     }
1065                     if (tree.sym.isStatic()) {
1066                         log.error(tree,
1067                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1068                     }
1069                 }
1070 
1071                 if (tree.name == names.init) {
1072                     // if this a constructor other than the canonical one
1073                     if ((tree.sym.flags_field & RECORD) == 0) {
1074                         JCMethodInvocation app = TreeInfo.firstConstructorCall(tree);
1075                         if (app == null ||
1076                                 TreeInfo.name(app.meth) != names._this ||
1077                                 !checkFirstConstructorStat(app, tree, false)) {
1078                             log.error(tree, Errors.FirstStatementMustBeCallToAnotherConstructor);
1079                         }
1080                     } else {
1081                         // but if it is the canonical:
1082 
1083                         /* if user generated, then it shouldn't:
1084                          *     - have an accessibility stricter than that of the record type
1085                          *     - explicitly invoke any other constructor
1086                          */
1087                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1088                             if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) {
1089                                 log.error(tree,
1090                                         (env.enclClass.sym.flags() & AccessFlags) == 0 ?
1091                                             Errors.InvalidCanonicalConstructorInRecord(
1092                                                 Fragments.Canonical,
1093                                                 env.enclClass.sym.name,
1094                                                 Fragments.CanonicalMustNotHaveStrongerAccess("package")
1095                                             ) :
1096                                             Errors.InvalidCanonicalConstructorInRecord(
1097                                                     Fragments.Canonical,
1098                                                     env.enclClass.sym.name,
1099                                                     Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags))
1100                                             )
1101                                 );
1102                             }
1103 
1104                             JCMethodInvocation app = TreeInfo.firstConstructorCall(tree);
1105                             if (app != null &&
1106                                     (TreeInfo.name(app.meth) == names._this ||
1107                                             TreeInfo.name(app.meth) == names._super) &&
1108                                     checkFirstConstructorStat(app, tree, false)) {
1109                                 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1110                                         Fragments.Canonical, env.enclClass.sym.name,
1111                                         Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1112                             }
1113                         }
1114 
1115                         // also we want to check that no type variables have been defined
1116                         if (!tree.typarams.isEmpty()) {
1117                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1118                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables));
1119                         }
1120 
1121                         /* and now we need to check that the constructor's arguments are exactly the same as those of the
1122                          * record components
1123                          */
1124                         List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents();
1125                         List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1126                         for (JCVariableDecl param: tree.params) {
1127                             boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0;
1128                             if (!types.isSameType(param.type, recordFieldTypes.head) ||
1129                                     (recordComponents.head.isVarargs() != paramIsVarArgs)) {
1130                                 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1131                                         Fragments.Canonical, env.enclClass.sym.name,
1132                                         Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1133                             }
1134                             recordComponents = recordComponents.tail;
1135                             recordFieldTypes = recordFieldTypes.tail;
1136                         }
1137                     }
1138                 }
1139             }
1140 
1141             // annotation method checks
1142             if ((owner.flags() & ANNOTATION) != 0) {
1143                 // annotation method cannot have throws clause
1144                 if (tree.thrown.nonEmpty()) {
1145                     log.error(tree.thrown.head.pos(),
1146                               Errors.ThrowsNotAllowedInIntfAnnotation);
1147                 }
1148                 // annotation method cannot declare type-parameters
1149                 if (tree.typarams.nonEmpty()) {
1150                     log.error(tree.typarams.head.pos(),
1151                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1152                 }
1153                 // validate annotation method's return type (could be an annotation type)
1154                 chk.validateAnnotationType(tree.restype);
1155                 // ensure that annotation method does not clash with members of Object/Annotation
1156                 chk.validateAnnotationMethod(tree.pos(), m);
1157             }
1158 
1159             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1160                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1161 
1162             if (tree.body == null) {
1163                 // Empty bodies are only allowed for
1164                 // abstract, native, or interface methods, or for methods
1165                 // in a retrofit signature class.
1166                 if (tree.defaultValue != null) {
1167                     if ((owner.flags() & ANNOTATION) == 0)
1168                         log.error(tree.pos(),
1169                                   Errors.DefaultAllowedInIntfAnnotationMember);
1170                 }
1171                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1172                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1173             } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1174                 if ((owner.flags() & INTERFACE) != 0) {
1175                     log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1176                 } else {
1177                     log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1178                 }
1179             } else if ((tree.mods.flags & NATIVE) != 0) {
1180                 log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1181             } else {
1182                 // Add an implicit super() call unless an explicit call to
1183                 // super(...) or this(...) is given
1184                 // or we are compiling class java.lang.Object.
1185                 if (tree.name == names.init && owner.type != syms.objectType) {
1186                     JCBlock body = tree.body;
1187                     if (body.stats.isEmpty() ||
1188                             TreeInfo.getConstructorInvocationName(body.stats, names) == names.empty) {
1189                         JCStatement supCall = make.at(body.pos).Exec(make.Apply(List.nil(),
1190                                 make.Ident(names._super), make.Idents(List.nil())));
1191                         body.stats = body.stats.prepend(supCall);
1192                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1193                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1194                             TreeInfo.isSuperCall(body.stats.head)) {
1195                         // enum constructors are not allowed to call super
1196                         // directly, so make sure there aren't any super calls
1197                         // in enum constructors, except in the compiler
1198                         // generated one.
1199                         log.error(tree.body.stats.head.pos(),
1200                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1201                     }
1202                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1203                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1204                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1205                         if (!initParamNames.equals(recordComponentNames)) {
1206                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1207                                     Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch));
1208                         }
1209                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1210                             log.error(tree,
1211                                     Errors.InvalidCanonicalConstructorInRecord(
1212                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1213                                             env.enclClass.sym.name,
1214                                             Fragments.ThrowsClauseNotAllowedForCanonicalConstructor(
1215                                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical)));
1216                         }
1217                     }
1218                 }
1219 
1220                 // Attribute all type annotations in the body
1221                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1222                 annotate.flush();
1223 
1224                 // Attribute method body.
1225                 attribStat(tree.body, localEnv);
1226             }
1227 
1228             localEnv.info.scope.leave();
1229             result = tree.type = m.type;
1230         } finally {
1231             chk.setLint(prevLint);
1232             chk.setMethod(prevMethod);
1233         }
1234     }
1235 
visitVarDef(JCVariableDecl tree)1236     public void visitVarDef(JCVariableDecl tree) {
1237         // Local variables have not been entered yet, so we need to do it now:
1238         if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1239             if (tree.sym != null) {
1240                 // parameters have already been entered
1241                 env.info.scope.enter(tree.sym);
1242             } else {
1243                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1244                     if (tree.init == null) {
1245                         //cannot use 'var' without initializer
1246                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1247                         tree.vartype = make.Erroneous();
1248                     } else {
1249                         Fragment msg = canInferLocalVarType(tree);
1250                         if (msg != null) {
1251                             //cannot use 'var' with initializer which require an explicit target
1252                             //(e.g. lambda, method reference, array initializer).
1253                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1254                             tree.vartype = make.Erroneous();
1255                         }
1256                     }
1257                 }
1258                 try {
1259                     annotate.blockAnnotations();
1260                     memberEnter.memberEnter(tree, env);
1261                 } finally {
1262                     annotate.unblockAnnotations();
1263                 }
1264             }
1265         } else {
1266             if (tree.init != null) {
1267                 // Field initializer expression need to be entered.
1268                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1269                 annotate.flush();
1270             }
1271         }
1272 
1273         VarSymbol v = tree.sym;
1274         Lint lint = env.info.lint.augment(v);
1275         Lint prevLint = chk.setLint(lint);
1276 
1277         // Check that the variable's declared type is well-formed.
1278         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1279                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1280                 (tree.sym.flags() & PARAMETER) != 0;
1281         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1282 
1283         try {
1284             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1285             deferredLintHandler.flush(tree.pos());
1286             chk.checkDeprecatedAnnotation(tree.pos(), v);
1287 
1288             if (tree.init != null) {
1289                 if ((v.flags_field & FINAL) == 0 ||
1290                     !memberEnter.needsLazyConstValue(tree.init)) {
1291                     // Not a compile-time constant
1292                     // Attribute initializer in a new environment
1293                     // with the declared variable as owner.
1294                     // Check that initializer conforms to variable's declared type.
1295                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1296                     initEnv.info.lint = lint;
1297                     // In order to catch self-references, we set the variable's
1298                     // declaration position to maximal possible value, effectively
1299                     // marking the variable as undefined.
1300                     initEnv.info.enclVar = v;
1301                     attribExpr(tree.init, initEnv, v.type);
1302                     if (tree.isImplicitlyTyped()) {
1303                         //fixup local variable type
1304                         v.type = chk.checkLocalVarType(tree, tree.init.type.baseType(), tree.name);
1305                     }
1306                 }
1307                 if (tree.isImplicitlyTyped()) {
1308                     setSyntheticVariableType(tree, v.type);
1309                 }
1310             }
1311             result = tree.type = v.type;
1312             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1313                 if (isNonArgsMethodInObject(v.name)) {
1314                     log.error(tree, Errors.IllegalRecordComponentName(v));
1315                 }
1316             }
1317         }
1318         finally {
1319             chk.setLint(prevLint);
1320         }
1321     }
1322 
isNonArgsMethodInObject(Name name)1323     private boolean isNonArgsMethodInObject(Name name) {
1324         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1325             if (s.type.getParameterTypes().isEmpty()) {
1326                 return true;
1327             }
1328         }
1329         return false;
1330     }
1331 
canInferLocalVarType(JCVariableDecl tree)1332     Fragment canInferLocalVarType(JCVariableDecl tree) {
1333         LocalInitScanner lis = new LocalInitScanner();
1334         lis.scan(tree.init);
1335         return lis.badInferenceMsg;
1336     }
1337 
1338     static class LocalInitScanner extends TreeScanner {
1339         Fragment badInferenceMsg = null;
1340         boolean needsTarget = true;
1341 
1342         @Override
visitNewArray(JCNewArray tree)1343         public void visitNewArray(JCNewArray tree) {
1344             if (tree.elemtype == null && needsTarget) {
1345                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1346             }
1347         }
1348 
1349         @Override
visitLambda(JCLambda tree)1350         public void visitLambda(JCLambda tree) {
1351             if (needsTarget) {
1352                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1353             }
1354         }
1355 
1356         @Override
visitTypeCast(JCTypeCast tree)1357         public void visitTypeCast(JCTypeCast tree) {
1358             boolean prevNeedsTarget = needsTarget;
1359             try {
1360                 needsTarget = false;
1361                 super.visitTypeCast(tree);
1362             } finally {
1363                 needsTarget = prevNeedsTarget;
1364             }
1365         }
1366 
1367         @Override
visitReference(JCMemberReference tree)1368         public void visitReference(JCMemberReference tree) {
1369             if (needsTarget) {
1370                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1371             }
1372         }
1373 
1374         @Override
visitNewClass(JCNewClass tree)1375         public void visitNewClass(JCNewClass tree) {
1376             boolean prevNeedsTarget = needsTarget;
1377             try {
1378                 needsTarget = false;
1379                 super.visitNewClass(tree);
1380             } finally {
1381                 needsTarget = prevNeedsTarget;
1382             }
1383         }
1384 
1385         @Override
visitApply(JCMethodInvocation tree)1386         public void visitApply(JCMethodInvocation tree) {
1387             boolean prevNeedsTarget = needsTarget;
1388             try {
1389                 needsTarget = false;
1390                 super.visitApply(tree);
1391             } finally {
1392                 needsTarget = prevNeedsTarget;
1393             }
1394         }
1395     }
1396 
visitSkip(JCSkip tree)1397     public void visitSkip(JCSkip tree) {
1398         result = null;
1399     }
1400 
visitBlock(JCBlock tree)1401     public void visitBlock(JCBlock tree) {
1402         if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1403             // Block is a static or instance initializer;
1404             // let the owner of the environment be a freshly
1405             // created BLOCK-method.
1406             Symbol fakeOwner =
1407                 new MethodSymbol(tree.flags | BLOCK |
1408                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1409                     env.info.scope.owner);
1410             final Env<AttrContext> localEnv =
1411                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1412 
1413             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1414             // Attribute all type annotations in the block
1415             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1416             annotate.flush();
1417             attribStats(tree.stats, localEnv);
1418 
1419             {
1420                 // Store init and clinit type annotations with the ClassSymbol
1421                 // to allow output in Gen.normalizeDefs.
1422                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1423                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1424                 if ((tree.flags & STATIC) != 0) {
1425                     cs.appendClassInitTypeAttributes(tas);
1426                 } else {
1427                     cs.appendInitTypeAttributes(tas);
1428                 }
1429             }
1430         } else {
1431             // Create a new local environment with a local scope.
1432             Env<AttrContext> localEnv =
1433                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1434             try {
1435                 attribStats(tree.stats, localEnv);
1436             } finally {
1437                 localEnv.info.scope.leave();
1438             }
1439         }
1440         result = null;
1441     }
1442 
visitDoLoop(JCDoWhileLoop tree)1443     public void visitDoLoop(JCDoWhileLoop tree) {
1444         attribStat(tree.body, env.dup(tree));
1445         attribExpr(tree.cond, env, syms.booleanType);
1446         if (!breaksOutOf(tree, tree.body)) {
1447             //include condition's body when false after the while, if cannot get out of the loop
1448             MatchBindings condBindings = matchBindings;
1449             condBindings.bindingsWhenFalse.forEach(env.info.scope::enter);
1450             condBindings.bindingsWhenFalse.forEach(BindingSymbol::preserveBinding);
1451         }
1452         result = null;
1453     }
1454 
visitWhileLoop(JCWhileLoop tree)1455     public void visitWhileLoop(JCWhileLoop tree) {
1456         attribExpr(tree.cond, env, syms.booleanType);
1457         MatchBindings condBindings = matchBindings;
1458         // include condition's bindings when true in the body:
1459         Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1460         try {
1461             attribStat(tree.body, whileEnv.dup(tree));
1462         } finally {
1463             whileEnv.info.scope.leave();
1464         }
1465         if (!breaksOutOf(tree, tree.body)) {
1466             //include condition's bindings when false after the while, if cannot get out of the loop
1467             condBindings.bindingsWhenFalse.forEach(env.info.scope::enter);
1468             condBindings.bindingsWhenFalse.forEach(BindingSymbol::preserveBinding);
1469         }
1470         result = null;
1471     }
1472 
breaksOutOf(JCTree loop, JCTree body)1473     private boolean breaksOutOf(JCTree loop, JCTree body) {
1474         preFlow(body);
1475         return flow.breaksOutOf(env, loop, body, make);
1476     }
1477 
visitForLoop(JCForLoop tree)1478     public void visitForLoop(JCForLoop tree) {
1479         Env<AttrContext> loopEnv =
1480             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1481         MatchBindings condBindings = MatchBindingsComputer.EMPTY;
1482         try {
1483             attribStats(tree.init, loopEnv);
1484             if (tree.cond != null) {
1485                 attribExpr(tree.cond, loopEnv, syms.booleanType);
1486                 // include condition's bindings when true in the body and step:
1487                 condBindings = matchBindings;
1488             }
1489             Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue);
1490             try {
1491                 bodyEnv.tree = tree; // before, we were not in loop!
1492                 attribStats(tree.step, bodyEnv);
1493                 attribStat(tree.body, bodyEnv);
1494             } finally {
1495                 bodyEnv.info.scope.leave();
1496             }
1497             result = null;
1498         }
1499         finally {
1500             loopEnv.info.scope.leave();
1501         }
1502         if (!breaksOutOf(tree, tree.body)) {
1503             //include condition's body when false after the while, if cannot get out of the loop
1504             condBindings.bindingsWhenFalse.forEach(env.info.scope::enter);
1505             condBindings.bindingsWhenFalse.forEach(BindingSymbol::preserveBinding);
1506         }
1507     }
1508 
visitForeachLoop(JCEnhancedForLoop tree)1509     public void visitForeachLoop(JCEnhancedForLoop tree) {
1510         Env<AttrContext> loopEnv =
1511             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1512         try {
1513             //the Formal Parameter of a for-each loop is not in the scope when
1514             //attributing the for-each expression; we mimic this by attributing
1515             //the for-each expression first (against original scope).
1516             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1517             chk.checkNonVoid(tree.pos(), exprType);
1518             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1519             if (elemtype == null) {
1520                 // or perhaps expr implements Iterable<T>?
1521                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1522                 if (base == null) {
1523                     log.error(tree.expr.pos(),
1524                               Errors.ForeachNotApplicableToType(exprType,
1525                                                                 Fragments.TypeReqArrayOrIterable));
1526                     elemtype = types.createErrorType(exprType);
1527                 } else {
1528                     List<Type> iterableParams = base.allparams();
1529                     elemtype = iterableParams.isEmpty()
1530                         ? syms.objectType
1531                         : types.wildUpperBound(iterableParams.head);
1532                 }
1533             }
1534             if (tree.var.isImplicitlyTyped()) {
1535                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1536                 setSyntheticVariableType(tree.var, inferredType);
1537             }
1538             attribStat(tree.var, loopEnv);
1539             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1540             loopEnv.tree = tree; // before, we were not in loop!
1541             attribStat(tree.body, loopEnv);
1542             result = null;
1543         }
1544         finally {
1545             loopEnv.info.scope.leave();
1546         }
1547     }
1548 
visitLabelled(JCLabeledStatement tree)1549     public void visitLabelled(JCLabeledStatement tree) {
1550         // Check that label is not used in an enclosing statement
1551         Env<AttrContext> env1 = env;
1552         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1553             if (env1.tree.hasTag(LABELLED) &&
1554                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1555                 log.error(tree.pos(),
1556                           Errors.LabelAlreadyInUse(tree.label));
1557                 break;
1558             }
1559             env1 = env1.next;
1560         }
1561 
1562         attribStat(tree.body, env.dup(tree));
1563         result = null;
1564     }
1565 
visitSwitch(JCSwitch tree)1566     public void visitSwitch(JCSwitch tree) {
1567         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1568             attribStats(c.stats, caseEnv);
1569         });
1570         result = null;
1571     }
1572 
visitSwitchExpression(JCSwitchExpression tree)1573     public void visitSwitchExpression(JCSwitchExpression tree) {
1574         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1575                 PolyKind.STANDALONE : PolyKind.POLY;
1576 
1577         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1578             //this means we are returning a poly conditional from void-compatible lambda expression
1579             resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
1580             result = tree.type = types.createErrorType(resultInfo.pt);
1581             return;
1582         }
1583 
1584         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1585                 unknownExprInfo :
1586                 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
1587 
1588         ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
1589         ListBuffer<Type> caseTypes = new ListBuffer<>();
1590 
1591         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1592             caseEnv.info.yieldResult = condInfo;
1593             attribStats(c.stats, caseEnv);
1594             new TreeScanner() {
1595                 @Override
1596                 public void visitYield(JCYield brk) {
1597                     if (brk.target == tree) {
1598                         caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
1599                         caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
1600                     }
1601                     super.visitYield(brk);
1602                 }
1603 
1604                 @Override public void visitClassDef(JCClassDecl tree) {}
1605                 @Override public void visitLambda(JCLambda tree) {}
1606             }.scan(c.stats);
1607         });
1608 
1609         if (tree.cases.isEmpty()) {
1610             log.error(tree.pos(),
1611                       Errors.SwitchExpressionEmpty);
1612         } else if (caseTypes.isEmpty()) {
1613             log.error(tree.pos(),
1614                       Errors.SwitchExpressionNoResultExpressions);
1615         }
1616 
1617         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
1618 
1619         result = tree.type = check(tree, owntype, KindSelector.VAL, resultInfo);
1620     }
1621     //where:
switchExpressionContext(CheckContext checkContext)1622         CheckContext switchExpressionContext(CheckContext checkContext) {
1623             return new Check.NestedCheckContext(checkContext) {
1624                 //this will use enclosing check context to check compatibility of
1625                 //subexpression against target type; if we are in a method check context,
1626                 //depending on whether boxing is allowed, we could have incompatibilities
1627                 @Override
1628                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1629                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
1630                 }
1631             };
1632         }
1633 
1634     private void handleSwitch(JCTree switchTree,
1635                               JCExpression selector,
1636                               List<JCCase> cases,
1637                               BiConsumer<JCCase, Env<AttrContext>> attribCase) {
1638         Type seltype = attribExpr(selector, env);
1639 
1640         Env<AttrContext> switchEnv =
1641             env.dup(switchTree, env.info.dup(env.info.scope.dup()));
1642 
1643         try {
1644             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1645             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1646             if (!enumSwitch && !stringSwitch)
1647                 seltype = chk.checkType(selector.pos(), seltype, syms.intType);
1648 
1649             // Attribute all cases and
1650             // check that there are no duplicate case labels or default clauses.
1651             Set<Object> labels = new HashSet<>(); // The set of case labels.
1652             boolean hasDefault = false;      // Is there a default label?
1653             CaseTree.CaseKind caseKind = null;
1654             boolean wasError = false;
1655             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
1656                 JCCase c = l.head;
1657                 if (caseKind == null) {
1658                     caseKind = c.caseKind;
1659                 } else if (caseKind != c.caseKind && !wasError) {
1660                     log.error(c.pos(),
1661                               Errors.SwitchMixingCaseTypes);
1662                     wasError = true;
1663                 }
1664                 if (c.getExpressions().nonEmpty()) {
1665                     for (JCExpression pat : c.getExpressions()) {
1666                         if (TreeInfo.isNull(pat)) {
1667                             log.error(pat.pos(),
1668                                       Errors.SwitchNullNotAllowed);
1669                         } else if (enumSwitch) {
1670                             Symbol sym = enumConstant(pat, seltype);
1671                             if (sym == null) {
1672                                 log.error(pat.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1673                             } else if (!labels.add(sym)) {
1674                                 log.error(c.pos(), Errors.DuplicateCaseLabel);
1675                             }
1676                         } else {
1677                             Type pattype = attribExpr(pat, switchEnv, seltype);
1678                             if (!pattype.hasTag(ERROR)) {
1679                                 if (pattype.constValue() == null) {
1680                                     log.error(pat.pos(),
1681                                               (stringSwitch ? Errors.StringConstReq : Errors.ConstExprReq));
1682                                 } else if (!labels.add(pattype.constValue())) {
1683                                     log.error(c.pos(), Errors.DuplicateCaseLabel);
1684                                 }
1685                             }
1686                         }
1687                     }
1688                 } else if (hasDefault) {
1689                     log.error(c.pos(), Errors.DuplicateDefaultLabel);
1690                 } else {
1691                     hasDefault = true;
1692                 }
1693                 Env<AttrContext> caseEnv =
1694                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1695                 try {
1696                     attribCase.accept(c, caseEnv);
1697                 } finally {
1698                     caseEnv.info.scope.leave();
1699                 }
1700                 addVars(c.stats, switchEnv.info.scope);
1701             }
1702         } finally {
1703             switchEnv.info.scope.leave();
1704         }
1705     }
1706     // where
1707         /** Add any variables defined in stats to the switch scope. */
1708         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1709             for (;stats.nonEmpty(); stats = stats.tail) {
1710                 JCTree stat = stats.head;
1711                 if (stat.hasTag(VARDEF))
1712                     switchScope.enter(((JCVariableDecl) stat).sym);
1713             }
1714         }
1715     // where
1716     /** Return the selected enumeration constant symbol, or null. */
1717     private Symbol enumConstant(JCTree tree, Type enumType) {
1718         if (tree.hasTag(IDENT)) {
1719             JCIdent ident = (JCIdent)tree;
1720             Name name = ident.name;
1721             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1722                 if (sym.kind == VAR) {
1723                     Symbol s = ident.sym = sym;
1724                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1725                     ident.type = s.type;
1726                     return ((s.flags_field & Flags.ENUM) == 0)
1727                         ? null : s;
1728                 }
1729             }
1730         }
1731         return null;
1732     }
1733 
1734     public void visitSynchronized(JCSynchronized tree) {
1735         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1736         attribStat(tree.body, env);
1737         result = null;
1738     }
1739 
1740     public void visitTry(JCTry tree) {
1741         // Create a new local environment with a local
1742         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1743         try {
1744             boolean isTryWithResource = tree.resources.nonEmpty();
1745             // Create a nested environment for attributing the try block if needed
1746             Env<AttrContext> tryEnv = isTryWithResource ?
1747                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1748                 localEnv;
1749             try {
1750                 // Attribute resource declarations
1751                 for (JCTree resource : tree.resources) {
1752                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1753                         @Override
1754                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1755                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1756                         }
1757                     };
1758                     ResultInfo twrResult =
1759                         new ResultInfo(KindSelector.VAR,
1760                                        syms.autoCloseableType,
1761                                        twrContext);
1762                     if (resource.hasTag(VARDEF)) {
1763                         attribStat(resource, tryEnv);
1764                         twrResult.check(resource, resource.type);
1765 
1766                         //check that resource type cannot throw InterruptedException
1767                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1768 
1769                         VarSymbol var = ((JCVariableDecl) resource).sym;
1770                         var.setData(ElementKind.RESOURCE_VARIABLE);
1771                     } else {
1772                         attribTree(resource, tryEnv, twrResult);
1773                     }
1774                 }
1775                 // Attribute body
1776                 attribStat(tree.body, tryEnv);
1777             } finally {
1778                 if (isTryWithResource)
1779                     tryEnv.info.scope.leave();
1780             }
1781 
1782             // Attribute catch clauses
1783             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1784                 JCCatch c = l.head;
1785                 Env<AttrContext> catchEnv =
1786                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1787                 try {
1788                     Type ctype = attribStat(c.param, catchEnv);
1789                     if (TreeInfo.isMultiCatch(c)) {
1790                         //multi-catch parameter is implicitly marked as final
1791                         c.param.sym.flags_field |= FINAL | UNION;
1792                     }
1793                     if (c.param.sym.kind == VAR) {
1794                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1795                     }
1796                     chk.checkType(c.param.vartype.pos(),
1797                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1798                                   syms.throwableType);
1799                     attribStat(c.body, catchEnv);
1800                 } finally {
1801                     catchEnv.info.scope.leave();
1802                 }
1803             }
1804 
1805             // Attribute finalizer
1806             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1807             result = null;
1808         }
1809         finally {
1810             localEnv.info.scope.leave();
1811         }
1812     }
1813 
1814     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1815         if (!resource.isErroneous() &&
1816             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1817             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1818             Symbol close = syms.noSymbol;
1819             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1820             try {
1821                 close = rs.resolveQualifiedMethod(pos,
1822                         env,
1823                         types.skipTypeVars(resource, false),
1824                         names.close,
1825                         List.nil(),
1826                         List.nil());
1827             }
1828             finally {
1829                 log.popDiagnosticHandler(discardHandler);
1830             }
1831             if (close.kind == MTH &&
1832                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1833                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1834                     env.info.lint.isEnabled(LintCategory.TRY)) {
1835                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
1836             }
1837         }
1838     }
1839 
1840     public void visitConditional(JCConditional tree) {
1841         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1842         MatchBindings condBindings = matchBindings;
1843 
1844         tree.polyKind = (!allowPoly ||
1845                 pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1846                 isBooleanOrNumeric(env, tree)) ?
1847                 PolyKind.STANDALONE : PolyKind.POLY;
1848 
1849         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1850             //this means we are returning a poly conditional from void-compatible lambda expression
1851             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
1852             result = tree.type = types.createErrorType(resultInfo.pt);
1853             return;
1854         }
1855 
1856         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1857                 unknownExprInfo :
1858                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
1859 
1860 
1861         // x ? y : z
1862         // include x's bindings when true in y
1863         // include x's bindings when false in z
1864 
1865         Type truetype;
1866         Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
1867         try {
1868             truetype = attribTree(tree.truepart, trueEnv, condInfo);
1869         } finally {
1870             trueEnv.info.scope.leave();
1871         }
1872 
1873         MatchBindings trueBindings = matchBindings;
1874 
1875         Type falsetype;
1876         Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
1877         try {
1878             falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
1879         } finally {
1880             falseEnv.info.scope.leave();
1881         }
1882 
1883         MatchBindings falseBindings = matchBindings;
1884 
1885         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
1886                 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
1887                          List.of(truetype, falsetype)) : pt();
1888         if (condtype.constValue() != null &&
1889                 truetype.constValue() != null &&
1890                 falsetype.constValue() != null &&
1891                 !owntype.hasTag(NONE)) {
1892             //constant folding
1893             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1894         }
1895         result = check(tree, owntype, KindSelector.VAL, resultInfo);
1896         matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings);
1897     }
1898     //where
1899         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1900             switch (tree.getTag()) {
1901                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1902                               ((JCLiteral)tree).typetag == BOOLEAN ||
1903                               ((JCLiteral)tree).typetag == BOT;
1904                 case LAMBDA: case REFERENCE: return false;
1905                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1906                 case CONDEXPR:
1907                     JCConditional condTree = (JCConditional)tree;
1908                     return isBooleanOrNumeric(env, condTree.truepart) &&
1909                             isBooleanOrNumeric(env, condTree.falsepart);
1910                 case APPLY:
1911                     JCMethodInvocation speculativeMethodTree =
1912                             (JCMethodInvocation)deferredAttr.attribSpeculative(
1913                                     tree, env, unknownExprInfo,
1914                                     argumentAttr.withLocalCacheContext());
1915                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1916                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1917                             env.enclClass.type :
1918                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1919                     Type owntype = types.memberType(receiverType, msym).getReturnType();
1920                     return primitiveOrBoxed(owntype);
1921                 case NEWCLASS:
1922                     JCExpression className =
1923                             removeClassParams.translate(((JCNewClass)tree).clazz);
1924                     JCExpression speculativeNewClassTree =
1925                             (JCExpression)deferredAttr.attribSpeculative(
1926                                     className, env, unknownTypeInfo,
1927                                     argumentAttr.withLocalCacheContext());
1928                     return primitiveOrBoxed(speculativeNewClassTree.type);
1929                 default:
1930                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
1931                             argumentAttr.withLocalCacheContext()).type;
1932                     return primitiveOrBoxed(speculativeType);
1933             }
1934         }
1935         //where
1936             boolean primitiveOrBoxed(Type t) {
1937                 return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1938             }
1939 
1940             TreeTranslator removeClassParams = new TreeTranslator() {
1941                 @Override
1942                 public void visitTypeApply(JCTypeApply tree) {
1943                     result = translate(tree.clazz);
1944                 }
1945             };
1946 
1947         CheckContext conditionalContext(CheckContext checkContext) {
1948             return new Check.NestedCheckContext(checkContext) {
1949                 //this will use enclosing check context to check compatibility of
1950                 //subexpression against target type; if we are in a method check context,
1951                 //depending on whether boxing is allowed, we could have incompatibilities
1952                 @Override
1953                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1954                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
1955                 }
1956             };
1957         }
1958 
1959         /** Compute the type of a conditional expression, after
1960          *  checking that it exists.  See JLS 15.25. Does not take into
1961          *  account the special case where condition and both arms
1962          *  are constants.
1963          *
1964          *  @param pos      The source position to be used for error
1965          *                  diagnostics.
1966          *  @param thentype The type of the expression's then-part.
1967          *  @param elsetype The type of the expression's else-part.
1968          */
1969         Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
1970             if (condTypes.isEmpty()) {
1971                 return syms.objectType; //TODO: how to handle?
1972             }
1973             Type first = condTypes.head;
1974             // If same type, that is the result
1975             if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
1976                 return first.baseType();
1977 
1978             List<Type> unboxedTypes = condTypes.stream()
1979                                                .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
1980                                                .collect(List.collector());
1981 
1982             // Otherwise, if both arms can be converted to a numeric
1983             // type, return the least numeric type that fits both arms
1984             // (i.e. return larger of the two, or return int if one
1985             // arm is short, the other is char).
1986             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
1987                 // If one arm has an integer subrange type (i.e., byte,
1988                 // short, or char), and the other is an integer constant
1989                 // that fits into the subrange, return the subrange type.
1990                 for (Type type : unboxedTypes) {
1991                     if (!type.getTag().isStrictSubRangeOf(INT)) {
1992                         continue;
1993                     }
1994                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
1995                         return type.baseType();
1996                 }
1997 
1998                 for (TypeTag tag : primitiveTags) {
1999                     Type candidate = syms.typeOfTag[tag.ordinal()];
2000                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
2001                         return candidate;
2002                     }
2003                 }
2004             }
2005 
2006             // Those were all the cases that could result in a primitive
2007             condTypes = condTypes.stream()
2008                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
2009                                  .collect(List.collector());
2010 
2011             for (Type type : condTypes) {
2012                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
2013                     return type.baseType();
2014             }
2015 
2016             Iterator<DiagnosticPosition> posIt = positions.iterator();
2017 
2018             condTypes = condTypes.stream()
2019                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
2020                                  .collect(List.collector());
2021 
2022             // both are known to be reference types.  The result is
2023             // lub(thentype,elsetype). This cannot fail, as it will
2024             // always be possible to infer "Object" if nothing better.
2025             return types.lub(condTypes.stream().map(t -> t.baseType()).collect(List.collector()));
2026         }
2027 
2028     final static TypeTag[] primitiveTags = new TypeTag[]{
2029         BYTE,
2030         CHAR,
2031         SHORT,
2032         INT,
2033         LONG,
2034         FLOAT,
2035         DOUBLE,
2036         BOOLEAN,
2037     };
2038 
2039     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2040         Env<AttrContext> env1 = env.dup(env.tree, env.info.dup(env.info.scope.dup()));
2041         bindings.forEach(env1.info.scope::enter);
2042         return env1;
2043     }
2044 
2045     public void visitIf(JCIf tree) {
2046         attribExpr(tree.cond, env, syms.booleanType);
2047 
2048         // if (x) { y } [ else z ]
2049         // include x's bindings when true in y
2050         // include x's bindings when false in z
2051 
2052         MatchBindings condBindings = matchBindings;
2053         Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue);
2054 
2055         try {
2056             attribStat(tree.thenpart, thenEnv);
2057         } finally {
2058             thenEnv.info.scope.leave();
2059         }
2060 
2061         preFlow(tree.thenpart);
2062         boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2063         boolean aliveAfterElse;
2064 
2065         if (tree.elsepart != null) {
2066             Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse);
2067             try {
2068                 attribStat(tree.elsepart, elseEnv);
2069             } finally {
2070                 elseEnv.info.scope.leave();
2071             }
2072             preFlow(tree.elsepart);
2073             aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2074         } else {
2075             aliveAfterElse = true;
2076         }
2077 
2078         chk.checkEmptyIf(tree);
2079 
2080         List<BindingSymbol> afterIfBindings = List.nil();
2081 
2082         if (aliveAfterThen && !aliveAfterElse) {
2083             afterIfBindings = condBindings.bindingsWhenTrue;
2084         } else if (aliveAfterElse && !aliveAfterThen) {
2085             afterIfBindings = condBindings.bindingsWhenFalse;
2086         }
2087 
2088         afterIfBindings.forEach(env.info.scope::enter);
2089         afterIfBindings.forEach(BindingSymbol::preserveBinding);
2090 
2091         result = null;
2092     }
2093 
2094         void preFlow(JCTree tree) {
2095             new PostAttrAnalyzer() {
2096                 @Override
2097                 public void scan(JCTree tree) {
2098                     if (tree == null ||
2099                             (tree.type != null &&
2100                             tree.type == Type.stuckType)) {
2101                         //don't touch stuck expressions!
2102                         return;
2103                     }
2104                     super.scan(tree);
2105                 }
2106             }.scan(tree);
2107         }
2108 
2109     public void visitExec(JCExpressionStatement tree) {
2110         //a fresh environment is required for 292 inference to work properly ---
2111         //see Infer.instantiatePolymorphicSignatureInstance()
2112         Env<AttrContext> localEnv = env.dup(tree);
2113         attribExpr(tree.expr, localEnv);
2114         result = null;
2115     }
2116 
2117     public void visitBreak(JCBreak tree) {
2118         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2119         result = null;
2120     }
2121 
2122     public void visitYield(JCYield tree) {
2123         if (env.info.yieldResult != null) {
2124             attribTree(tree.value, env, env.info.yieldResult);
2125             tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2126         } else {
2127             log.error(tree.pos(), tree.value.hasTag(PARENS)
2128                     ? Errors.NoSwitchExpressionQualify
2129                     : Errors.NoSwitchExpression);
2130             attribTree(tree.value, env, unknownExprInfo);
2131         }
2132         result = null;
2133     }
2134 
2135     public void visitContinue(JCContinue tree) {
2136         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2137         result = null;
2138     }
2139     //where
2140         /** Return the target of a break, continue or yield statement,
2141          *  if it exists, report an error if not.
2142          *  Note: The target of a labelled break or continue is the
2143          *  (non-labelled) statement tree referred to by the label,
2144          *  not the tree representing the labelled statement itself.
2145          *
2146          *  @param pos     The position to be used for error diagnostics
2147          *  @param tag     The tag of the jump statement. This is either
2148          *                 Tree.BREAK or Tree.CONTINUE.
2149          *  @param label   The label of the jump statement, or null if no
2150          *                 label is given.
2151          *  @param env     The environment current at the jump statement.
2152          */
2153         private JCTree findJumpTarget(DiagnosticPosition pos,
2154                                                    JCTree.Tag tag,
2155                                                    Name label,
2156                                                    Env<AttrContext> env) {
2157             Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2158 
2159             if (jumpTarget.snd != null) {
2160                 log.error(pos, jumpTarget.snd);
2161             }
2162 
2163             return jumpTarget.fst;
2164         }
2165         /** Return the target of a break or continue statement, if it exists,
2166          *  report an error if not.
2167          *  Note: The target of a labelled break or continue is the
2168          *  (non-labelled) statement tree referred to by the label,
2169          *  not the tree representing the labelled statement itself.
2170          *
2171          *  @param tag     The tag of the jump statement. This is either
2172          *                 Tree.BREAK or Tree.CONTINUE.
2173          *  @param label   The label of the jump statement, or null if no
2174          *                 label is given.
2175          *  @param env     The environment current at the jump statement.
2176          */
2177         private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2178                                                                        Name label,
2179                                                                        Env<AttrContext> env) {
2180             // Search environments outwards from the point of jump.
2181             Env<AttrContext> env1 = env;
2182             JCDiagnostic.Error pendingError = null;
2183             LOOP:
2184             while (env1 != null) {
2185                 switch (env1.tree.getTag()) {
2186                     case LABELLED:
2187                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2188                         if (label == labelled.label) {
2189                             // If jump is a continue, check that target is a loop.
2190                             if (tag == CONTINUE) {
2191                                 if (!labelled.body.hasTag(DOLOOP) &&
2192                                         !labelled.body.hasTag(WHILELOOP) &&
2193                                         !labelled.body.hasTag(FORLOOP) &&
2194                                         !labelled.body.hasTag(FOREACHLOOP)) {
2195                                     pendingError = Errors.NotLoopLabel(label);
2196                                 }
2197                                 // Found labelled statement target, now go inwards
2198                                 // to next non-labelled tree.
2199                                 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2200                             } else {
2201                                 return Pair.of(labelled, pendingError);
2202                             }
2203                         }
2204                         break;
2205                     case DOLOOP:
2206                     case WHILELOOP:
2207                     case FORLOOP:
2208                     case FOREACHLOOP:
2209                         if (label == null) return Pair.of(env1.tree, pendingError);
2210                         break;
2211                     case SWITCH:
2212                         if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2213                         break;
2214                     case SWITCH_EXPRESSION:
2215                         if (tag == YIELD) {
2216                             return Pair.of(env1.tree, null);
2217                         } else if (tag == BREAK) {
2218                             pendingError = Errors.BreakOutsideSwitchExpression;
2219                         } else {
2220                             pendingError = Errors.ContinueOutsideSwitchExpression;
2221                         }
2222                         break;
2223                     case LAMBDA:
2224                     case METHODDEF:
2225                     case CLASSDEF:
2226                         break LOOP;
2227                     default:
2228                 }
2229                 env1 = env1.next;
2230             }
2231             if (label != null)
2232                 return Pair.of(null, Errors.UndefLabel(label));
2233             else if (pendingError != null)
2234                 return Pair.of(null, pendingError);
2235             else if (tag == CONTINUE)
2236                 return Pair.of(null, Errors.ContOutsideLoop);
2237             else
2238                 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2239         }
2240 
2241     public void visitReturn(JCReturn tree) {
2242         // Check that there is an enclosing method which is
2243         // nested within than the enclosing class.
2244         if (env.info.returnResult == null) {
2245             log.error(tree.pos(), Errors.RetOutsideMeth);
2246         } else if (env.info.yieldResult != null) {
2247             log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2248         } else if (!env.info.isLambda &&
2249                 !env.info.isNewClass &&
2250                 env.enclMethod != null &&
2251                 TreeInfo.isCompactConstructor(env.enclMethod)) {
2252             log.error(env.enclMethod,
2253                     Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement));
2254         } else {
2255             // Attribute return expression, if it exists, and check that
2256             // it conforms to result type of enclosing method.
2257             if (tree.expr != null) {
2258                 if (env.info.returnResult.pt.hasTag(VOID)) {
2259                     env.info.returnResult.checkContext.report(tree.expr.pos(),
2260                               diags.fragment(Fragments.UnexpectedRetVal));
2261                 }
2262                 attribTree(tree.expr, env, env.info.returnResult);
2263             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2264                     !env.info.returnResult.pt.hasTag(NONE)) {
2265                 env.info.returnResult.checkContext.report(tree.pos(),
2266                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2267             }
2268         }
2269         result = null;
2270     }
2271 
2272     public void visitThrow(JCThrow tree) {
2273         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
2274         if (allowPoly) {
2275             chk.checkType(tree, owntype, syms.throwableType);
2276         }
2277         result = null;
2278     }
2279 
2280     public void visitAssert(JCAssert tree) {
2281         attribExpr(tree.cond, env, syms.booleanType);
2282         if (tree.detail != null) {
2283             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2284         }
2285         result = null;
2286     }
2287 
2288      /** Visitor method for method invocations.
2289      *  NOTE: The method part of an application will have in its type field
2290      *        the return type of the method, not the method's type itself!
2291      */
2292     public void visitApply(JCMethodInvocation tree) {
2293         // The local environment of a method application is
2294         // a new environment nested in the current one.
2295         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2296 
2297         // The types of the actual method arguments.
2298         List<Type> argtypes;
2299 
2300         // The types of the actual method type arguments.
2301         List<Type> typeargtypes = null;
2302 
2303         Name methName = TreeInfo.name(tree.meth);
2304 
2305         boolean isConstructorCall =
2306             methName == names._this || methName == names._super;
2307 
2308         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2309         if (isConstructorCall) {
2310             // We are seeing a ...this(...) or ...super(...) call.
2311             // Check that this is the first statement in a constructor.
2312             checkFirstConstructorStat(tree, env.enclMethod, true);
2313 
2314             // Record the fact
2315             // that this is a constructor call (using isSelfCall).
2316             localEnv.info.isSelfCall = true;
2317 
2318             // Attribute arguments, yielding list of argument types.
2319             KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2320             argtypes = argtypesBuf.toList();
2321             typeargtypes = attribTypes(tree.typeargs, localEnv);
2322 
2323             // Variable `site' points to the class in which the called
2324             // constructor is defined.
2325             Type site = env.enclClass.sym.type;
2326             if (methName == names._super) {
2327                 if (site == syms.objectType) {
2328                     log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2329                     site = types.createErrorType(syms.objectType);
2330                 } else {
2331                     site = types.supertype(site);
2332                 }
2333             }
2334 
2335             if (site.hasTag(CLASS)) {
2336                 Type encl = site.getEnclosingType();
2337                 while (encl != null && encl.hasTag(TYPEVAR))
2338                     encl = encl.getUpperBound();
2339                 if (encl.hasTag(CLASS)) {
2340                     // we are calling a nested class
2341 
2342                     if (tree.meth.hasTag(SELECT)) {
2343                         JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2344 
2345                         // We are seeing a prefixed call, of the form
2346                         //     <expr>.super(...).
2347                         // Check that the prefix expression conforms
2348                         // to the outer instance type of the class.
2349                         chk.checkRefType(qualifier.pos(),
2350                                          attribExpr(qualifier, localEnv,
2351                                                     encl));
2352                     } else if (methName == names._super) {
2353                         // qualifier omitted; check for existence
2354                         // of an appropriate implicit qualifier.
2355                         rs.resolveImplicitThis(tree.meth.pos(),
2356                                                localEnv, site, true);
2357                     }
2358                 } else if (tree.meth.hasTag(SELECT)) {
2359                     log.error(tree.meth.pos(),
2360                               Errors.IllegalQualNotIcls(site.tsym));
2361                 }
2362 
2363                 // if we're calling a java.lang.Enum constructor,
2364                 // prefix the implicit String and int parameters
2365                 if (site.tsym == syms.enumSym)
2366                     argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2367 
2368                 // Resolve the called constructor under the assumption
2369                 // that we are referring to a superclass instance of the
2370                 // current instance (JLS ???).
2371                 boolean selectSuperPrev = localEnv.info.selectSuper;
2372                 localEnv.info.selectSuper = true;
2373                 localEnv.info.pendingResolutionPhase = null;
2374                 Symbol sym = rs.resolveConstructor(
2375                     tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2376                 localEnv.info.selectSuper = selectSuperPrev;
2377 
2378                 // Set method symbol to resolved constructor...
2379                 TreeInfo.setSymbol(tree.meth, sym);
2380 
2381                 // ...and check that it is legal in the current context.
2382                 // (this will also set the tree's type)
2383                 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2384                 checkId(tree.meth, site, sym, localEnv,
2385                         new ResultInfo(kind, mpt));
2386             }
2387             // Otherwise, `site' is an error type and we do nothing
2388             result = tree.type = syms.voidType;
2389         } else {
2390             // Otherwise, we are seeing a regular method call.
2391             // Attribute the arguments, yielding list of argument types, ...
2392             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2393             argtypes = argtypesBuf.toList();
2394             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2395 
2396             // ... and attribute the method using as a prototype a methodtype
2397             // whose formal argument types is exactly the list of actual
2398             // arguments (this will also set the method symbol).
2399             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2400             localEnv.info.pendingResolutionPhase = null;
2401             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2402 
2403             // Compute the result type.
2404             Type restype = mtype.getReturnType();
2405             if (restype.hasTag(WILDCARD))
2406                 throw new AssertionError(mtype);
2407 
2408             Type qualifier = (tree.meth.hasTag(SELECT))
2409                     ? ((JCFieldAccess) tree.meth).selected.type
2410                     : env.enclClass.sym.type;
2411             Symbol msym = TreeInfo.symbol(tree.meth);
2412             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2413 
2414             chk.checkRefTypes(tree.typeargs, typeargtypes);
2415 
2416             // Check that value of resulting type is admissible in the
2417             // current context.  Also, capture the return type
2418             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2419             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2420         }
2421         chk.validate(tree.typeargs, localEnv);
2422     }
2423     //where
2424         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2425             if (msym != null &&
2426                     msym.owner == syms.objectType.tsym &&
2427                     methodName == names.getClass &&
2428                     argtypes.isEmpty()) {
2429                 // as a special case, x.getClass() has type Class<? extends |X|>
2430                 return new ClassType(restype.getEnclosingType(),
2431                         List.of(new WildcardType(types.erasure(qualifierType),
2432                                 BoundKind.EXTENDS,
2433                                 syms.boundClass)),
2434                         restype.tsym,
2435                         restype.getMetadata());
2436             } else if (msym != null &&
2437                     msym.owner == syms.arrayClass &&
2438                     methodName == names.clone &&
2439                     types.isArray(qualifierType)) {
2440                 // as a special case, array.clone() has a result that is
2441                 // the same as static type of the array being cloned
2442                 return qualifierType;
2443             } else {
2444                 return restype;
2445             }
2446         }
2447 
2448         /** Check that given application node appears as first statement
2449          *  in a constructor call.
2450          *  @param tree          The application node
2451          *  @param enclMethod    The enclosing method of the application.
2452          *  @param error         Should an error be issued?
2453          */
2454         boolean checkFirstConstructorStat(JCMethodInvocation tree, JCMethodDecl enclMethod, boolean error) {
2455             if (enclMethod != null && enclMethod.name == names.init) {
2456                 JCBlock body = enclMethod.body;
2457                 if (body.stats.head.hasTag(EXEC) &&
2458                     ((JCExpressionStatement) body.stats.head).expr == tree)
2459                     return true;
2460             }
2461             if (error) {
2462                 log.error(tree.pos(),
2463                         Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
2464             }
2465             return false;
2466         }
2467 
2468         /** Obtain a method type with given argument types.
2469          */
2470         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2471             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2472             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2473         }
2474 
2475     public void visitNewClass(final JCNewClass tree) {
2476         Type owntype = types.createErrorType(tree.type);
2477 
2478         // The local environment of a class creation is
2479         // a new environment nested in the current one.
2480         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2481 
2482         // The anonymous inner class definition of the new expression,
2483         // if one is defined by it.
2484         JCClassDecl cdef = tree.def;
2485 
2486         // If enclosing class is given, attribute it, and
2487         // complete class name to be fully qualified
2488         JCExpression clazz = tree.clazz; // Class field following new
2489         JCExpression clazzid;            // Identifier in class field
2490         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2491         annoclazzid = null;
2492 
2493         if (clazz.hasTag(TYPEAPPLY)) {
2494             clazzid = ((JCTypeApply) clazz).clazz;
2495             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2496                 annoclazzid = (JCAnnotatedType) clazzid;
2497                 clazzid = annoclazzid.underlyingType;
2498             }
2499         } else {
2500             if (clazz.hasTag(ANNOTATED_TYPE)) {
2501                 annoclazzid = (JCAnnotatedType) clazz;
2502                 clazzid = annoclazzid.underlyingType;
2503             } else {
2504                 clazzid = clazz;
2505             }
2506         }
2507 
2508         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2509 
2510         if (tree.encl != null) {
2511             // We are seeing a qualified new, of the form
2512             //    <expr>.new C <...> (...) ...
2513             // In this case, we let clazz stand for the name of the
2514             // allocated class C prefixed with the type of the qualifier
2515             // expression, so that we can
2516             // resolve it with standard techniques later. I.e., if
2517             // <expr> has type T, then <expr>.new C <...> (...)
2518             // yields a clazz T.C.
2519             Type encltype = chk.checkRefType(tree.encl.pos(),
2520                                              attribExpr(tree.encl, env));
2521             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2522             // from expr to the combined type, or not? Yes, do this.
2523             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2524                                                  ((JCIdent) clazzid).name);
2525 
2526             EndPosTable endPosTable = this.env.toplevel.endPositions;
2527             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2528             if (clazz.hasTag(ANNOTATED_TYPE)) {
2529                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2530                 List<JCAnnotation> annos = annoType.annotations;
2531 
2532                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2533                     clazzid1 = make.at(tree.pos).
2534                         TypeApply(clazzid1,
2535                                   ((JCTypeApply) clazz).arguments);
2536                 }
2537 
2538                 clazzid1 = make.at(tree.pos).
2539                     AnnotatedType(annos, clazzid1);
2540             } else if (clazz.hasTag(TYPEAPPLY)) {
2541                 clazzid1 = make.at(tree.pos).
2542                     TypeApply(clazzid1,
2543                               ((JCTypeApply) clazz).arguments);
2544             }
2545 
2546             clazz = clazzid1;
2547         }
2548 
2549         // Attribute clazz expression and store
2550         // symbol + type back into the attributed tree.
2551         Type clazztype;
2552 
2553         try {
2554             env.info.isNewClass = true;
2555             clazztype = TreeInfo.isEnumInit(env.tree) ?
2556                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2557                 attribType(clazz, env);
2558         } finally {
2559             env.info.isNewClass = false;
2560         }
2561 
2562         clazztype = chk.checkDiamond(tree, clazztype);
2563         chk.validate(clazz, localEnv);
2564         if (tree.encl != null) {
2565             // We have to work in this case to store
2566             // symbol + type back into the attributed tree.
2567             tree.clazz.type = clazztype;
2568             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2569             clazzid.type = ((JCIdent) clazzid).sym.type;
2570             if (annoclazzid != null) {
2571                 annoclazzid.type = clazzid.type;
2572             }
2573             if (!clazztype.isErroneous()) {
2574                 if (cdef != null && clazztype.tsym.isInterface()) {
2575                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2576                 } else if (clazztype.tsym.isStatic()) {
2577                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2578                 }
2579             }
2580         } else if (!clazztype.tsym.isInterface() &&
2581                    clazztype.getEnclosingType().hasTag(CLASS)) {
2582             // Check for the existence of an apropos outer instance
2583             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2584         }
2585 
2586         // Attribute constructor arguments.
2587         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2588         final KindSelector pkind =
2589             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2590         List<Type> argtypes = argtypesBuf.toList();
2591         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2592 
2593         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2594             // Enums may not be instantiated except implicitly
2595             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2596                 (!env.tree.hasTag(VARDEF) ||
2597                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2598                  ((JCVariableDecl) env.tree).init != tree))
2599                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2600 
2601             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2602                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2603             boolean skipNonDiamondPath = false;
2604             // Check that class is not abstract
2605             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2606                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2607                 log.error(tree.pos(),
2608                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2609                 skipNonDiamondPath = true;
2610             } else if (cdef != null && clazztype.tsym.isInterface()) {
2611                 // Check that no constructor arguments are given to
2612                 // anonymous classes implementing an interface
2613                 if (!argtypes.isEmpty())
2614                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2615 
2616                 if (!typeargtypes.isEmpty())
2617                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2618 
2619                 // Error recovery: pretend no arguments were supplied.
2620                 argtypes = List.nil();
2621                 typeargtypes = List.nil();
2622                 skipNonDiamondPath = true;
2623             }
2624             if (TreeInfo.isDiamond(tree)) {
2625                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2626                             clazztype.tsym.type.getTypeArguments(),
2627                                                clazztype.tsym,
2628                                                clazztype.getMetadata());
2629 
2630                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2631                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2632                 diamondEnv.info.pendingResolutionPhase = null;
2633 
2634                 //if the type of the instance creation expression is a class type
2635                 //apply method resolution inference (JLS 15.12.2.7). The return type
2636                 //of the resolved constructor will be a partially instantiated type
2637                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2638                             diamondEnv,
2639                             site,
2640                             argtypes,
2641                             typeargtypes);
2642                 tree.constructor = constructor.baseSymbol();
2643 
2644                 final TypeSymbol csym = clazztype.tsym;
2645                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2646                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2647                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2648                 constructorType = checkId(tree, site,
2649                         constructor,
2650                         diamondEnv,
2651                         diamondResult);
2652 
2653                 tree.clazz.type = types.createErrorType(clazztype);
2654                 if (!constructorType.isErroneous()) {
2655                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2656                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2657                 }
2658                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2659             }
2660 
2661             // Resolve the called constructor under the assumption
2662             // that we are referring to a superclass instance of the
2663             // current instance (JLS ???).
2664             else if (!skipNonDiamondPath) {
2665                 //the following code alters some of the fields in the current
2666                 //AttrContext - hence, the current context must be dup'ed in
2667                 //order to avoid downstream failures
2668                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2669                 rsEnv.info.selectSuper = cdef != null;
2670                 rsEnv.info.pendingResolutionPhase = null;
2671                 tree.constructor = rs.resolveConstructor(
2672                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2673                 if (cdef == null) { //do not check twice!
2674                     tree.constructorType = checkId(tree,
2675                             clazztype,
2676                             tree.constructor,
2677                             rsEnv,
2678                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2679                     if (rsEnv.info.lastResolveVarargs())
2680                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2681                 }
2682             }
2683 
2684             if (cdef != null) {
2685                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2686                 return;
2687             }
2688 
2689             if (tree.constructor != null && tree.constructor.kind == MTH)
2690                 owntype = clazztype;
2691         }
2692         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2693         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2694         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2695             //we need to wait for inference to finish and then replace inference vars in the constructor type
2696             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2697                     instantiatedContext -> {
2698                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2699                     });
2700         }
2701         chk.validate(tree.typeargs, localEnv);
2702     }
2703 
2704         // where
2705         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2706                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2707                                                    List<Type> argtypes, List<Type> typeargtypes,
2708                                                    KindSelector pkind) {
2709             // We are seeing an anonymous class instance creation.
2710             // In this case, the class instance creation
2711             // expression
2712             //
2713             //    E.new <typeargs1>C<typargs2>(args) { ... }
2714             //
2715             // is represented internally as
2716             //
2717             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2718             //
2719             // This expression is then *transformed* as follows:
2720             //
2721             // (1) add an extends or implements clause
2722             // (2) add a constructor.
2723             //
2724             // For instance, if C is a class, and ET is the type of E,
2725             // the expression
2726             //
2727             //    E.new <typeargs1>C<typargs2>(args) { ... }
2728             //
2729             // is translated to (where X is a fresh name and typarams is the
2730             // parameter list of the super constructor):
2731             //
2732             //   new <typeargs1>X(<*nullchk*>E, args) where
2733             //     X extends C<typargs2> {
2734             //       <typarams> X(ET e, args) {
2735             //         e.<typeargs1>super(args)
2736             //       }
2737             //       ...
2738             //     }
2739             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2740             final boolean isDiamond = TreeInfo.isDiamond(tree);
2741             if (isDiamond
2742                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2743                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2744                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2745                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2746                         instantiatedContext -> {
2747                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2748                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2749                             ResultInfo prevResult = this.resultInfo;
2750                             try {
2751                                 this.resultInfo = resultInfoForClassDefinition;
2752                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2753                                                             localEnv, argtypes, typeargtypes, pkind);
2754                             } finally {
2755                                 this.resultInfo = prevResult;
2756                             }
2757                         });
2758             } else {
2759                 if (isDiamond && clazztype.hasTag(CLASS)) {
2760                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2761                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2762                         // One or more types inferred in the previous steps is non-denotable.
2763                         Fragment fragment = Diamond(clazztype.tsym);
2764                         log.error(tree.clazz.pos(),
2765                                 Errors.CantApplyDiamond1(
2766                                         fragment,
2767                                         invalidDiamondArgs.size() > 1 ?
2768                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2769                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2770                     }
2771                     // For <>(){}, inferred types must also be accessible.
2772                     for (Type t : clazztype.getTypeArguments()) {
2773                         rs.checkAccessibleType(env, t);
2774                     }
2775                 }
2776 
2777                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2778                 // false for isInterface call even when the original type is an interface.
2779                 boolean implementing = clazztype.tsym.isInterface() ||
2780                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
2781                         clazztype.getOriginalType().tsym.isInterface();
2782 
2783                 if (implementing) {
2784                     cdef.implementing = List.of(clazz);
2785                 } else {
2786                     cdef.extending = clazz;
2787                 }
2788 
2789                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2790                     isSerializable(clazztype)) {
2791                     localEnv.info.isSerializable = true;
2792                 }
2793 
2794                 attribStat(cdef, localEnv);
2795 
2796                 List<Type> finalargtypes;
2797                 // If an outer instance is given,
2798                 // prefix it to the constructor arguments
2799                 // and delete it from the new expression
2800                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2801                     finalargtypes = argtypes.prepend(tree.encl.type);
2802                 } else {
2803                     finalargtypes = argtypes;
2804                 }
2805 
2806                 // Reassign clazztype and recompute constructor. As this necessarily involves
2807                 // another attribution pass for deferred types in the case of <>, replicate
2808                 // them. Original arguments have right decorations already.
2809                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
2810                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2811                 }
2812 
2813                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
2814                                                     : cdef.sym.type;
2815                 Symbol sym = tree.constructor = rs.resolveConstructor(
2816                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2817                 Assert.check(!sym.kind.isResolutionError());
2818                 tree.constructor = sym;
2819                 tree.constructorType = checkId(tree,
2820                         clazztype,
2821                         tree.constructor,
2822                         localEnv,
2823                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2824             }
2825             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2826                                 clazztype : types.createErrorType(tree.type);
2827             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2828             chk.validate(tree.typeargs, localEnv);
2829         }
2830 
2831         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2832             return new Check.NestedCheckContext(checkContext) {
2833                 @Override
2834                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2835                     enclosingContext.report(clazz.clazz,
2836                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
2837                 }
2838             };
2839         }
2840 
2841     /** Make an attributed null check tree.
2842      */
2843     public JCExpression makeNullCheck(JCExpression arg) {
2844         // optimization: new Outer() can never be null; skip null check
2845         if (arg.getTag() == NEWCLASS)
2846             return arg;
2847         // optimization: X.this is never null; skip null check
2848         Name name = TreeInfo.name(arg);
2849         if (name == names._this || name == names._super) return arg;
2850 
2851         JCTree.Tag optag = NULLCHK;
2852         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2853         tree.operator = operators.resolveUnary(arg, optag, arg.type);
2854         tree.type = arg.type;
2855         return tree;
2856     }
2857 
2858     public void visitNewArray(JCNewArray tree) {
2859         Type owntype = types.createErrorType(tree.type);
2860         Env<AttrContext> localEnv = env.dup(tree);
2861         Type elemtype;
2862         if (tree.elemtype != null) {
2863             elemtype = attribType(tree.elemtype, localEnv);
2864             chk.validate(tree.elemtype, localEnv);
2865             owntype = elemtype;
2866             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2867                 attribExpr(l.head, localEnv, syms.intType);
2868                 owntype = new ArrayType(owntype, syms.arrayClass);
2869             }
2870         } else {
2871             // we are seeing an untyped aggregate { ... }
2872             // this is allowed only if the prototype is an array
2873             if (pt().hasTag(ARRAY)) {
2874                 elemtype = types.elemtype(pt());
2875             } else {
2876                 if (!pt().hasTag(ERROR) &&
2877                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2878                     log.error(tree.pos(),
2879                               Errors.IllegalInitializerForType(pt()));
2880                 }
2881                 elemtype = types.createErrorType(pt());
2882             }
2883         }
2884         if (tree.elems != null) {
2885             attribExprs(tree.elems, localEnv, elemtype);
2886             owntype = new ArrayType(elemtype, syms.arrayClass);
2887         }
2888         if (!types.isReifiable(elemtype))
2889             log.error(tree.pos(), Errors.GenericArrayCreation);
2890         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2891     }
2892 
2893     /*
2894      * A lambda expression can only be attributed when a target-type is available.
2895      * In addition, if the target-type is that of a functional interface whose
2896      * descriptor contains inference variables in argument position the lambda expression
2897      * is 'stuck' (see DeferredAttr).
2898      */
2899     @Override
2900     public void visitLambda(final JCLambda that) {
2901         boolean wrongContext = false;
2902         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2903             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2904                 //lambda only allowed in assignment or method invocation/cast context
2905                 log.error(that.pos(), Errors.UnexpectedLambda);
2906             }
2907             resultInfo = recoveryInfo;
2908             wrongContext = true;
2909         }
2910         //create an environment for attribution of the lambda expression
2911         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2912         boolean needsRecovery =
2913                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2914         try {
2915             if (needsRecovery && isSerializable(pt())) {
2916                 localEnv.info.isSerializable = true;
2917                 localEnv.info.isSerializableLambda = true;
2918             }
2919             localEnv.info.isLambda = true;
2920             List<Type> explicitParamTypes = null;
2921             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2922                 //attribute lambda parameters
2923                 attribStats(that.params, localEnv);
2924                 explicitParamTypes = TreeInfo.types(that.params);
2925             }
2926 
2927             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2928             Type currentTarget = targetInfo.target;
2929             Type lambdaType = targetInfo.descriptor;
2930 
2931             if (currentTarget.isErroneous()) {
2932                 result = that.type = currentTarget;
2933                 return;
2934             }
2935 
2936             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2937 
2938             if (lambdaType.hasTag(FORALL)) {
2939                 //lambda expression target desc cannot be a generic method
2940                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2941                                                                     kindName(currentTarget.tsym),
2942                                                                     currentTarget.tsym);
2943                 resultInfo.checkContext.report(that, diags.fragment(msg));
2944                 result = that.type = types.createErrorType(pt());
2945                 return;
2946             }
2947 
2948             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2949                 //add param type info in the AST
2950                 List<Type> actuals = lambdaType.getParameterTypes();
2951                 List<JCVariableDecl> params = that.params;
2952 
2953                 boolean arityMismatch = false;
2954 
2955                 while (params.nonEmpty()) {
2956                     if (actuals.isEmpty()) {
2957                         //not enough actuals to perform lambda parameter inference
2958                         arityMismatch = true;
2959                     }
2960                     //reset previously set info
2961                     Type argType = arityMismatch ?
2962                             syms.errType :
2963                             actuals.head;
2964                     if (params.head.isImplicitlyTyped()) {
2965                         setSyntheticVariableType(params.head, argType);
2966                     }
2967                     params.head.sym = null;
2968                     actuals = actuals.isEmpty() ?
2969                             actuals :
2970                             actuals.tail;
2971                     params = params.tail;
2972                 }
2973 
2974                 //attribute lambda parameters
2975                 attribStats(that.params, localEnv);
2976 
2977                 if (arityMismatch) {
2978                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2979                         result = that.type = types.createErrorType(currentTarget);
2980                         return;
2981                 }
2982             }
2983 
2984             //from this point on, no recovery is needed; if we are in assignment context
2985             //we will be able to attribute the whole lambda body, regardless of errors;
2986             //if we are in a 'check' method context, and the lambda is not compatible
2987             //with the target-type, it will be recovered anyway in Attr.checkId
2988             needsRecovery = false;
2989 
2990             ResultInfo bodyResultInfo = localEnv.info.returnResult =
2991                     lambdaBodyResult(that, lambdaType, resultInfo);
2992 
2993             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2994                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2995             } else {
2996                 JCBlock body = (JCBlock)that.body;
2997                 if (body == breakTree &&
2998                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2999                     breakTreeFound(copyEnv(localEnv));
3000                 }
3001                 attribStats(body.stats, localEnv);
3002             }
3003 
3004             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3005 
3006             boolean isSpeculativeRound =
3007                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3008 
3009             preFlow(that);
3010             flow.analyzeLambda(env, that, make, isSpeculativeRound);
3011 
3012             that.type = currentTarget; //avoids recovery at this stage
3013             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
3014 
3015             if (!isSpeculativeRound) {
3016                 //add thrown types as bounds to the thrown types free variables if needed:
3017                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
3018                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
3019                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
3020                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
3021                     }
3022                 }
3023 
3024                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3025             }
3026             result = wrongContext ? that.type = types.createErrorType(pt())
3027                                   : check(that, currentTarget, KindSelector.VAL, resultInfo);
3028         } catch (Types.FunctionDescriptorLookupError ex) {
3029             JCDiagnostic cause = ex.getDiagnostic();
3030             resultInfo.checkContext.report(that, cause);
3031             result = that.type = types.createErrorType(pt());
3032             return;
3033         } catch (CompletionFailure cf) {
3034             chk.completionError(that.pos(), cf);
3035         } catch (Throwable t) {
3036             //when an unexpected exception happens, avoid attempts to attribute the same tree again
3037             //as that would likely cause the same exception again.
3038             needsRecovery = false;
3039             throw t;
3040         } finally {
3041             localEnv.info.scope.leave();
3042             if (needsRecovery) {
3043                 Type prevResult = result;
3044                 try {
3045                     attribTree(that, env, recoveryInfo);
3046                 } finally {
3047                     if (result == Type.recoveryType) {
3048                         result = prevResult;
3049                     }
3050                 }
3051             }
3052         }
3053     }
3054     //where
3055         class TargetInfo {
3056             Type target;
3057             Type descriptor;
3058 
3059             public TargetInfo(Type target, Type descriptor) {
3060                 this.target = target;
3061                 this.descriptor = descriptor;
3062             }
3063         }
3064 
3065         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3066             Type lambdaType;
3067             Type currentTarget = resultInfo.pt;
3068             if (resultInfo.pt != Type.recoveryType) {
3069                 /* We need to adjust the target. If the target is an
3070                  * intersection type, for example: SAM & I1 & I2 ...
3071                  * the target will be updated to SAM
3072                  */
3073                 currentTarget = targetChecker.visit(currentTarget, that);
3074                 if (!currentTarget.isIntersection()) {
3075                     if (explicitParamTypes != null) {
3076                         currentTarget = infer.instantiateFunctionalInterface(that,
3077                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
3078                     }
3079                     currentTarget = types.removeWildcards(currentTarget);
3080                     lambdaType = types.findDescriptorType(currentTarget);
3081                 } else {
3082                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
3083                     ListBuffer<Type> components = new ListBuffer<>();
3084                     for (Type bound : ict.getExplicitComponents()) {
3085                         if (explicitParamTypes != null) {
3086                             try {
3087                                 bound = infer.instantiateFunctionalInterface(that,
3088                                         bound, explicitParamTypes, resultInfo.checkContext);
3089                             } catch (FunctionDescriptorLookupError t) {
3090                                 // do nothing
3091                             }
3092                         }
3093                         bound = types.removeWildcards(bound);
3094                         components.add(bound);
3095                     }
3096                     currentTarget = types.makeIntersectionType(components.toList());
3097                     currentTarget.tsym.flags_field |= INTERFACE;
3098                     lambdaType = types.findDescriptorType(currentTarget);
3099                 }
3100 
3101             } else {
3102                 currentTarget = Type.recoveryType;
3103                 lambdaType = fallbackDescriptorType(that);
3104             }
3105             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3106                 //lambda expression target desc cannot be a generic method
3107                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3108                                                                     kindName(currentTarget.tsym),
3109                                                                     currentTarget.tsym);
3110                 resultInfo.checkContext.report(that, diags.fragment(msg));
3111                 currentTarget = types.createErrorType(pt());
3112             }
3113             return new TargetInfo(currentTarget, lambdaType);
3114         }
3115 
3116         void preFlow(JCLambda tree) {
3117             new PostAttrAnalyzer() {
3118                 @Override
3119                 public void scan(JCTree tree) {
3120                     if (tree == null ||
3121                             (tree.type != null &&
3122                             tree.type == Type.stuckType)) {
3123                         //don't touch stuck expressions!
3124                         return;
3125                     }
3126                     super.scan(tree);
3127                 }
3128 
3129                 @Override
3130                 public void visitClassDef(JCClassDecl that) {
3131                     // or class declaration trees!
3132                 }
3133 
3134                 public void visitLambda(JCLambda that) {
3135                     // or lambda expressions!
3136                 }
3137             }.scan(tree.body);
3138         }
3139 
3140         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3141 
3142             @Override
3143             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3144                 return t.isIntersection() ?
3145                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3146             }
3147 
3148             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3149                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3150                 return ict;
3151             }
3152 
3153             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3154                 ListBuffer<Type> targs = new ListBuffer<>();
3155                 ListBuffer<Type> supertypes = new ListBuffer<>();
3156                 for (Type i : ict.interfaces_field) {
3157                     if (i.isParameterized()) {
3158                         targs.appendList(i.tsym.type.allparams());
3159                     }
3160                     supertypes.append(i.tsym.type);
3161                 }
3162                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3163                 notionalIntf.allparams_field = targs.toList();
3164                 notionalIntf.tsym.flags_field |= INTERFACE;
3165                 return notionalIntf.tsym;
3166             }
3167         };
3168 
3169         private Type fallbackDescriptorType(JCExpression tree) {
3170             switch (tree.getTag()) {
3171                 case LAMBDA:
3172                     JCLambda lambda = (JCLambda)tree;
3173                     List<Type> argtypes = List.nil();
3174                     for (JCVariableDecl param : lambda.params) {
3175                         argtypes = param.vartype != null && param.vartype.type != null ?
3176                                 argtypes.append(param.vartype.type) :
3177                                 argtypes.append(syms.errType);
3178                     }
3179                     return new MethodType(argtypes, Type.recoveryType,
3180                             List.of(syms.throwableType), syms.methodClass);
3181                 case REFERENCE:
3182                     return new MethodType(List.nil(), Type.recoveryType,
3183                             List.of(syms.throwableType), syms.methodClass);
3184                 default:
3185                     Assert.error("Cannot get here!");
3186             }
3187             return null;
3188         }
3189 
3190         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3191                 final InferenceContext inferenceContext, final Type... ts) {
3192             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3193         }
3194 
3195         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3196                 final InferenceContext inferenceContext, final List<Type> ts) {
3197             if (inferenceContext.free(ts)) {
3198                 inferenceContext.addFreeTypeListener(ts,
3199                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3200             } else {
3201                 for (Type t : ts) {
3202                     rs.checkAccessibleType(env, t);
3203                 }
3204             }
3205         }
3206 
3207         /**
3208          * Lambda/method reference have a special check context that ensures
3209          * that i.e. a lambda return type is compatible with the expected
3210          * type according to both the inherited context and the assignment
3211          * context.
3212          */
3213         class FunctionalReturnContext extends Check.NestedCheckContext {
3214 
3215             FunctionalReturnContext(CheckContext enclosingContext) {
3216                 super(enclosingContext);
3217             }
3218 
3219             @Override
3220             public boolean compatible(Type found, Type req, Warner warn) {
3221                 //return type must be compatible in both current context and assignment context
3222                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3223             }
3224 
3225             @Override
3226             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3227                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3228             }
3229         }
3230 
3231         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3232 
3233             JCExpression expr;
3234             boolean expStmtExpected;
3235 
3236             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3237                 super(enclosingContext);
3238                 this.expr = expr;
3239             }
3240 
3241             @Override
3242             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3243                 if (expStmtExpected) {
3244                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3245                 } else {
3246                     super.report(pos, details);
3247                 }
3248             }
3249 
3250             @Override
3251             public boolean compatible(Type found, Type req, Warner warn) {
3252                 //a void return is compatible with an expression statement lambda
3253                 if (req.hasTag(VOID)) {
3254                     expStmtExpected = true;
3255                     return TreeInfo.isExpressionStatement(expr);
3256                 } else {
3257                     return super.compatible(found, req, warn);
3258                 }
3259             }
3260         }
3261 
3262         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3263             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3264                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3265                     new FunctionalReturnContext(resultInfo.checkContext);
3266 
3267             return descriptor.getReturnType() == Type.recoveryType ?
3268                     recoveryInfo :
3269                     new ResultInfo(KindSelector.VAL,
3270                             descriptor.getReturnType(), funcContext);
3271         }
3272 
3273         /**
3274         * Lambda compatibility. Check that given return types, thrown types, parameter types
3275         * are compatible with the expected functional interface descriptor. This means that:
3276         * (i) parameter types must be identical to those of the target descriptor; (ii) return
3277         * types must be compatible with the return type of the expected descriptor.
3278         */
3279         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3280             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3281 
3282             //return values have already been checked - but if lambda has no return
3283             //values, we must ensure that void/value compatibility is correct;
3284             //this amounts at checking that, if a lambda body can complete normally,
3285             //the descriptor's return type must be void
3286             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3287                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3288                 Fragment msg =
3289                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3290                 checkContext.report(tree,
3291                                     diags.fragment(msg));
3292             }
3293 
3294             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3295             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3296                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3297             }
3298         }
3299 
3300         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
3301          * static field and that lambda has type annotations, these annotations will
3302          * also be stored at these fake clinit methods.
3303          *
3304          * LambdaToMethod also use fake clinit methods so they can be reused.
3305          * Also as LTM is a phase subsequent to attribution, the methods from
3306          * clinits can be safely removed by LTM to save memory.
3307          */
3308         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
3309 
3310         public MethodSymbol removeClinit(ClassSymbol sym) {
3311             return clinits.remove(sym);
3312         }
3313 
3314         /* This method returns an environment to be used to attribute a lambda
3315          * expression.
3316          *
3317          * The owner of this environment is a method symbol. If the current owner
3318          * is not a method, for example if the lambda is used to initialize
3319          * a field, then if the field is:
3320          *
3321          * - an instance field, we use the first constructor.
3322          * - a static field, we create a fake clinit method.
3323          */
3324         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3325             Env<AttrContext> lambdaEnv;
3326             Symbol owner = env.info.scope.owner;
3327             if (owner.kind == VAR && owner.owner.kind == TYP) {
3328                 //field initializer
3329                 ClassSymbol enclClass = owner.enclClass();
3330                 Symbol newScopeOwner = env.info.scope.owner;
3331                 /* if the field isn't static, then we can get the first constructor
3332                  * and use it as the owner of the environment. This is what
3333                  * LTM code is doing to look for type annotations so we are fine.
3334                  */
3335                 if ((owner.flags() & STATIC) == 0) {
3336                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
3337                         newScopeOwner = s;
3338                         break;
3339                     }
3340                 } else {
3341                     /* if the field is static then we need to create a fake clinit
3342                      * method, this method can later be reused by LTM.
3343                      */
3344                     MethodSymbol clinit = clinits.get(enclClass);
3345                     if (clinit == null) {
3346                         Type clinitType = new MethodType(List.nil(),
3347                                 syms.voidType, List.nil(), syms.methodClass);
3348                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
3349                                 names.clinit, clinitType, enclClass);
3350                         clinit.params = List.nil();
3351                         clinits.put(enclClass, clinit);
3352                     }
3353                     newScopeOwner = clinit;
3354                 }
3355                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
3356             } else {
3357                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3358             }
3359             lambdaEnv.info.yieldResult = null;
3360             return lambdaEnv;
3361         }
3362 
3363     @Override
3364     public void visitReference(final JCMemberReference that) {
3365         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3366             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3367                 //method reference only allowed in assignment or method invocation/cast context
3368                 log.error(that.pos(), Errors.UnexpectedMref);
3369             }
3370             result = that.type = types.createErrorType(pt());
3371             return;
3372         }
3373         final Env<AttrContext> localEnv = env.dup(that);
3374         try {
3375             //attribute member reference qualifier - if this is a constructor
3376             //reference, the expected kind must be a type
3377             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3378 
3379             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3380                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3381                 if (!exprType.isErroneous() &&
3382                     exprType.isRaw() &&
3383                     that.typeargs != null) {
3384                     log.error(that.expr.pos(),
3385                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3386                                                  Fragments.MrefInferAndExplicitParams));
3387                     exprType = types.createErrorType(exprType);
3388                 }
3389             }
3390 
3391             if (exprType.isErroneous()) {
3392                 //if the qualifier expression contains problems,
3393                 //give up attribution of method reference
3394                 result = that.type = exprType;
3395                 return;
3396             }
3397 
3398             if (TreeInfo.isStaticSelector(that.expr, names)) {
3399                 //if the qualifier is a type, validate it; raw warning check is
3400                 //omitted as we don't know at this stage as to whether this is a
3401                 //raw selector (because of inference)
3402                 chk.validate(that.expr, env, false);
3403             } else {
3404                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3405                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3406             }
3407             //attrib type-arguments
3408             List<Type> typeargtypes = List.nil();
3409             if (that.typeargs != null) {
3410                 typeargtypes = attribTypes(that.typeargs, localEnv);
3411             }
3412 
3413             boolean isTargetSerializable =
3414                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3415                     isSerializable(pt());
3416             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3417             Type currentTarget = targetInfo.target;
3418             Type desc = targetInfo.descriptor;
3419 
3420             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3421             List<Type> argtypes = desc.getParameterTypes();
3422             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3423 
3424             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3425                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3426             }
3427 
3428             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3429             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3430             try {
3431                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3432                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3433                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3434             } finally {
3435                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3436             }
3437 
3438             Symbol refSym = refResult.fst;
3439             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3440 
3441             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3442              *  JDK-8075541
3443              */
3444             if (refSym.kind != MTH) {
3445                 boolean targetError;
3446                 switch (refSym.kind) {
3447                     case ABSENT_MTH:
3448                     case MISSING_ENCL:
3449                         targetError = false;
3450                         break;
3451                     case WRONG_MTH:
3452                     case WRONG_MTHS:
3453                     case AMBIGUOUS:
3454                     case HIDDEN:
3455                     case STATICERR:
3456                         targetError = true;
3457                         break;
3458                     default:
3459                         Assert.error("unexpected result kind " + refSym.kind);
3460                         targetError = false;
3461                 }
3462 
3463                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3464                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3465                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3466 
3467                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3468                         targetError ?
3469                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3470                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3471 
3472                 if (targetError && currentTarget == Type.recoveryType) {
3473                     //a target error doesn't make sense during recovery stage
3474                     //as we don't know what actual parameter types are
3475                     result = that.type = currentTarget;
3476                     return;
3477                 } else {
3478                     if (targetError) {
3479                         resultInfo.checkContext.report(that, diag);
3480                     } else {
3481                         log.report(diag);
3482                     }
3483                     result = that.type = types.createErrorType(currentTarget);
3484                     return;
3485                 }
3486             }
3487 
3488             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3489             that.kind = lookupHelper.referenceKind(that.sym);
3490             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3491 
3492             if (desc.getReturnType() == Type.recoveryType) {
3493                 // stop here
3494                 result = that.type = currentTarget;
3495                 return;
3496             }
3497 
3498             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3499                 Type enclosingType = exprType.getEnclosingType();
3500                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3501                     // Check for the existence of an appropriate outer instance
3502                     rs.resolveImplicitThis(that.pos(), env, exprType);
3503                 }
3504             }
3505 
3506             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3507 
3508                 if (that.getMode() == ReferenceMode.INVOKE &&
3509                         TreeInfo.isStaticSelector(that.expr, names) &&
3510                         that.kind.isUnbound() &&
3511                         lookupHelper.site.isRaw()) {
3512                     chk.checkRaw(that.expr, localEnv);
3513                 }
3514 
3515                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3516                         exprType.getTypeArguments().nonEmpty()) {
3517                     //static ref with class type-args
3518                     log.error(that.expr.pos(),
3519                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3520                                                  Fragments.StaticMrefWithTargs));
3521                     result = that.type = types.createErrorType(currentTarget);
3522                     return;
3523                 }
3524 
3525                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3526                     // Check that super-qualified symbols are not abstract (JLS)
3527                     rs.checkNonAbstract(that.pos(), that.sym);
3528                 }
3529 
3530                 if (isTargetSerializable) {
3531                     chk.checkAccessFromSerializableElement(that, true);
3532                 }
3533             }
3534 
3535             ResultInfo checkInfo =
3536                     resultInfo.dup(newMethodTemplate(
3537                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3538                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3539                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3540 
3541             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3542 
3543             if (that.kind.isUnbound() &&
3544                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3545                 //re-generate inference constraints for unbound receiver
3546                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3547                     //cannot happen as this has already been checked - we just need
3548                     //to regenerate the inference constraints, as that has been lost
3549                     //as a result of the call to inferenceContext.save()
3550                     Assert.error("Can't get here");
3551                 }
3552             }
3553 
3554             if (!refType.isErroneous()) {
3555                 refType = types.createMethodTypeWithReturn(refType,
3556                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3557             }
3558 
3559             //go ahead with standard method reference compatibility check - note that param check
3560             //is a no-op (as this has been taken care during method applicability)
3561             boolean isSpeculativeRound =
3562                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3563 
3564             that.type = currentTarget; //avoids recovery at this stage
3565             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3566             if (!isSpeculativeRound) {
3567                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3568             }
3569             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3570         } catch (Types.FunctionDescriptorLookupError ex) {
3571             JCDiagnostic cause = ex.getDiagnostic();
3572             resultInfo.checkContext.report(that, cause);
3573             result = that.type = types.createErrorType(pt());
3574             return;
3575         }
3576     }
3577     //where
3578         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3579             //if this is a constructor reference, the expected kind must be a type
3580             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3581                                   KindSelector.VAL_TYP : KindSelector.TYP,
3582                                   Type.noType);
3583         }
3584 
3585 
3586     @SuppressWarnings("fallthrough")
3587     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3588         InferenceContext inferenceContext = checkContext.inferenceContext();
3589         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3590 
3591         Type resType;
3592         switch (tree.getMode()) {
3593             case NEW:
3594                 if (!tree.expr.type.isRaw()) {
3595                     resType = tree.expr.type;
3596                     break;
3597                 }
3598             default:
3599                 resType = refType.getReturnType();
3600         }
3601 
3602         Type incompatibleReturnType = resType;
3603 
3604         if (returnType.hasTag(VOID)) {
3605             incompatibleReturnType = null;
3606         }
3607 
3608         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3609             if (resType.isErroneous() ||
3610                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3611                             checkContext.checkWarner(tree, resType, returnType))) {
3612                 incompatibleReturnType = null;
3613             }
3614         }
3615 
3616         if (incompatibleReturnType != null) {
3617             Fragment msg =
3618                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3619             checkContext.report(tree, diags.fragment(msg));
3620         } else {
3621             if (inferenceContext.free(refType)) {
3622                 // we need to wait for inference to finish and then replace inference vars in the referent type
3623                 inferenceContext.addFreeTypeListener(List.of(refType),
3624                         instantiatedContext -> {
3625                             tree.referentType = instantiatedContext.asInstType(refType);
3626                         });
3627             } else {
3628                 tree.referentType = refType;
3629             }
3630         }
3631 
3632         if (!speculativeAttr) {
3633             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3634                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3635             }
3636         }
3637     }
3638 
3639     boolean checkExConstraints(
3640             List<Type> thrownByFuncExpr,
3641             List<Type> thrownAtFuncType,
3642             InferenceContext inferenceContext) {
3643         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3644          *  are not proper types
3645          */
3646         List<Type> nonProperList = thrownAtFuncType.stream()
3647                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3648         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3649 
3650         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3651          *  in the throws clause of the invocation type of the method reference's compile-time
3652          *  declaration
3653          */
3654         List<Type> checkedList = thrownByFuncExpr.stream()
3655                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3656 
3657         /** If n = 0 (the function type's throws clause consists only of proper types), then
3658          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3659          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3660          *  reduces to true
3661          */
3662         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3663         for (Type checked : checkedList) {
3664             boolean isSubtype = false;
3665             for (Type proper : properList) {
3666                 if (types.isSubtype(checked, proper)) {
3667                     isSubtype = true;
3668                     break;
3669                 }
3670             }
3671             if (!isSubtype) {
3672                 uncaughtByProperTypes.add(checked);
3673             }
3674         }
3675 
3676         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3677             return false;
3678         }
3679 
3680         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3681          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3682          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3683          */
3684         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3685         uncaughtByProperTypes.forEach(checkedEx -> {
3686             nonProperAsUndet.forEach(nonProper -> {
3687                 types.isSubtype(checkedEx, nonProper);
3688             });
3689         });
3690 
3691         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3692          */
3693         nonProperAsUndet.stream()
3694                 .filter(t -> t.hasTag(UNDETVAR))
3695                 .forEach(t -> ((UndetVar)t).setThrow());
3696         return true;
3697     }
3698 
3699     /**
3700      * Set functional type info on the underlying AST. Note: as the target descriptor
3701      * might contain inference variables, we might need to register an hook in the
3702      * current inference context.
3703      */
3704     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3705             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3706         if (checkContext.inferenceContext().free(descriptorType)) {
3707             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3708                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3709                     inferenceContext.asInstType(primaryTarget), checkContext));
3710         } else {
3711             if (pt.hasTag(CLASS)) {
3712                 fExpr.target = primaryTarget;
3713             }
3714             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3715                     pt != Type.recoveryType) {
3716                 //check that functional interface class is well-formed
3717                 try {
3718                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3719                      * when it's executed post-inference. See the listener code
3720                      * above.
3721                      */
3722                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3723                             names.empty, fExpr.target, ABSTRACT);
3724                     if (csym != null) {
3725                         chk.checkImplementations(env.tree, csym, csym);
3726                         try {
3727                             //perform an additional functional interface check on the synthetic class,
3728                             //as there may be spurious errors for raw targets - because of existing issues
3729                             //with membership and inheritance (see JDK-8074570).
3730                             csym.flags_field |= INTERFACE;
3731                             types.findDescriptorType(csym.type);
3732                         } catch (FunctionDescriptorLookupError err) {
3733                             resultInfo.checkContext.report(fExpr,
3734                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3735                         }
3736                     }
3737                 } catch (Types.FunctionDescriptorLookupError ex) {
3738                     JCDiagnostic cause = ex.getDiagnostic();
3739                     resultInfo.checkContext.report(env.tree, cause);
3740                 }
3741             }
3742         }
3743     }
3744 
3745     public void visitParens(JCParens tree) {
3746         Type owntype = attribTree(tree.expr, env, resultInfo);
3747         result = check(tree, owntype, pkind(), resultInfo);
3748         Symbol sym = TreeInfo.symbol(tree);
3749         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3750             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3751     }
3752 
3753     public void visitAssign(JCAssign tree) {
3754         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3755         Type capturedType = capture(owntype);
3756         attribExpr(tree.rhs, env, owntype);
3757         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3758     }
3759 
3760     public void visitAssignop(JCAssignOp tree) {
3761         // Attribute arguments.
3762         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3763         Type operand = attribExpr(tree.rhs, env);
3764         // Find operator.
3765         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3766         if (operator != operators.noOpSymbol &&
3767                 !owntype.isErroneous() &&
3768                 !operand.isErroneous()) {
3769             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3770             chk.checkCastable(tree.rhs.pos(),
3771                               operator.type.getReturnType(),
3772                               owntype);
3773         }
3774         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3775     }
3776 
3777     public void visitUnary(JCUnary tree) {
3778         // Attribute arguments.
3779         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3780             ? attribTree(tree.arg, env, varAssignmentInfo)
3781             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3782 
3783         // Find operator.
3784         Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3785         Type owntype = types.createErrorType(tree.type);
3786         if (operator != operators.noOpSymbol &&
3787                 !argtype.isErroneous()) {
3788             owntype = (tree.getTag().isIncOrDecUnaryOp())
3789                 ? tree.arg.type
3790                 : operator.type.getReturnType();
3791             int opc = ((OperatorSymbol)operator).opcode;
3792 
3793             // If the argument is constant, fold it.
3794             if (argtype.constValue() != null) {
3795                 Type ctype = cfolder.fold1(opc, argtype);
3796                 if (ctype != null) {
3797                     owntype = cfolder.coerce(ctype, owntype);
3798                 }
3799             }
3800         }
3801         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3802         matchBindings = matchBindingsComputer.unary(tree, matchBindings);
3803     }
3804 
3805     public void visitBinary(JCBinary tree) {
3806         // Attribute arguments.
3807         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3808         // x && y
3809         // include x's bindings when true in y
3810 
3811         // x || y
3812         // include x's bindings when false in y
3813 
3814         MatchBindings lhsBindings = matchBindings;
3815         List<BindingSymbol> propagatedBindings;
3816         switch (tree.getTag()) {
3817             case AND:
3818                 propagatedBindings = lhsBindings.bindingsWhenTrue;
3819                 break;
3820             case OR:
3821                 propagatedBindings = lhsBindings.bindingsWhenFalse;
3822                 break;
3823             default:
3824                 propagatedBindings = List.nil();
3825                 break;
3826         }
3827         Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings);
3828         Type right;
3829         try {
3830             right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
3831         } finally {
3832             rhsEnv.info.scope.leave();
3833         }
3834 
3835         matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings);
3836 
3837         // Find operator.
3838         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3839         Type owntype = types.createErrorType(tree.type);
3840         if (operator != operators.noOpSymbol &&
3841                 !left.isErroneous() &&
3842                 !right.isErroneous()) {
3843             owntype = operator.type.getReturnType();
3844             int opc = ((OperatorSymbol)operator).opcode;
3845             // If both arguments are constants, fold them.
3846             if (left.constValue() != null && right.constValue() != null) {
3847                 Type ctype = cfolder.fold2(opc, left, right);
3848                 if (ctype != null) {
3849                     owntype = cfolder.coerce(ctype, owntype);
3850                 }
3851             }
3852 
3853             // Check that argument types of a reference ==, != are
3854             // castable to each other, (JLS 15.21).  Note: unboxing
3855             // comparisons will not have an acmp* opc at this point.
3856             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3857                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3858                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
3859                 }
3860             }
3861 
3862             chk.checkDivZero(tree.rhs.pos(), operator, right);
3863         }
3864         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3865     }
3866 
3867     public void visitTypeCast(final JCTypeCast tree) {
3868         Type clazztype = attribType(tree.clazz, env);
3869         chk.validate(tree.clazz, env, false);
3870         //a fresh environment is required for 292 inference to work properly ---
3871         //see Infer.instantiatePolymorphicSignatureInstance()
3872         Env<AttrContext> localEnv = env.dup(tree);
3873         //should we propagate the target type?
3874         final ResultInfo castInfo;
3875         JCExpression expr = TreeInfo.skipParens(tree.expr);
3876         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3877         if (isPoly) {
3878             //expression is a poly - we need to propagate target type info
3879             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3880                                       new Check.NestedCheckContext(resultInfo.checkContext) {
3881                 @Override
3882                 public boolean compatible(Type found, Type req, Warner warn) {
3883                     return types.isCastable(found, req, warn);
3884                 }
3885             });
3886         } else {
3887             //standalone cast - target-type info is not propagated
3888             castInfo = unknownExprInfo;
3889         }
3890         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3891         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3892         if (exprtype.constValue() != null)
3893             owntype = cfolder.coerce(exprtype, owntype);
3894         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3895         if (!isPoly)
3896             chk.checkRedundantCast(localEnv, tree);
3897     }
3898 
3899     public void visitTypeTest(JCInstanceOf tree) {
3900         Type exprtype = chk.checkNullOrRefType(
3901                 tree.expr.pos(), attribExpr(tree.expr, env));
3902         Type clazztype;
3903         JCTree typeTree;
3904         if (tree.pattern.getTag() == BINDINGPATTERN) {
3905             attribTree(tree.pattern, env, unknownExprInfo);
3906             clazztype = tree.pattern.type;
3907             JCBindingPattern pattern = (JCBindingPattern) tree.pattern;
3908             typeTree = pattern.vartype;
3909             if (!clazztype.hasTag(TYPEVAR)) {
3910                 clazztype = chk.checkClassOrArrayType(pattern.vartype.pos(), clazztype);
3911             }
3912         } else {
3913             clazztype = attribType(tree.pattern, env);
3914             typeTree = tree.pattern;
3915         }
3916         if (!clazztype.hasTag(TYPEVAR)) {
3917             clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
3918         }
3919         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3920             boolean valid = false;
3921             if (allowReifiableTypesInInstanceof) {
3922                 if (preview.isPreview(Feature.REIFIABLE_TYPES_INSTANCEOF)) {
3923                     preview.warnPreview(tree.expr.pos(), Feature.REIFIABLE_TYPES_INSTANCEOF);
3924                 }
3925                 Warner warner = new Warner();
3926                 if (!types.isCastable(exprtype, clazztype, warner)) {
3927                     chk.basicHandler.report(tree.expr.pos(),
3928                                             diags.fragment(Fragments.InconvertibleTypes(exprtype, clazztype)));
3929                 } else if (warner.hasLint(LintCategory.UNCHECKED)) {
3930                     log.error(tree.expr.pos(),
3931                               Errors.InstanceofReifiableNotSafe(exprtype, clazztype));
3932                 } else {
3933                     valid = true;
3934                 }
3935             } else {
3936                 log.error(typeTree.pos(), Errors.IllegalGenericTypeForInstof);
3937             }
3938             if (!valid) {
3939                 clazztype = types.createErrorType(clazztype);
3940             }
3941         }
3942         chk.validate(typeTree, env, false);
3943         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3944         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3945     }
3946 
3947     public void visitBindingPattern(JCBindingPattern tree) {
3948         ResultInfo varInfo = new ResultInfo(KindSelector.TYP, resultInfo.pt, resultInfo.checkContext);
3949         tree.type = attribTree(tree.vartype, env, varInfo);
3950         VarSymbol v = tree.symbol = new BindingSymbol(tree.name, tree.vartype.type, env.info.scope.owner);
3951         if (chk.checkUnique(tree.pos(), v, env.info.scope)) {
3952             chk.checkTransparentVar(tree.pos(), v, env.info.scope);
3953         }
3954         annotate.queueScanTreeAndTypeAnnotate(tree.vartype, env, v, tree.pos());
3955         annotate.flush();
3956         result = tree.type;
3957         matchBindings = new MatchBindings(List.of(tree.symbol), List.nil());
3958     }
3959 
3960     public void visitIndexed(JCArrayAccess tree) {
3961         Type owntype = types.createErrorType(tree.type);
3962         Type atype = attribExpr(tree.indexed, env);
3963         attribExpr(tree.index, env, syms.intType);
3964         if (types.isArray(atype))
3965             owntype = types.elemtype(atype);
3966         else if (!atype.hasTag(ERROR))
3967             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
3968         if (!pkind().contains(KindSelector.VAL))
3969             owntype = capture(owntype);
3970         result = check(tree, owntype, KindSelector.VAR, resultInfo);
3971     }
3972 
3973     public void visitIdent(JCIdent tree) {
3974         Symbol sym;
3975 
3976         // Find symbol
3977         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3978             // If we are looking for a method, the prototype `pt' will be a
3979             // method type with the type of the call's arguments as parameters.
3980             env.info.pendingResolutionPhase = null;
3981             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3982         } else if (tree.sym != null && tree.sym.kind != VAR) {
3983             sym = tree.sym;
3984         } else {
3985             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3986         }
3987         tree.sym = sym;
3988 
3989         // (1) Also find the environment current for the class where
3990         //     sym is defined (`symEnv').
3991         // Only for pre-tiger versions (1.4 and earlier):
3992         // (2) Also determine whether we access symbol out of an anonymous
3993         //     class in a this or super call.  This is illegal for instance
3994         //     members since such classes don't carry a this$n link.
3995         //     (`noOuterThisPath').
3996         Env<AttrContext> symEnv = env;
3997         boolean noOuterThisPath = false;
3998         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3999             sym.kind.matches(KindSelector.VAL_MTH) &&
4000             sym.owner.kind == TYP &&
4001             tree.name != names._this && tree.name != names._super) {
4002 
4003             // Find environment in which identifier is defined.
4004             while (symEnv.outer != null &&
4005                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
4006                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
4007                     noOuterThisPath = false;
4008                 symEnv = symEnv.outer;
4009             }
4010         }
4011 
4012         // If symbol is a variable, ...
4013         if (sym.kind == VAR) {
4014             VarSymbol v = (VarSymbol)sym;
4015 
4016             // ..., evaluate its initializer, if it has one, and check for
4017             // illegal forward reference.
4018             checkInit(tree, env, v, false);
4019 
4020             // If we are expecting a variable (as opposed to a value), check
4021             // that the variable is assignable in the current environment.
4022             if (KindSelector.ASG.subset(pkind()))
4023                 checkAssignable(tree.pos(), v, null, env);
4024         }
4025 
4026         // In a constructor body,
4027         // if symbol is a field or instance method, check that it is
4028         // not accessed before the supertype constructor is called.
4029         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
4030             sym.kind.matches(KindSelector.VAL_MTH) &&
4031             sym.owner.kind == TYP &&
4032             (sym.flags() & STATIC) == 0) {
4033             chk.earlyRefError(tree.pos(), sym.kind == VAR ?
4034                                           sym : thisSym(tree.pos(), env));
4035         }
4036         Env<AttrContext> env1 = env;
4037         if (sym.kind != ERR && sym.kind != TYP &&
4038             sym.owner != null && sym.owner != env1.enclClass.sym) {
4039             // If the found symbol is inaccessible, then it is
4040             // accessed through an enclosing instance.  Locate this
4041             // enclosing instance:
4042             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4043                 env1 = env1.outer;
4044         }
4045 
4046         if (env.info.isSerializable) {
4047             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4048         }
4049 
4050         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4051     }
4052 
4053     public void visitSelect(JCFieldAccess tree) {
4054         // Determine the expected kind of the qualifier expression.
4055         KindSelector skind = KindSelector.NIL;
4056         if (tree.name == names._this || tree.name == names._super ||
4057                 tree.name == names._class)
4058         {
4059             skind = KindSelector.TYP;
4060         } else {
4061             if (pkind().contains(KindSelector.PCK))
4062                 skind = KindSelector.of(skind, KindSelector.PCK);
4063             if (pkind().contains(KindSelector.TYP))
4064                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4065             if (pkind().contains(KindSelector.VAL_MTH))
4066                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4067         }
4068 
4069         // Attribute the qualifier expression, and determine its symbol (if any).
4070         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4071         if (!pkind().contains(KindSelector.TYP_PCK))
4072             site = capture(site); // Capture field access
4073 
4074         // don't allow T.class T[].class, etc
4075         if (skind == KindSelector.TYP) {
4076             Type elt = site;
4077             while (elt.hasTag(ARRAY))
4078                 elt = ((ArrayType)elt).elemtype;
4079             if (elt.hasTag(TYPEVAR)) {
4080                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4081                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4082                 tree.sym = tree.type.tsym;
4083                 return ;
4084             }
4085         }
4086 
4087         // If qualifier symbol is a type or `super', assert `selectSuper'
4088         // for the selection. This is relevant for determining whether
4089         // protected symbols are accessible.
4090         Symbol sitesym = TreeInfo.symbol(tree.selected);
4091         boolean selectSuperPrev = env.info.selectSuper;
4092         env.info.selectSuper =
4093             sitesym != null &&
4094             sitesym.name == names._super;
4095 
4096         // Determine the symbol represented by the selection.
4097         env.info.pendingResolutionPhase = null;
4098         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4099         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4100             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4101             sym = syms.errSymbol;
4102         }
4103         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4104             site = capture(site);
4105             sym = selectSym(tree, sitesym, site, env, resultInfo);
4106         }
4107         boolean varArgs = env.info.lastResolveVarargs();
4108         tree.sym = sym;
4109 
4110         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4111             site = types.skipTypeVars(site, true);
4112         }
4113 
4114         // If that symbol is a variable, ...
4115         if (sym.kind == VAR) {
4116             VarSymbol v = (VarSymbol)sym;
4117 
4118             // ..., evaluate its initializer, if it has one, and check for
4119             // illegal forward reference.
4120             checkInit(tree, env, v, true);
4121 
4122             // If we are expecting a variable (as opposed to a value), check
4123             // that the variable is assignable in the current environment.
4124             if (KindSelector.ASG.subset(pkind()))
4125                 checkAssignable(tree.pos(), v, tree.selected, env);
4126         }
4127 
4128         if (sitesym != null &&
4129                 sitesym.kind == VAR &&
4130                 ((VarSymbol)sitesym).isResourceVariable() &&
4131                 sym.kind == MTH &&
4132                 sym.name.equals(names.close) &&
4133                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
4134                 env.info.lint.isEnabled(LintCategory.TRY)) {
4135             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
4136         }
4137 
4138         // Disallow selecting a type from an expression
4139         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4140             tree.type = check(tree.selected, pt(),
4141                               sitesym == null ?
4142                                       KindSelector.VAL : sitesym.kind.toSelector(),
4143                               new ResultInfo(KindSelector.TYP_PCK, pt()));
4144         }
4145 
4146         if (isType(sitesym)) {
4147             if (sym.name == names._this) {
4148                 // If `C' is the currently compiled class, check that
4149                 // C.this' does not appear in a call to a super(...)
4150                 if (env.info.isSelfCall &&
4151                     site.tsym == env.enclClass.sym) {
4152                     chk.earlyRefError(tree.pos(), sym);
4153                 }
4154             } else {
4155                 // Check if type-qualified fields or methods are static (JLS)
4156                 if ((sym.flags() & STATIC) == 0 &&
4157                     sym.name != names._super &&
4158                     (sym.kind == VAR || sym.kind == MTH)) {
4159                     rs.accessBase(rs.new StaticError(sym),
4160                               tree.pos(), site, sym.name, true);
4161                 }
4162             }
4163             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
4164                     sym.isStatic() && sym.kind == MTH) {
4165                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Feature.STATIC_INTERFACE_METHODS_INVOKE.error(sourceName));
4166             }
4167         } else if (sym.kind != ERR &&
4168                    (sym.flags() & STATIC) != 0 &&
4169                    sym.name != names._class) {
4170             // If the qualified item is not a type and the selected item is static, report
4171             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4172             chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4173         }
4174 
4175         // If we are selecting an instance member via a `super', ...
4176         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4177 
4178             // Check that super-qualified symbols are not abstract (JLS)
4179             rs.checkNonAbstract(tree.pos(), sym);
4180 
4181             if (site.isRaw()) {
4182                 // Determine argument types for site.
4183                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4184                 if (site1 != null) site = site1;
4185             }
4186         }
4187 
4188         if (env.info.isSerializable) {
4189             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4190         }
4191 
4192         env.info.selectSuper = selectSuperPrev;
4193         result = checkId(tree, site, sym, env, resultInfo);
4194     }
4195     //where
4196         /** Determine symbol referenced by a Select expression,
4197          *
4198          *  @param tree   The select tree.
4199          *  @param site   The type of the selected expression,
4200          *  @param env    The current environment.
4201          *  @param resultInfo The current result.
4202          */
4203         private Symbol selectSym(JCFieldAccess tree,
4204                                  Symbol location,
4205                                  Type site,
4206                                  Env<AttrContext> env,
4207                                  ResultInfo resultInfo) {
4208             DiagnosticPosition pos = tree.pos();
4209             Name name = tree.name;
4210             switch (site.getTag()) {
4211             case PACKAGE:
4212                 return rs.accessBase(
4213                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4214                     pos, location, site, name, true);
4215             case ARRAY:
4216             case CLASS:
4217                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4218                     return rs.resolveQualifiedMethod(
4219                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4220                 } else if (name == names._this || name == names._super) {
4221                     return rs.resolveSelf(pos, env, site.tsym, name);
4222                 } else if (name == names._class) {
4223                     // In this case, we have already made sure in
4224                     // visitSelect that qualifier expression is a type.
4225                     return syms.getClassField(site, types);
4226                 } else {
4227                     // We are seeing a plain identifier as selector.
4228                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4229                         sym = rs.accessBase(sym, pos, location, site, name, true);
4230                     return sym;
4231                 }
4232             case WILDCARD:
4233                 throw new AssertionError(tree);
4234             case TYPEVAR:
4235                 // Normally, site.getUpperBound() shouldn't be null.
4236                 // It should only happen during memberEnter/attribBase
4237                 // when determining the super type which *must* be
4238                 // done before attributing the type variables.  In
4239                 // other words, we are seeing this illegal program:
4240                 // class B<T> extends A<T.foo> {}
4241                 Symbol sym = (site.getUpperBound() != null)
4242                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4243                     : null;
4244                 if (sym == null) {
4245                     log.error(pos, Errors.TypeVarCantBeDeref);
4246                     return syms.errSymbol;
4247                 } else {
4248                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
4249                         rs.new AccessError(env, site, sym) :
4250                                 sym;
4251                     rs.accessBase(sym2, pos, location, site, name, true);
4252                     return sym;
4253                 }
4254             case ERROR:
4255                 // preserve identifier names through errors
4256                 return types.createErrorType(name, site.tsym, site).tsym;
4257             default:
4258                 // The qualifier expression is of a primitive type -- only
4259                 // .class is allowed for these.
4260                 if (name == names._class) {
4261                     // In this case, we have already made sure in Select that
4262                     // qualifier expression is a type.
4263                     return syms.getClassField(site, types);
4264                 } else {
4265                     log.error(pos, Errors.CantDeref(site));
4266                     return syms.errSymbol;
4267                 }
4268             }
4269         }
4270 
4271         /** Determine type of identifier or select expression and check that
4272          *  (1) the referenced symbol is not deprecated
4273          *  (2) the symbol's type is safe (@see checkSafe)
4274          *  (3) if symbol is a variable, check that its type and kind are
4275          *      compatible with the prototype and protokind.
4276          *  (4) if symbol is an instance field of a raw type,
4277          *      which is being assigned to, issue an unchecked warning if its
4278          *      type changes under erasure.
4279          *  (5) if symbol is an instance method of a raw type, issue an
4280          *      unchecked warning if its argument types change under erasure.
4281          *  If checks succeed:
4282          *    If symbol is a constant, return its constant type
4283          *    else if symbol is a method, return its result type
4284          *    otherwise return its type.
4285          *  Otherwise return errType.
4286          *
4287          *  @param tree       The syntax tree representing the identifier
4288          *  @param site       If this is a select, the type of the selected
4289          *                    expression, otherwise the type of the current class.
4290          *  @param sym        The symbol representing the identifier.
4291          *  @param env        The current environment.
4292          *  @param resultInfo    The expected result
4293          */
4294         Type checkId(JCTree tree,
4295                      Type site,
4296                      Symbol sym,
4297                      Env<AttrContext> env,
4298                      ResultInfo resultInfo) {
4299             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4300                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4301                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4302         }
4303 
4304         Type checkMethodIdInternal(JCTree tree,
4305                      Type site,
4306                      Symbol sym,
4307                      Env<AttrContext> env,
4308                      ResultInfo resultInfo) {
4309             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4310                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
4311                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
4312                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4313                 return owntype;
4314             } else {
4315                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4316             }
4317         }
4318 
4319         Type checkIdInternal(JCTree tree,
4320                      Type site,
4321                      Symbol sym,
4322                      Type pt,
4323                      Env<AttrContext> env,
4324                      ResultInfo resultInfo) {
4325             if (pt.isErroneous()) {
4326                 return types.createErrorType(site);
4327             }
4328             Type owntype; // The computed type of this identifier occurrence.
4329             switch (sym.kind) {
4330             case TYP:
4331                 // For types, the computed type equals the symbol's type,
4332                 // except for two situations:
4333                 owntype = sym.type;
4334                 if (owntype.hasTag(CLASS)) {
4335                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4336                     Type ownOuter = owntype.getEnclosingType();
4337 
4338                     // (a) If the symbol's type is parameterized, erase it
4339                     // because no type parameters were given.
4340                     // We recover generic outer type later in visitTypeApply.
4341                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4342                         owntype = types.erasure(owntype);
4343                     }
4344 
4345                     // (b) If the symbol's type is an inner class, then
4346                     // we have to interpret its outer type as a superclass
4347                     // of the site type. Example:
4348                     //
4349                     // class Tree<A> { class Visitor { ... } }
4350                     // class PointTree extends Tree<Point> { ... }
4351                     // ...PointTree.Visitor...
4352                     //
4353                     // Then the type of the last expression above is
4354                     // Tree<Point>.Visitor.
4355                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4356                         Type normOuter = site;
4357                         if (normOuter.hasTag(CLASS)) {
4358                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4359                         }
4360                         if (normOuter == null) // perhaps from an import
4361                             normOuter = types.erasure(ownOuter);
4362                         if (normOuter != ownOuter)
4363                             owntype = new ClassType(
4364                                 normOuter, List.nil(), owntype.tsym,
4365                                 owntype.getMetadata());
4366                     }
4367                 }
4368                 break;
4369             case VAR:
4370                 VarSymbol v = (VarSymbol)sym;
4371 
4372                 if (env.info.enclVar != null
4373                         && v.type.hasTag(NONE)) {
4374                     //self reference to implicitly typed variable declaration
4375                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4376                     return v.type = types.createErrorType(v.type);
4377                 }
4378 
4379                 // Test (4): if symbol is an instance field of a raw type,
4380                 // which is being assigned to, issue an unchecked warning if
4381                 // its type changes under erasure.
4382                 if (KindSelector.ASG.subset(pkind()) &&
4383                     v.owner.kind == TYP &&
4384                     (v.flags() & STATIC) == 0 &&
4385                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4386                     Type s = types.asOuterSuper(site, v.owner);
4387                     if (s != null &&
4388                         s.isRaw() &&
4389                         !types.isSameType(v.type, v.erasure(types))) {
4390                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
4391                     }
4392                 }
4393                 // The computed type of a variable is the type of the
4394                 // variable symbol, taken as a member of the site type.
4395                 owntype = (sym.owner.kind == TYP &&
4396                            sym.name != names._this && sym.name != names._super)
4397                     ? types.memberType(site, sym)
4398                     : sym.type;
4399 
4400                 // If the variable is a constant, record constant value in
4401                 // computed type.
4402                 if (v.getConstValue() != null && isStaticReference(tree))
4403                     owntype = owntype.constType(v.getConstValue());
4404 
4405                 if (resultInfo.pkind == KindSelector.VAL) {
4406                     owntype = capture(owntype); // capture "names as expressions"
4407                 }
4408                 break;
4409             case MTH: {
4410                 owntype = checkMethod(site, sym,
4411                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4412                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4413                         resultInfo.pt.getTypeArguments());
4414                 break;
4415             }
4416             case PCK: case ERR:
4417                 owntype = sym.type;
4418                 break;
4419             default:
4420                 throw new AssertionError("unexpected kind: " + sym.kind +
4421                                          " in tree " + tree);
4422             }
4423 
4424             // Emit a `deprecation' warning if symbol is deprecated.
4425             // (for constructors (but not for constructor references), the error
4426             // was given when the constructor was resolved)
4427 
4428             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4429                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4430                 chk.checkSunAPI(tree.pos(), sym);
4431                 chk.checkProfile(tree.pos(), sym);
4432                 chk.checkPreview(tree.pos(), sym);
4433             }
4434 
4435             // If symbol is a variable, check that its type and
4436             // kind are compatible with the prototype and protokind.
4437             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4438         }
4439 
4440         /** Check that variable is initialized and evaluate the variable's
4441          *  initializer, if not yet done. Also check that variable is not
4442          *  referenced before it is defined.
4443          *  @param tree    The tree making up the variable reference.
4444          *  @param env     The current environment.
4445          *  @param v       The variable's symbol.
4446          */
4447         private void checkInit(JCTree tree,
4448                                Env<AttrContext> env,
4449                                VarSymbol v,
4450                                boolean onlyWarning) {
4451             // A forward reference is diagnosed if the declaration position
4452             // of the variable is greater than the current tree position
4453             // and the tree and variable definition occur in the same class
4454             // definition.  Note that writes don't count as references.
4455             // This check applies only to class and instance
4456             // variables.  Local variables follow different scope rules,
4457             // and are subject to definite assignment checking.
4458             Env<AttrContext> initEnv = enclosingInitEnv(env);
4459             if (initEnv != null &&
4460                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
4461                 v.owner.kind == TYP &&
4462                 v.owner == env.info.scope.owner.enclClass() &&
4463                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
4464                 (!env.tree.hasTag(ASSIGN) ||
4465                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
4466                 if (!onlyWarning || isStaticEnumField(v)) {
4467                     Error errkey = (initEnv.info.enclVar == v) ?
4468                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
4469                     log.error(tree.pos(), errkey);
4470                 } else if (useBeforeDeclarationWarning) {
4471                     Warning warnkey = (initEnv.info.enclVar == v) ?
4472                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
4473                     log.warning(tree.pos(), warnkey);
4474                 }
4475             }
4476 
4477             v.getConstValue(); // ensure initializer is evaluated
4478 
4479             checkEnumInitializer(tree, env, v);
4480         }
4481 
4482         /**
4483          * Returns the enclosing init environment associated with this env (if any). An init env
4484          * can be either a field declaration env or a static/instance initializer env.
4485          */
4486         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4487             while (true) {
4488                 switch (env.tree.getTag()) {
4489                     case VARDEF:
4490                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4491                         if (vdecl.sym.owner.kind == TYP) {
4492                             //field
4493                             return env;
4494                         }
4495                         break;
4496                     case BLOCK:
4497                         if (env.next.tree.hasTag(CLASSDEF)) {
4498                             //instance/static initializer
4499                             return env;
4500                         }
4501                         break;
4502                     case METHODDEF:
4503                     case CLASSDEF:
4504                     case TOPLEVEL:
4505                         return null;
4506                 }
4507                 Assert.checkNonNull(env.next);
4508                 env = env.next;
4509             }
4510         }
4511 
4512         /**
4513          * Check for illegal references to static members of enum.  In
4514          * an enum type, constructors and initializers may not
4515          * reference its static members unless they are constant.
4516          *
4517          * @param tree    The tree making up the variable reference.
4518          * @param env     The current environment.
4519          * @param v       The variable's symbol.
4520          * @jls 8.9 Enum Types
4521          */
4522         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4523             // JLS:
4524             //
4525             // "It is a compile-time error to reference a static field
4526             // of an enum type that is not a compile-time constant
4527             // (15.28) from constructors, instance initializer blocks,
4528             // or instance variable initializer expressions of that
4529             // type. It is a compile-time error for the constructors,
4530             // instance initializer blocks, or instance variable
4531             // initializer expressions of an enum constant e to refer
4532             // to itself or to an enum constant of the same type that
4533             // is declared to the right of e."
4534             if (isStaticEnumField(v)) {
4535                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4536 
4537                 if (enclClass == null || enclClass.owner == null)
4538                     return;
4539 
4540                 // See if the enclosing class is the enum (or a
4541                 // subclass thereof) declaring v.  If not, this
4542                 // reference is OK.
4543                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4544                     return;
4545 
4546                 // If the reference isn't from an initializer, then
4547                 // the reference is OK.
4548                 if (!Resolve.isInitializer(env))
4549                     return;
4550 
4551                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4552             }
4553         }
4554 
4555         /** Is the given symbol a static, non-constant field of an Enum?
4556          *  Note: enum literals should not be regarded as such
4557          */
4558         private boolean isStaticEnumField(VarSymbol v) {
4559             return Flags.isEnum(v.owner) &&
4560                    Flags.isStatic(v) &&
4561                    !Flags.isConstant(v) &&
4562                    v.name != names._class;
4563         }
4564 
4565     /**
4566      * Check that method arguments conform to its instantiation.
4567      **/
4568     public Type checkMethod(Type site,
4569                             final Symbol sym,
4570                             ResultInfo resultInfo,
4571                             Env<AttrContext> env,
4572                             final List<JCExpression> argtrees,
4573                             List<Type> argtypes,
4574                             List<Type> typeargtypes) {
4575         // Test (5): if symbol is an instance method of a raw type, issue
4576         // an unchecked warning if its argument types change under erasure.
4577         if ((sym.flags() & STATIC) == 0 &&
4578             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4579             Type s = types.asOuterSuper(site, sym.owner);
4580             if (s != null && s.isRaw() &&
4581                 !types.isSameTypes(sym.type.getParameterTypes(),
4582                                    sym.erasure(types).getParameterTypes())) {
4583                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4584             }
4585         }
4586 
4587         if (env.info.defaultSuperCallSite != null) {
4588             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4589                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4590                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4591                 List<MethodSymbol> icand_sup =
4592                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4593                 if (icand_sup.nonEmpty() &&
4594                         icand_sup.head != sym &&
4595                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4596                     log.error(env.tree.pos(),
4597                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4598                     break;
4599                 }
4600             }
4601             env.info.defaultSuperCallSite = null;
4602         }
4603 
4604         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4605             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4606             if (app.meth.hasTag(SELECT) &&
4607                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4608                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4609             }
4610         }
4611 
4612         // Compute the identifier's instantiated type.
4613         // For methods, we need to compute the instance type by
4614         // Resolve.instantiate from the symbol's type as well as
4615         // any type arguments and value arguments.
4616         Warner noteWarner = new Warner();
4617         try {
4618             Type owntype = rs.checkMethod(
4619                     env,
4620                     site,
4621                     sym,
4622                     resultInfo,
4623                     argtypes,
4624                     typeargtypes,
4625                     noteWarner);
4626 
4627             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4628                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4629 
4630             argtypes = argtypes.map(checkDeferredMap);
4631 
4632             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4633                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4634                         sym.name,
4635                         rs.methodArguments(sym.type.getParameterTypes()),
4636                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4637                         kindName(sym.location()),
4638                         sym.location()));
4639                 if (resultInfo.pt != Infer.anyPoly ||
4640                         !owntype.hasTag(METHOD) ||
4641                         !owntype.isPartial()) {
4642                     //if this is not a partially inferred method type, erase return type. Otherwise,
4643                     //erasure is carried out in PartiallyInferredMethodType.check().
4644                     owntype = new MethodType(owntype.getParameterTypes(),
4645                             types.erasure(owntype.getReturnType()),
4646                             types.erasure(owntype.getThrownTypes()),
4647                             syms.methodClass);
4648                 }
4649             }
4650 
4651             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4652                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4653                  PolyKind.POLY : PolyKind.STANDALONE;
4654             TreeInfo.setPolyKind(env.tree, pkind);
4655 
4656             return (resultInfo.pt == Infer.anyPoly) ?
4657                     owntype :
4658                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4659                             resultInfo.checkContext.inferenceContext());
4660         } catch (Infer.InferenceException ex) {
4661             //invalid target type - propagate exception outwards or report error
4662             //depending on the current check context
4663             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4664             return types.createErrorType(site);
4665         } catch (Resolve.InapplicableMethodException ex) {
4666             final JCDiagnostic diag = ex.getDiagnostic();
4667             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4668                 @Override
4669                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4670                     return new Pair<>(sym, diag);
4671                 }
4672             };
4673             List<Type> argtypes2 = argtypes.map(
4674                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4675             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4676                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4677             log.report(errDiag);
4678             return types.createErrorType(site);
4679         }
4680     }
4681 
4682     public void visitLiteral(JCLiteral tree) {
4683         result = check(tree, litType(tree.typetag).constType(tree.value),
4684                 KindSelector.VAL, resultInfo);
4685     }
4686     //where
4687     /** Return the type of a literal with given type tag.
4688      */
4689     Type litType(TypeTag tag) {
4690         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4691     }
4692 
4693     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4694         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4695     }
4696 
4697     public void visitTypeArray(JCArrayTypeTree tree) {
4698         Type etype = attribType(tree.elemtype, env);
4699         Type type = new ArrayType(etype, syms.arrayClass);
4700         result = check(tree, type, KindSelector.TYP, resultInfo);
4701     }
4702 
4703     /** Visitor method for parameterized types.
4704      *  Bound checking is left until later, since types are attributed
4705      *  before supertype structure is completely known
4706      */
4707     public void visitTypeApply(JCTypeApply tree) {
4708         Type owntype = types.createErrorType(tree.type);
4709 
4710         // Attribute functor part of application and make sure it's a class.
4711         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4712 
4713         // Attribute type parameters
4714         List<Type> actuals = attribTypes(tree.arguments, env);
4715 
4716         if (clazztype.hasTag(CLASS)) {
4717             List<Type> formals = clazztype.tsym.type.getTypeArguments();
4718             if (actuals.isEmpty()) //diamond
4719                 actuals = formals;
4720 
4721             if (actuals.length() == formals.length()) {
4722                 List<Type> a = actuals;
4723                 List<Type> f = formals;
4724                 while (a.nonEmpty()) {
4725                     a.head = a.head.withTypeVar(f.head);
4726                     a = a.tail;
4727                     f = f.tail;
4728                 }
4729                 // Compute the proper generic outer
4730                 Type clazzOuter = clazztype.getEnclosingType();
4731                 if (clazzOuter.hasTag(CLASS)) {
4732                     Type site;
4733                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4734                     if (clazz.hasTag(IDENT)) {
4735                         site = env.enclClass.sym.type;
4736                     } else if (clazz.hasTag(SELECT)) {
4737                         site = ((JCFieldAccess) clazz).selected.type;
4738                     } else throw new AssertionError(""+tree);
4739                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4740                         if (site.hasTag(CLASS))
4741                             site = types.asOuterSuper(site, clazzOuter.tsym);
4742                         if (site == null)
4743                             site = types.erasure(clazzOuter);
4744                         clazzOuter = site;
4745                     }
4746                 }
4747                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4748                                         clazztype.getMetadata());
4749             } else {
4750                 if (formals.length() != 0) {
4751                     log.error(tree.pos(),
4752                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
4753                 } else {
4754                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
4755                 }
4756                 owntype = types.createErrorType(tree.type);
4757             }
4758         }
4759         result = check(tree, owntype, KindSelector.TYP, resultInfo);
4760     }
4761 
4762     public void visitTypeUnion(JCTypeUnion tree) {
4763         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4764         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4765         for (JCExpression typeTree : tree.alternatives) {
4766             Type ctype = attribType(typeTree, env);
4767             ctype = chk.checkType(typeTree.pos(),
4768                           chk.checkClassType(typeTree.pos(), ctype),
4769                           syms.throwableType);
4770             if (!ctype.isErroneous()) {
4771                 //check that alternatives of a union type are pairwise
4772                 //unrelated w.r.t. subtyping
4773                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
4774                     for (Type t : multicatchTypes) {
4775                         boolean sub = types.isSubtype(ctype, t);
4776                         boolean sup = types.isSubtype(t, ctype);
4777                         if (sub || sup) {
4778                             //assume 'a' <: 'b'
4779                             Type a = sub ? ctype : t;
4780                             Type b = sub ? t : ctype;
4781                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
4782                         }
4783                     }
4784                 }
4785                 multicatchTypes.append(ctype);
4786                 if (all_multicatchTypes != null)
4787                     all_multicatchTypes.append(ctype);
4788             } else {
4789                 if (all_multicatchTypes == null) {
4790                     all_multicatchTypes = new ListBuffer<>();
4791                     all_multicatchTypes.appendList(multicatchTypes);
4792                 }
4793                 all_multicatchTypes.append(ctype);
4794             }
4795         }
4796         Type t = check(tree, types.lub(multicatchTypes.toList()),
4797                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4798         if (t.hasTag(CLASS)) {
4799             List<Type> alternatives =
4800                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4801             t = new UnionClassType((ClassType) t, alternatives);
4802         }
4803         tree.type = result = t;
4804     }
4805 
4806     public void visitTypeIntersection(JCTypeIntersection tree) {
4807         attribTypes(tree.bounds, env);
4808         tree.type = result = checkIntersection(tree, tree.bounds);
4809     }
4810 
4811     public void visitTypeParameter(JCTypeParameter tree) {
4812         TypeVar typeVar = (TypeVar) tree.type;
4813 
4814         if (tree.annotations != null && tree.annotations.nonEmpty()) {
4815             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4816         }
4817 
4818         if (!typeVar.getUpperBound().isErroneous()) {
4819             //fixup type-parameter bound computed in 'attribTypeVariables'
4820             typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
4821         }
4822     }
4823 
4824     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4825         Set<Type> boundSet = new HashSet<>();
4826         if (bounds.nonEmpty()) {
4827             // accept class or interface or typevar as first bound.
4828             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4829             boundSet.add(types.erasure(bounds.head.type));
4830             if (bounds.head.type.isErroneous()) {
4831                 return bounds.head.type;
4832             }
4833             else if (bounds.head.type.hasTag(TYPEVAR)) {
4834                 // if first bound was a typevar, do not accept further bounds.
4835                 if (bounds.tail.nonEmpty()) {
4836                     log.error(bounds.tail.head.pos(),
4837                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
4838                     return bounds.head.type;
4839                 }
4840             } else {
4841                 // if first bound was a class or interface, accept only interfaces
4842                 // as further bounds.
4843                 for (JCExpression bound : bounds.tail) {
4844                     bound.type = checkBase(bound.type, bound, env, false, true, false);
4845                     if (bound.type.isErroneous()) {
4846                         bounds = List.of(bound);
4847                     }
4848                     else if (bound.type.hasTag(CLASS)) {
4849                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4850                     }
4851                 }
4852             }
4853         }
4854 
4855         if (bounds.length() == 0) {
4856             return syms.objectType;
4857         } else if (bounds.length() == 1) {
4858             return bounds.head.type;
4859         } else {
4860             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4861             // ... the variable's bound is a class type flagged COMPOUND
4862             // (see comment for TypeVar.bound).
4863             // In this case, generate a class tree that represents the
4864             // bound class, ...
4865             JCExpression extending;
4866             List<JCExpression> implementing;
4867             if (!bounds.head.type.isInterface()) {
4868                 extending = bounds.head;
4869                 implementing = bounds.tail;
4870             } else {
4871                 extending = null;
4872                 implementing = bounds;
4873             }
4874             JCClassDecl cd = make.at(tree).ClassDef(
4875                 make.Modifiers(PUBLIC | ABSTRACT),
4876                 names.empty, List.nil(),
4877                 extending, implementing, List.nil());
4878 
4879             ClassSymbol c = (ClassSymbol)owntype.tsym;
4880             Assert.check((c.flags() & COMPOUND) != 0);
4881             cd.sym = c;
4882             c.sourcefile = env.toplevel.sourcefile;
4883 
4884             // ... and attribute the bound class
4885             c.flags_field |= UNATTRIBUTED;
4886             Env<AttrContext> cenv = enter.classEnv(cd, env);
4887             typeEnvs.put(c, cenv);
4888             attribClass(c);
4889             return owntype;
4890         }
4891     }
4892 
4893     public void visitWildcard(JCWildcard tree) {
4894         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4895         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4896             ? syms.objectType
4897             : attribType(tree.inner, env);
4898         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4899                                               tree.kind.kind,
4900                                               syms.boundClass),
4901                 KindSelector.TYP, resultInfo);
4902     }
4903 
4904     public void visitAnnotation(JCAnnotation tree) {
4905         Assert.error("should be handled in annotate");
4906     }
4907 
4908     public void visitAnnotatedType(JCAnnotatedType tree) {
4909         attribAnnotationTypes(tree.annotations, env);
4910         Type underlyingType = attribType(tree.underlyingType, env);
4911         Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4912 
4913         if (!env.info.isNewClass)
4914             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4915         result = tree.type = annotatedType;
4916     }
4917 
4918     public void visitErroneous(JCErroneous tree) {
4919         if (tree.errs != null)
4920             for (JCTree err : tree.errs)
4921                 attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4922         result = tree.type = syms.errType;
4923     }
4924 
4925     /** Default visitor method for all other trees.
4926      */
4927     public void visitTree(JCTree tree) {
4928         throw new AssertionError();
4929     }
4930 
4931     /**
4932      * Attribute an env for either a top level tree or class or module declaration.
4933      */
4934     public void attrib(Env<AttrContext> env) {
4935         switch (env.tree.getTag()) {
4936             case MODULEDEF:
4937                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4938                 break;
4939             case TOPLEVEL:
4940                 attribTopLevel(env);
4941                 break;
4942             case PACKAGEDEF:
4943                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4944                 break;
4945             default:
4946                 attribClass(env.tree.pos(), env.enclClass.sym);
4947         }
4948     }
4949 
4950     /**
4951      * Attribute a top level tree. These trees are encountered when the
4952      * package declaration has annotations.
4953      */
4954     public void attribTopLevel(Env<AttrContext> env) {
4955         JCCompilationUnit toplevel = env.toplevel;
4956         try {
4957             annotate.flush();
4958         } catch (CompletionFailure ex) {
4959             chk.completionError(toplevel.pos(), ex);
4960         }
4961     }
4962 
4963     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4964         try {
4965             annotate.flush();
4966             attribPackage(p);
4967         } catch (CompletionFailure ex) {
4968             chk.completionError(pos, ex);
4969         }
4970     }
4971 
4972     void attribPackage(PackageSymbol p) {
4973         Env<AttrContext> env = typeEnvs.get(p);
4974         chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4975     }
4976 
4977     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4978         try {
4979             annotate.flush();
4980             attribModule(m);
4981         } catch (CompletionFailure ex) {
4982             chk.completionError(pos, ex);
4983         }
4984     }
4985 
4986     void attribModule(ModuleSymbol m) {
4987         // Get environment current at the point of module definition.
4988         Env<AttrContext> env = enter.typeEnvs.get(m);
4989         attribStat(env.tree, env);
4990     }
4991 
4992     /** Main method: attribute class definition associated with given class symbol.
4993      *  reporting completion failures at the given position.
4994      *  @param pos The source position at which completion errors are to be
4995      *             reported.
4996      *  @param c   The class symbol whose definition will be attributed.
4997      */
4998     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4999         try {
5000             annotate.flush();
5001             attribClass(c);
5002         } catch (CompletionFailure ex) {
5003             chk.completionError(pos, ex);
5004         }
5005     }
5006 
5007     /** Attribute class definition associated with given class symbol.
5008      *  @param c   The class symbol whose definition will be attributed.
5009      */
5010     void attribClass(ClassSymbol c) throws CompletionFailure {
5011         if (c.type.hasTag(ERROR)) return;
5012 
5013         // Check for cycles in the inheritance graph, which can arise from
5014         // ill-formed class files.
5015         chk.checkNonCyclic(null, c.type);
5016 
5017         Type st = types.supertype(c.type);
5018         if ((c.flags_field & Flags.COMPOUND) == 0) {
5019             // First, attribute superclass.
5020             if (st.hasTag(CLASS))
5021                 attribClass((ClassSymbol)st.tsym);
5022 
5023             // Next attribute owner, if it is a class.
5024             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
5025                 attribClass((ClassSymbol)c.owner);
5026         }
5027 
5028         // The previous operations might have attributed the current class
5029         // if there was a cycle. So we test first whether the class is still
5030         // UNATTRIBUTED.
5031         if ((c.flags_field & UNATTRIBUTED) != 0) {
5032             c.flags_field &= ~UNATTRIBUTED;
5033 
5034             // Get environment current at the point of class definition.
5035             Env<AttrContext> env = typeEnvs.get(c);
5036 
5037             if (c.isSealed() &&
5038                     !c.isEnum() &&
5039                     !c.isPermittedExplicit &&
5040                     c.permitted.isEmpty()) {
5041                 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses);
5042             }
5043 
5044             if (c.isSealed()) {
5045                 Set<Symbol> permittedTypes = new HashSet<>();
5046                 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule;
5047                 for (Symbol subTypeSym : c.permitted) {
5048                     boolean isTypeVar = false;
5049                     if (subTypeSym.type.getTag() == TYPEVAR) {
5050                         isTypeVar = true; //error recovery
5051                         log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree),
5052                                 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subTypeSym.type)));
5053                     }
5054                     if (subTypeSym.isAnonymous() && !c.isEnum()) {
5055                         log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), Errors.CantInheritFromSealed(c));
5056                     }
5057                     if (permittedTypes.contains(subTypeSym)) {
5058                         DiagnosticPosition pos =
5059                                 env.enclClass.permitting.stream()
5060                                         .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subTypeSym, permittedExpr, true) != null)
5061                                         .limit(2).collect(List.collector()).get(1);
5062                         log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subTypeSym.type)));
5063                     } else {
5064                         permittedTypes.add(subTypeSym);
5065                     }
5066                     if (sealedInUnnamed) {
5067                         if (subTypeSym.packge() != c.packge()) {
5068                             log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), Errors.CantInheritFromSealed(c));
5069                         }
5070                     } else if (subTypeSym.packge().modle != c.packge().modle) {
5071                         log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree), Errors.CantInheritFromSealed(c));
5072                     }
5073                     if (subTypeSym == c.type.tsym || types.isSuperType(subTypeSym.type, c.type)) {
5074                         log.error(TreeInfo.diagnosticPositionFor(subTypeSym, ((JCClassDecl)env.tree).permitting),
5075                                 Errors.InvalidPermitsClause(
5076                                         subTypeSym == c.type.tsym ?
5077                                                 Fragments.MustNotBeSameClass :
5078                                                 Fragments.MustNotBeSupertype(subTypeSym.type)
5079                                 )
5080                         );
5081                     } else if (!isTypeVar) {
5082                         boolean thisIsASuper = types.directSupertypes(subTypeSym.type)
5083                                                     .stream()
5084                                                     .anyMatch(d -> d.tsym == c);
5085                         if (!thisIsASuper) {
5086                             log.error(TreeInfo.diagnosticPositionFor(subTypeSym, env.tree),
5087                                     Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subTypeSym.type)));
5088                         }
5089                     }
5090                 }
5091             }
5092 
5093             List<ClassSymbol> sealedSupers = types.directSupertypes(c.type)
5094                                                   .stream()
5095                                                   .filter(s -> s.tsym.isSealed())
5096                                                   .map(s -> (ClassSymbol) s.tsym)
5097                                                   .collect(List.collector());
5098 
5099             if (sealedSupers.isEmpty()) {
5100                 if ((c.flags_field & Flags.NON_SEALED) != 0) {
5101                     boolean hasErrorSuper = types.directSupertypes(c.type)
5102                                                  .stream()
5103                                                  .anyMatch(s -> s.tsym.kind == Kind.ERR);
5104                     if (!hasErrorSuper) {
5105                         log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c));
5106                     }
5107                 }
5108             } else {
5109                 if (c.isLocal() && !c.isEnum()) {
5110                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed);
5111                 }
5112 
5113                 for (ClassSymbol supertypeSym : sealedSupers) {
5114                     if (!supertypeSym.permitted.contains(c.type.tsym)) {
5115                         log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym));
5116                     }
5117                 }
5118                 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) {
5119                     log.error(TreeInfo.diagnosticPositionFor(c, env.tree),
5120                             c.isInterface() ?
5121                                     Errors.NonSealedOrSealedExpected :
5122                                     Errors.NonSealedSealedOrFinalExpected);
5123                 }
5124             }
5125 
5126             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5127             // because the annotations were not available at the time the env was created. Therefore,
5128             // we look up the environment chain for the first enclosing environment for which the
5129             // lint value is set. Typically, this is the parent env, but might be further if there
5130             // are any envs created as a result of TypeParameter nodes.
5131             Env<AttrContext> lintEnv = env;
5132             while (lintEnv.info.lint == null)
5133                 lintEnv = lintEnv.next;
5134 
5135             // Having found the enclosing lint value, we can initialize the lint value for this class
5136             env.info.lint = lintEnv.info.lint.augment(c);
5137 
5138             Lint prevLint = chk.setLint(env.info.lint);
5139             JavaFileObject prev = log.useSource(c.sourcefile);
5140             ResultInfo prevReturnRes = env.info.returnResult;
5141 
5142             try {
5143                 deferredLintHandler.flush(env.tree);
5144                 env.info.returnResult = null;
5145                 // java.lang.Enum may not be subclassed by a non-enum
5146                 if (st.tsym == syms.enumSym &&
5147                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5148                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5149 
5150                 // Enums may not be extended by source-level classes
5151                 if (st.tsym != null &&
5152                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5153                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5154                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5155                 }
5156 
5157                 if (isSerializable(c.type)) {
5158                     env.info.isSerializable = true;
5159                 }
5160 
5161                 attribClassBody(env, c);
5162 
5163                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5164                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5165                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5166                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5167             } finally {
5168                 env.info.returnResult = prevReturnRes;
5169                 log.useSource(prev);
5170                 chk.setLint(prevLint);
5171             }
5172 
5173         }
5174     }
5175 
5176     public void visitImport(JCImport tree) {
5177         // nothing to do
5178     }
5179 
5180     public void visitModuleDef(JCModuleDecl tree) {
5181         tree.sym.completeUsesProvides();
5182         ModuleSymbol msym = tree.sym;
5183         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5184         Lint prevLint = chk.setLint(lint);
5185         chk.checkModuleName(tree);
5186         chk.checkDeprecatedAnnotation(tree, msym);
5187 
5188         try {
5189             deferredLintHandler.flush(tree.pos());
5190         } finally {
5191             chk.setLint(prevLint);
5192         }
5193     }
5194 
5195     /** Finish the attribution of a class. */
5196     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5197         JCClassDecl tree = (JCClassDecl)env.tree;
5198         Assert.check(c == tree.sym);
5199 
5200         // Validate type parameters, supertype and interfaces.
5201         attribStats(tree.typarams, env);
5202         if (!c.isAnonymous()) {
5203             //already checked if anonymous
5204             chk.validate(tree.typarams, env);
5205             chk.validate(tree.extending, env);
5206             chk.validate(tree.implementing, env);
5207         }
5208 
5209         c.markAbstractIfNeeded(types);
5210 
5211         // If this is a non-abstract class, check that it has no abstract
5212         // methods or unimplemented methods of an implemented interface.
5213         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5214             chk.checkAllDefined(tree.pos(), c);
5215         }
5216 
5217         if ((c.flags() & ANNOTATION) != 0) {
5218             if (tree.implementing.nonEmpty())
5219                 log.error(tree.implementing.head.pos(),
5220                           Errors.CantExtendIntfAnnotation);
5221             if (tree.typarams.nonEmpty()) {
5222                 log.error(tree.typarams.head.pos(),
5223                           Errors.IntfAnnotationCantHaveTypeParams(c));
5224             }
5225 
5226             // If this annotation type has a @Repeatable, validate
5227             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5228             // If this annotation type has a @Repeatable, validate
5229             if (repeatable != null) {
5230                 // get diagnostic position for error reporting
5231                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5232                 Assert.checkNonNull(cbPos);
5233 
5234                 chk.validateRepeatable(c, repeatable, cbPos);
5235             }
5236         } else {
5237             // Check that all extended classes and interfaces
5238             // are compatible (i.e. no two define methods with same arguments
5239             // yet different return types).  (JLS 8.4.6.3)
5240             chk.checkCompatibleSupertypes(tree.pos(), c.type);
5241             if (allowDefaultMethods) {
5242                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
5243             }
5244         }
5245 
5246         // Check that class does not import the same parameterized interface
5247         // with two different argument lists.
5248         chk.checkClassBounds(tree.pos(), c.type);
5249 
5250         tree.type = c.type;
5251 
5252         for (List<JCTypeParameter> l = tree.typarams;
5253              l.nonEmpty(); l = l.tail) {
5254              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
5255         }
5256 
5257         // Check that a generic class doesn't extend Throwable
5258         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
5259             log.error(tree.extending.pos(), Errors.GenericThrowable);
5260 
5261         // Check that all methods which implement some
5262         // method conform to the method they implement.
5263         chk.checkImplementations(tree);
5264 
5265         //check that a resource implementing AutoCloseable cannot throw InterruptedException
5266         checkAutoCloseable(tree.pos(), env, c.type);
5267 
5268         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
5269             // Attribute declaration
5270             attribStat(l.head, env);
5271             // Check that declarations in inner classes are not static (JLS 8.1.2)
5272             // Make an exception for static constants.
5273             if (c.owner.kind != PCK &&
5274                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
5275                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
5276                 Symbol sym = null;
5277                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
5278                 if (sym == null ||
5279                     sym.kind != VAR ||
5280                     ((VarSymbol) sym).getConstValue() == null)
5281                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
5282             }
5283         }
5284 
5285         // Check for cycles among non-initial constructors.
5286         chk.checkCyclicConstructors(tree);
5287 
5288         // Check for cycles among annotation elements.
5289         chk.checkNonCyclicElements(tree);
5290 
5291         // Check for proper use of serialVersionUID
5292         if (env.info.lint.isEnabled(LintCategory.SERIAL)
5293                 && isSerializable(c.type)
5294                 && (c.flags() & (Flags.ENUM | Flags.INTERFACE)) == 0
5295                 && !c.isAnonymous()) {
5296             checkSerialVersionUID(tree, c);
5297         }
5298         if (allowTypeAnnos) {
5299             // Correctly organize the positions of the type annotations
5300             typeAnnotations.organizeTypeAnnotationsBodies(tree);
5301 
5302             // Check type annotations applicability rules
5303             validateTypeAnnotations(tree, false);
5304         }
5305     }
5306         // where
5307         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
5308         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
5309             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
5310                 if (types.isSameType(al.head.annotationType.type, t))
5311                     return al.head.pos();
5312             }
5313 
5314             return null;
5315         }
5316 
5317         /** check if a type is a subtype of Serializable, if that is available. */
5318         boolean isSerializable(Type t) {
5319             try {
5320                 syms.serializableType.complete();
5321             }
5322             catch (CompletionFailure e) {
5323                 return false;
5324             }
5325             return types.isSubtype(t, syms.serializableType);
5326         }
5327 
5328         /** Check that an appropriate serialVersionUID member is defined. */
5329         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
5330 
5331             // check for presence of serialVersionUID
5332             VarSymbol svuid = null;
5333             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
5334                 if (sym.kind == VAR) {
5335                     svuid = (VarSymbol)sym;
5336                     break;
5337                 }
5338             }
5339 
5340             if (svuid == null) {
5341                 log.warning(LintCategory.SERIAL,
5342                         tree.pos(), Warnings.MissingSVUID(c));
5343                 return;
5344             }
5345 
5346             // check that it is static final
5347             if ((svuid.flags() & (STATIC | FINAL)) !=
5348                 (STATIC | FINAL))
5349                 log.warning(LintCategory.SERIAL,
5350                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ImproperSVUID(c));
5351 
5352             // check that it is long
5353             else if (!svuid.type.hasTag(LONG))
5354                 log.warning(LintCategory.SERIAL,
5355                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.LongSVUID(c));
5356 
5357             // check constant
5358             else if (svuid.getConstValue() == null)
5359                 log.warning(LintCategory.SERIAL,
5360                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ConstantSVUID(c));
5361         }
5362 
5363     private Type capture(Type type) {
5364         return types.capture(type);
5365     }
5366 
5367     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
5368         if (type.isErroneous()) {
5369             tree.vartype = make.at(Position.NOPOS).Erroneous();
5370         } else {
5371             tree.vartype = make.at(Position.NOPOS).Type(type);
5372         }
5373     }
5374 
5375     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
5376         tree.accept(new TypeAnnotationsValidator(sigOnly));
5377     }
5378     //where
5379     private final class TypeAnnotationsValidator extends TreeScanner {
5380 
5381         private final boolean sigOnly;
5382         public TypeAnnotationsValidator(boolean sigOnly) {
5383             this.sigOnly = sigOnly;
5384         }
5385 
5386         public void visitAnnotation(JCAnnotation tree) {
5387             chk.validateTypeAnnotation(tree, false);
5388             super.visitAnnotation(tree);
5389         }
5390         public void visitAnnotatedType(JCAnnotatedType tree) {
5391             if (!tree.underlyingType.type.isErroneous()) {
5392                 super.visitAnnotatedType(tree);
5393             }
5394         }
5395         public void visitTypeParameter(JCTypeParameter tree) {
5396             chk.validateTypeAnnotations(tree.annotations, true);
5397             scan(tree.bounds);
5398             // Don't call super.
5399             // This is needed because above we call validateTypeAnnotation with
5400             // false, which would forbid annotations on type parameters.
5401             // super.visitTypeParameter(tree);
5402         }
5403         public void visitMethodDef(JCMethodDecl tree) {
5404             if (tree.recvparam != null &&
5405                     !tree.recvparam.vartype.type.isErroneous()) {
5406                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
5407                         tree.recvparam.vartype.type.tsym);
5408             }
5409             if (tree.restype != null && tree.restype.type != null) {
5410                 validateAnnotatedType(tree.restype, tree.restype.type);
5411             }
5412             if (sigOnly) {
5413                 scan(tree.mods);
5414                 scan(tree.restype);
5415                 scan(tree.typarams);
5416                 scan(tree.recvparam);
5417                 scan(tree.params);
5418                 scan(tree.thrown);
5419             } else {
5420                 scan(tree.defaultValue);
5421                 scan(tree.body);
5422             }
5423         }
5424         public void visitVarDef(final JCVariableDecl tree) {
5425             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
5426             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
5427                 validateAnnotatedType(tree.vartype, tree.sym.type);
5428             scan(tree.mods);
5429             scan(tree.vartype);
5430             if (!sigOnly) {
5431                 scan(tree.init);
5432             }
5433         }
5434         public void visitTypeCast(JCTypeCast tree) {
5435             if (tree.clazz != null && tree.clazz.type != null)
5436                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5437             super.visitTypeCast(tree);
5438         }
5439         public void visitTypeTest(JCInstanceOf tree) {
5440             if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
5441                 validateAnnotatedType(tree.pattern, tree.pattern.type);
5442             super.visitTypeTest(tree);
5443         }
5444         public void visitNewClass(JCNewClass tree) {
5445             if (tree.clazz != null && tree.clazz.type != null) {
5446                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
5447                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
5448                             tree.clazz.type.tsym);
5449                 }
5450                 if (tree.def != null) {
5451                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
5452                 }
5453 
5454                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5455             }
5456             super.visitNewClass(tree);
5457         }
5458         public void visitNewArray(JCNewArray tree) {
5459             if (tree.elemtype != null && tree.elemtype.type != null) {
5460                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
5461                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
5462                             tree.elemtype.type.tsym);
5463                 }
5464                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
5465             }
5466             super.visitNewArray(tree);
5467         }
5468         public void visitClassDef(JCClassDecl tree) {
5469             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
5470             if (sigOnly) {
5471                 scan(tree.mods);
5472                 scan(tree.typarams);
5473                 scan(tree.extending);
5474                 scan(tree.implementing);
5475             }
5476             for (JCTree member : tree.defs) {
5477                 if (member.hasTag(Tag.CLASSDEF)) {
5478                     continue;
5479                 }
5480                 scan(member);
5481             }
5482         }
5483         public void visitBlock(JCBlock tree) {
5484             if (!sigOnly) {
5485                 scan(tree.stats);
5486             }
5487         }
5488 
5489         /* I would want to model this after
5490          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
5491          * and override visitSelect and visitTypeApply.
5492          * However, we only set the annotated type in the top-level type
5493          * of the symbol.
5494          * Therefore, we need to override each individual location where a type
5495          * can occur.
5496          */
5497         private void validateAnnotatedType(final JCTree errtree, final Type type) {
5498             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
5499 
5500             if (type.isPrimitiveOrVoid()) {
5501                 return;
5502             }
5503 
5504             JCTree enclTr = errtree;
5505             Type enclTy = type;
5506 
5507             boolean repeat = true;
5508             while (repeat) {
5509                 if (enclTr.hasTag(TYPEAPPLY)) {
5510                     List<Type> tyargs = enclTy.getTypeArguments();
5511                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
5512                     if (trargs.length() > 0) {
5513                         // Nothing to do for diamonds
5514                         if (tyargs.length() == trargs.length()) {
5515                             for (int i = 0; i < tyargs.length(); ++i) {
5516                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
5517                             }
5518                         }
5519                         // If the lengths don't match, it's either a diamond
5520                         // or some nested type that redundantly provides
5521                         // type arguments in the tree.
5522                     }
5523 
5524                     // Look at the clazz part of a generic type
5525                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
5526                 }
5527 
5528                 if (enclTr.hasTag(SELECT)) {
5529                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
5530                     if (enclTy != null &&
5531                             !enclTy.hasTag(NONE)) {
5532                         enclTy = enclTy.getEnclosingType();
5533                     }
5534                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
5535                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
5536                     if (enclTy == null || enclTy.hasTag(NONE)) {
5537                         if (at.getAnnotations().size() == 1) {
5538                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
5539                         } else {
5540                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
5541                             for (JCAnnotation an : at.getAnnotations()) {
5542                                 comps.add(an.attribute);
5543                             }
5544                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
5545                         }
5546                         repeat = false;
5547                     }
5548                     enclTr = at.underlyingType;
5549                     // enclTy doesn't need to be changed
5550                 } else if (enclTr.hasTag(IDENT)) {
5551                     repeat = false;
5552                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
5553                     JCWildcard wc = (JCWildcard) enclTr;
5554                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
5555                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
5556                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
5557                     } else {
5558                         // Nothing to do for UNBOUND
5559                     }
5560                     repeat = false;
5561                 } else if (enclTr.hasTag(TYPEARRAY)) {
5562                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
5563                     validateAnnotatedType(art.getType(), art.elemtype.type);
5564                     repeat = false;
5565                 } else if (enclTr.hasTag(TYPEUNION)) {
5566                     JCTypeUnion ut = (JCTypeUnion) enclTr;
5567                     for (JCTree t : ut.getTypeAlternatives()) {
5568                         validateAnnotatedType(t, t.type);
5569                     }
5570                     repeat = false;
5571                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
5572                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
5573                     for (JCTree t : it.getBounds()) {
5574                         validateAnnotatedType(t, t.type);
5575                     }
5576                     repeat = false;
5577                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5578                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5579                     repeat = false;
5580                 } else {
5581                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5582                             " within: "+ errtree + " with kind: " + errtree.getKind());
5583                 }
5584             }
5585         }
5586 
5587         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5588                 Symbol sym) {
5589             // Ensure that no declaration annotations are present.
5590             // Note that a tree type might be an AnnotatedType with
5591             // empty annotations, if only declaration annotations were given.
5592             // This method will raise an error for such a type.
5593             for (JCAnnotation ai : annotations) {
5594                 if (!ai.type.isErroneous() &&
5595                         typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5596                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5597                 }
5598             }
5599         }
5600     }
5601 
5602     // <editor-fold desc="post-attribution visitor">
5603 
5604     /**
5605      * Handle missing types/symbols in an AST. This routine is useful when
5606      * the compiler has encountered some errors (which might have ended up
5607      * terminating attribution abruptly); if the compiler is used in fail-over
5608      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5609      * prevents NPE to be propagated during subsequent compilation steps.
5610      */
5611     public void postAttr(JCTree tree) {
5612         new PostAttrAnalyzer().scan(tree);
5613     }
5614 
5615     class PostAttrAnalyzer extends TreeScanner {
5616 
5617         private void initTypeIfNeeded(JCTree that) {
5618             if (that.type == null) {
5619                 if (that.hasTag(METHODDEF)) {
5620                     that.type = dummyMethodType((JCMethodDecl)that);
5621                 } else {
5622                     that.type = syms.unknownType;
5623                 }
5624             }
5625         }
5626 
5627         /* Construct a dummy method type. If we have a method declaration,
5628          * and the declared return type is void, then use that return type
5629          * instead of UNKNOWN to avoid spurious error messages in lambda
5630          * bodies (see:JDK-8041704).
5631          */
5632         private Type dummyMethodType(JCMethodDecl md) {
5633             Type restype = syms.unknownType;
5634             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5635                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5636                 if (prim.typetag == VOID)
5637                     restype = syms.voidType;
5638             }
5639             return new MethodType(List.nil(), restype,
5640                                   List.nil(), syms.methodClass);
5641         }
5642         private Type dummyMethodType() {
5643             return dummyMethodType(null);
5644         }
5645 
5646         @Override
5647         public void scan(JCTree tree) {
5648             if (tree == null) return;
5649             if (tree instanceof JCExpression) {
5650                 initTypeIfNeeded(tree);
5651             }
5652             super.scan(tree);
5653         }
5654 
5655         @Override
5656         public void visitIdent(JCIdent that) {
5657             if (that.sym == null) {
5658                 that.sym = syms.unknownSymbol;
5659             }
5660         }
5661 
5662         @Override
5663         public void visitSelect(JCFieldAccess that) {
5664             if (that.sym == null) {
5665                 that.sym = syms.unknownSymbol;
5666             }
5667             super.visitSelect(that);
5668         }
5669 
5670         @Override
5671         public void visitClassDef(JCClassDecl that) {
5672             initTypeIfNeeded(that);
5673             if (that.sym == null) {
5674                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
5675             }
5676             super.visitClassDef(that);
5677         }
5678 
5679         @Override
5680         public void visitMethodDef(JCMethodDecl that) {
5681             initTypeIfNeeded(that);
5682             if (that.sym == null) {
5683                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
5684             }
5685             super.visitMethodDef(that);
5686         }
5687 
5688         @Override
5689         public void visitVarDef(JCVariableDecl that) {
5690             initTypeIfNeeded(that);
5691             if (that.sym == null) {
5692                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
5693                 that.sym.adr = 0;
5694             }
5695             if (that.vartype == null) {
5696                 that.vartype = make.at(Position.NOPOS).Erroneous();
5697             }
5698             super.visitVarDef(that);
5699         }
5700 
5701         @Override
5702         public void visitBindingPattern(JCBindingPattern that) {
5703             if (that.symbol == null) {
5704                 that.symbol = new BindingSymbol(that.name, that.type, syms.noSymbol);
5705                 that.symbol.adr = 0;
5706             }
5707             super.visitBindingPattern(that);
5708         }
5709 
5710         @Override
5711         public void visitNewClass(JCNewClass that) {
5712             if (that.constructor == null) {
5713                 that.constructor = new MethodSymbol(0, names.init,
5714                         dummyMethodType(), syms.noSymbol);
5715             }
5716             if (that.constructorType == null) {
5717                 that.constructorType = syms.unknownType;
5718             }
5719             super.visitNewClass(that);
5720         }
5721 
5722         @Override
5723         public void visitAssignop(JCAssignOp that) {
5724             if (that.operator == null) {
5725                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5726                         -1, syms.noSymbol);
5727             }
5728             super.visitAssignop(that);
5729         }
5730 
5731         @Override
5732         public void visitBinary(JCBinary that) {
5733             if (that.operator == null) {
5734                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5735                         -1, syms.noSymbol);
5736             }
5737             super.visitBinary(that);
5738         }
5739 
5740         @Override
5741         public void visitUnary(JCUnary that) {
5742             if (that.operator == null) {
5743                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5744                         -1, syms.noSymbol);
5745             }
5746             super.visitUnary(that);
5747         }
5748 
5749         @Override
5750         public void visitReference(JCMemberReference that) {
5751             super.visitReference(that);
5752             if (that.sym == null) {
5753                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
5754                         syms.noSymbol);
5755             }
5756         }
5757     }
5758     // </editor-fold>
5759 
5760     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5761         new TreeScanner() {
5762             Symbol packge = pkg;
5763             @Override
5764             public void visitIdent(JCIdent that) {
5765                 that.sym = packge;
5766             }
5767 
5768             @Override
5769             public void visitSelect(JCFieldAccess that) {
5770                 that.sym = packge;
5771                 packge = packge.owner;
5772                 super.visitSelect(that);
5773             }
5774         }.scan(pid);
5775     }
5776 
5777 }
5778