1 /*
2  * Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2016, 2019 SAP SE. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #ifndef CPU_S390_MACROASSEMBLER_S390_HPP
27 #define CPU_S390_MACROASSEMBLER_S390_HPP
28 
29 #include "asm/assembler.hpp"
30 #include "oops/accessDecorators.hpp"
31 
32 #define MODERN_IFUN(name)  ((void (MacroAssembler::*)(Register, int64_t, Register, Register))&MacroAssembler::name)
33 #define CLASSIC_IFUN(name) ((void (MacroAssembler::*)(Register, int64_t, Register, Register))&MacroAssembler::name)
34 #define MODERN_FFUN(name)  ((void (MacroAssembler::*)(FloatRegister, int64_t, Register, Register))&MacroAssembler::name)
35 #define CLASSIC_FFUN(name) ((void (MacroAssembler::*)(FloatRegister, int64_t, Register, Register))&MacroAssembler::name)
36 
37 class MacroAssembler: public Assembler {
38  public:
MacroAssembler(CodeBuffer * code)39   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
40 
41   //
42   // Optimized instruction emitters
43   //
44 
45   // Move register if destination register and target register are different.
46   void lr_if_needed(Register rd, Register rs);
47   void lgr_if_needed(Register rd, Register rs);
48   void llgfr_if_needed(Register rd, Register rs);
49   void ldr_if_needed(FloatRegister rd, FloatRegister rs);
50 
51   void move_reg_if_needed(Register dest, BasicType dest_type, Register src, BasicType src_type);
52   void move_freg_if_needed(FloatRegister dest, BasicType dest_type, FloatRegister src, BasicType src_type);
53 
54   void freg2mem_opt(FloatRegister reg,
55                     int64_t       disp,
56                     Register      index,
57                     Register      base,
58                     void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
59                     void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
60                     Register      scratch = Z_R0);
61   void freg2mem_opt(FloatRegister reg,
62                     const Address &a, bool is_double = true);
63 
64   void mem2freg_opt(FloatRegister reg,
65                     int64_t       disp,
66                     Register      index,
67                     Register      base,
68                     void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
69                     void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
70                     Register      scratch = Z_R0);
71   void mem2freg_opt(FloatRegister reg,
72                     const Address &a, bool is_double = true);
73 
74   void reg2mem_opt(Register reg,
75                    int64_t  disp,
76                    Register index,
77                    Register base,
78                    void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
79                    void (MacroAssembler::*classic)(Register, int64_t, Register, Register),
80                    Register scratch = Z_R0);
81   // returns offset of the store instruction
82   int reg2mem_opt(Register reg, const Address &a, bool is_double = true);
83 
84   void mem2reg_opt(Register reg,
85                    int64_t  disp,
86                    Register index,
87                    Register base,
88                    void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
89                    void (MacroAssembler::*classic)(Register, int64_t, Register, Register));
90   void mem2reg_opt(Register reg, const Address &a, bool is_double = true);
91   void mem2reg_signed_opt(Register reg, const Address &a);
92 
93   // AND immediate and set condition code, works for 64 bit immediates/operation as well.
94    void and_imm(Register r, long mask, Register tmp = Z_R0, bool wide = false);
95 
96   // 1's complement, 32bit or 64bit. Optimized to exploit distinct operands facility.
97   // Note: The condition code is neither preserved nor correctly set by this code!!!
98   // Note: (wide == false) does not protect the high order half of the target register
99   // from alternation. It only serves as optimization hint for 32-bit results.
100   void not_(Register r1, Register r2 = noreg, bool wide = false);  // r1 = ~r2
101 
102   // Expanded support of all "rotate_then_<logicalOP>" instructions.
103   //
104   // Generalize and centralize rotate_then_<logicalOP> emitter.
105   // Functional description. For details, see Principles of Operation, Chapter 7, "Rotate Then Insert..."
106   //  - Bits  in a register are numbered left (most significant) to right (least significant), i.e. [0..63].
107   //  - Bytes in a register are numbered left (most significant) to right (least significant), i.e. [0..7].
108   //  - Register src is rotated to the left by (nRotate&0x3f) positions.
109   //  - Negative values for nRotate result in a rotation to the right by abs(nRotate) positions.
110   //  - The bits in positions [lBitPos..rBitPos] of the _ROTATED_ src operand take part in the
111   //    logical operation performed on the contents (in those positions) of the dst operand.
112   //  - The logical operation that is performed on the dst operand is one of
113   //     o insert the selected bits (replacing the original contents of those bit positions)
114   //     o and the selected bits with the corresponding bits of the dst operand
115   //     o or  the selected bits with the corresponding bits of the dst operand
116   //     o xor the selected bits with the corresponding bits of the dst operand
117   //  - For clear_dst == true, the destination register is cleared before the bits are inserted.
118   //    For clear_dst == false, only the bit positions that get data inserted from src
119   //    are changed. All other bit positions remain unchanged.
120   //  - For test_only == true,  the result of the logicalOP is only used to set the condition code, dst remains unchanged.
121   //    For test_only == false, the result of the logicalOP replaces the selected bits of dst.
122   //  - src32bit and dst32bit indicate the respective register is used as 32bit value only.
123   //    Knowledge can simplify code generation.
124   //
125   // Here is an important performance note, valid for all <logicalOP>s except "insert":
126   //   Due to the too complex nature of the operation, it cannot be done in a single cycle.
127   //   Timing constraints require the instructions to be cracked into two micro-ops, taking
128   //   one or two cycles each to execute. In some cases, an additional pipeline bubble might get added.
129   //   Macroscopically, that makes up for a three- or four-cycle instruction where you would
130   //   expect just a single cycle.
131   //   It is thus not beneficial from a performance point of view to exploit those instructions.
132   //   Other reasons (code compactness, register pressure, ...) might outweigh this penalty.
133   //
134   unsigned long create_mask(int lBitPos, int rBitPos);
135   void rotate_then_mask(Register dst, Register src, int lBitPos, int rBitPos,
136                         int nRotate, bool src32bit, bool dst32bit, bool oneBits);
137   void rotate_then_insert(Register dst, Register src, int lBitPos, int rBitPos, int nRotate,
138                           bool clear_dst);
139   void rotate_then_and(Register dst, Register src, int lBitPos, int rBitPos, int nRotate,
140                        bool test_only);
141   void rotate_then_or(Register dst, Register src, int lBitPos, int rBitPos, int nRotate,
142                       bool test_onlyt);
143   void rotate_then_xor(Register dst, Register src, int lBitPos, int rBitPos, int nRotate,
144                        bool test_only);
145 
146   void add64(Register r1, RegisterOrConstant inc);
147 
148   // Helper function to multiply the 64bit contents of a register by a 16bit constant.
149   // The optimization tries to avoid the mghi instruction, since it uses the FPU for
150   // calculation and is thus rather slow.
151   //
152   // There is no handling for special cases, e.g. cval==0 or cval==1.
153   //
154   // Returns len of generated code block.
155   unsigned int mul_reg64_const16(Register rval, Register work, int cval);
156 
157   // Generic operation r1 := r2 + imm.
158   void add2reg(Register r1, int64_t imm, Register r2 = noreg);
159   // Generic operation r := b + x + d.
160   void add2reg_with_index(Register r, int64_t d, Register x, Register b = noreg);
161 
162   // Add2mem* methods for direct memory increment.
163   void add2mem_32(const Address &a, int64_t imm, Register tmp);
164   void add2mem_64(const Address &a, int64_t imm, Register tmp);
165 
166   // *((int8_t*)(dst)) |= imm8
167   inline void or2mem_8(Address& dst, int64_t imm8);
168 
169   // Load values by size and signedness.
170   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
171   void store_sized_value(Register src, Address dst, size_t size_in_bytes);
172 
173   // Load values with large offsets to base address.
174  private:
175   int  split_largeoffset(int64_t si20_offset, Register tmp, bool fixed_codelen, bool accumulate);
176  public:
177   void load_long_largeoffset(Register t, int64_t si20, Register a, Register tmp);
178   void load_float_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp);
179   void load_double_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp);
180 
181  private:
182   long toc_distance();
183  public:
184   void load_toc(Register Rtoc);
185   void load_long_pcrelative(Register Rdst, address dataLocation);
load_long_pcrelative_size()186   static int load_long_pcrelative_size() { return 6; }
187   void load_addr_pcrelative(Register Rdst, address dataLocation);
load_addr_pcrel_size()188   static int load_addr_pcrel_size() { return 6; } // Just a LARL.
189 
190   // Load a value from memory and test (set CC).
191   void load_and_test_byte    (Register dst, const Address &a);
192   void load_and_test_short   (Register dst, const Address &a);
193   void load_and_test_int     (Register dst, const Address &a);
194   void load_and_test_int2long(Register dst, const Address &a);
195   void load_and_test_long    (Register dst, const Address &a);
196 
197   // Test a bit in memory. Result is reflected in CC.
198   void testbit(const Address &a, unsigned int bit);
199   // Test a bit in a register. Result is reflected in CC.
200   void testbit(Register r, unsigned int bitPos);
201 
202   void prefetch_read(Address a);
203   void prefetch_update(Address a);
204 
205   // Clear a register, i.e. load const zero into reg. Return len (in bytes) of
206   // generated instruction(s).
207   //   whole_reg: Clear 64 bits if true, 32 bits otherwise.
208   //   set_cc: Use instruction that sets the condition code, if true.
209   int clear_reg(Register r, bool whole_reg = true, bool set_cc = true);
210 
211 #ifdef ASSERT
212   int preset_reg(Register r, unsigned long pattern, int pattern_len);
213 #endif
214 
215   // Clear (store zeros) a small piece of memory.
216   // CAUTION: Do not use this for atomic memory clearing. Use store_const() instead.
217   //   addr: Address descriptor of memory to clear.
218   //         Index register will not be used!
219   //   size: Number of bytes to clear.
220   void clear_mem(const Address& addr, unsigned size);
221 
222   // Move immediate values to memory. Currently supports 32 and 64 bit stores,
223   // but may be extended to 16 bit store operation, if needed.
224   // For details, see implementation in *.cpp file.
225          int store_const(const Address &dest, long imm,
226                          unsigned int lm, unsigned int lc,
227                          Register scratch = Z_R0);
228   inline int store_const(const Address &dest, long imm,
229                          Register scratch = Z_R0, bool is_long = true);
230 
231   // Move/initialize arbitrarily large memory area. No check for destructive overlap.
232   // Being interruptible, these instructions need a retry-loop.
233   void move_long_ext(Register dst, Register src, unsigned int pad);
234 
235   void compare_long_ext(Register left, Register right, unsigned int pad);
236   void compare_long_uni(Register left, Register right, unsigned int pad);
237 
238   void search_string(Register end, Register start);
239   void search_string_uni(Register end, Register start);
240 
241   // Translate instructions
242   // Being interruptible, these instructions need a retry-loop.
243   void translate_oo(Register dst, Register src, uint mask);
244   void translate_ot(Register dst, Register src, uint mask);
245   void translate_to(Register dst, Register src, uint mask);
246   void translate_tt(Register dst, Register src, uint mask);
247 
248   // Crypto instructions.
249   // Being interruptible, these instructions need a retry-loop.
250   void cksm(Register crcBuff, Register srcBuff);
251   void km( Register dstBuff, Register srcBuff);
252   void kmc(Register dstBuff, Register srcBuff);
253   void kimd(Register srcBuff);
254   void klmd(Register srcBuff);
255   void kmac(Register srcBuff);
256 
257   // nop padding
258   void align(int modulus);
259   void align_address(int modulus);
260 
261   //
262   // Constants, loading constants, TOC support
263   //
264 
265   // Load generic address: d <- base(a) + index(a) + disp(a).
266   inline void load_address(Register d, const Address &a);
267   // Load absolute address (and try to optimize).
268   void load_absolute_address(Register d, address addr);
269 
270   // Address of Z_ARG1 and argument_offset.
271   // If temp_reg == arg_slot, arg_slot will be overwritten.
272   Address argument_address(RegisterOrConstant arg_slot,
273                            Register temp_reg = noreg,
274                            int64_t extra_slot_offset = 0);
275 
276   // Load a narrow ptr constant (oop or klass ptr).
277   void load_narrow_oop( Register t, narrowOop a);
278   void load_narrow_klass(Register t, Klass* k);
279 
280   static bool is_load_const_32to64(address pos);
is_load_narrow_oop(address pos)281   static bool is_load_narrow_oop(address pos)   { return is_load_const_32to64(pos); }
is_load_narrow_klass(address pos)282   static bool is_load_narrow_klass(address pos) { return is_load_const_32to64(pos); }
283 
load_const_32to64_size()284   static int  load_const_32to64_size()          { return 6; }
load_narrow_oop_size()285   static bool load_narrow_oop_size()            { return load_const_32to64_size(); }
load_narrow_klass_size()286   static bool load_narrow_klass_size()          { return load_const_32to64_size(); }
287 
288   static int  patch_load_const_32to64(address pos, int64_t a);
289   static int  patch_load_narrow_oop(address pos, oop o);
290   static int  patch_load_narrow_klass(address pos, Klass* k);
291 
292   // cOops. CLFI exploit.
293   void compare_immediate_narrow_oop(Register oop1, narrowOop oop2);
294   void compare_immediate_narrow_klass(Register op1, Klass* op2);
295   static bool is_compare_immediate32(address pos);
296   static bool is_compare_immediate_narrow_oop(address pos);
297   static bool is_compare_immediate_narrow_klass(address pos);
compare_immediate_narrow_size()298   static int  compare_immediate_narrow_size()       { return 6; }
compare_immediate_narrow_oop_size()299   static int  compare_immediate_narrow_oop_size()   { return compare_immediate_narrow_size(); }
compare_immediate_narrow_klass_size()300   static int  compare_immediate_narrow_klass_size() { return compare_immediate_narrow_size(); }
301   static int  patch_compare_immediate_32(address pos, int64_t a);
302   static int  patch_compare_immediate_narrow_oop(address pos, oop o);
303   static int  patch_compare_immediate_narrow_klass(address pos, Klass* k);
304 
305   // Load a 32bit constant into a 64bit register.
306   void load_const_32to64(Register t, int64_t x, bool sign_extend=true);
307   // Load a 64 bit constant.
308          void load_const(Register t, long a);
309   inline void load_const(Register t, void* a);
310   inline void load_const(Register t, Label& L);
311   inline void load_const(Register t, const AddressLiteral& a);
312   // Get the 64 bit constant from a `load_const' sequence.
313   static long get_const(address load_const);
314   // Patch the 64 bit constant of a `load_const' sequence. This is a low level
315   // procedure. It neither flushes the instruction cache nor is it atomic.
316   static void patch_const(address load_const, long x);
load_const_size()317   static int load_const_size() { return 12; }
318 
319   // Turn a char into boolean. NOTE: destroys r.
320   void c2bool(Register r, Register t = Z_R0);
321 
322   // Optimized version of load_const for constants that do not need to be
323   // loaded by a sequence of instructions of fixed length and that do not
324   // need to be patched.
325   int load_const_optimized_rtn_len(Register t, long x, bool emit);
326   inline void load_const_optimized(Register t, long x);
327   inline void load_const_optimized(Register t, void* a);
328   inline void load_const_optimized(Register t, Label& L);
329   inline void load_const_optimized(Register t, const AddressLiteral& a);
330 
331  public:
332 
333   //----------------------------------------------------------
334   //            oops in code             -------------
335   //  including compressed oops support  -------------
336   //----------------------------------------------------------
337 
338   // Metadata in code that we have to keep track of.
339   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
340   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
341 
342   // allocate_index
343   AddressLiteral allocate_oop_address(jobject obj);
344   // find_index
345   AddressLiteral constant_oop_address(jobject obj);
346   // Uses allocate_oop_address.
347   inline void set_oop         (jobject obj, Register d);
348   // Uses constant_oop_address.
349   inline void set_oop_constant(jobject obj, Register d);
350   // Uses constant_metadata_address.
351   inline bool set_metadata_constant(Metadata* md, Register d);
352 
353   //
354   // branch, jump
355   //
356 
357   // Use one generic function for all branch patches.
358   static unsigned long patched_branch(address dest_pos, unsigned long inst, address inst_pos);
359 
360   void pd_patch_instruction(address branch, address target, const char* file, int line);
361 
362   // Extract relative address from "relative" instructions.
363   static long get_pcrel_offset(unsigned long inst);
364   static long get_pcrel_offset(address pc);
365   static address get_target_addr_pcrel(address pc);
366 
367   static inline bool is_call_pcrelative_short(unsigned long inst);
368   static inline bool is_call_pcrelative_long(unsigned long inst);
369   static inline bool is_branch_pcrelative_short(unsigned long inst);
370   static inline bool is_branch_pcrelative_long(unsigned long inst);
371   static inline bool is_compareandbranch_pcrelative_short(unsigned long inst);
372   static inline bool is_branchoncount_pcrelative_short(unsigned long inst);
373   static inline bool is_branchonindex32_pcrelative_short(unsigned long inst);
374   static inline bool is_branchonindex64_pcrelative_short(unsigned long inst);
375   static inline bool is_branchonindex_pcrelative_short(unsigned long inst);
376   static inline bool is_branch_pcrelative16(unsigned long inst);
377   static inline bool is_branch_pcrelative32(unsigned long inst);
378   static inline bool is_branch_pcrelative(unsigned long inst);
379   static inline bool is_load_pcrelative_long(unsigned long inst);
380   static inline bool is_misc_pcrelative_long(unsigned long inst);
381   static inline bool is_pcrelative_short(unsigned long inst);
382   static inline bool is_pcrelative_long(unsigned long inst);
383   // PCrelative TOC access. Variants with address argument.
384   static inline bool is_load_pcrelative_long(address iLoc);
385   static inline bool is_pcrelative_short(address iLoc);
386   static inline bool is_pcrelative_long(address iLoc);
387 
388   static inline bool is_pcrelative_instruction(address iloc);
389   static inline bool is_load_addr_pcrel(address a);
390 
391   static void patch_target_addr_pcrel(address pc, address con);
patch_addr_pcrel(address pc,address con)392   static void patch_addr_pcrel(address pc, address con) {
393     patch_target_addr_pcrel(pc, con); // Just delegate. This is only for nativeInst_s390.cpp.
394   }
395 
396   //---------------------------------------------------------
397   //  Some macros for more comfortable assembler programming.
398   //---------------------------------------------------------
399 
400   // NOTE: pass NearLabel T to signal that the branch target T will be bound to a near address.
401 
402   void compare32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& target);
403   void compareU32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& target);
404   void compare64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& target);
405   void compareU64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& target);
406 
407   void branch_optimized(Assembler::branch_condition cond, address branch_target);
408   void branch_optimized(Assembler::branch_condition cond, Label&  branch_target);
409   void compare_and_branch_optimized(Register r1,
410                                     Register r2,
411                                     Assembler::branch_condition cond,
412                                     address  branch_addr,
413                                     bool     len64,
414                                     bool     has_sign);
415   void compare_and_branch_optimized(Register r1,
416                                     jlong    x2,
417                                     Assembler::branch_condition cond,
418                                     Label&   branch_target,
419                                     bool     len64,
420                                     bool     has_sign);
421   void compare_and_branch_optimized(Register r1,
422                                     Register r2,
423                                     Assembler::branch_condition cond,
424                                     Label&   branch_target,
425                                     bool     len64,
426                                     bool     has_sign);
427 
428   //
429   // Support for frame handling
430   //
431   // Specify the register that should be stored as the return pc in the
432   // current frame (default is R14).
433   inline void save_return_pc(Register pc = Z_R14);
434   inline void restore_return_pc();
435 
436   // Get current PC.
437   address get_PC(Register result);
438 
439   // Get current PC + offset. Offset given in bytes, must be even!
440   address get_PC(Register result, int64_t offset);
441 
442   // Get size of instruction at pc (which must point to valid code).
443   void instr_size(Register size, Register pc);
444 
445   // Accessing, and in particular modifying, a stack location is only safe if
446   // the stack pointer (Z_SP) is set such that the accessed stack location is
447   // in the reserved range.
448   //
449   // From a performance point of view, it is desirable not to change the SP
450   // first and then immediately use it to access the freshly reserved space.
451   // That opens a small gap, though. If, just after storing some value (the
452   // frame pointer) into the to-be-reserved space, an interrupt is caught,
453   // the handler might use the space beyond Z_SP for it's own purpose.
454   // If that happens, the stored value might get altered.
455 
456   // Resize current frame either relatively wrt to current SP or absolute.
457   void resize_frame_sub(Register offset, Register fp, bool load_fp=true);
458   void resize_frame_abs_with_offset(Register newSP, Register fp, int offset, bool load_fp);
459   void resize_frame_absolute(Register addr, Register fp, bool load_fp);
460   void resize_frame(RegisterOrConstant offset, Register fp, bool load_fp=true);
461 
462   // Push a frame of size bytes, if copy_sp is false, old_sp must already
463   // contain a copy of Z_SP.
464   void push_frame(Register bytes, Register old_sp, bool copy_sp = true, bool bytes_with_inverted_sign = false);
465 
466   // Push a frame of size `bytes'. no abi space provided.
467   // Don't rely on register locking, instead pass a scratch register
468   // (Z_R0 by default).
469   // CAUTION! passing registers >= Z_R2 may produce bad results on
470   // old CPUs!
471   unsigned int push_frame(unsigned int bytes, Register scratch = Z_R0);
472 
473   // Push a frame of size `bytes' with abi160 on top.
474   unsigned int push_frame_abi160(unsigned int bytes);
475 
476   // Pop current C frame.
477   void pop_frame();
478   // Pop current C frame and restore return PC register (Z_R14).
479   void pop_frame_restore_retPC(int frame_size_in_bytes);
480 
481   //
482   // Calls
483   //
484 
485  private:
486   address _last_calls_return_pc;
487 
488  public:
489   // Support for VM calls. This is the base routine called by the
490   // different versions of call_VM_leaf. The interpreter may customize
491   // this version by overriding it for its purposes (e.g., to
492   // save/restore additional registers when doing a VM call).
493   void call_VM_leaf_base(address entry_point);
494   void call_VM_leaf_base(address entry_point, bool allow_relocation);
495 
496   // It is imperative that all calls into the VM are handled via the
497   // call_VM macros. They make sure that the stack linkage is setup
498   // correctly. Call_VM's correspond to ENTRY/ENTRY_X entry points
499   // while call_VM_leaf's correspond to LEAF entry points.
500   //
501   // This is the base routine called by the different versions of
502   // call_VM. The interpreter may customize this version by overriding
503   // it for its purposes (e.g., to save/restore additional registers
504   // when doing a VM call).
505 
506   // If no last_java_sp is specified (noreg) then SP will be used instead.
507 
508   virtual void call_VM_base(
509     Register        oop_result,        // Where an oop-result ends up if any; use noreg otherwise.
510     Register        last_java_sp,      // To set up last_Java_frame in stubs; use noreg otherwise.
511     address         entry_point,       // The entry point.
512     bool            check_exception);  // Flag which indicates if exception should be checked.
513   virtual void call_VM_base(
514     Register        oop_result,       // Where an oop-result ends up if any; use noreg otherwise.
515     Register        last_java_sp,     // To set up last_Java_frame in stubs; use noreg otherwise.
516     address         entry_point,      // The entry point.
517     bool            allow_relocation, // Flag to request generation of relocatable code.
518     bool            check_exception); // Flag which indicates if exception should be checked.
519 
520   // Call into the VM.
521   // Passes the thread pointer (in Z_ARG1) as a prepended argument.
522   // Makes sure oop return values are visible to the GC.
523   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
524   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
525   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
526   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
527                Register arg_3, bool check_exceptions = true);
528 
529   void call_VM_static(Register oop_result, address entry_point, bool check_exceptions = true);
530   void call_VM_static(Register oop_result, address entry_point, Register arg_1, Register arg_2,
531                       Register arg_3, bool check_exceptions = true);
532 
533   // Overloaded with last_java_sp.
534   void call_VM(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions = true);
535   void call_VM(Register oop_result, Register last_java_sp, address entry_point,
536                Register arg_1, bool check_exceptions = true);
537   void call_VM(Register oop_result, Register last_java_sp, address entry_point,
538                Register arg_1, Register arg_2, bool check_exceptions = true);
539   void call_VM(Register oop_result, Register last_java_sp, address entry_point,
540                Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
541 
542   void call_VM_leaf(address entry_point);
543   void call_VM_leaf(address entry_point, Register arg_1);
544   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
545   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
546 
547   // Really static VM leaf call (never patched).
548   void call_VM_leaf_static(address entry_point);
549   void call_VM_leaf_static(address entry_point, Register arg_1);
550   void call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2);
551   void call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2, Register arg_3);
552 
553   // Call a C function via its function entry. Updates and returns _last_calls_return_pc.
554   inline address call(Register function_entry);
555   inline address call_c(Register function_entry);
556          address call_c(address function_entry);
557   // Variant for really static (non-relocatable) calls which are never patched.
558          address call_c_static(address function_entry);
559   // TOC or pc-relative call + emits a runtime_call relocation.
560          address call_c_opt(address function_entry);
561 
562   inline address call_stub(Register function_entry);
563   inline address call_stub(address  function_entry);
564 
565   // Get the pc where the last call will return to. Returns _last_calls_return_pc.
566   inline address last_calls_return_pc();
567 
568  private:
569   static bool is_call_far_patchable_variant0_at(address instruction_addr); // Dynamic TOC: load target addr from CP and call.
570   static bool is_call_far_patchable_variant2_at(address instruction_addr); // PC-relative call, prefixed with NOPs.
571 
572 
573  public:
574   bool           call_far_patchable(address target, int64_t toc_offset);
575   static bool    is_call_far_patchable_at(address inst_start);             // All supported forms of patchable calls.
576   static bool    is_call_far_patchable_pcrelative_at(address inst_start);  // Pc-relative call with leading nops.
577   static bool    is_call_far_pcrelative(address instruction_addr);         // Pure far pc-relative call, with one leading size adjustment nop.
578   static void    set_dest_of_call_far_patchable_at(address inst_start, address target, int64_t toc_offset);
579   static address get_dest_of_call_far_patchable_at(address inst_start, address toc_start);
580 
581   void align_call_far_patchable(address pc);
582 
583   // PCrelative TOC access.
584 
585   // This value is independent of code position - constant for the lifetime of the VM.
call_far_patchable_size()586   static int call_far_patchable_size() {
587     return load_const_from_toc_size() + call_byregister_size();
588   }
589 
call_far_patchable_ret_addr_offset()590   static int call_far_patchable_ret_addr_offset() { return call_far_patchable_size(); }
591 
call_far_patchable_requires_alignment_nop(address pc)592   static bool call_far_patchable_requires_alignment_nop(address pc) {
593     int size = call_far_patchable_size();
594     return ((intptr_t)(pc + size) & 0x03L) != 0;
595   }
596 
597   // END OF PCrelative TOC access.
598 
jump_byregister_size()599   static int jump_byregister_size()          { return 2; }
jump_pcrelative_size()600   static int jump_pcrelative_size()          { return 4; }
jump_far_pcrelative_size()601   static int jump_far_pcrelative_size()      { return 6; }
call_byregister_size()602   static int call_byregister_size()          { return 2; }
call_pcrelative_size()603   static int call_pcrelative_size()          { return 4; }
call_far_pcrelative_size()604   static int call_far_pcrelative_size()      { return 2 + 6; } // Prepend each BRASL with a nop.
call_far_pcrelative_size_raw()605   static int call_far_pcrelative_size_raw()  { return 6; }     // Prepend each BRASL with a nop.
606 
607   //
608   // Java utilities
609   //
610 
611   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
612   // The implementation is only non-empty for the InterpreterMacroAssembler,
613   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
614   virtual void check_and_handle_popframe(Register java_thread);
615   virtual void check_and_handle_earlyret(Register java_thread);
616 
617   // Polling page support.
618   enum poll_mask {
619     mask_stackbang = 0xde, // 222 (dec)
620     mask_safepoint = 0x6f, // 111 (dec)
621     mask_profiling = 0xba  // 186 (dec)
622   };
623 
624   // Read from the polling page.
625   void load_from_polling_page(Register polling_page_address, int64_t offset = 0);
626 
627   // Check if given instruction is a read from the polling page
628   // as emitted by load_from_polling_page.
629   static bool is_load_from_polling_page(address instr_loc);
630   // Extract poll address from instruction and ucontext.
631   static address get_poll_address(address instr_loc, void* ucontext);
632   // Extract poll register from instruction.
633   static uint get_poll_register(address instr_loc);
634 
635   // Check if safepoint requested and if so branch
636   void safepoint_poll(Label& slow_path, Register temp_reg);
637 
638   // Stack overflow checking
639   void bang_stack_with_offset(int offset);
640 
641   // Check for reserved stack access in method being exited. If the reserved
642   // stack area was accessed, protect it again and throw StackOverflowError.
643   // Uses Z_R1.
644   void reserved_stack_check(Register return_pc);
645 
646   // Atomics
647   // -- none?
648 
649   void tlab_allocate(Register obj,                // Result: pointer to object after successful allocation
650                      Register var_size_in_bytes,  // Object size in bytes if unknown at compile time; invalid otherwise.
651                      int      con_size_in_bytes,  // Object size in bytes if   known at compile time.
652                      Register t1,                 // temp register
653                      Label&   slow_case);         // Continuation point if fast allocation fails.
654 
655   // Emitter for interface method lookup.
656   //   input: recv_klass, intf_klass, itable_index
657   //   output: method_result
658   //   kills: itable_index, temp1_reg, Z_R0, Z_R1
659   void lookup_interface_method(Register           recv_klass,
660                                Register           intf_klass,
661                                RegisterOrConstant itable_index,
662                                Register           method_result,
663                                Register           temp1_reg,
664                                Label&             no_such_interface,
665                                bool               return_method = true);
666 
667   // virtual method calling
668   void lookup_virtual_method(Register             recv_klass,
669                              RegisterOrConstant   vtable_index,
670                              Register             method_result);
671 
672   // Factor out code to call ic_miss_handler.
673   unsigned int call_ic_miss_handler(Label& ICM, int trapMarker, int requiredSize, Register scratch);
674   void nmethod_UEP(Label& ic_miss);
675 
676   // Emitters for "partial subtype" checks.
677 
678   // Test sub_klass against super_klass, with fast and slow paths.
679 
680   // The fast path produces a tri-state answer: yes / no / maybe-slow.
681   // One of the three labels can be NULL, meaning take the fall-through.
682   // If super_check_offset is -1, the value is loaded up from super_klass.
683   // No registers are killed, except temp_reg and temp2_reg.
684   // If super_check_offset is not -1, temp1_reg is not used and can be noreg.
685   void check_klass_subtype_fast_path(Register sub_klass,
686                                      Register super_klass,
687                                      Register temp1_reg,
688                                      Label*   L_success,
689                                      Label*   L_failure,
690                                      Label*   L_slow_path,
691                                      RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
692 
693   // The rest of the type check; must be wired to a corresponding fast path.
694   // It does not repeat the fast path logic, so don't use it standalone.
695   // The temp_reg can be noreg, if no temps are available.
696   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
697   // Updates the sub's secondary super cache as necessary.
698   void check_klass_subtype_slow_path(Register Rsubklass,
699                                      Register Rsuperklas,
700                                      Register Rarray_ptr, // tmp
701                                      Register Rlength,    // tmp
702                                      Label* L_success,
703                                      Label* L_failure);
704 
705   // Simplified, combined version, good for typical uses.
706   // Falls through on failure.
707   void check_klass_subtype(Register sub_klass,
708                            Register super_klass,
709                            Register temp1_reg,
710                            Register temp2_reg,
711                            Label&   L_success);
712 
713   void clinit_barrier(Register klass,
714                       Register thread,
715                       Label* L_fast_path = NULL,
716                       Label* L_slow_path = NULL);
717 
718   // Increment a counter at counter_address when the eq condition code is set.
719   // Kills registers tmp1_reg and tmp2_reg and preserves the condition code.
720   void increment_counter_eq(address counter_address, Register tmp1_reg, Register tmp2_reg);
721   // Biased locking support
722   // Upon entry,obj_reg must contain the target object, and mark_reg
723   // must contain the target object's header.
724   // Destroys mark_reg if an attempt is made to bias an anonymously
725   // biased lock. In this case a failure will go either to the slow
726   // case or fall through with the notEqual condition code set with
727   // the expectation that the slow case in the runtime will be called.
728   // In the fall-through case where the CAS-based lock is done,
729   // mark_reg is not destroyed.
730   void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
731                             Register temp2_reg, Label& done, Label* slow_case = NULL);
732   // Upon entry, the base register of mark_addr must contain the oop.
733   // Destroys temp_reg.
734   // If allow_delay_slot_filling is set to true, the next instruction
735   // emitted after this one will go in an annulled delay slot if the
736   // biased locking exit case failed.
737   void biased_locking_exit(Register mark_addr, Register temp_reg, Label& done);
738 
739   void compiler_fast_lock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias = UseBiasedLocking);
740   void compiler_fast_unlock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias = UseBiasedLocking);
741 
742   void resolve_jobject(Register value, Register tmp1, Register tmp2);
743 
744   // Support for last Java frame (but use call_VM instead where possible).
745  private:
746   void set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation);
747   void reset_last_Java_frame(bool allow_relocation);
748   void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1, bool allow_relocation);
749  public:
750   inline void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
751   inline void set_last_Java_frame_static(Register last_java_sp, Register last_Java_pc);
752   inline void reset_last_Java_frame(void);
753   inline void reset_last_Java_frame_static(void);
754   inline void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1);
755   inline void set_top_ijava_frame_at_SP_as_last_Java_frame_static(Register sp, Register tmp1);
756 
757   void set_thread_state(JavaThreadState new_state);
758 
759   // Read vm result from thread.
760   void get_vm_result  (Register oop_result);
761   void get_vm_result_2(Register result);
762 
763   // Vm result is currently getting hijacked to for oop preservation.
764   void set_vm_result(Register oop_result);
765 
766   // Support for NULL-checks
767   //
768   // Generates code that causes a NULL OS exception if the content of reg is NULL.
769   // If the accessed location is M[reg + offset] and the offset is known, provide the
770   // offset. No explicit code generation is needed if the offset is within a certain
771   // range (0 <= offset <= page_size).
772   //
773   // %%%%%% Currently not done for z/Architecture
774 
775   void null_check(Register reg, Register tmp = Z_R0, int64_t offset = -1);
776   static bool needs_explicit_null_check(intptr_t offset);  // Implemented in shared file ?!
777   static bool uses_implicit_null_check(void* address);
778 
779   // Klass oop manipulations if compressed.
780   void encode_klass_not_null(Register dst, Register src = noreg);
781   void decode_klass_not_null(Register dst, Register src);
782   void decode_klass_not_null(Register dst);
783   void load_klass(Register klass, Address mem);
784   void load_klass(Register klass, Register src_oop);
785   void load_prototype_header(Register Rheader, Register Rsrc_oop);
786   void store_klass(Register klass, Register dst_oop, Register ck = noreg); // Klass will get compressed if ck not provided.
787   void store_klass_gap(Register s, Register dst_oop);
788 
789   // This function calculates the size of the code generated by
790   //   decode_klass_not_null(register dst)
791   // when (Universe::heap() != NULL). Hence, if the instructions
792   // it generates change, then this method needs to be updated.
793   static int instr_size_for_decode_klass_not_null();
794 
795   void encode_heap_oop(Register oop);
796   void encode_heap_oop_not_null(Register oop);
797 
798   static int get_oop_base_pow2_offset(uint64_t oop_base);
799   int  get_oop_base(Register Rbase, uint64_t oop_base);
800   int  get_oop_base_complement(Register Rbase, uint64_t oop_base);
801   void compare_heap_oop(Register Rop1, Address mem, bool maybeNULL);
802   void compare_klass_ptr(Register Rop1, int64_t disp, Register Rbase, bool maybeNULL);
803 
804   // Access heap oop, handle encoding and GC barriers.
805  private:
806   void access_store_at(BasicType type, DecoratorSet decorators,
807                        const Address& addr, Register val,
808                        Register tmp1, Register tmp2, Register tmp3);
809   void access_load_at(BasicType type, DecoratorSet decorators,
810                       const Address& addr, Register dst,
811                       Register tmp1, Register tmp2, Label *is_null = NULL);
812 
813  public:
814   // tmp1 and tmp2 are used with decorators ON_PHANTOM_OOP_REF or ON_WEAK_OOP_REF.
815   void load_heap_oop(Register dest, const Address &a,
816                      Register tmp1, Register tmp2,
817                      DecoratorSet decorators = 0, Label *is_null = NULL);
818   void store_heap_oop(Register Roop, const Address &a,
819                       Register tmp1, Register tmp2, Register tmp3,
820                       DecoratorSet decorators = 0);
821 
822   void oop_encoder(Register Rdst, Register Rsrc, bool maybeNULL,
823                    Register Rbase = Z_R1, int pow2_offset = -1, bool only32bitValid = false);
824   void oop_decoder(Register Rdst, Register Rsrc, bool maybeNULL,
825                    Register Rbase = Z_R1, int pow2_offset = -1);
826 
827   void resolve_oop_handle(Register result);
828   void load_mirror_from_const_method(Register mirror, Register const_method);
829   void load_method_holder(Register holder, Register method);
830 
831   //--------------------------
832   //---  Operations on arrays.
833   //--------------------------
834   unsigned int Clear_Array(Register cnt_arg, Register base_pointer_arg, Register odd_tmp_reg);
835   unsigned int Clear_Array_Const(long cnt, Register base);
836   unsigned int Clear_Array_Const_Big(long cnt, Register base_pointer_arg, Register odd_tmp_reg);
837   unsigned int CopyRawMemory_AlignedDisjoint(Register src_reg, Register dst_reg,
838                                              Register cnt_reg,
839                                              Register tmp1_reg, Register tmp2_reg);
840 
841 
842   // Emit an oop const to the constant pool and set a relocation info
843   // with address current_pc. Return the TOC offset of the constant.
844   int store_const_in_toc(AddressLiteral& val);
845   int store_oop_in_toc(AddressLiteral& oop);
846   // Emit an oop const to the constant pool via store_oop_in_toc, or
847   // emit a scalar const to the constant pool via store_const_in_toc,
848   // and load the constant into register dst.
849   bool load_const_from_toc(Register dst, AddressLiteral& a, Register Rtoc = noreg);
850   // Get CPU version dependent size of load_const sequence.
851   // The returned value is valid only for code sequences
852   // generated by load_const, not load_const_optimized.
load_const_from_toc_size()853   static int load_const_from_toc_size() {
854     return load_long_pcrelative_size();
855   }
856   bool load_oop_from_toc(Register dst, AddressLiteral& a, Register Rtoc = noreg);
857   static intptr_t get_const_from_toc(address pc);
858   static void     set_const_in_toc(address pc, unsigned long new_data, CodeBlob *cb);
859 
860   // Dynamic TOC.
861   static bool is_load_const(address a);
862   static bool is_load_const_from_toc_pcrelative(address a);
is_load_const_from_toc(address a)863   static bool is_load_const_from_toc(address a) { return is_load_const_from_toc_pcrelative(a); }
864 
865   // PCrelative TOC access.
is_call_byregister(address a)866   static bool is_call_byregister(address a) { return is_z_basr(*(short*)a); }
867   static bool is_load_const_from_toc_call(address a);
868   static bool is_load_const_call(address a);
load_const_call_size()869   static int load_const_call_size() { return load_const_size() + call_byregister_size(); }
load_const_from_toc_call_size()870   static int load_const_from_toc_call_size() { return load_const_from_toc_size() + call_byregister_size(); }
871   // Offset is +/- 2**32 -> use long.
872   static long get_load_const_from_toc_offset(address a);
873 
874   // Bit operations for single register operands.
875   inline void lshift(Register r, int places, bool doubl = true);   // <<
876   inline void rshift(Register r, int places, bool doubl = true);   // >>
877 
878   //
879   // Debugging
880   //
881 
882   // Assert on CC (condition code in CPU state).
883   void asm_assert(bool check_equal, const char* msg, int id) PRODUCT_RETURN;
884   void asm_assert_low(const char *msg, int id) PRODUCT_RETURN;
885   void asm_assert_high(const char *msg, int id) PRODUCT_RETURN;
asm_assert_eq(const char * msg,int id)886   void asm_assert_eq(const char* msg, int id) { asm_assert(true, msg, id); }
asm_assert_ne(const char * msg,int id)887   void asm_assert_ne(const char* msg, int id) { asm_assert(false, msg, id); }
888 
889   void asm_assert_static(bool check_equal, const char* msg, int id) PRODUCT_RETURN;
890 
891  private:
892   // Emit assertions.
893   void asm_assert_mems_zero(bool check_equal, bool allow_relocation, int size, int64_t mem_offset,
894                             Register mem_base, const char* msg, int id) PRODUCT_RETURN;
895 
896  public:
asm_assert_mem4_is_zero(int64_t mem_offset,Register mem_base,const char * msg,int id)897   inline void asm_assert_mem4_is_zero(int64_t mem_offset, Register mem_base, const char* msg, int id) {
898     asm_assert_mems_zero(true,  true, 4, mem_offset, mem_base, msg, id);
899   }
asm_assert_mem8_is_zero(int64_t mem_offset,Register mem_base,const char * msg,int id)900   inline void asm_assert_mem8_is_zero(int64_t mem_offset, Register mem_base, const char* msg, int id) {
901     asm_assert_mems_zero(true,  true, 8, mem_offset, mem_base, msg, id);
902   }
asm_assert_mem4_isnot_zero(int64_t mem_offset,Register mem_base,const char * msg,int id)903   inline void asm_assert_mem4_isnot_zero(int64_t mem_offset, Register mem_base, const char* msg, int id) {
904     asm_assert_mems_zero(false, true, 4, mem_offset, mem_base, msg, id);
905   }
asm_assert_mem8_isnot_zero(int64_t mem_offset,Register mem_base,const char * msg,int id)906   inline void asm_assert_mem8_isnot_zero(int64_t mem_offset, Register mem_base, const char* msg, int id) {
907     asm_assert_mems_zero(false, true, 8, mem_offset, mem_base, msg, id);
908   }
909 
asm_assert_mem4_is_zero_static(int64_t mem_offset,Register mem_base,const char * msg,int id)910   inline void asm_assert_mem4_is_zero_static(int64_t mem_offset, Register mem_base, const char* msg, int id) {
911     asm_assert_mems_zero(true,  false, 4, mem_offset, mem_base, msg, id);
912   }
asm_assert_mem8_is_zero_static(int64_t mem_offset,Register mem_base,const char * msg,int id)913   inline void asm_assert_mem8_is_zero_static(int64_t mem_offset, Register mem_base, const char* msg, int id) {
914     asm_assert_mems_zero(true,  false, 8, mem_offset, mem_base, msg, id);
915   }
asm_assert_mem4_isnot_zero_static(int64_t mem_offset,Register mem_base,const char * msg,int id)916   inline void asm_assert_mem4_isnot_zero_static(int64_t mem_offset, Register mem_base, const char* msg, int id) {
917     asm_assert_mems_zero(false, false, 4, mem_offset, mem_base, msg, id);
918   }
asm_assert_mem8_isnot_zero_static(int64_t mem_offset,Register mem_base,const char * msg,int id)919   inline void asm_assert_mem8_isnot_zero_static(int64_t mem_offset, Register mem_base, const char* msg, int id) {
920     asm_assert_mems_zero(false, false, 8, mem_offset, mem_base, msg, id);
921   }
922   void asm_assert_frame_size(Register expected_size, Register tmp, const char* msg, int id) PRODUCT_RETURN;
923 
924   // Verify Z_thread contents.
925   void verify_thread();
926 
927   // Save and restore functions: Exclude Z_R0.
928   void save_volatile_regs(   Register dst, int offset, bool include_fp, bool include_flags);
929   void restore_volatile_regs(Register src, int offset, bool include_fp, bool include_flags);
930 
931   // Only if +VerifyOops.
932   // Kills Z_R0.
933   void verify_oop(Register reg, const char* s = "broken oop");
934   // Kills Z_R0, condition code.
935   void verify_oop_addr(Address addr, const char* msg = "contains broken oop");
936 
937   // TODO: verify_method and klass metadata (compare against vptr?).
_verify_method_ptr(Register reg,const char * msg,const char * file,int line)938   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
_verify_klass_ptr(Register reg,const char * msg,const char * file,int line)939   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
940 
941 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
942 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
943 
944  private:
945   // Generate printout in stop().
946   static const char* stop_types[];
947   enum {
948     stop_stop               = 0,
949     stop_untested           = 1,
950     stop_unimplemented      = 2,
951     stop_shouldnotreachhere = 3,
952     stop_end                = 4
953   };
954   // Prints msg and stops execution.
955   void    stop(int type, const char* msg, int id = 0);
956   address stop_chain(address reentry, int type, const char* msg, int id, bool allow_relocation); // Non-relocateable code only!!
957   void    stop_static(int type, const char* msg, int id);                                        // Non-relocateable code only!!
958 
959  public:
960 
961   // Prints msg and stops.
stop_chain(address reentry,const char * msg="",int id=0)962   address stop_chain(      address reentry, const char* msg = "", int id = 0) { return stop_chain(reentry, stop_stop, msg, id, true); }
stop_chain_static(address reentry,const char * msg="",int id=0)963   address stop_chain_static(address reentry, const char* msg = "", int id = 0) { return stop_chain(reentry, stop_stop, msg, id, false); }
stop_static(const char * msg="",int id=0)964   void stop_static  (const char* msg = "", int id = 0) { stop_static(stop_stop,   msg, id); }
stop(const char * msg="",int id=0)965   void stop         (const char* msg = "", int id = 0) { stop(stop_stop,          msg, id); }
untested(const char * msg="",int id=0)966   void untested     (const char* msg = "", int id = 0) { stop(stop_untested,      msg, id); }
unimplemented(const char * msg="",int id=0)967   void unimplemented(const char* msg = "", int id = 0) { stop(stop_unimplemented, msg, id); }
should_not_reach_here(const char * msg="",int id=-1)968   void should_not_reach_here(const char* msg = "", int id = -1) { stop(stop_shouldnotreachhere, msg, id); }
969 
970   // Factor out part of stop into subroutine to save space.
971   void stop_subroutine();
972 
973   // Prints msg, but don't stop.
974   void warn(const char* msg);
975 
976   //-----------------------------
977   //---  basic block tracing code
978   //-----------------------------
979   void trace_basic_block(uint i);
980   void init_basic_block_trace();
981   // Number of bytes a basic block gets larger due to the tracing code macro (worst case).
982   // Currently, worst case is 48 bytes. 64 puts us securely on the safe side.
basic_blck_trace_blk_size_incr()983   static int basic_blck_trace_blk_size_incr() { return 64; }
984 
985   // Write pattern 0x0101010101010101 in region [low-before, high+after].
986   // Low and high may be the same registers. Before and after are
987   // the numbers of 8-byte words.
988   void zap_from_to(Register low, Register high, Register tmp1 = Z_R0, Register tmp2 = Z_R1,
989                    int before = 0, int after = 0) PRODUCT_RETURN;
990 
991   // Emitters for CRC32 calculation.
992   // A note on invertCRC:
993   //   Unfortunately, internal representation of crc differs between CRC32 and CRC32C.
994   //   CRC32 holds it's current crc value in the externally visible representation.
995   //   CRC32C holds it's current crc value in internal format, ready for updating.
996   //   Thus, the crc value must be bit-flipped before updating it in the CRC32 case.
997   //   In the CRC32C case, it must be bit-flipped when it is given to the outside world (getValue()).
998   //   The bool invertCRC parameter indicates whether bit-flipping is required before updates.
999  private:
1000   void fold_byte_crc32(Register crc, Register table, Register val, Register tmp);
1001   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1002   void update_byte_crc32( Register crc, Register val, Register table);
1003   void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
1004                              Register data);
1005   void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
1006                           Register t0,  Register t1,  Register t2,  Register t3);
1007  public:
1008   void kernel_crc32_singleByteReg(Register crc, Register val, Register table,
1009                                   bool invertCRC);
1010   void kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp,
1011                                bool invertCRC);
1012   void kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
1013                           Register t0,  Register t1,  Register t2,  Register t3,
1014                           bool invertCRC);
1015   void kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
1016                           Register t0,  Register t1,  Register t2,  Register t3,
1017                           bool invertCRC);
1018 
1019   // Emitters for BigInteger.multiplyToLen intrinsic
1020   // note: length of result array (zlen) is passed on the stack
1021  private:
1022   void add2_with_carry(Register dest_hi, Register dest_lo,
1023                        Register src1, Register src2);
1024   void multiply_64_x_64_loop(Register x, Register xstart,
1025                              Register x_xstart,
1026                              Register y, Register y_idx, Register z,
1027                              Register carry, Register product,
1028                              Register idx, Register kdx);
1029   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1030                               Register yz_idx, Register idx,
1031                               Register carry, Register product, int offset);
1032   void multiply_128_x_128_loop(Register x_xstart,
1033                                Register y, Register z,
1034                                Register yz_idx, Register idx,
1035                                Register jdx,
1036                                Register carry, Register product,
1037                                Register carry2);
1038  public:
1039   void multiply_to_len(Register x, Register xlen,
1040                        Register y, Register ylen,
1041                        Register z,
1042                        Register tmp1, Register tmp2,
1043                        Register tmp3, Register tmp4, Register tmp5);
1044 };
1045 
1046 /**
1047  * class SkipIfEqual:
1048  *
1049  * Instantiating this class will result in assembly code being output that will
1050  * jump around any code emitted between the creation of the instance and it's
1051  * automatic destruction at the end of a scope block, depending on the value of
1052  * the flag passed to the constructor, which will be checked at run-time.
1053  */
1054 class SkipIfEqual {
1055  private:
1056   MacroAssembler* _masm;
1057   Label _label;
1058 
1059  public:
1060   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value, Register _rscratch);
1061   ~SkipIfEqual();
1062 };
1063 
1064 #ifdef ASSERT
1065 // Return false (e.g. important for our impl. of virtual calls).
pd_check_instruction_mark()1066 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1067 #endif
1068 
1069 #endif // CPU_S390_MACROASSEMBLER_S390_HPP
1070