1 /*
2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #if !defined(_WINDOWS) && !defined(_BSDONLY_SOURCE)
27 #include "alloca.h"
28 #endif
29 #ifdef _BSDONLY_SOURCE
30 #include <stdlib.h>
31 #endif
32 #include "asm/macroAssembler.hpp"
33 #include "asm/macroAssembler.inline.hpp"
34 #include "code/debugInfoRec.hpp"
35 #include "code/icBuffer.hpp"
36 #include "code/nativeInst.hpp"
37 #include "code/vtableStubs.hpp"
38 #include "gc/shared/collectedHeap.hpp"
39 #include "gc/shared/gcLocker.hpp"
40 #include "gc/shared/barrierSet.hpp"
41 #include "gc/shared/barrierSetAssembler.hpp"
42 #include "interpreter/interpreter.hpp"
43 #include "logging/log.hpp"
44 #include "memory/resourceArea.hpp"
45 #include "memory/universe.hpp"
46 #include "oops/compiledICHolder.hpp"
47 #include "oops/klass.inline.hpp"
48 #include "prims/methodHandles.hpp"
49 #include "runtime/safepointMechanism.hpp"
50 #include "runtime/sharedRuntime.hpp"
51 #include "runtime/vframeArray.hpp"
52 #include "runtime/vm_version.hpp"
53 #include "utilities/align.hpp"
54 #include "utilities/formatBuffer.hpp"
55 #include "vmreg_x86.inline.hpp"
56 #ifdef COMPILER1
57 #include "c1/c1_Runtime1.hpp"
58 #endif
59 #ifdef COMPILER2
60 #include "opto/runtime.hpp"
61 #endif
62 #if INCLUDE_JVMCI
63 #include "jvmci/jvmciJavaClasses.hpp"
64 #endif
65 
66 #define __ masm->
67 
68 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
69 
70 class SimpleRuntimeFrame {
71 
72   public:
73 
74   // Most of the runtime stubs have this simple frame layout.
75   // This class exists to make the layout shared in one place.
76   // Offsets are for compiler stack slots, which are jints.
77   enum layout {
78     // The frame sender code expects that rbp will be in the "natural" place and
79     // will override any oopMap setting for it. We must therefore force the layout
80     // so that it agrees with the frame sender code.
81     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
82     rbp_off2,
83     return_off, return_off2,
84     framesize
85   };
86 };
87 
88 class RegisterSaver {
89   // Capture info about frame layout.  Layout offsets are in jint
90   // units because compiler frame slots are jints.
91 #define XSAVE_AREA_BEGIN 160
92 #define XSAVE_AREA_YMM_BEGIN 576
93 #define XSAVE_AREA_ZMM_BEGIN 1152
94 #define XSAVE_AREA_UPPERBANK 1664
95 #define DEF_XMM_OFFS(regnum)       xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
96 #define DEF_YMM_OFFS(regnum)       ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
97 #define DEF_ZMM_OFFS(regnum)       zmm ## regnum ## _off = zmm_off + (regnum)*32/BytesPerInt, zmm ## regnum ## H_off
98 #define DEF_ZMM_UPPER_OFFS(regnum) zmm ## regnum ## _off = zmm_upper_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
99   enum layout {
100     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
101     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,            // offset in fxsave save area
102     DEF_XMM_OFFS(0),
103     DEF_XMM_OFFS(1),
104     // 2..15 are implied in range usage
105     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
106     DEF_YMM_OFFS(0),
107     DEF_YMM_OFFS(1),
108     // 2..15 are implied in range usage
109     zmm_off = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
110     DEF_ZMM_OFFS(0),
111     DEF_ZMM_OFFS(1),
112     zmm_upper_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
113     DEF_ZMM_UPPER_OFFS(16),
114     DEF_ZMM_UPPER_OFFS(17),
115     // 18..31 are implied in range usage
116     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
117     fpu_stateH_end,
118     r15_off, r15H_off,
119     r14_off, r14H_off,
120     r13_off, r13H_off,
121     r12_off, r12H_off,
122     r11_off, r11H_off,
123     r10_off, r10H_off,
124     r9_off,  r9H_off,
125     r8_off,  r8H_off,
126     rdi_off, rdiH_off,
127     rsi_off, rsiH_off,
128     ignore_off, ignoreH_off,  // extra copy of rbp
129     rsp_off, rspH_off,
130     rbx_off, rbxH_off,
131     rdx_off, rdxH_off,
132     rcx_off, rcxH_off,
133     rax_off, raxH_off,
134     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
135     align_off, alignH_off,
136     flags_off, flagsH_off,
137     // The frame sender code expects that rbp will be in the "natural" place and
138     // will override any oopMap setting for it. We must therefore force the layout
139     // so that it agrees with the frame sender code.
140     rbp_off, rbpH_off,        // copy of rbp we will restore
141     return_off, returnH_off,  // slot for return address
142     reg_save_size             // size in compiler stack slots
143   };
144 
145  public:
146   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors);
147   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
148 
149   // Offsets into the register save area
150   // Used by deoptimization when it is managing result register
151   // values on its own
152 
rax_offset_in_bytes(void)153   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
rdx_offset_in_bytes(void)154   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
rbx_offset_in_bytes(void)155   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
xmm0_offset_in_bytes(void)156   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
return_offset_in_bytes(void)157   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
158 
159   // During deoptimization only the result registers need to be restored,
160   // all the other values have already been extracted.
161   static void restore_result_registers(MacroAssembler* masm);
162 };
163 
save_live_registers(MacroAssembler * masm,int additional_frame_words,int * total_frame_words,bool save_vectors)164 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
165   int off = 0;
166   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
167   if (UseAVX < 3) {
168     num_xmm_regs = num_xmm_regs/2;
169   }
170 #if COMPILER2_OR_JVMCI
171   if (save_vectors && UseAVX == 0) {
172     save_vectors = false; // vectors larger than 16 byte long are supported only with AVX
173   }
174   assert(!save_vectors || MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
175 #else
176   save_vectors = false; // vectors are generated only by C2 and JVMCI
177 #endif
178 
179   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
180   int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs);
181   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
182   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
183   // CodeBlob frame size is in words.
184   int frame_size_in_words = frame_size_in_bytes / wordSize;
185   *total_frame_words = frame_size_in_words;
186 
187   // Save registers, fpu state, and flags.
188   // We assume caller has already pushed the return address onto the
189   // stack, so rsp is 8-byte aligned here.
190   // We push rpb twice in this sequence because we want the real rbp
191   // to be under the return like a normal enter.
192 
193   __ enter();          // rsp becomes 16-byte aligned here
194   __ push_CPU_state(); // Push a multiple of 16 bytes
195 
196   // push cpu state handles this on EVEX enabled targets
197   if (save_vectors) {
198     // Save upper half of YMM registers(0..15)
199     int base_addr = XSAVE_AREA_YMM_BEGIN;
200     for (int n = 0; n < 16; n++) {
201       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
202     }
203     if (VM_Version::supports_evex()) {
204       // Save upper half of ZMM registers(0..15)
205       base_addr = XSAVE_AREA_ZMM_BEGIN;
206       for (int n = 0; n < 16; n++) {
207         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
208       }
209       // Save full ZMM registers(16..num_xmm_regs)
210       base_addr = XSAVE_AREA_UPPERBANK;
211       off = 0;
212       int vector_len = Assembler::AVX_512bit;
213       for (int n = 16; n < num_xmm_regs; n++) {
214         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
215       }
216     }
217   } else {
218     if (VM_Version::supports_evex()) {
219       // Save upper bank of ZMM registers(16..31) for double/float usage
220       int base_addr = XSAVE_AREA_UPPERBANK;
221       off = 0;
222       for (int n = 16; n < num_xmm_regs; n++) {
223         __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n));
224       }
225     }
226   }
227   __ vzeroupper();
228   if (frame::arg_reg_save_area_bytes != 0) {
229     // Allocate argument register save area
230     __ subptr(rsp, frame::arg_reg_save_area_bytes);
231   }
232 
233   // Set an oopmap for the call site.  This oopmap will map all
234   // oop-registers and debug-info registers as callee-saved.  This
235   // will allow deoptimization at this safepoint to find all possible
236   // debug-info recordings, as well as let GC find all oops.
237 
238   OopMapSet *oop_maps = new OopMapSet();
239   OopMap* map = new OopMap(frame_size_in_slots, 0);
240 
241 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
242 
243   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
244   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
245   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
246   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
247   // rbp location is known implicitly by the frame sender code, needs no oopmap
248   // and the location where rbp was saved by is ignored
249   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
250   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
251   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
252   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
253   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
254   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
255   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
256   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
257   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
258   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
259   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
260   // on EVEX enabled targets, we get it included in the xsave area
261   off = xmm0_off;
262   int delta = xmm1_off - off;
263   for (int n = 0; n < 16; n++) {
264     XMMRegister xmm_name = as_XMMRegister(n);
265     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
266     off += delta;
267   }
268   if (UseAVX > 2) {
269     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
270     off = zmm16_off;
271     delta = zmm17_off - off;
272     for (int n = 16; n < num_xmm_regs; n++) {
273       XMMRegister zmm_name = as_XMMRegister(n);
274       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
275       off += delta;
276     }
277   }
278 
279 #if COMPILER2_OR_JVMCI
280   if (save_vectors) {
281     // Save upper half of YMM registers(0..15)
282     off = ymm0_off;
283     delta = ymm1_off - ymm0_off;
284     for (int n = 0; n < 16; n++) {
285       XMMRegister ymm_name = as_XMMRegister(n);
286       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
287       off += delta;
288     }
289     if (VM_Version::supports_evex()) {
290       // Save upper half of ZMM registers(0..15)
291       off = zmm0_off;
292       delta = zmm1_off - zmm0_off;
293       for (int n = 0; n < 16; n++) {
294         XMMRegister zmm_name = as_XMMRegister(n);
295         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next(8));
296         off += delta;
297       }
298     }
299   }
300 #endif // COMPILER2_OR_JVMCI
301 
302   // %%% These should all be a waste but we'll keep things as they were for now
303   if (true) {
304     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
305     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
306     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
307     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
308     // rbp location is known implicitly by the frame sender code, needs no oopmap
309     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
310     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
311     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
312     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
313     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
314     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
315     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
316     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
317     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
318     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
319     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
320     // on EVEX enabled targets, we get it included in the xsave area
321     off = xmm0H_off;
322     delta = xmm1H_off - off;
323     for (int n = 0; n < 16; n++) {
324       XMMRegister xmm_name = as_XMMRegister(n);
325       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
326       off += delta;
327     }
328     if (UseAVX > 2) {
329       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
330       off = zmm16H_off;
331       delta = zmm17H_off - off;
332       for (int n = 16; n < num_xmm_regs; n++) {
333         XMMRegister zmm_name = as_XMMRegister(n);
334         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
335         off += delta;
336       }
337     }
338   }
339 
340   return map;
341 }
342 
restore_live_registers(MacroAssembler * masm,bool restore_vectors)343 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
344   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
345   if (UseAVX < 3) {
346     num_xmm_regs = num_xmm_regs/2;
347   }
348   if (frame::arg_reg_save_area_bytes != 0) {
349     // Pop arg register save area
350     __ addptr(rsp, frame::arg_reg_save_area_bytes);
351   }
352 
353 #if COMPILER2_OR_JVMCI
354   if (restore_vectors) {
355     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
356     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
357   }
358 #else
359   assert(!restore_vectors, "vectors are generated only by C2");
360 #endif
361 
362   __ vzeroupper();
363 
364   // On EVEX enabled targets everything is handled in pop fpu state
365   if (restore_vectors) {
366     // Restore upper half of YMM registers (0..15)
367     int base_addr = XSAVE_AREA_YMM_BEGIN;
368     for (int n = 0; n < 16; n++) {
369       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
370     }
371     if (VM_Version::supports_evex()) {
372       // Restore upper half of ZMM registers (0..15)
373       base_addr = XSAVE_AREA_ZMM_BEGIN;
374       for (int n = 0; n < 16; n++) {
375         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
376       }
377       // Restore full ZMM registers(16..num_xmm_regs)
378       base_addr = XSAVE_AREA_UPPERBANK;
379       int vector_len = Assembler::AVX_512bit;
380       int off = 0;
381       for (int n = 16; n < num_xmm_regs; n++) {
382         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
383       }
384     }
385   } else {
386     if (VM_Version::supports_evex()) {
387       // Restore upper bank of ZMM registers(16..31) for double/float usage
388       int base_addr = XSAVE_AREA_UPPERBANK;
389       int off = 0;
390       for (int n = 16; n < num_xmm_regs; n++) {
391         __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)));
392       }
393     }
394   }
395 
396   // Recover CPU state
397   __ pop_CPU_state();
398   // Get the rbp described implicitly by the calling convention (no oopMap)
399   __ pop(rbp);
400 }
401 
restore_result_registers(MacroAssembler * masm)402 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
403 
404   // Just restore result register. Only used by deoptimization. By
405   // now any callee save register that needs to be restored to a c2
406   // caller of the deoptee has been extracted into the vframeArray
407   // and will be stuffed into the c2i adapter we create for later
408   // restoration so only result registers need to be restored here.
409 
410   // Restore fp result register
411   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
412   // Restore integer result register
413   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
414   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
415 
416   // Pop all of the register save are off the stack except the return address
417   __ addptr(rsp, return_offset_in_bytes());
418 }
419 
420 // Is vector's size (in bytes) bigger than a size saved by default?
421 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
is_wide_vector(int size)422 bool SharedRuntime::is_wide_vector(int size) {
423   return size > 16;
424 }
425 
trampoline_size()426 size_t SharedRuntime::trampoline_size() {
427   return 16;
428 }
429 
generate_trampoline(MacroAssembler * masm,address destination)430 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
431   __ jump(RuntimeAddress(destination));
432 }
433 
434 // The java_calling_convention describes stack locations as ideal slots on
435 // a frame with no abi restrictions. Since we must observe abi restrictions
436 // (like the placement of the register window) the slots must be biased by
437 // the following value.
reg2offset_in(VMReg r)438 static int reg2offset_in(VMReg r) {
439   // Account for saved rbp and return address
440   // This should really be in_preserve_stack_slots
441   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
442 }
443 
reg2offset_out(VMReg r)444 static int reg2offset_out(VMReg r) {
445   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
446 }
447 
448 // ---------------------------------------------------------------------------
449 // Read the array of BasicTypes from a signature, and compute where the
450 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
451 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
452 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
453 // as framesizes are fixed.
454 // VMRegImpl::stack0 refers to the first slot 0(sp).
455 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
456 // up to RegisterImpl::number_of_registers) are the 64-bit
457 // integer registers.
458 
459 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
460 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
461 // units regardless of build. Of course for i486 there is no 64 bit build
462 
463 // The Java calling convention is a "shifted" version of the C ABI.
464 // By skipping the first C ABI register we can call non-static jni methods
465 // with small numbers of arguments without having to shuffle the arguments
466 // at all. Since we control the java ABI we ought to at least get some
467 // advantage out of it.
468 
java_calling_convention(const BasicType * sig_bt,VMRegPair * regs,int total_args_passed)469 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
470                                            VMRegPair *regs,
471                                            int total_args_passed) {
472 
473   // Create the mapping between argument positions and
474   // registers.
475   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
476     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
477   };
478   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
479     j_farg0, j_farg1, j_farg2, j_farg3,
480     j_farg4, j_farg5, j_farg6, j_farg7
481   };
482 
483 
484   uint int_args = 0;
485   uint fp_args = 0;
486   uint stk_args = 0; // inc by 2 each time
487 
488   for (int i = 0; i < total_args_passed; i++) {
489     switch (sig_bt[i]) {
490     case T_BOOLEAN:
491     case T_CHAR:
492     case T_BYTE:
493     case T_SHORT:
494     case T_INT:
495       if (int_args < Argument::n_int_register_parameters_j) {
496         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
497       } else {
498         regs[i].set1(VMRegImpl::stack2reg(stk_args));
499         stk_args += 2;
500       }
501       break;
502     case T_VOID:
503       // halves of T_LONG or T_DOUBLE
504       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
505       regs[i].set_bad();
506       break;
507     case T_LONG:
508       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
509       // fall through
510     case T_OBJECT:
511     case T_ARRAY:
512     case T_ADDRESS:
513       if (int_args < Argument::n_int_register_parameters_j) {
514         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
515       } else {
516         regs[i].set2(VMRegImpl::stack2reg(stk_args));
517         stk_args += 2;
518       }
519       break;
520     case T_FLOAT:
521       if (fp_args < Argument::n_float_register_parameters_j) {
522         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
523       } else {
524         regs[i].set1(VMRegImpl::stack2reg(stk_args));
525         stk_args += 2;
526       }
527       break;
528     case T_DOUBLE:
529       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
530       if (fp_args < Argument::n_float_register_parameters_j) {
531         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
532       } else {
533         regs[i].set2(VMRegImpl::stack2reg(stk_args));
534         stk_args += 2;
535       }
536       break;
537     default:
538       ShouldNotReachHere();
539       break;
540     }
541   }
542 
543   return align_up(stk_args, 2);
544 }
545 
546 // Patch the callers callsite with entry to compiled code if it exists.
patch_callers_callsite(MacroAssembler * masm)547 static void patch_callers_callsite(MacroAssembler *masm) {
548   Label L;
549   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
550   __ jcc(Assembler::equal, L);
551 
552   // Save the current stack pointer
553   __ mov(r13, rsp);
554   // Schedule the branch target address early.
555   // Call into the VM to patch the caller, then jump to compiled callee
556   // rax isn't live so capture return address while we easily can
557   __ movptr(rax, Address(rsp, 0));
558 
559   // align stack so push_CPU_state doesn't fault
560   __ andptr(rsp, -(StackAlignmentInBytes));
561   __ push_CPU_state();
562   __ vzeroupper();
563   // VM needs caller's callsite
564   // VM needs target method
565   // This needs to be a long call since we will relocate this adapter to
566   // the codeBuffer and it may not reach
567 
568   // Allocate argument register save area
569   if (frame::arg_reg_save_area_bytes != 0) {
570     __ subptr(rsp, frame::arg_reg_save_area_bytes);
571   }
572   __ mov(c_rarg0, rbx);
573   __ mov(c_rarg1, rax);
574   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
575 
576   // De-allocate argument register save area
577   if (frame::arg_reg_save_area_bytes != 0) {
578     __ addptr(rsp, frame::arg_reg_save_area_bytes);
579   }
580 
581   __ vzeroupper();
582   __ pop_CPU_state();
583   // restore sp
584   __ mov(rsp, r13);
585   __ bind(L);
586 }
587 
588 
gen_c2i_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,Label & skip_fixup)589 static void gen_c2i_adapter(MacroAssembler *masm,
590                             int total_args_passed,
591                             int comp_args_on_stack,
592                             const BasicType *sig_bt,
593                             const VMRegPair *regs,
594                             Label& skip_fixup) {
595   // Before we get into the guts of the C2I adapter, see if we should be here
596   // at all.  We've come from compiled code and are attempting to jump to the
597   // interpreter, which means the caller made a static call to get here
598   // (vcalls always get a compiled target if there is one).  Check for a
599   // compiled target.  If there is one, we need to patch the caller's call.
600   patch_callers_callsite(masm);
601 
602   __ bind(skip_fixup);
603 
604   // Since all args are passed on the stack, total_args_passed *
605   // Interpreter::stackElementSize is the space we need. Plus 1 because
606   // we also account for the return address location since
607   // we store it first rather than hold it in rax across all the shuffling
608 
609   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
610 
611   // stack is aligned, keep it that way
612   extraspace = align_up(extraspace, 2*wordSize);
613 
614   // Get return address
615   __ pop(rax);
616 
617   // set senderSP value
618   __ mov(r13, rsp);
619 
620   __ subptr(rsp, extraspace);
621 
622   // Store the return address in the expected location
623   __ movptr(Address(rsp, 0), rax);
624 
625   // Now write the args into the outgoing interpreter space
626   for (int i = 0; i < total_args_passed; i++) {
627     if (sig_bt[i] == T_VOID) {
628       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
629       continue;
630     }
631 
632     // offset to start parameters
633     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
634     int next_off = st_off - Interpreter::stackElementSize;
635 
636     // Say 4 args:
637     // i   st_off
638     // 0   32 T_LONG
639     // 1   24 T_VOID
640     // 2   16 T_OBJECT
641     // 3    8 T_BOOL
642     // -    0 return address
643     //
644     // However to make thing extra confusing. Because we can fit a long/double in
645     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
646     // leaves one slot empty and only stores to a single slot. In this case the
647     // slot that is occupied is the T_VOID slot. See I said it was confusing.
648 
649     VMReg r_1 = regs[i].first();
650     VMReg r_2 = regs[i].second();
651     if (!r_1->is_valid()) {
652       assert(!r_2->is_valid(), "");
653       continue;
654     }
655     if (r_1->is_stack()) {
656       // memory to memory use rax
657       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
658       if (!r_2->is_valid()) {
659         // sign extend??
660         __ movl(rax, Address(rsp, ld_off));
661         __ movptr(Address(rsp, st_off), rax);
662 
663       } else {
664 
665         __ movq(rax, Address(rsp, ld_off));
666 
667         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
668         // T_DOUBLE and T_LONG use two slots in the interpreter
669         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
670           // ld_off == LSW, ld_off+wordSize == MSW
671           // st_off == MSW, next_off == LSW
672           __ movq(Address(rsp, next_off), rax);
673 #ifdef ASSERT
674           // Overwrite the unused slot with known junk
675           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
676           __ movptr(Address(rsp, st_off), rax);
677 #endif /* ASSERT */
678         } else {
679           __ movq(Address(rsp, st_off), rax);
680         }
681       }
682     } else if (r_1->is_Register()) {
683       Register r = r_1->as_Register();
684       if (!r_2->is_valid()) {
685         // must be only an int (or less ) so move only 32bits to slot
686         // why not sign extend??
687         __ movl(Address(rsp, st_off), r);
688       } else {
689         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
690         // T_DOUBLE and T_LONG use two slots in the interpreter
691         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
692           // long/double in gpr
693 #ifdef ASSERT
694           // Overwrite the unused slot with known junk
695           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
696           __ movptr(Address(rsp, st_off), rax);
697 #endif /* ASSERT */
698           __ movq(Address(rsp, next_off), r);
699         } else {
700           __ movptr(Address(rsp, st_off), r);
701         }
702       }
703     } else {
704       assert(r_1->is_XMMRegister(), "");
705       if (!r_2->is_valid()) {
706         // only a float use just part of the slot
707         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
708       } else {
709 #ifdef ASSERT
710         // Overwrite the unused slot with known junk
711         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
712         __ movptr(Address(rsp, st_off), rax);
713 #endif /* ASSERT */
714         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
715       }
716     }
717   }
718 
719   // Schedule the branch target address early.
720   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
721   __ jmp(rcx);
722 }
723 
range_check(MacroAssembler * masm,Register pc_reg,Register temp_reg,address code_start,address code_end,Label & L_ok)724 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
725                         address code_start, address code_end,
726                         Label& L_ok) {
727   Label L_fail;
728   __ lea(temp_reg, ExternalAddress(code_start));
729   __ cmpptr(pc_reg, temp_reg);
730   __ jcc(Assembler::belowEqual, L_fail);
731   __ lea(temp_reg, ExternalAddress(code_end));
732   __ cmpptr(pc_reg, temp_reg);
733   __ jcc(Assembler::below, L_ok);
734   __ bind(L_fail);
735 }
736 
gen_i2c_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs)737 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
738                                     int total_args_passed,
739                                     int comp_args_on_stack,
740                                     const BasicType *sig_bt,
741                                     const VMRegPair *regs) {
742 
743   // Note: r13 contains the senderSP on entry. We must preserve it since
744   // we may do a i2c -> c2i transition if we lose a race where compiled
745   // code goes non-entrant while we get args ready.
746   // In addition we use r13 to locate all the interpreter args as
747   // we must align the stack to 16 bytes on an i2c entry else we
748   // lose alignment we expect in all compiled code and register
749   // save code can segv when fxsave instructions find improperly
750   // aligned stack pointer.
751 
752   // Adapters can be frameless because they do not require the caller
753   // to perform additional cleanup work, such as correcting the stack pointer.
754   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
755   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
756   // even if a callee has modified the stack pointer.
757   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
758   // routinely repairs its caller's stack pointer (from sender_sp, which is set
759   // up via the senderSP register).
760   // In other words, if *either* the caller or callee is interpreted, we can
761   // get the stack pointer repaired after a call.
762   // This is why c2i and i2c adapters cannot be indefinitely composed.
763   // In particular, if a c2i adapter were to somehow call an i2c adapter,
764   // both caller and callee would be compiled methods, and neither would
765   // clean up the stack pointer changes performed by the two adapters.
766   // If this happens, control eventually transfers back to the compiled
767   // caller, but with an uncorrected stack, causing delayed havoc.
768 
769   // Pick up the return address
770   __ movptr(rax, Address(rsp, 0));
771 
772   if (VerifyAdapterCalls &&
773       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
774     // So, let's test for cascading c2i/i2c adapters right now.
775     //  assert(Interpreter::contains($return_addr) ||
776     //         StubRoutines::contains($return_addr),
777     //         "i2c adapter must return to an interpreter frame");
778     __ block_comment("verify_i2c { ");
779     Label L_ok;
780     if (Interpreter::code() != NULL)
781       range_check(masm, rax, r11,
782                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
783                   L_ok);
784     if (StubRoutines::code1() != NULL)
785       range_check(masm, rax, r11,
786                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
787                   L_ok);
788     if (StubRoutines::code2() != NULL)
789       range_check(masm, rax, r11,
790                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
791                   L_ok);
792     const char* msg = "i2c adapter must return to an interpreter frame";
793     __ block_comment(msg);
794     __ stop(msg);
795     __ bind(L_ok);
796     __ block_comment("} verify_i2ce ");
797   }
798 
799   // Must preserve original SP for loading incoming arguments because
800   // we need to align the outgoing SP for compiled code.
801   __ movptr(r11, rsp);
802 
803   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
804   // in registers, we will occasionally have no stack args.
805   int comp_words_on_stack = 0;
806   if (comp_args_on_stack) {
807     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
808     // registers are below.  By subtracting stack0, we either get a negative
809     // number (all values in registers) or the maximum stack slot accessed.
810 
811     // Convert 4-byte c2 stack slots to words.
812     comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
813     // Round up to miminum stack alignment, in wordSize
814     comp_words_on_stack = align_up(comp_words_on_stack, 2);
815     __ subptr(rsp, comp_words_on_stack * wordSize);
816   }
817 
818 
819   // Ensure compiled code always sees stack at proper alignment
820   __ andptr(rsp, -16);
821 
822   // push the return address and misalign the stack that youngest frame always sees
823   // as far as the placement of the call instruction
824   __ push(rax);
825 
826   // Put saved SP in another register
827   const Register saved_sp = rax;
828   __ movptr(saved_sp, r11);
829 
830   // Will jump to the compiled code just as if compiled code was doing it.
831   // Pre-load the register-jump target early, to schedule it better.
832   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
833 
834 #if INCLUDE_JVMCI
835   if (EnableJVMCI || UseAOT) {
836     // check if this call should be routed towards a specific entry point
837     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
838     Label no_alternative_target;
839     __ jcc(Assembler::equal, no_alternative_target);
840     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
841     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
842     __ bind(no_alternative_target);
843   }
844 #endif // INCLUDE_JVMCI
845 
846   // Now generate the shuffle code.  Pick up all register args and move the
847   // rest through the floating point stack top.
848   for (int i = 0; i < total_args_passed; i++) {
849     if (sig_bt[i] == T_VOID) {
850       // Longs and doubles are passed in native word order, but misaligned
851       // in the 32-bit build.
852       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
853       continue;
854     }
855 
856     // Pick up 0, 1 or 2 words from SP+offset.
857 
858     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
859             "scrambled load targets?");
860     // Load in argument order going down.
861     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
862     // Point to interpreter value (vs. tag)
863     int next_off = ld_off - Interpreter::stackElementSize;
864     //
865     //
866     //
867     VMReg r_1 = regs[i].first();
868     VMReg r_2 = regs[i].second();
869     if (!r_1->is_valid()) {
870       assert(!r_2->is_valid(), "");
871       continue;
872     }
873     if (r_1->is_stack()) {
874       // Convert stack slot to an SP offset (+ wordSize to account for return address )
875       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
876 
877       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
878       // and if we end up going thru a c2i because of a miss a reasonable value of r13
879       // will be generated.
880       if (!r_2->is_valid()) {
881         // sign extend???
882         __ movl(r13, Address(saved_sp, ld_off));
883         __ movptr(Address(rsp, st_off), r13);
884       } else {
885         //
886         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
887         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
888         // So we must adjust where to pick up the data to match the interpreter.
889         //
890         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
891         // are accessed as negative so LSW is at LOW address
892 
893         // ld_off is MSW so get LSW
894         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
895                            next_off : ld_off;
896         __ movq(r13, Address(saved_sp, offset));
897         // st_off is LSW (i.e. reg.first())
898         __ movq(Address(rsp, st_off), r13);
899       }
900     } else if (r_1->is_Register()) {  // Register argument
901       Register r = r_1->as_Register();
902       assert(r != rax, "must be different");
903       if (r_2->is_valid()) {
904         //
905         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
906         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
907         // So we must adjust where to pick up the data to match the interpreter.
908 
909         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
910                            next_off : ld_off;
911 
912         // this can be a misaligned move
913         __ movq(r, Address(saved_sp, offset));
914       } else {
915         // sign extend and use a full word?
916         __ movl(r, Address(saved_sp, ld_off));
917       }
918     } else {
919       if (!r_2->is_valid()) {
920         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
921       } else {
922         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
923       }
924     }
925   }
926 
927   // 6243940 We might end up in handle_wrong_method if
928   // the callee is deoptimized as we race thru here. If that
929   // happens we don't want to take a safepoint because the
930   // caller frame will look interpreted and arguments are now
931   // "compiled" so it is much better to make this transition
932   // invisible to the stack walking code. Unfortunately if
933   // we try and find the callee by normal means a safepoint
934   // is possible. So we stash the desired callee in the thread
935   // and the vm will find there should this case occur.
936 
937   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
938 
939   // put Method* where a c2i would expect should we end up there
940   // only needed becaus eof c2 resolve stubs return Method* as a result in
941   // rax
942   __ mov(rax, rbx);
943   __ jmp(r11);
944 }
945 
946 // ---------------------------------------------------------------
generate_i2c2i_adapters(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,AdapterFingerPrint * fingerprint)947 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
948                                                             int total_args_passed,
949                                                             int comp_args_on_stack,
950                                                             const BasicType *sig_bt,
951                                                             const VMRegPair *regs,
952                                                             AdapterFingerPrint* fingerprint) {
953   address i2c_entry = __ pc();
954 
955   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
956 
957   // -------------------------------------------------------------------------
958   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
959   // to the interpreter.  The args start out packed in the compiled layout.  They
960   // need to be unpacked into the interpreter layout.  This will almost always
961   // require some stack space.  We grow the current (compiled) stack, then repack
962   // the args.  We  finally end in a jump to the generic interpreter entry point.
963   // On exit from the interpreter, the interpreter will restore our SP (lest the
964   // compiled code, which relys solely on SP and not RBP, get sick).
965 
966   address c2i_unverified_entry = __ pc();
967   Label skip_fixup;
968   Label ok;
969 
970   Register holder = rax;
971   Register receiver = j_rarg0;
972   Register temp = rbx;
973 
974   {
975     __ load_klass(temp, receiver, rscratch1);
976     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
977     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
978     __ jcc(Assembler::equal, ok);
979     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
980 
981     __ bind(ok);
982     // Method might have been compiled since the call site was patched to
983     // interpreted if that is the case treat it as a miss so we can get
984     // the call site corrected.
985     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
986     __ jcc(Assembler::equal, skip_fixup);
987     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
988   }
989 
990   address c2i_entry = __ pc();
991 
992   // Class initialization barrier for static methods
993   address c2i_no_clinit_check_entry = NULL;
994   if (VM_Version::supports_fast_class_init_checks()) {
995     Label L_skip_barrier;
996     Register method = rbx;
997 
998     { // Bypass the barrier for non-static methods
999       Register flags  = rscratch1;
1000       __ movl(flags, Address(method, Method::access_flags_offset()));
1001       __ testl(flags, JVM_ACC_STATIC);
1002       __ jcc(Assembler::zero, L_skip_barrier); // non-static
1003     }
1004 
1005     Register klass = rscratch1;
1006     __ load_method_holder(klass, method);
1007     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
1008 
1009     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
1010 
1011     __ bind(L_skip_barrier);
1012     c2i_no_clinit_check_entry = __ pc();
1013   }
1014 
1015   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1016   bs->c2i_entry_barrier(masm);
1017 
1018   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
1019 
1020   __ flush();
1021   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
1022 }
1023 
c_calling_convention(const BasicType * sig_bt,VMRegPair * regs,VMRegPair * regs2,int total_args_passed)1024 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1025                                          VMRegPair *regs,
1026                                          VMRegPair *regs2,
1027                                          int total_args_passed) {
1028   assert(regs2 == NULL, "not needed on x86");
1029 // We return the amount of VMRegImpl stack slots we need to reserve for all
1030 // the arguments NOT counting out_preserve_stack_slots.
1031 
1032 // NOTE: These arrays will have to change when c1 is ported
1033 #ifdef _WIN64
1034     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1035       c_rarg0, c_rarg1, c_rarg2, c_rarg3
1036     };
1037     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1038       c_farg0, c_farg1, c_farg2, c_farg3
1039     };
1040 #else
1041     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1042       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
1043     };
1044     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1045       c_farg0, c_farg1, c_farg2, c_farg3,
1046       c_farg4, c_farg5, c_farg6, c_farg7
1047     };
1048 #endif // _WIN64
1049 
1050 
1051     uint int_args = 0;
1052     uint fp_args = 0;
1053     uint stk_args = 0; // inc by 2 each time
1054 
1055     for (int i = 0; i < total_args_passed; i++) {
1056       switch (sig_bt[i]) {
1057       case T_BOOLEAN:
1058       case T_CHAR:
1059       case T_BYTE:
1060       case T_SHORT:
1061       case T_INT:
1062         if (int_args < Argument::n_int_register_parameters_c) {
1063           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1064 #ifdef _WIN64
1065           fp_args++;
1066           // Allocate slots for callee to stuff register args the stack.
1067           stk_args += 2;
1068 #endif
1069         } else {
1070           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1071           stk_args += 2;
1072         }
1073         break;
1074       case T_LONG:
1075         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1076         // fall through
1077       case T_OBJECT:
1078       case T_ARRAY:
1079       case T_ADDRESS:
1080       case T_METADATA:
1081         if (int_args < Argument::n_int_register_parameters_c) {
1082           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1083 #ifdef _WIN64
1084           fp_args++;
1085           stk_args += 2;
1086 #endif
1087         } else {
1088           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1089           stk_args += 2;
1090         }
1091         break;
1092       case T_FLOAT:
1093         if (fp_args < Argument::n_float_register_parameters_c) {
1094           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1095 #ifdef _WIN64
1096           int_args++;
1097           // Allocate slots for callee to stuff register args the stack.
1098           stk_args += 2;
1099 #endif
1100         } else {
1101           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1102           stk_args += 2;
1103         }
1104         break;
1105       case T_DOUBLE:
1106         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1107         if (fp_args < Argument::n_float_register_parameters_c) {
1108           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1109 #ifdef _WIN64
1110           int_args++;
1111           // Allocate slots for callee to stuff register args the stack.
1112           stk_args += 2;
1113 #endif
1114         } else {
1115           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1116           stk_args += 2;
1117         }
1118         break;
1119       case T_VOID: // Halves of longs and doubles
1120         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1121         regs[i].set_bad();
1122         break;
1123       default:
1124         ShouldNotReachHere();
1125         break;
1126       }
1127     }
1128 #ifdef _WIN64
1129   // windows abi requires that we always allocate enough stack space
1130   // for 4 64bit registers to be stored down.
1131   if (stk_args < 8) {
1132     stk_args = 8;
1133   }
1134 #endif // _WIN64
1135 
1136   return stk_args;
1137 }
1138 
1139 // On 64 bit we will store integer like items to the stack as
1140 // 64 bits items (x86_32/64 abi) even though java would only store
1141 // 32bits for a parameter. On 32bit it will simply be 32 bits
1142 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
move32_64(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1143 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1144   if (src.first()->is_stack()) {
1145     if (dst.first()->is_stack()) {
1146       // stack to stack
1147       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1148       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1149     } else {
1150       // stack to reg
1151       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1152     }
1153   } else if (dst.first()->is_stack()) {
1154     // reg to stack
1155     // Do we really have to sign extend???
1156     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1157     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1158   } else {
1159     // Do we really have to sign extend???
1160     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1161     if (dst.first() != src.first()) {
1162       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1163     }
1164   }
1165 }
1166 
move_ptr(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1167 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1168   if (src.first()->is_stack()) {
1169     if (dst.first()->is_stack()) {
1170       // stack to stack
1171       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1172       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1173     } else {
1174       // stack to reg
1175       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1176     }
1177   } else if (dst.first()->is_stack()) {
1178     // reg to stack
1179     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1180   } else {
1181     if (dst.first() != src.first()) {
1182       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1183     }
1184   }
1185 }
1186 
1187 // An oop arg. Must pass a handle not the oop itself
object_move(MacroAssembler * masm,OopMap * map,int oop_handle_offset,int framesize_in_slots,VMRegPair src,VMRegPair dst,bool is_receiver,int * receiver_offset)1188 static void object_move(MacroAssembler* masm,
1189                         OopMap* map,
1190                         int oop_handle_offset,
1191                         int framesize_in_slots,
1192                         VMRegPair src,
1193                         VMRegPair dst,
1194                         bool is_receiver,
1195                         int* receiver_offset) {
1196 
1197   // must pass a handle. First figure out the location we use as a handle
1198 
1199   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1200 
1201   // See if oop is NULL if it is we need no handle
1202 
1203   if (src.first()->is_stack()) {
1204 
1205     // Oop is already on the stack as an argument
1206     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1207     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1208     if (is_receiver) {
1209       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1210     }
1211 
1212     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1213     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1214     // conditionally move a NULL
1215     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1216   } else {
1217 
1218     // Oop is in an a register we must store it to the space we reserve
1219     // on the stack for oop_handles and pass a handle if oop is non-NULL
1220 
1221     const Register rOop = src.first()->as_Register();
1222     int oop_slot;
1223     if (rOop == j_rarg0)
1224       oop_slot = 0;
1225     else if (rOop == j_rarg1)
1226       oop_slot = 1;
1227     else if (rOop == j_rarg2)
1228       oop_slot = 2;
1229     else if (rOop == j_rarg3)
1230       oop_slot = 3;
1231     else if (rOop == j_rarg4)
1232       oop_slot = 4;
1233     else {
1234       assert(rOop == j_rarg5, "wrong register");
1235       oop_slot = 5;
1236     }
1237 
1238     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1239     int offset = oop_slot*VMRegImpl::stack_slot_size;
1240 
1241     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1242     // Store oop in handle area, may be NULL
1243     __ movptr(Address(rsp, offset), rOop);
1244     if (is_receiver) {
1245       *receiver_offset = offset;
1246     }
1247 
1248     __ cmpptr(rOop, (int32_t)NULL_WORD);
1249     __ lea(rHandle, Address(rsp, offset));
1250     // conditionally move a NULL from the handle area where it was just stored
1251     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1252   }
1253 
1254   // If arg is on the stack then place it otherwise it is already in correct reg.
1255   if (dst.first()->is_stack()) {
1256     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1257   }
1258 }
1259 
1260 // A float arg may have to do float reg int reg conversion
float_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1261 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1262   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1263 
1264   // The calling conventions assures us that each VMregpair is either
1265   // all really one physical register or adjacent stack slots.
1266 
1267   if (src.first()->is_stack()) {
1268     if (dst.first()->is_stack()) {
1269       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1270       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1271     } else {
1272       // stack to reg
1273       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1274       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1275     }
1276   } else if (dst.first()->is_stack()) {
1277     // reg to stack
1278     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1279     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1280   } else {
1281     // reg to reg
1282     // In theory these overlap but the ordering is such that this is likely a nop
1283     if ( src.first() != dst.first()) {
1284       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1285     }
1286   }
1287 }
1288 
1289 // A long move
long_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1290 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1291 
1292   // The calling conventions assures us that each VMregpair is either
1293   // all really one physical register or adjacent stack slots.
1294 
1295   if (src.is_single_phys_reg() ) {
1296     if (dst.is_single_phys_reg()) {
1297       if (dst.first() != src.first()) {
1298         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1299       }
1300     } else {
1301       assert(dst.is_single_reg(), "not a stack pair");
1302       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1303     }
1304   } else if (dst.is_single_phys_reg()) {
1305     assert(src.is_single_reg(),  "not a stack pair");
1306     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1307   } else {
1308     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1309     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1310     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1311   }
1312 }
1313 
1314 // A double move
double_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1315 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1316 
1317   // The calling conventions assures us that each VMregpair is either
1318   // all really one physical register or adjacent stack slots.
1319 
1320   if (src.is_single_phys_reg() ) {
1321     if (dst.is_single_phys_reg()) {
1322       // In theory these overlap but the ordering is such that this is likely a nop
1323       if ( src.first() != dst.first()) {
1324         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1325       }
1326     } else {
1327       assert(dst.is_single_reg(), "not a stack pair");
1328       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1329     }
1330   } else if (dst.is_single_phys_reg()) {
1331     assert(src.is_single_reg(),  "not a stack pair");
1332     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1333   } else {
1334     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1335     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1336     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1337   }
1338 }
1339 
1340 
save_native_result(MacroAssembler * masm,BasicType ret_type,int frame_slots)1341 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1342   // We always ignore the frame_slots arg and just use the space just below frame pointer
1343   // which by this time is free to use
1344   switch (ret_type) {
1345   case T_FLOAT:
1346     __ movflt(Address(rbp, -wordSize), xmm0);
1347     break;
1348   case T_DOUBLE:
1349     __ movdbl(Address(rbp, -wordSize), xmm0);
1350     break;
1351   case T_VOID:  break;
1352   default: {
1353     __ movptr(Address(rbp, -wordSize), rax);
1354     }
1355   }
1356 }
1357 
restore_native_result(MacroAssembler * masm,BasicType ret_type,int frame_slots)1358 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1359   // We always ignore the frame_slots arg and just use the space just below frame pointer
1360   // which by this time is free to use
1361   switch (ret_type) {
1362   case T_FLOAT:
1363     __ movflt(xmm0, Address(rbp, -wordSize));
1364     break;
1365   case T_DOUBLE:
1366     __ movdbl(xmm0, Address(rbp, -wordSize));
1367     break;
1368   case T_VOID:  break;
1369   default: {
1370     __ movptr(rax, Address(rbp, -wordSize));
1371     }
1372   }
1373 }
1374 
save_args(MacroAssembler * masm,int arg_count,int first_arg,VMRegPair * args)1375 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1376     for ( int i = first_arg ; i < arg_count ; i++ ) {
1377       if (args[i].first()->is_Register()) {
1378         __ push(args[i].first()->as_Register());
1379       } else if (args[i].first()->is_XMMRegister()) {
1380         __ subptr(rsp, 2*wordSize);
1381         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1382       }
1383     }
1384 }
1385 
restore_args(MacroAssembler * masm,int arg_count,int first_arg,VMRegPair * args)1386 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1387     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1388       if (args[i].first()->is_Register()) {
1389         __ pop(args[i].first()->as_Register());
1390       } else if (args[i].first()->is_XMMRegister()) {
1391         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1392         __ addptr(rsp, 2*wordSize);
1393       }
1394     }
1395 }
1396 
1397 // Unpack an array argument into a pointer to the body and the length
1398 // if the array is non-null, otherwise pass 0 for both.
unpack_array_argument(MacroAssembler * masm,VMRegPair reg,BasicType in_elem_type,VMRegPair body_arg,VMRegPair length_arg)1399 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1400   Register tmp_reg = rax;
1401   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1402          "possible collision");
1403   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1404          "possible collision");
1405 
1406   __ block_comment("unpack_array_argument {");
1407 
1408   // Pass the length, ptr pair
1409   Label is_null, done;
1410   VMRegPair tmp;
1411   tmp.set_ptr(tmp_reg->as_VMReg());
1412   if (reg.first()->is_stack()) {
1413     // Load the arg up from the stack
1414     move_ptr(masm, reg, tmp);
1415     reg = tmp;
1416   }
1417   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1418   __ jccb(Assembler::equal, is_null);
1419   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1420   move_ptr(masm, tmp, body_arg);
1421   // load the length relative to the body.
1422   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1423                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1424   move32_64(masm, tmp, length_arg);
1425   __ jmpb(done);
1426   __ bind(is_null);
1427   // Pass zeros
1428   __ xorptr(tmp_reg, tmp_reg);
1429   move_ptr(masm, tmp, body_arg);
1430   move32_64(masm, tmp, length_arg);
1431   __ bind(done);
1432 
1433   __ block_comment("} unpack_array_argument");
1434 }
1435 
1436 
1437 // Different signatures may require very different orders for the move
1438 // to avoid clobbering other arguments.  There's no simple way to
1439 // order them safely.  Compute a safe order for issuing stores and
1440 // break any cycles in those stores.  This code is fairly general but
1441 // it's not necessary on the other platforms so we keep it in the
1442 // platform dependent code instead of moving it into a shared file.
1443 // (See bugs 7013347 & 7145024.)
1444 // Note that this code is specific to LP64.
1445 class ComputeMoveOrder: public StackObj {
1446   class MoveOperation: public ResourceObj {
1447     friend class ComputeMoveOrder;
1448    private:
1449     VMRegPair        _src;
1450     VMRegPair        _dst;
1451     int              _src_index;
1452     int              _dst_index;
1453     bool             _processed;
1454     MoveOperation*  _next;
1455     MoveOperation*  _prev;
1456 
get_id(VMRegPair r)1457     static int get_id(VMRegPair r) {
1458       return r.first()->value();
1459     }
1460 
1461    public:
MoveOperation(int src_index,VMRegPair src,int dst_index,VMRegPair dst)1462     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1463       _src(src)
1464     , _dst(dst)
1465     , _src_index(src_index)
1466     , _dst_index(dst_index)
1467     , _processed(false)
1468     , _next(NULL)
1469     , _prev(NULL) {
1470     }
1471 
src() const1472     VMRegPair src() const              { return _src; }
src_id() const1473     int src_id() const                 { return get_id(src()); }
src_index() const1474     int src_index() const              { return _src_index; }
dst() const1475     VMRegPair dst() const              { return _dst; }
set_dst(int i,VMRegPair dst)1476     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
dst_index() const1477     int dst_index() const              { return _dst_index; }
dst_id() const1478     int dst_id() const                 { return get_id(dst()); }
next() const1479     MoveOperation* next() const       { return _next; }
prev() const1480     MoveOperation* prev() const       { return _prev; }
set_processed()1481     void set_processed()               { _processed = true; }
is_processed() const1482     bool is_processed() const          { return _processed; }
1483 
1484     // insert
break_cycle(VMRegPair temp_register)1485     void break_cycle(VMRegPair temp_register) {
1486       // create a new store following the last store
1487       // to move from the temp_register to the original
1488       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1489 
1490       // break the cycle of links and insert new_store at the end
1491       // break the reverse link.
1492       MoveOperation* p = prev();
1493       assert(p->next() == this, "must be");
1494       _prev = NULL;
1495       p->_next = new_store;
1496       new_store->_prev = p;
1497 
1498       // change the original store to save it's value in the temp.
1499       set_dst(-1, temp_register);
1500     }
1501 
link(GrowableArray<MoveOperation * > & killer)1502     void link(GrowableArray<MoveOperation*>& killer) {
1503       // link this store in front the store that it depends on
1504       MoveOperation* n = killer.at_grow(src_id(), NULL);
1505       if (n != NULL) {
1506         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1507         _next = n;
1508         n->_prev = this;
1509       }
1510     }
1511   };
1512 
1513  private:
1514   GrowableArray<MoveOperation*> edges;
1515 
1516  public:
ComputeMoveOrder(int total_in_args,VMRegPair * in_regs,int total_c_args,VMRegPair * out_regs,BasicType * in_sig_bt,GrowableArray<int> & arg_order,VMRegPair tmp_vmreg)1517   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1518                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1519     // Move operations where the dest is the stack can all be
1520     // scheduled first since they can't interfere with the other moves.
1521     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1522       if (in_sig_bt[i] == T_ARRAY) {
1523         c_arg--;
1524         if (out_regs[c_arg].first()->is_stack() &&
1525             out_regs[c_arg + 1].first()->is_stack()) {
1526           arg_order.push(i);
1527           arg_order.push(c_arg);
1528         } else {
1529           if (out_regs[c_arg].first()->is_stack() ||
1530               in_regs[i].first() == out_regs[c_arg].first()) {
1531             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1532           } else {
1533             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1534           }
1535         }
1536       } else if (in_sig_bt[i] == T_VOID) {
1537         arg_order.push(i);
1538         arg_order.push(c_arg);
1539       } else {
1540         if (out_regs[c_arg].first()->is_stack() ||
1541             in_regs[i].first() == out_regs[c_arg].first()) {
1542           arg_order.push(i);
1543           arg_order.push(c_arg);
1544         } else {
1545           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1546         }
1547       }
1548     }
1549     // Break any cycles in the register moves and emit the in the
1550     // proper order.
1551     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1552     for (int i = 0; i < stores->length(); i++) {
1553       arg_order.push(stores->at(i)->src_index());
1554       arg_order.push(stores->at(i)->dst_index());
1555     }
1556  }
1557 
1558   // Collected all the move operations
add_edge(int src_index,VMRegPair src,int dst_index,VMRegPair dst)1559   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1560     if (src.first() == dst.first()) return;
1561     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1562   }
1563 
1564   // Walk the edges breaking cycles between moves.  The result list
1565   // can be walked in order to produce the proper set of loads
get_store_order(VMRegPair temp_register)1566   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1567     // Record which moves kill which values
1568     GrowableArray<MoveOperation*> killer;
1569     for (int i = 0; i < edges.length(); i++) {
1570       MoveOperation* s = edges.at(i);
1571       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1572       killer.at_put_grow(s->dst_id(), s, NULL);
1573     }
1574     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1575            "make sure temp isn't in the registers that are killed");
1576 
1577     // create links between loads and stores
1578     for (int i = 0; i < edges.length(); i++) {
1579       edges.at(i)->link(killer);
1580     }
1581 
1582     // at this point, all the move operations are chained together
1583     // in a doubly linked list.  Processing it backwards finds
1584     // the beginning of the chain, forwards finds the end.  If there's
1585     // a cycle it can be broken at any point,  so pick an edge and walk
1586     // backward until the list ends or we end where we started.
1587     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1588     for (int e = 0; e < edges.length(); e++) {
1589       MoveOperation* s = edges.at(e);
1590       if (!s->is_processed()) {
1591         MoveOperation* start = s;
1592         // search for the beginning of the chain or cycle
1593         while (start->prev() != NULL && start->prev() != s) {
1594           start = start->prev();
1595         }
1596         if (start->prev() == s) {
1597           start->break_cycle(temp_register);
1598         }
1599         // walk the chain forward inserting to store list
1600         while (start != NULL) {
1601           stores->append(start);
1602           start->set_processed();
1603           start = start->next();
1604         }
1605       }
1606     }
1607     return stores;
1608   }
1609 };
1610 
verify_oop_args(MacroAssembler * masm,const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)1611 static void verify_oop_args(MacroAssembler* masm,
1612                             const methodHandle& method,
1613                             const BasicType* sig_bt,
1614                             const VMRegPair* regs) {
1615   Register temp_reg = rbx;  // not part of any compiled calling seq
1616   if (VerifyOops) {
1617     for (int i = 0; i < method->size_of_parameters(); i++) {
1618       if (is_reference_type(sig_bt[i])) {
1619         VMReg r = regs[i].first();
1620         assert(r->is_valid(), "bad oop arg");
1621         if (r->is_stack()) {
1622           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1623           __ verify_oop(temp_reg);
1624         } else {
1625           __ verify_oop(r->as_Register());
1626         }
1627       }
1628     }
1629   }
1630 }
1631 
gen_special_dispatch(MacroAssembler * masm,const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)1632 static void gen_special_dispatch(MacroAssembler* masm,
1633                                  const methodHandle& method,
1634                                  const BasicType* sig_bt,
1635                                  const VMRegPair* regs) {
1636   verify_oop_args(masm, method, sig_bt, regs);
1637   vmIntrinsics::ID iid = method->intrinsic_id();
1638 
1639   // Now write the args into the outgoing interpreter space
1640   bool     has_receiver   = false;
1641   Register receiver_reg   = noreg;
1642   int      member_arg_pos = -1;
1643   Register member_reg     = noreg;
1644   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1645   if (ref_kind != 0) {
1646     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1647     member_reg = rbx;  // known to be free at this point
1648     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1649   } else if (iid == vmIntrinsics::_invokeBasic || iid == vmIntrinsics::_linkToNative) {
1650     has_receiver = true;
1651   } else {
1652     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1653   }
1654 
1655   if (member_reg != noreg) {
1656     // Load the member_arg into register, if necessary.
1657     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1658     VMReg r = regs[member_arg_pos].first();
1659     if (r->is_stack()) {
1660       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1661     } else {
1662       // no data motion is needed
1663       member_reg = r->as_Register();
1664     }
1665   }
1666 
1667   if (has_receiver) {
1668     // Make sure the receiver is loaded into a register.
1669     assert(method->size_of_parameters() > 0, "oob");
1670     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1671     VMReg r = regs[0].first();
1672     assert(r->is_valid(), "bad receiver arg");
1673     if (r->is_stack()) {
1674       // Porting note:  This assumes that compiled calling conventions always
1675       // pass the receiver oop in a register.  If this is not true on some
1676       // platform, pick a temp and load the receiver from stack.
1677       fatal("receiver always in a register");
1678       receiver_reg = j_rarg0;  // known to be free at this point
1679       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1680     } else {
1681       // no data motion is needed
1682       receiver_reg = r->as_Register();
1683     }
1684   }
1685 
1686   // Figure out which address we are really jumping to:
1687   MethodHandles::generate_method_handle_dispatch(masm, iid,
1688                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1689 }
1690 
1691 // ---------------------------------------------------------------------------
1692 // Generate a native wrapper for a given method.  The method takes arguments
1693 // in the Java compiled code convention, marshals them to the native
1694 // convention (handlizes oops, etc), transitions to native, makes the call,
1695 // returns to java state (possibly blocking), unhandlizes any result and
1696 // returns.
1697 //
1698 // Critical native functions are a shorthand for the use of
1699 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1700 // functions.  The wrapper is expected to unpack the arguments before
1701 // passing them to the callee. Critical native functions leave the state _in_Java,
1702 // since they cannot stop for GC.
1703 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1704 // block and the check for pending exceptions it's impossible for them
1705 // to be thrown.
1706 //
generate_native_wrapper(MacroAssembler * masm,const methodHandle & method,int compile_id,BasicType * in_sig_bt,VMRegPair * in_regs,BasicType ret_type,address critical_entry)1707 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1708                                                 const methodHandle& method,
1709                                                 int compile_id,
1710                                                 BasicType* in_sig_bt,
1711                                                 VMRegPair* in_regs,
1712                                                 BasicType ret_type,
1713                                                 address critical_entry) {
1714   if (method->is_method_handle_intrinsic()) {
1715     vmIntrinsics::ID iid = method->intrinsic_id();
1716     intptr_t start = (intptr_t)__ pc();
1717     int vep_offset = ((intptr_t)__ pc()) - start;
1718     gen_special_dispatch(masm,
1719                          method,
1720                          in_sig_bt,
1721                          in_regs);
1722     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1723     __ flush();
1724     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1725     return nmethod::new_native_nmethod(method,
1726                                        compile_id,
1727                                        masm->code(),
1728                                        vep_offset,
1729                                        frame_complete,
1730                                        stack_slots / VMRegImpl::slots_per_word,
1731                                        in_ByteSize(-1),
1732                                        in_ByteSize(-1),
1733                                        (OopMapSet*)NULL);
1734   }
1735   bool is_critical_native = true;
1736   address native_func = critical_entry;
1737   if (native_func == NULL) {
1738     native_func = method->native_function();
1739     is_critical_native = false;
1740   }
1741   assert(native_func != NULL, "must have function");
1742 
1743   // An OopMap for lock (and class if static)
1744   OopMapSet *oop_maps = new OopMapSet();
1745   intptr_t start = (intptr_t)__ pc();
1746 
1747   // We have received a description of where all the java arg are located
1748   // on entry to the wrapper. We need to convert these args to where
1749   // the jni function will expect them. To figure out where they go
1750   // we convert the java signature to a C signature by inserting
1751   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1752 
1753   const int total_in_args = method->size_of_parameters();
1754   int total_c_args = total_in_args;
1755   if (!is_critical_native) {
1756     total_c_args += 1;
1757     if (method->is_static()) {
1758       total_c_args++;
1759     }
1760   } else {
1761     for (int i = 0; i < total_in_args; i++) {
1762       if (in_sig_bt[i] == T_ARRAY) {
1763         total_c_args++;
1764       }
1765     }
1766   }
1767 
1768   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1769   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1770   BasicType* in_elem_bt = NULL;
1771 
1772   int argc = 0;
1773   if (!is_critical_native) {
1774     out_sig_bt[argc++] = T_ADDRESS;
1775     if (method->is_static()) {
1776       out_sig_bt[argc++] = T_OBJECT;
1777     }
1778 
1779     for (int i = 0; i < total_in_args ; i++ ) {
1780       out_sig_bt[argc++] = in_sig_bt[i];
1781     }
1782   } else {
1783     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1784     SignatureStream ss(method->signature());
1785     for (int i = 0; i < total_in_args ; i++ ) {
1786       if (in_sig_bt[i] == T_ARRAY) {
1787         // Arrays are passed as int, elem* pair
1788         out_sig_bt[argc++] = T_INT;
1789         out_sig_bt[argc++] = T_ADDRESS;
1790         ss.skip_array_prefix(1);  // skip one '['
1791         assert(ss.is_primitive(), "primitive type expected");
1792         in_elem_bt[i] = ss.type();
1793       } else {
1794         out_sig_bt[argc++] = in_sig_bt[i];
1795         in_elem_bt[i] = T_VOID;
1796       }
1797       if (in_sig_bt[i] != T_VOID) {
1798         assert(in_sig_bt[i] == ss.type() ||
1799                in_sig_bt[i] == T_ARRAY, "must match");
1800         ss.next();
1801       }
1802     }
1803   }
1804 
1805   // Now figure out where the args must be stored and how much stack space
1806   // they require.
1807   int out_arg_slots;
1808   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1809 
1810   // Compute framesize for the wrapper.  We need to handlize all oops in
1811   // incoming registers
1812 
1813   // Calculate the total number of stack slots we will need.
1814 
1815   // First count the abi requirement plus all of the outgoing args
1816   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1817 
1818   // Now the space for the inbound oop handle area
1819   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1820   if (is_critical_native) {
1821     // Critical natives may have to call out so they need a save area
1822     // for register arguments.
1823     int double_slots = 0;
1824     int single_slots = 0;
1825     for ( int i = 0; i < total_in_args; i++) {
1826       if (in_regs[i].first()->is_Register()) {
1827         const Register reg = in_regs[i].first()->as_Register();
1828         switch (in_sig_bt[i]) {
1829           case T_BOOLEAN:
1830           case T_BYTE:
1831           case T_SHORT:
1832           case T_CHAR:
1833           case T_INT:  single_slots++; break;
1834           case T_ARRAY:  // specific to LP64 (7145024)
1835           case T_LONG: double_slots++; break;
1836           default:  ShouldNotReachHere();
1837         }
1838       } else if (in_regs[i].first()->is_XMMRegister()) {
1839         switch (in_sig_bt[i]) {
1840           case T_FLOAT:  single_slots++; break;
1841           case T_DOUBLE: double_slots++; break;
1842           default:  ShouldNotReachHere();
1843         }
1844       } else if (in_regs[i].first()->is_FloatRegister()) {
1845         ShouldNotReachHere();
1846       }
1847     }
1848     total_save_slots = double_slots * 2 + single_slots;
1849     // align the save area
1850     if (double_slots != 0) {
1851       stack_slots = align_up(stack_slots, 2);
1852     }
1853   }
1854 
1855   int oop_handle_offset = stack_slots;
1856   stack_slots += total_save_slots;
1857 
1858   // Now any space we need for handlizing a klass if static method
1859 
1860   int klass_slot_offset = 0;
1861   int klass_offset = -1;
1862   int lock_slot_offset = 0;
1863   bool is_static = false;
1864 
1865   if (method->is_static()) {
1866     klass_slot_offset = stack_slots;
1867     stack_slots += VMRegImpl::slots_per_word;
1868     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1869     is_static = true;
1870   }
1871 
1872   // Plus a lock if needed
1873 
1874   if (method->is_synchronized()) {
1875     lock_slot_offset = stack_slots;
1876     stack_slots += VMRegImpl::slots_per_word;
1877   }
1878 
1879   // Now a place (+2) to save return values or temp during shuffling
1880   // + 4 for return address (which we own) and saved rbp
1881   stack_slots += 6;
1882 
1883   // Ok The space we have allocated will look like:
1884   //
1885   //
1886   // FP-> |                     |
1887   //      |---------------------|
1888   //      | 2 slots for moves   |
1889   //      |---------------------|
1890   //      | lock box (if sync)  |
1891   //      |---------------------| <- lock_slot_offset
1892   //      | klass (if static)   |
1893   //      |---------------------| <- klass_slot_offset
1894   //      | oopHandle area      |
1895   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1896   //      | outbound memory     |
1897   //      | based arguments     |
1898   //      |                     |
1899   //      |---------------------|
1900   //      |                     |
1901   // SP-> | out_preserved_slots |
1902   //
1903   //
1904 
1905 
1906   // Now compute actual number of stack words we need rounding to make
1907   // stack properly aligned.
1908   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1909 
1910   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1911 
1912   // First thing make an ic check to see if we should even be here
1913 
1914   // We are free to use all registers as temps without saving them and
1915   // restoring them except rbp. rbp is the only callee save register
1916   // as far as the interpreter and the compiler(s) are concerned.
1917 
1918 
1919   const Register ic_reg = rax;
1920   const Register receiver = j_rarg0;
1921 
1922   Label hit;
1923   Label exception_pending;
1924 
1925   assert_different_registers(ic_reg, receiver, rscratch1);
1926   __ verify_oop(receiver);
1927   __ load_klass(rscratch1, receiver, rscratch2);
1928   __ cmpq(ic_reg, rscratch1);
1929   __ jcc(Assembler::equal, hit);
1930 
1931   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1932 
1933   // Verified entry point must be aligned
1934   __ align(8);
1935 
1936   __ bind(hit);
1937 
1938   int vep_offset = ((intptr_t)__ pc()) - start;
1939 
1940   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1941     Label L_skip_barrier;
1942     Register klass = r10;
1943     __ mov_metadata(klass, method->method_holder()); // InstanceKlass*
1944     __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/);
1945 
1946     __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path
1947 
1948     __ bind(L_skip_barrier);
1949   }
1950 
1951 #ifdef COMPILER1
1952   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
1953   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
1954     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
1955   }
1956 #endif // COMPILER1
1957 
1958   // The instruction at the verified entry point must be 5 bytes or longer
1959   // because it can be patched on the fly by make_non_entrant. The stack bang
1960   // instruction fits that requirement.
1961 
1962   // Generate stack overflow check
1963 
1964   if (UseStackBanging) {
1965     __ bang_stack_with_offset((int)StackOverflow::stack_shadow_zone_size());
1966   } else {
1967     // need a 5 byte instruction to allow MT safe patching to non-entrant
1968     __ fat_nop();
1969   }
1970 
1971   // Generate a new frame for the wrapper.
1972   __ enter();
1973   // -2 because return address is already present and so is saved rbp
1974   __ subptr(rsp, stack_size - 2*wordSize);
1975 
1976   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1977   bs->nmethod_entry_barrier(masm);
1978 
1979   // Frame is now completed as far as size and linkage.
1980   int frame_complete = ((intptr_t)__ pc()) - start;
1981 
1982     if (UseRTMLocking) {
1983       // Abort RTM transaction before calling JNI
1984       // because critical section will be large and will be
1985       // aborted anyway. Also nmethod could be deoptimized.
1986       __ xabort(0);
1987     }
1988 
1989 #ifdef ASSERT
1990     {
1991       Label L;
1992       __ mov(rax, rsp);
1993       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1994       __ cmpptr(rax, rsp);
1995       __ jcc(Assembler::equal, L);
1996       __ stop("improperly aligned stack");
1997       __ bind(L);
1998     }
1999 #endif /* ASSERT */
2000 
2001 
2002   // We use r14 as the oop handle for the receiver/klass
2003   // It is callee save so it survives the call to native
2004 
2005   const Register oop_handle_reg = r14;
2006 
2007   //
2008   // We immediately shuffle the arguments so that any vm call we have to
2009   // make from here on out (sync slow path, jvmti, etc.) we will have
2010   // captured the oops from our caller and have a valid oopMap for
2011   // them.
2012 
2013   // -----------------
2014   // The Grand Shuffle
2015 
2016   // The Java calling convention is either equal (linux) or denser (win64) than the
2017   // c calling convention. However the because of the jni_env argument the c calling
2018   // convention always has at least one more (and two for static) arguments than Java.
2019   // Therefore if we move the args from java -> c backwards then we will never have
2020   // a register->register conflict and we don't have to build a dependency graph
2021   // and figure out how to break any cycles.
2022   //
2023 
2024   // Record esp-based slot for receiver on stack for non-static methods
2025   int receiver_offset = -1;
2026 
2027   // This is a trick. We double the stack slots so we can claim
2028   // the oops in the caller's frame. Since we are sure to have
2029   // more args than the caller doubling is enough to make
2030   // sure we can capture all the incoming oop args from the
2031   // caller.
2032   //
2033   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2034 
2035   // Mark location of rbp (someday)
2036   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2037 
2038   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2039   // All inbound args are referenced based on rbp and all outbound args via rsp.
2040 
2041 
2042 #ifdef ASSERT
2043   bool reg_destroyed[RegisterImpl::number_of_registers];
2044   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2045   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2046     reg_destroyed[r] = false;
2047   }
2048   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2049     freg_destroyed[f] = false;
2050   }
2051 
2052 #endif /* ASSERT */
2053 
2054   // This may iterate in two different directions depending on the
2055   // kind of native it is.  The reason is that for regular JNI natives
2056   // the incoming and outgoing registers are offset upwards and for
2057   // critical natives they are offset down.
2058   GrowableArray<int> arg_order(2 * total_in_args);
2059 
2060   VMRegPair tmp_vmreg;
2061   tmp_vmreg.set2(rbx->as_VMReg());
2062 
2063   if (!is_critical_native) {
2064     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2065       arg_order.push(i);
2066       arg_order.push(c_arg);
2067     }
2068   } else {
2069     // Compute a valid move order, using tmp_vmreg to break any cycles
2070     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2071   }
2072 
2073   int temploc = -1;
2074   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2075     int i = arg_order.at(ai);
2076     int c_arg = arg_order.at(ai + 1);
2077     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2078     if (c_arg == -1) {
2079       assert(is_critical_native, "should only be required for critical natives");
2080       // This arg needs to be moved to a temporary
2081       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2082       in_regs[i] = tmp_vmreg;
2083       temploc = i;
2084       continue;
2085     } else if (i == -1) {
2086       assert(is_critical_native, "should only be required for critical natives");
2087       // Read from the temporary location
2088       assert(temploc != -1, "must be valid");
2089       i = temploc;
2090       temploc = -1;
2091     }
2092 #ifdef ASSERT
2093     if (in_regs[i].first()->is_Register()) {
2094       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2095     } else if (in_regs[i].first()->is_XMMRegister()) {
2096       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2097     }
2098     if (out_regs[c_arg].first()->is_Register()) {
2099       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2100     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2101       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2102     }
2103 #endif /* ASSERT */
2104     switch (in_sig_bt[i]) {
2105       case T_ARRAY:
2106         if (is_critical_native) {
2107           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2108           c_arg++;
2109 #ifdef ASSERT
2110           if (out_regs[c_arg].first()->is_Register()) {
2111             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2112           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2113             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2114           }
2115 #endif
2116           break;
2117         }
2118       case T_OBJECT:
2119         assert(!is_critical_native, "no oop arguments");
2120         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2121                     ((i == 0) && (!is_static)),
2122                     &receiver_offset);
2123         break;
2124       case T_VOID:
2125         break;
2126 
2127       case T_FLOAT:
2128         float_move(masm, in_regs[i], out_regs[c_arg]);
2129           break;
2130 
2131       case T_DOUBLE:
2132         assert( i + 1 < total_in_args &&
2133                 in_sig_bt[i + 1] == T_VOID &&
2134                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2135         double_move(masm, in_regs[i], out_regs[c_arg]);
2136         break;
2137 
2138       case T_LONG :
2139         long_move(masm, in_regs[i], out_regs[c_arg]);
2140         break;
2141 
2142       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2143 
2144       default:
2145         move32_64(masm, in_regs[i], out_regs[c_arg]);
2146     }
2147   }
2148 
2149   int c_arg;
2150 
2151   // Pre-load a static method's oop into r14.  Used both by locking code and
2152   // the normal JNI call code.
2153   if (!is_critical_native) {
2154     // point c_arg at the first arg that is already loaded in case we
2155     // need to spill before we call out
2156     c_arg = total_c_args - total_in_args;
2157 
2158     if (method->is_static()) {
2159 
2160       //  load oop into a register
2161       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2162 
2163       // Now handlize the static class mirror it's known not-null.
2164       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2165       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2166 
2167       // Now get the handle
2168       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2169       // store the klass handle as second argument
2170       __ movptr(c_rarg1, oop_handle_reg);
2171       // and protect the arg if we must spill
2172       c_arg--;
2173     }
2174   } else {
2175     // For JNI critical methods we need to save all registers in save_args.
2176     c_arg = 0;
2177   }
2178 
2179   // Change state to native (we save the return address in the thread, since it might not
2180   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2181   // points into the right code segment. It does not have to be the correct return pc.
2182   // We use the same pc/oopMap repeatedly when we call out
2183 
2184   intptr_t the_pc = (intptr_t) __ pc();
2185   oop_maps->add_gc_map(the_pc - start, map);
2186 
2187   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2188 
2189 
2190   // We have all of the arguments setup at this point. We must not touch any register
2191   // argument registers at this point (what if we save/restore them there are no oop?
2192 
2193   {
2194     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2195     // protect the args we've loaded
2196     save_args(masm, total_c_args, c_arg, out_regs);
2197     __ mov_metadata(c_rarg1, method());
2198     __ call_VM_leaf(
2199       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2200       r15_thread, c_rarg1);
2201     restore_args(masm, total_c_args, c_arg, out_regs);
2202   }
2203 
2204   // RedefineClasses() tracing support for obsolete method entry
2205   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2206     // protect the args we've loaded
2207     save_args(masm, total_c_args, c_arg, out_regs);
2208     __ mov_metadata(c_rarg1, method());
2209     __ call_VM_leaf(
2210       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2211       r15_thread, c_rarg1);
2212     restore_args(masm, total_c_args, c_arg, out_regs);
2213   }
2214 
2215   // Lock a synchronized method
2216 
2217   // Register definitions used by locking and unlocking
2218 
2219   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2220   const Register obj_reg  = rbx;  // Will contain the oop
2221   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2222   const Register old_hdr  = r13;  // value of old header at unlock time
2223 
2224   Label slow_path_lock;
2225   Label lock_done;
2226 
2227   if (method->is_synchronized()) {
2228     assert(!is_critical_native, "unhandled");
2229 
2230 
2231     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2232 
2233     // Get the handle (the 2nd argument)
2234     __ mov(oop_handle_reg, c_rarg1);
2235 
2236     // Get address of the box
2237 
2238     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2239 
2240     // Load the oop from the handle
2241     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2242 
2243     __ resolve(IS_NOT_NULL, obj_reg);
2244     if (UseBiasedLocking) {
2245       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, rscratch2, false, lock_done, &slow_path_lock);
2246     }
2247 
2248     // Load immediate 1 into swap_reg %rax
2249     __ movl(swap_reg, 1);
2250 
2251     // Load (object->mark() | 1) into swap_reg %rax
2252     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2253 
2254     // Save (object->mark() | 1) into BasicLock's displaced header
2255     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2256 
2257     // src -> dest iff dest == rax else rax <- dest
2258     __ lock();
2259     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2260     __ jcc(Assembler::equal, lock_done);
2261 
2262     // Hmm should this move to the slow path code area???
2263 
2264     // Test if the oopMark is an obvious stack pointer, i.e.,
2265     //  1) (mark & 3) == 0, and
2266     //  2) rsp <= mark < mark + os::pagesize()
2267     // These 3 tests can be done by evaluating the following
2268     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2269     // assuming both stack pointer and pagesize have their
2270     // least significant 2 bits clear.
2271     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2272 
2273     __ subptr(swap_reg, rsp);
2274     __ andptr(swap_reg, 3 - os::vm_page_size());
2275 
2276     // Save the test result, for recursive case, the result is zero
2277     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2278     __ jcc(Assembler::notEqual, slow_path_lock);
2279 
2280     // Slow path will re-enter here
2281 
2282     __ bind(lock_done);
2283   }
2284 
2285   // Finally just about ready to make the JNI call
2286 
2287   // get JNIEnv* which is first argument to native
2288   if (!is_critical_native) {
2289     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2290 
2291     // Now set thread in native
2292     __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2293   }
2294 
2295   __ call(RuntimeAddress(native_func));
2296 
2297   // Verify or restore cpu control state after JNI call
2298   __ restore_cpu_control_state_after_jni();
2299 
2300   // Unpack native results.
2301   switch (ret_type) {
2302   case T_BOOLEAN: __ c2bool(rax);            break;
2303   case T_CHAR   : __ movzwl(rax, rax);      break;
2304   case T_BYTE   : __ sign_extend_byte (rax); break;
2305   case T_SHORT  : __ sign_extend_short(rax); break;
2306   case T_INT    : /* nothing to do */        break;
2307   case T_DOUBLE :
2308   case T_FLOAT  :
2309     // Result is in xmm0 we'll save as needed
2310     break;
2311   case T_ARRAY:                 // Really a handle
2312   case T_OBJECT:                // Really a handle
2313       break; // can't de-handlize until after safepoint check
2314   case T_VOID: break;
2315   case T_LONG: break;
2316   default       : ShouldNotReachHere();
2317   }
2318 
2319   Label after_transition;
2320 
2321   // If this is a critical native, check for a safepoint or suspend request after the call.
2322   // If a safepoint is needed, transition to native, then to native_trans to handle
2323   // safepoints like the native methods that are not critical natives.
2324   if (is_critical_native) {
2325     Label needs_safepoint;
2326     __ safepoint_poll(needs_safepoint, r15_thread, false /* at_return */, false /* in_nmethod */);
2327     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2328     __ jcc(Assembler::equal, after_transition);
2329     __ bind(needs_safepoint);
2330   }
2331 
2332   // Switch thread to "native transition" state before reading the synchronization state.
2333   // This additional state is necessary because reading and testing the synchronization
2334   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2335   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2336   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2337   //     Thread A is resumed to finish this native method, but doesn't block here since it
2338   //     didn't see any synchronization is progress, and escapes.
2339   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2340 
2341   // Force this write out before the read below
2342   __ membar(Assembler::Membar_mask_bits(
2343               Assembler::LoadLoad | Assembler::LoadStore |
2344               Assembler::StoreLoad | Assembler::StoreStore));
2345 
2346   // check for safepoint operation in progress and/or pending suspend requests
2347   {
2348     Label Continue;
2349     Label slow_path;
2350 
2351     __ safepoint_poll(slow_path, r15_thread, true /* at_return */, false /* in_nmethod */);
2352 
2353     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2354     __ jcc(Assembler::equal, Continue);
2355     __ bind(slow_path);
2356 
2357     // Don't use call_VM as it will see a possible pending exception and forward it
2358     // and never return here preventing us from clearing _last_native_pc down below.
2359     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2360     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2361     // by hand.
2362     //
2363     __ vzeroupper();
2364     save_native_result(masm, ret_type, stack_slots);
2365     __ mov(c_rarg0, r15_thread);
2366     __ mov(r12, rsp); // remember sp
2367     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2368     __ andptr(rsp, -16); // align stack as required by ABI
2369     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2370     __ mov(rsp, r12); // restore sp
2371     __ reinit_heapbase();
2372     // Restore any method result value
2373     restore_native_result(masm, ret_type, stack_slots);
2374     __ bind(Continue);
2375   }
2376 
2377   // change thread state
2378   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2379   __ bind(after_transition);
2380 
2381   Label reguard;
2382   Label reguard_done;
2383   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
2384   __ jcc(Assembler::equal, reguard);
2385   __ bind(reguard_done);
2386 
2387   // native result if any is live
2388 
2389   // Unlock
2390   Label unlock_done;
2391   Label slow_path_unlock;
2392   if (method->is_synchronized()) {
2393 
2394     // Get locked oop from the handle we passed to jni
2395     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2396     __ resolve(IS_NOT_NULL, obj_reg);
2397 
2398     Label done;
2399 
2400     if (UseBiasedLocking) {
2401       __ biased_locking_exit(obj_reg, old_hdr, done);
2402     }
2403 
2404     // Simple recursive lock?
2405 
2406     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2407     __ jcc(Assembler::equal, done);
2408 
2409     // Must save rax if if it is live now because cmpxchg must use it
2410     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2411       save_native_result(masm, ret_type, stack_slots);
2412     }
2413 
2414 
2415     // get address of the stack lock
2416     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2417     //  get old displaced header
2418     __ movptr(old_hdr, Address(rax, 0));
2419 
2420     // Atomic swap old header if oop still contains the stack lock
2421     __ lock();
2422     __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2423     __ jcc(Assembler::notEqual, slow_path_unlock);
2424 
2425     // slow path re-enters here
2426     __ bind(unlock_done);
2427     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2428       restore_native_result(masm, ret_type, stack_slots);
2429     }
2430 
2431     __ bind(done);
2432 
2433   }
2434   {
2435     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2436     save_native_result(masm, ret_type, stack_slots);
2437     __ mov_metadata(c_rarg1, method());
2438     __ call_VM_leaf(
2439          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2440          r15_thread, c_rarg1);
2441     restore_native_result(masm, ret_type, stack_slots);
2442   }
2443 
2444   __ reset_last_Java_frame(false);
2445 
2446   // Unbox oop result, e.g. JNIHandles::resolve value.
2447   if (is_reference_type(ret_type)) {
2448     __ resolve_jobject(rax /* value */,
2449                        r15_thread /* thread */,
2450                        rcx /* tmp */);
2451   }
2452 
2453   if (CheckJNICalls) {
2454     // clear_pending_jni_exception_check
2455     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2456   }
2457 
2458   if (!is_critical_native) {
2459     // reset handle block
2460     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2461     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2462   }
2463 
2464   // pop our frame
2465 
2466   __ leave();
2467 
2468   if (!is_critical_native) {
2469     // Any exception pending?
2470     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2471     __ jcc(Assembler::notEqual, exception_pending);
2472   }
2473 
2474   // Return
2475 
2476   __ ret(0);
2477 
2478   // Unexpected paths are out of line and go here
2479 
2480   if (!is_critical_native) {
2481     // forward the exception
2482     __ bind(exception_pending);
2483 
2484     // and forward the exception
2485     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2486   }
2487 
2488   // Slow path locking & unlocking
2489   if (method->is_synchronized()) {
2490 
2491     // BEGIN Slow path lock
2492     __ bind(slow_path_lock);
2493 
2494     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2495     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2496 
2497     // protect the args we've loaded
2498     save_args(masm, total_c_args, c_arg, out_regs);
2499 
2500     __ mov(c_rarg0, obj_reg);
2501     __ mov(c_rarg1, lock_reg);
2502     __ mov(c_rarg2, r15_thread);
2503 
2504     // Not a leaf but we have last_Java_frame setup as we want
2505     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2506     restore_args(masm, total_c_args, c_arg, out_regs);
2507 
2508 #ifdef ASSERT
2509     { Label L;
2510     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2511     __ jcc(Assembler::equal, L);
2512     __ stop("no pending exception allowed on exit from monitorenter");
2513     __ bind(L);
2514     }
2515 #endif
2516     __ jmp(lock_done);
2517 
2518     // END Slow path lock
2519 
2520     // BEGIN Slow path unlock
2521     __ bind(slow_path_unlock);
2522 
2523     // If we haven't already saved the native result we must save it now as xmm registers
2524     // are still exposed.
2525     __ vzeroupper();
2526     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2527       save_native_result(masm, ret_type, stack_slots);
2528     }
2529 
2530     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2531 
2532     __ mov(c_rarg0, obj_reg);
2533     __ mov(c_rarg2, r15_thread);
2534     __ mov(r12, rsp); // remember sp
2535     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2536     __ andptr(rsp, -16); // align stack as required by ABI
2537 
2538     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2539     // NOTE that obj_reg == rbx currently
2540     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2541     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2542 
2543     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2544     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2545     __ mov(rsp, r12); // restore sp
2546     __ reinit_heapbase();
2547 #ifdef ASSERT
2548     {
2549       Label L;
2550       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2551       __ jcc(Assembler::equal, L);
2552       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2553       __ bind(L);
2554     }
2555 #endif /* ASSERT */
2556 
2557     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2558 
2559     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2560       restore_native_result(masm, ret_type, stack_slots);
2561     }
2562     __ jmp(unlock_done);
2563 
2564     // END Slow path unlock
2565 
2566   } // synchronized
2567 
2568   // SLOW PATH Reguard the stack if needed
2569 
2570   __ bind(reguard);
2571   __ vzeroupper();
2572   save_native_result(masm, ret_type, stack_slots);
2573   __ mov(r12, rsp); // remember sp
2574   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2575   __ andptr(rsp, -16); // align stack as required by ABI
2576   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2577   __ mov(rsp, r12); // restore sp
2578   __ reinit_heapbase();
2579   restore_native_result(masm, ret_type, stack_slots);
2580   // and continue
2581   __ jmp(reguard_done);
2582 
2583 
2584 
2585   __ flush();
2586 
2587   nmethod *nm = nmethod::new_native_nmethod(method,
2588                                             compile_id,
2589                                             masm->code(),
2590                                             vep_offset,
2591                                             frame_complete,
2592                                             stack_slots / VMRegImpl::slots_per_word,
2593                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2594                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2595                                             oop_maps);
2596 
2597   return nm;
2598 }
2599 
2600 // this function returns the adjust size (in number of words) to a c2i adapter
2601 // activation for use during deoptimization
last_frame_adjust(int callee_parameters,int callee_locals)2602 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2603   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2604 }
2605 
2606 
out_preserve_stack_slots()2607 uint SharedRuntime::out_preserve_stack_slots() {
2608   return 0;
2609 }
2610 
2611 
2612 // Number of stack slots between incoming argument block and the start of
2613 // a new frame.  The PROLOG must add this many slots to the stack.  The
2614 // EPILOG must remove this many slots.  amd64 needs two slots for
2615 // return address.
in_preserve_stack_slots()2616 uint SharedRuntime::in_preserve_stack_slots() {
2617   return 4 + 2 * VerifyStackAtCalls;
2618 }
2619 
2620 //------------------------------generate_deopt_blob----------------------------
generate_deopt_blob()2621 void SharedRuntime::generate_deopt_blob() {
2622   // Allocate space for the code
2623   ResourceMark rm;
2624   // Setup code generation tools
2625   int pad = 0;
2626   if (UseAVX > 2) {
2627     pad += 1024;
2628   }
2629 #if INCLUDE_JVMCI
2630   if (EnableJVMCI || UseAOT) {
2631     pad += 512; // Increase the buffer size when compiling for JVMCI
2632   }
2633 #endif
2634   CodeBuffer buffer("deopt_blob", 2560+pad, 1024);
2635   MacroAssembler* masm = new MacroAssembler(&buffer);
2636   int frame_size_in_words;
2637   OopMap* map = NULL;
2638   OopMapSet *oop_maps = new OopMapSet();
2639 
2640   // -------------
2641   // This code enters when returning to a de-optimized nmethod.  A return
2642   // address has been pushed on the the stack, and return values are in
2643   // registers.
2644   // If we are doing a normal deopt then we were called from the patched
2645   // nmethod from the point we returned to the nmethod. So the return
2646   // address on the stack is wrong by NativeCall::instruction_size
2647   // We will adjust the value so it looks like we have the original return
2648   // address on the stack (like when we eagerly deoptimized).
2649   // In the case of an exception pending when deoptimizing, we enter
2650   // with a return address on the stack that points after the call we patched
2651   // into the exception handler. We have the following register state from,
2652   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2653   //    rax: exception oop
2654   //    rbx: exception handler
2655   //    rdx: throwing pc
2656   // So in this case we simply jam rdx into the useless return address and
2657   // the stack looks just like we want.
2658   //
2659   // At this point we need to de-opt.  We save the argument return
2660   // registers.  We call the first C routine, fetch_unroll_info().  This
2661   // routine captures the return values and returns a structure which
2662   // describes the current frame size and the sizes of all replacement frames.
2663   // The current frame is compiled code and may contain many inlined
2664   // functions, each with their own JVM state.  We pop the current frame, then
2665   // push all the new frames.  Then we call the C routine unpack_frames() to
2666   // populate these frames.  Finally unpack_frames() returns us the new target
2667   // address.  Notice that callee-save registers are BLOWN here; they have
2668   // already been captured in the vframeArray at the time the return PC was
2669   // patched.
2670   address start = __ pc();
2671   Label cont;
2672 
2673   // Prolog for non exception case!
2674 
2675   // Save everything in sight.
2676   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_vectors*/ true);
2677 
2678   // Normal deoptimization.  Save exec mode for unpack_frames.
2679   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2680   __ jmp(cont);
2681 
2682   int reexecute_offset = __ pc() - start;
2683 #if INCLUDE_JVMCI && !defined(COMPILER1)
2684   if (EnableJVMCI && UseJVMCICompiler) {
2685     // JVMCI does not use this kind of deoptimization
2686     __ should_not_reach_here();
2687   }
2688 #endif
2689 
2690   // Reexecute case
2691   // return address is the pc describes what bci to do re-execute at
2692 
2693   // No need to update map as each call to save_live_registers will produce identical oopmap
2694   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_vectors*/ true);
2695 
2696   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2697   __ jmp(cont);
2698 
2699 #if INCLUDE_JVMCI
2700   Label after_fetch_unroll_info_call;
2701   int implicit_exception_uncommon_trap_offset = 0;
2702   int uncommon_trap_offset = 0;
2703 
2704   if (EnableJVMCI || UseAOT) {
2705     implicit_exception_uncommon_trap_offset = __ pc() - start;
2706 
2707     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2708     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
2709 
2710     uncommon_trap_offset = __ pc() - start;
2711 
2712     // Save everything in sight.
2713     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_vectors*/ true);
2714     // fetch_unroll_info needs to call last_java_frame()
2715     __ set_last_Java_frame(noreg, noreg, NULL);
2716 
2717     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
2718     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
2719 
2720     __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
2721     __ mov(c_rarg0, r15_thread);
2722     __ movl(c_rarg2, r14); // exec mode
2723     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2724     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2725 
2726     __ reset_last_Java_frame(false);
2727 
2728     __ jmp(after_fetch_unroll_info_call);
2729   } // EnableJVMCI
2730 #endif // INCLUDE_JVMCI
2731 
2732   int exception_offset = __ pc() - start;
2733 
2734   // Prolog for exception case
2735 
2736   // all registers are dead at this entry point, except for rax, and
2737   // rdx which contain the exception oop and exception pc
2738   // respectively.  Set them in TLS and fall thru to the
2739   // unpack_with_exception_in_tls entry point.
2740 
2741   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2742   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2743 
2744   int exception_in_tls_offset = __ pc() - start;
2745 
2746   // new implementation because exception oop is now passed in JavaThread
2747 
2748   // Prolog for exception case
2749   // All registers must be preserved because they might be used by LinearScan
2750   // Exceptiop oop and throwing PC are passed in JavaThread
2751   // tos: stack at point of call to method that threw the exception (i.e. only
2752   // args are on the stack, no return address)
2753 
2754   // make room on stack for the return address
2755   // It will be patched later with the throwing pc. The correct value is not
2756   // available now because loading it from memory would destroy registers.
2757   __ push(0);
2758 
2759   // Save everything in sight.
2760   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_vectors*/ true);
2761 
2762   // Now it is safe to overwrite any register
2763 
2764   // Deopt during an exception.  Save exec mode for unpack_frames.
2765   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2766 
2767   // load throwing pc from JavaThread and patch it as the return address
2768   // of the current frame. Then clear the field in JavaThread
2769 
2770   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2771   __ movptr(Address(rbp, wordSize), rdx);
2772   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2773 
2774 #ifdef ASSERT
2775   // verify that there is really an exception oop in JavaThread
2776   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2777   __ verify_oop(rax);
2778 
2779   // verify that there is no pending exception
2780   Label no_pending_exception;
2781   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
2782   __ testptr(rax, rax);
2783   __ jcc(Assembler::zero, no_pending_exception);
2784   __ stop("must not have pending exception here");
2785   __ bind(no_pending_exception);
2786 #endif
2787 
2788   __ bind(cont);
2789 
2790   // Call C code.  Need thread and this frame, but NOT official VM entry
2791   // crud.  We cannot block on this call, no GC can happen.
2792   //
2793   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2794 
2795   // fetch_unroll_info needs to call last_java_frame().
2796 
2797   __ set_last_Java_frame(noreg, noreg, NULL);
2798 #ifdef ASSERT
2799   { Label L;
2800     __ cmpptr(Address(r15_thread,
2801                     JavaThread::last_Java_fp_offset()),
2802             (int32_t)0);
2803     __ jcc(Assembler::equal, L);
2804     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2805     __ bind(L);
2806   }
2807 #endif // ASSERT
2808   __ mov(c_rarg0, r15_thread);
2809   __ movl(c_rarg1, r14); // exec_mode
2810   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2811 
2812   // Need to have an oopmap that tells fetch_unroll_info where to
2813   // find any register it might need.
2814   oop_maps->add_gc_map(__ pc() - start, map);
2815 
2816   __ reset_last_Java_frame(false);
2817 
2818 #if INCLUDE_JVMCI
2819   if (EnableJVMCI || UseAOT) {
2820     __ bind(after_fetch_unroll_info_call);
2821   }
2822 #endif
2823 
2824   // Load UnrollBlock* into rdi
2825   __ mov(rdi, rax);
2826 
2827   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
2828    Label noException;
2829   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2830   __ jcc(Assembler::notEqual, noException);
2831   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
2832   // QQQ this is useless it was NULL above
2833   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2834   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
2835   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
2836 
2837   __ verify_oop(rax);
2838 
2839   // Overwrite the result registers with the exception results.
2840   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2841   // I think this is useless
2842   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
2843 
2844   __ bind(noException);
2845 
2846   // Only register save data is on the stack.
2847   // Now restore the result registers.  Everything else is either dead
2848   // or captured in the vframeArray.
2849   RegisterSaver::restore_result_registers(masm);
2850 
2851   // All of the register save area has been popped of the stack. Only the
2852   // return address remains.
2853 
2854   // Pop all the frames we must move/replace.
2855   //
2856   // Frame picture (youngest to oldest)
2857   // 1: self-frame (no frame link)
2858   // 2: deopting frame  (no frame link)
2859   // 3: caller of deopting frame (could be compiled/interpreted).
2860   //
2861   // Note: by leaving the return address of self-frame on the stack
2862   // and using the size of frame 2 to adjust the stack
2863   // when we are done the return to frame 3 will still be on the stack.
2864 
2865   // Pop deoptimized frame
2866   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2867   __ addptr(rsp, rcx);
2868 
2869   // rsp should be pointing at the return address to the caller (3)
2870 
2871   // Pick up the initial fp we should save
2872   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
2873   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
2874 
2875 #ifdef ASSERT
2876   // Compilers generate code that bang the stack by as much as the
2877   // interpreter would need. So this stack banging should never
2878   // trigger a fault. Verify that it does not on non product builds.
2879   if (UseStackBanging) {
2880     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2881     __ bang_stack_size(rbx, rcx);
2882   }
2883 #endif
2884 
2885   // Load address of array of frame pcs into rcx
2886   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2887 
2888   // Trash the old pc
2889   __ addptr(rsp, wordSize);
2890 
2891   // Load address of array of frame sizes into rsi
2892   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2893 
2894   // Load counter into rdx
2895   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2896 
2897   // Now adjust the caller's stack to make up for the extra locals
2898   // but record the original sp so that we can save it in the skeletal interpreter
2899   // frame and the stack walking of interpreter_sender will get the unextended sp
2900   // value and not the "real" sp value.
2901 
2902   const Register sender_sp = r8;
2903 
2904   __ mov(sender_sp, rsp);
2905   __ movl(rbx, Address(rdi,
2906                        Deoptimization::UnrollBlock::
2907                        caller_adjustment_offset_in_bytes()));
2908   __ subptr(rsp, rbx);
2909 
2910   // Push interpreter frames in a loop
2911   Label loop;
2912   __ bind(loop);
2913   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2914   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
2915   __ pushptr(Address(rcx, 0));          // Save return address
2916   __ enter();                           // Save old & set new ebp
2917   __ subptr(rsp, rbx);                  // Prolog
2918   // This value is corrected by layout_activation_impl
2919   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2920   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
2921   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
2922   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2923   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2924   __ decrementl(rdx);                   // Decrement counter
2925   __ jcc(Assembler::notZero, loop);
2926   __ pushptr(Address(rcx, 0));          // Save final return address
2927 
2928   // Re-push self-frame
2929   __ enter();                           // Save old & set new ebp
2930 
2931   // Allocate a full sized register save area.
2932   // Return address and rbp are in place, so we allocate two less words.
2933   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
2934 
2935   // Restore frame locals after moving the frame
2936   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
2937   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
2938 
2939   // Call C code.  Need thread but NOT official VM entry
2940   // crud.  We cannot block on this call, no GC can happen.  Call should
2941   // restore return values to their stack-slots with the new SP.
2942   //
2943   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2944 
2945   // Use rbp because the frames look interpreted now
2946   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
2947   // Don't need the precise return PC here, just precise enough to point into this code blob.
2948   address the_pc = __ pc();
2949   __ set_last_Java_frame(noreg, rbp, the_pc);
2950 
2951   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
2952   __ mov(c_rarg0, r15_thread);
2953   __ movl(c_rarg1, r14); // second arg: exec_mode
2954   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2955   // Revert SP alignment after call since we're going to do some SP relative addressing below
2956   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
2957 
2958   // Set an oopmap for the call site
2959   // Use the same PC we used for the last java frame
2960   oop_maps->add_gc_map(the_pc - start,
2961                        new OopMap( frame_size_in_words, 0 ));
2962 
2963   // Clear fp AND pc
2964   __ reset_last_Java_frame(true);
2965 
2966   // Collect return values
2967   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
2968   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
2969   // I think this is useless (throwing pc?)
2970   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
2971 
2972   // Pop self-frame.
2973   __ leave();                           // Epilog
2974 
2975   // Jump to interpreter
2976   __ ret(0);
2977 
2978   // Make sure all code is generated
2979   masm->flush();
2980 
2981   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2982   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2983 #if INCLUDE_JVMCI
2984   if (EnableJVMCI || UseAOT) {
2985     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2986     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2987   }
2988 #endif
2989 }
2990 
2991 #ifdef COMPILER2
2992 //------------------------------generate_uncommon_trap_blob--------------------
generate_uncommon_trap_blob()2993 void SharedRuntime::generate_uncommon_trap_blob() {
2994   // Allocate space for the code
2995   ResourceMark rm;
2996   // Setup code generation tools
2997   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2998   MacroAssembler* masm = new MacroAssembler(&buffer);
2999 
3000   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3001 
3002   address start = __ pc();
3003 
3004   if (UseRTMLocking) {
3005     // Abort RTM transaction before possible nmethod deoptimization.
3006     __ xabort(0);
3007   }
3008 
3009   // Push self-frame.  We get here with a return address on the
3010   // stack, so rsp is 8-byte aligned until we allocate our frame.
3011   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3012 
3013   // No callee saved registers. rbp is assumed implicitly saved
3014   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3015 
3016   // compiler left unloaded_class_index in j_rarg0 move to where the
3017   // runtime expects it.
3018   __ movl(c_rarg1, j_rarg0);
3019 
3020   __ set_last_Java_frame(noreg, noreg, NULL);
3021 
3022   // Call C code.  Need thread but NOT official VM entry
3023   // crud.  We cannot block on this call, no GC can happen.  Call should
3024   // capture callee-saved registers as well as return values.
3025   // Thread is in rdi already.
3026   //
3027   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3028 
3029   __ mov(c_rarg0, r15_thread);
3030   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3031   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3032 
3033   // Set an oopmap for the call site
3034   OopMapSet* oop_maps = new OopMapSet();
3035   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3036 
3037   // location of rbp is known implicitly by the frame sender code
3038 
3039   oop_maps->add_gc_map(__ pc() - start, map);
3040 
3041   __ reset_last_Java_frame(false);
3042 
3043   // Load UnrollBlock* into rdi
3044   __ mov(rdi, rax);
3045 
3046 #ifdef ASSERT
3047   { Label L;
3048     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
3049             (int32_t)Deoptimization::Unpack_uncommon_trap);
3050     __ jcc(Assembler::equal, L);
3051     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3052     __ bind(L);
3053   }
3054 #endif
3055 
3056   // Pop all the frames we must move/replace.
3057   //
3058   // Frame picture (youngest to oldest)
3059   // 1: self-frame (no frame link)
3060   // 2: deopting frame  (no frame link)
3061   // 3: caller of deopting frame (could be compiled/interpreted).
3062 
3063   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3064   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3065 
3066   // Pop deoptimized frame (int)
3067   __ movl(rcx, Address(rdi,
3068                        Deoptimization::UnrollBlock::
3069                        size_of_deoptimized_frame_offset_in_bytes()));
3070   __ addptr(rsp, rcx);
3071 
3072   // rsp should be pointing at the return address to the caller (3)
3073 
3074   // Pick up the initial fp we should save
3075   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3076   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3077 
3078 #ifdef ASSERT
3079   // Compilers generate code that bang the stack by as much as the
3080   // interpreter would need. So this stack banging should never
3081   // trigger a fault. Verify that it does not on non product builds.
3082   if (UseStackBanging) {
3083     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3084     __ bang_stack_size(rbx, rcx);
3085   }
3086 #endif
3087 
3088   // Load address of array of frame pcs into rcx (address*)
3089   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3090 
3091   // Trash the return pc
3092   __ addptr(rsp, wordSize);
3093 
3094   // Load address of array of frame sizes into rsi (intptr_t*)
3095   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3096 
3097   // Counter
3098   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3099 
3100   // Now adjust the caller's stack to make up for the extra locals but
3101   // record the original sp so that we can save it in the skeletal
3102   // interpreter frame and the stack walking of interpreter_sender
3103   // will get the unextended sp value and not the "real" sp value.
3104 
3105   const Register sender_sp = r8;
3106 
3107   __ mov(sender_sp, rsp);
3108   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3109   __ subptr(rsp, rbx);
3110 
3111   // Push interpreter frames in a loop
3112   Label loop;
3113   __ bind(loop);
3114   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3115   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3116   __ pushptr(Address(rcx, 0));     // Save return address
3117   __ enter();                      // Save old & set new rbp
3118   __ subptr(rsp, rbx);             // Prolog
3119   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3120             sender_sp);            // Make it walkable
3121   // This value is corrected by layout_activation_impl
3122   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3123   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3124   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3125   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3126   __ decrementl(rdx);              // Decrement counter
3127   __ jcc(Assembler::notZero, loop);
3128   __ pushptr(Address(rcx, 0));     // Save final return address
3129 
3130   // Re-push self-frame
3131   __ enter();                 // Save old & set new rbp
3132   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3133                               // Prolog
3134 
3135   // Use rbp because the frames look interpreted now
3136   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3137   // Don't need the precise return PC here, just precise enough to point into this code blob.
3138   address the_pc = __ pc();
3139   __ set_last_Java_frame(noreg, rbp, the_pc);
3140 
3141   // Call C code.  Need thread but NOT official VM entry
3142   // crud.  We cannot block on this call, no GC can happen.  Call should
3143   // restore return values to their stack-slots with the new SP.
3144   // Thread is in rdi already.
3145   //
3146   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3147 
3148   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3149   __ mov(c_rarg0, r15_thread);
3150   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3151   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3152 
3153   // Set an oopmap for the call site
3154   // Use the same PC we used for the last java frame
3155   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3156 
3157   // Clear fp AND pc
3158   __ reset_last_Java_frame(true);
3159 
3160   // Pop self-frame.
3161   __ leave();                 // Epilog
3162 
3163   // Jump to interpreter
3164   __ ret(0);
3165 
3166   // Make sure all code is generated
3167   masm->flush();
3168 
3169   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3170                                                  SimpleRuntimeFrame::framesize >> 1);
3171 }
3172 #endif // COMPILER2
3173 
3174 
3175 //------------------------------generate_handler_blob------
3176 //
3177 // Generate a special Compile2Runtime blob that saves all registers,
3178 // and setup oopmap.
3179 //
generate_handler_blob(address call_ptr,int poll_type)3180 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3181   assert(StubRoutines::forward_exception_entry() != NULL,
3182          "must be generated before");
3183 
3184   ResourceMark rm;
3185   OopMapSet *oop_maps = new OopMapSet();
3186   OopMap* map;
3187 
3188   // Allocate space for the code.  Setup code generation tools.
3189   CodeBuffer buffer("handler_blob", 2048, 1024);
3190   MacroAssembler* masm = new MacroAssembler(&buffer);
3191 
3192   address start   = __ pc();
3193   address call_pc = NULL;
3194   int frame_size_in_words;
3195   bool cause_return = (poll_type == POLL_AT_RETURN);
3196   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3197 
3198   if (UseRTMLocking) {
3199     // Abort RTM transaction before calling runtime
3200     // because critical section will be large and will be
3201     // aborted anyway. Also nmethod could be deoptimized.
3202     __ xabort(0);
3203   }
3204 
3205   // Make room for return address (or push it again)
3206   if (!cause_return) {
3207     __ push(rbx);
3208   }
3209 
3210   // Save registers, fpu state, and flags
3211   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3212 
3213   // The following is basically a call_VM.  However, we need the precise
3214   // address of the call in order to generate an oopmap. Hence, we do all the
3215   // work outselves.
3216 
3217   __ set_last_Java_frame(noreg, noreg, NULL);
3218 
3219   // The return address must always be correct so that frame constructor never
3220   // sees an invalid pc.
3221 
3222   if (!cause_return) {
3223     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
3224     // Additionally, rbx is a callee saved register and we can look at it later to determine
3225     // if someone changed the return address for us!
3226     __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3227     __ movptr(Address(rbp, wordSize), rbx);
3228   }
3229 
3230   // Do the call
3231   __ mov(c_rarg0, r15_thread);
3232   __ call(RuntimeAddress(call_ptr));
3233 
3234   // Set an oopmap for the call site.  This oopmap will map all
3235   // oop-registers and debug-info registers as callee-saved.  This
3236   // will allow deoptimization at this safepoint to find all possible
3237   // debug-info recordings, as well as let GC find all oops.
3238 
3239   oop_maps->add_gc_map( __ pc() - start, map);
3240 
3241   Label noException;
3242 
3243   __ reset_last_Java_frame(false);
3244 
3245   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3246   __ jcc(Assembler::equal, noException);
3247 
3248   // Exception pending
3249 
3250   RegisterSaver::restore_live_registers(masm, save_vectors);
3251 
3252   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3253 
3254   // No exception case
3255   __ bind(noException);
3256 
3257   Label no_adjust;
3258 #ifdef ASSERT
3259   Label bail;
3260 #endif
3261   if (!cause_return) {
3262     Label no_prefix, not_special;
3263 
3264     // If our stashed return pc was modified by the runtime we avoid touching it
3265     __ cmpptr(rbx, Address(rbp, wordSize));
3266     __ jccb(Assembler::notEqual, no_adjust);
3267 
3268     // Skip over the poll instruction.
3269     // See NativeInstruction::is_safepoint_poll()
3270     // Possible encodings:
3271     //      85 00       test   %eax,(%rax)
3272     //      85 01       test   %eax,(%rcx)
3273     //      85 02       test   %eax,(%rdx)
3274     //      85 03       test   %eax,(%rbx)
3275     //      85 06       test   %eax,(%rsi)
3276     //      85 07       test   %eax,(%rdi)
3277     //
3278     //   41 85 00       test   %eax,(%r8)
3279     //   41 85 01       test   %eax,(%r9)
3280     //   41 85 02       test   %eax,(%r10)
3281     //   41 85 03       test   %eax,(%r11)
3282     //   41 85 06       test   %eax,(%r14)
3283     //   41 85 07       test   %eax,(%r15)
3284     //
3285     //      85 04 24    test   %eax,(%rsp)
3286     //   41 85 04 24    test   %eax,(%r12)
3287     //      85 45 00    test   %eax,0x0(%rbp)
3288     //   41 85 45 00    test   %eax,0x0(%r13)
3289 
3290     __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix);
3291     __ jcc(Assembler::notEqual, no_prefix);
3292     __ addptr(rbx, 1);
3293     __ bind(no_prefix);
3294 #ifdef ASSERT
3295     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
3296 #endif
3297     // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values:
3298     // r12/rsp 0x04
3299     // r13/rbp 0x05
3300     __ movzbq(rcx, Address(rbx, 1));
3301     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
3302     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
3303     __ cmpptr(rcx, 1);
3304     __ jcc(Assembler::above, not_special);
3305     __ addptr(rbx, 1);
3306     __ bind(not_special);
3307 #ifdef ASSERT
3308     // Verify the correct encoding of the poll we're about to skip.
3309     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
3310     __ jcc(Assembler::notEqual, bail);
3311     // Mask out the modrm bits
3312     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
3313     // rax encodes to 0, so if the bits are nonzero it's incorrect
3314     __ jcc(Assembler::notZero, bail);
3315 #endif
3316     // Adjust return pc forward to step over the safepoint poll instruction
3317     __ addptr(rbx, 2);
3318     __ movptr(Address(rbp, wordSize), rbx);
3319   }
3320 
3321   __ bind(no_adjust);
3322   // Normal exit, restore registers and exit.
3323   RegisterSaver::restore_live_registers(masm, save_vectors);
3324   __ ret(0);
3325 
3326 #ifdef ASSERT
3327   __ bind(bail);
3328   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
3329 #endif
3330 
3331   // Make sure all code is generated
3332   masm->flush();
3333 
3334   // Fill-out other meta info
3335   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3336 }
3337 
3338 //
3339 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3340 //
3341 // Generate a stub that calls into vm to find out the proper destination
3342 // of a java call. All the argument registers are live at this point
3343 // but since this is generic code we don't know what they are and the caller
3344 // must do any gc of the args.
3345 //
generate_resolve_blob(address destination,const char * name)3346 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3347   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3348 
3349   // allocate space for the code
3350   ResourceMark rm;
3351 
3352   CodeBuffer buffer(name, 1000, 512);
3353   MacroAssembler* masm                = new MacroAssembler(&buffer);
3354 
3355   int frame_size_in_words;
3356 
3357   OopMapSet *oop_maps = new OopMapSet();
3358   OopMap* map = NULL;
3359 
3360   int start = __ offset();
3361 
3362   // No need to save vector registers since they are caller-saved anyway.
3363   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, /*save_vectors*/ false);
3364 
3365   int frame_complete = __ offset();
3366 
3367   __ set_last_Java_frame(noreg, noreg, NULL);
3368 
3369   __ mov(c_rarg0, r15_thread);
3370 
3371   __ call(RuntimeAddress(destination));
3372 
3373 
3374   // Set an oopmap for the call site.
3375   // We need this not only for callee-saved registers, but also for volatile
3376   // registers that the compiler might be keeping live across a safepoint.
3377 
3378   oop_maps->add_gc_map( __ offset() - start, map);
3379 
3380   // rax contains the address we are going to jump to assuming no exception got installed
3381 
3382   // clear last_Java_sp
3383   __ reset_last_Java_frame(false);
3384   // check for pending exceptions
3385   Label pending;
3386   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3387   __ jcc(Assembler::notEqual, pending);
3388 
3389   // get the returned Method*
3390   __ get_vm_result_2(rbx, r15_thread);
3391   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3392 
3393   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3394 
3395   RegisterSaver::restore_live_registers(masm);
3396 
3397   // We are back the the original state on entry and ready to go.
3398 
3399   __ jmp(rax);
3400 
3401   // Pending exception after the safepoint
3402 
3403   __ bind(pending);
3404 
3405   RegisterSaver::restore_live_registers(masm);
3406 
3407   // exception pending => remove activation and forward to exception handler
3408 
3409   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3410 
3411   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3412   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3413 
3414   // -------------
3415   // make sure all code is generated
3416   masm->flush();
3417 
3418   // return the  blob
3419   // frame_size_words or bytes??
3420   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3421 }
3422 
3423 static const int native_invoker_code_size = MethodHandles::adapter_code_size;
3424 
3425 class NativeInvokerGenerator : public StubCodeGenerator {
3426   address _call_target;
3427   int _shadow_space_bytes;
3428 
3429   const GrowableArray<VMReg>& _input_registers;
3430   const GrowableArray<VMReg>& _output_registers;
3431 public:
NativeInvokerGenerator(CodeBuffer * buffer,address call_target,int shadow_space_bytes,const GrowableArray<VMReg> & input_registers,const GrowableArray<VMReg> & output_registers)3432   NativeInvokerGenerator(CodeBuffer* buffer,
3433                          address call_target,
3434                          int shadow_space_bytes,
3435                          const GrowableArray<VMReg>& input_registers,
3436                          const GrowableArray<VMReg>& output_registers)
3437    : StubCodeGenerator(buffer, PrintMethodHandleStubs),
3438      _call_target(call_target),
3439      _shadow_space_bytes(shadow_space_bytes),
3440      _input_registers(input_registers),
3441      _output_registers(output_registers) {}
3442   void generate();
3443 
spill_register(VMReg reg)3444   void spill_register(VMReg reg) {
3445     assert(reg->is_reg(), "must be a register");
3446     MacroAssembler* masm = _masm;
3447     if (reg->is_Register()) {
3448       __ push(reg->as_Register());
3449     } else if (reg->is_XMMRegister()) {
3450       if (UseAVX >= 3) {
3451         __ subptr(rsp, 64); // bytes
3452         __ evmovdqul(Address(rsp, 0), reg->as_XMMRegister(), Assembler::AVX_512bit);
3453       } else if (UseAVX >= 1) {
3454         __ subptr(rsp, 32);
3455         __ vmovdqu(Address(rsp, 0), reg->as_XMMRegister());
3456       } else {
3457         __ subptr(rsp, 16);
3458         __ movdqu(Address(rsp, 0), reg->as_XMMRegister());
3459       }
3460     } else {
3461       ShouldNotReachHere();
3462     }
3463   }
3464 
fill_register(VMReg reg)3465   void fill_register(VMReg reg) {
3466     assert(reg->is_reg(), "must be a register");
3467     MacroAssembler* masm = _masm;
3468     if (reg->is_Register()) {
3469       __ pop(reg->as_Register());
3470     } else if (reg->is_XMMRegister()) {
3471       if (UseAVX >= 3) {
3472         __ evmovdqul(reg->as_XMMRegister(), Address(rsp, 0), Assembler::AVX_512bit);
3473         __ addptr(rsp, 64); // bytes
3474       } else if (UseAVX >= 1) {
3475         __ vmovdqu(reg->as_XMMRegister(), Address(rsp, 0));
3476         __ addptr(rsp, 32);
3477       } else {
3478         __ movdqu(reg->as_XMMRegister(), Address(rsp, 0));
3479         __ addptr(rsp, 16);
3480       }
3481     } else {
3482       ShouldNotReachHere();
3483     }
3484   }
3485 
3486 private:
3487 #ifdef ASSERT
target_uses_register(VMReg reg)3488 bool target_uses_register(VMReg reg) {
3489   return _input_registers.contains(reg) || _output_registers.contains(reg);
3490 }
3491 #endif
3492 };
3493 
make_native_invoker(address call_target,int shadow_space_bytes,const GrowableArray<VMReg> & input_registers,const GrowableArray<VMReg> & output_registers)3494 BufferBlob* SharedRuntime::make_native_invoker(address call_target,
3495                                                int shadow_space_bytes,
3496                                                const GrowableArray<VMReg>& input_registers,
3497                                                const GrowableArray<VMReg>& output_registers) {
3498   BufferBlob* _invoke_native_blob = BufferBlob::create("nep_invoker_blob", native_invoker_code_size);
3499   if (_invoke_native_blob == NULL)
3500     return NULL; // allocation failure
3501 
3502   CodeBuffer code(_invoke_native_blob);
3503   NativeInvokerGenerator g(&code, call_target, shadow_space_bytes, input_registers, output_registers);
3504   g.generate();
3505   code.log_section_sizes("nep_invoker_blob");
3506 
3507   return _invoke_native_blob;
3508 }
3509 
generate()3510 void NativeInvokerGenerator::generate() {
3511   assert(!(target_uses_register(r15_thread->as_VMReg()) || target_uses_register(rscratch1->as_VMReg())), "Register conflict");
3512 
3513   MacroAssembler* masm = _masm;
3514   __ enter();
3515 
3516   Address java_pc(r15_thread, JavaThread::last_Java_pc_offset());
3517   __ movptr(rscratch1, Address(rsp, 8)); // read return address from stack
3518   __ movptr(java_pc, rscratch1);
3519 
3520   __ movptr(rscratch1, rsp);
3521   __ addptr(rscratch1, 16); // skip return and frame
3522   __ movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), rscratch1);
3523 
3524   __ movptr(Address(r15_thread, JavaThread::saved_rbp_address_offset()), rsp); // rsp points at saved RBP
3525 
3526     // State transition
3527   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
3528 
3529   if (_shadow_space_bytes != 0) {
3530     // needed here for correct stack args offset on Windows
3531     __ subptr(rsp, _shadow_space_bytes);
3532   }
3533 
3534   __ call(RuntimeAddress(_call_target));
3535 
3536   if (_shadow_space_bytes != 0) {
3537     // needed here for correct stack args offset on Windows
3538     __ addptr(rsp, _shadow_space_bytes);
3539   }
3540 
3541   assert(_output_registers.length() <= 1
3542     || (_output_registers.length() == 2 && !_output_registers.at(1)->is_valid()), "no multi-reg returns");
3543   bool need_spills = _output_registers.length() != 0;
3544   VMReg ret_reg = need_spills ? _output_registers.at(0) : VMRegImpl::Bad();
3545 
3546   __ restore_cpu_control_state_after_jni();
3547 
3548   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
3549 
3550   // Force this write out before the read below
3551   __ membar(Assembler::Membar_mask_bits(
3552           Assembler::LoadLoad | Assembler::LoadStore |
3553           Assembler::StoreLoad | Assembler::StoreStore));
3554 
3555   Label L_after_safepoint_poll;
3556   Label L_safepoint_poll_slow_path;
3557 
3558   __ safepoint_poll(L_safepoint_poll_slow_path, r15_thread, true /* at_return */, false /* in_nmethod */);
3559   __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
3560   __ jcc(Assembler::notEqual, L_safepoint_poll_slow_path);
3561 
3562   __ bind(L_after_safepoint_poll);
3563 
3564   // change thread state
3565   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
3566 
3567   __ block_comment("reguard stack check");
3568   Label L_reguard;
3569   Label L_after_reguard;
3570   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_yellow_reserved_disabled);
3571   __ jcc(Assembler::equal, L_reguard);
3572   __ bind(L_after_reguard);
3573 
3574   __ reset_last_Java_frame(r15_thread, true);
3575 
3576   __ leave(); // required for proper stackwalking of RuntimeStub frame
3577   __ ret(0);
3578 
3579   //////////////////////////////////////////////////////////////////////////////
3580 
3581   __ block_comment("{ L_safepoint_poll_slow_path");
3582   __ bind(L_safepoint_poll_slow_path);
3583   __ vzeroupper();
3584 
3585   if (need_spills) {
3586     spill_register(ret_reg);
3587   }
3588 
3589   __ mov(c_rarg0, r15_thread);
3590   __ mov(r12, rsp); // remember sp
3591   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3592   __ andptr(rsp, -16); // align stack as required by ABI
3593   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
3594   __ mov(rsp, r12); // restore sp
3595   __ reinit_heapbase();
3596 
3597   if (need_spills) {
3598     fill_register(ret_reg);
3599   }
3600 
3601   __ jmp(L_after_safepoint_poll);
3602   __ block_comment("} L_safepoint_poll_slow_path");
3603 
3604   //////////////////////////////////////////////////////////////////////////////
3605 
3606   __ block_comment("{ L_reguard");
3607   __ bind(L_reguard);
3608   __ vzeroupper();
3609 
3610   if (need_spills) {
3611     spill_register(ret_reg);
3612   }
3613 
3614   __ mov(r12, rsp); // remember sp
3615   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3616   __ andptr(rsp, -16); // align stack as required by ABI
3617   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
3618   __ mov(rsp, r12); // restore sp
3619   __ reinit_heapbase();
3620 
3621   if (need_spills) {
3622     fill_register(ret_reg);
3623   }
3624 
3625   __ jmp(L_after_reguard);
3626 
3627   __ block_comment("} L_reguard");
3628 
3629   //////////////////////////////////////////////////////////////////////////////
3630 
3631   __ flush();
3632 }
3633 
3634 //------------------------------Montgomery multiplication------------------------
3635 //
3636 
3637 #ifndef _WINDOWS
3638 
3639 // Subtract 0:b from carry:a.  Return carry.
3640 static julong
sub(julong a[],julong b[],julong carry,long len)3641 sub(julong a[], julong b[], julong carry, long len) {
3642   long long i = 0, cnt = len;
3643   julong tmp;
3644   asm volatile("clc; "
3645                "0: ; "
3646                "mov (%[b], %[i], 8), %[tmp]; "
3647                "sbb %[tmp], (%[a], %[i], 8); "
3648                "inc %[i]; dec %[cnt]; "
3649                "jne 0b; "
3650                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3651                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3652                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3653                : "memory");
3654   return tmp;
3655 }
3656 
3657 // Multiply (unsigned) Long A by Long B, accumulating the double-
3658 // length result into the accumulator formed of T0, T1, and T2.
3659 #define MACC(A, B, T0, T1, T2)                                  \
3660 do {                                                            \
3661   unsigned long hi, lo;                                         \
3662   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3663            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3664            : "r"(A), "a"(B) : "cc");                            \
3665  } while(0)
3666 
3667 // As above, but add twice the double-length result into the
3668 // accumulator.
3669 #define MACC2(A, B, T0, T1, T2)                                 \
3670 do {                                                            \
3671   unsigned long hi, lo;                                         \
3672   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3673            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3674            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3675            : "r"(A), "a"(B) : "cc");                            \
3676  } while(0)
3677 
3678 #else //_WINDOWS
3679 
3680 static julong
sub(julong a[],julong b[],julong carry,long len)3681 sub(julong a[], julong b[], julong carry, long len) {
3682   long i;
3683   julong tmp;
3684   unsigned char c = 1;
3685   for (i = 0; i < len; i++) {
3686     c = _addcarry_u64(c, a[i], ~b[i], &tmp);
3687     a[i] = tmp;
3688   }
3689   c = _addcarry_u64(c, carry, ~0, &tmp);
3690   return tmp;
3691 }
3692 
3693 // Multiply (unsigned) Long A by Long B, accumulating the double-
3694 // length result into the accumulator formed of T0, T1, and T2.
3695 #define MACC(A, B, T0, T1, T2)                          \
3696 do {                                                    \
3697   julong hi, lo;                            \
3698   lo = _umul128(A, B, &hi);                             \
3699   unsigned char c = _addcarry_u64(0, lo, T0, &T0);      \
3700   c = _addcarry_u64(c, hi, T1, &T1);                    \
3701   _addcarry_u64(c, T2, 0, &T2);                         \
3702  } while(0)
3703 
3704 // As above, but add twice the double-length result into the
3705 // accumulator.
3706 #define MACC2(A, B, T0, T1, T2)                         \
3707 do {                                                    \
3708   julong hi, lo;                            \
3709   lo = _umul128(A, B, &hi);                             \
3710   unsigned char c = _addcarry_u64(0, lo, T0, &T0);      \
3711   c = _addcarry_u64(c, hi, T1, &T1);                    \
3712   _addcarry_u64(c, T2, 0, &T2);                         \
3713   c = _addcarry_u64(0, lo, T0, &T0);                    \
3714   c = _addcarry_u64(c, hi, T1, &T1);                    \
3715   _addcarry_u64(c, T2, 0, &T2);                         \
3716  } while(0)
3717 
3718 #endif //_WINDOWS
3719 
3720 // Fast Montgomery multiplication.  The derivation of the algorithm is
3721 // in  A Cryptographic Library for the Motorola DSP56000,
3722 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3723 
3724 static void NOINLINE
montgomery_multiply(julong a[],julong b[],julong n[],julong m[],julong inv,int len)3725 montgomery_multiply(julong a[], julong b[], julong n[],
3726                     julong m[], julong inv, int len) {
3727   julong t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3728   int i;
3729 
3730   assert(inv * n[0] == ULLONG_MAX, "broken inverse in Montgomery multiply");
3731 
3732   for (i = 0; i < len; i++) {
3733     int j;
3734     for (j = 0; j < i; j++) {
3735       MACC(a[j], b[i-j], t0, t1, t2);
3736       MACC(m[j], n[i-j], t0, t1, t2);
3737     }
3738     MACC(a[i], b[0], t0, t1, t2);
3739     m[i] = t0 * inv;
3740     MACC(m[i], n[0], t0, t1, t2);
3741 
3742     assert(t0 == 0, "broken Montgomery multiply");
3743 
3744     t0 = t1; t1 = t2; t2 = 0;
3745   }
3746 
3747   for (i = len; i < 2*len; i++) {
3748     int j;
3749     for (j = i-len+1; j < len; j++) {
3750       MACC(a[j], b[i-j], t0, t1, t2);
3751       MACC(m[j], n[i-j], t0, t1, t2);
3752     }
3753     m[i-len] = t0;
3754     t0 = t1; t1 = t2; t2 = 0;
3755   }
3756 
3757   while (t0)
3758     t0 = sub(m, n, t0, len);
3759 }
3760 
3761 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3762 // multiplies so it should be up to 25% faster than Montgomery
3763 // multiplication.  However, its loop control is more complex and it
3764 // may actually run slower on some machines.
3765 
3766 static void NOINLINE
montgomery_square(julong a[],julong n[],julong m[],julong inv,int len)3767 montgomery_square(julong a[], julong n[],
3768                   julong m[], julong inv, int len) {
3769   julong t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3770   int i;
3771 
3772   assert(inv * n[0] == ULLONG_MAX, "broken inverse in Montgomery square");
3773 
3774   for (i = 0; i < len; i++) {
3775     int j;
3776     int end = (i+1)/2;
3777     for (j = 0; j < end; j++) {
3778       MACC2(a[j], a[i-j], t0, t1, t2);
3779       MACC(m[j], n[i-j], t0, t1, t2);
3780     }
3781     if ((i & 1) == 0) {
3782       MACC(a[j], a[j], t0, t1, t2);
3783     }
3784     for (; j < i; j++) {
3785       MACC(m[j], n[i-j], t0, t1, t2);
3786     }
3787     m[i] = t0 * inv;
3788     MACC(m[i], n[0], t0, t1, t2);
3789 
3790     assert(t0 == 0, "broken Montgomery square");
3791 
3792     t0 = t1; t1 = t2; t2 = 0;
3793   }
3794 
3795   for (i = len; i < 2*len; i++) {
3796     int start = i-len+1;
3797     int end = start + (len - start)/2;
3798     int j;
3799     for (j = start; j < end; j++) {
3800       MACC2(a[j], a[i-j], t0, t1, t2);
3801       MACC(m[j], n[i-j], t0, t1, t2);
3802     }
3803     if ((i & 1) == 0) {
3804       MACC(a[j], a[j], t0, t1, t2);
3805     }
3806     for (; j < len; j++) {
3807       MACC(m[j], n[i-j], t0, t1, t2);
3808     }
3809     m[i-len] = t0;
3810     t0 = t1; t1 = t2; t2 = 0;
3811   }
3812 
3813   while (t0)
3814     t0 = sub(m, n, t0, len);
3815 }
3816 
3817 // Swap words in a longword.
swap(julong x)3818 static julong swap(julong x) {
3819   return (x << 32) | (x >> 32);
3820 }
3821 
3822 // Copy len longwords from s to d, word-swapping as we go.  The
3823 // destination array is reversed.
reverse_words(julong * s,julong * d,int len)3824 static void reverse_words(julong *s, julong *d, int len) {
3825   d += len;
3826   while(len-- > 0) {
3827     d--;
3828     *d = swap(*s);
3829     s++;
3830   }
3831 }
3832 
3833 // The threshold at which squaring is advantageous was determined
3834 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3835 #define MONTGOMERY_SQUARING_THRESHOLD 64
3836 
montgomery_multiply(jint * a_ints,jint * b_ints,jint * n_ints,jint len,jlong inv,jint * m_ints)3837 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3838                                         jint len, jlong inv,
3839                                         jint *m_ints) {
3840   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3841   int longwords = len/2;
3842 
3843   // Make very sure we don't use so much space that the stack might
3844   // overflow.  512 jints corresponds to an 16384-bit integer and
3845   // will use here a total of 8k bytes of stack space.
3846   int total_allocation = longwords * sizeof (julong) * 4;
3847   guarantee(total_allocation <= 8192, "must be");
3848   julong *scratch = (julong *)alloca(total_allocation);
3849 
3850   // Local scratch arrays
3851   julong
3852     *a = scratch + 0 * longwords,
3853     *b = scratch + 1 * longwords,
3854     *n = scratch + 2 * longwords,
3855     *m = scratch + 3 * longwords;
3856 
3857   reverse_words((julong *)a_ints, a, longwords);
3858   reverse_words((julong *)b_ints, b, longwords);
3859   reverse_words((julong *)n_ints, n, longwords);
3860 
3861   ::montgomery_multiply(a, b, n, m, (julong)inv, longwords);
3862 
3863   reverse_words(m, (julong *)m_ints, longwords);
3864 }
3865 
montgomery_square(jint * a_ints,jint * n_ints,jint len,jlong inv,jint * m_ints)3866 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3867                                       jint len, jlong inv,
3868                                       jint *m_ints) {
3869   assert(len % 2 == 0, "array length in montgomery_square must be even");
3870   int longwords = len/2;
3871 
3872   // Make very sure we don't use so much space that the stack might
3873   // overflow.  512 jints corresponds to an 16384-bit integer and
3874   // will use here a total of 6k bytes of stack space.
3875   int total_allocation = longwords * sizeof (julong) * 3;
3876   guarantee(total_allocation <= 8192, "must be");
3877   julong *scratch = (julong *)alloca(total_allocation);
3878 
3879   // Local scratch arrays
3880   julong
3881     *a = scratch + 0 * longwords,
3882     *n = scratch + 1 * longwords,
3883     *m = scratch + 2 * longwords;
3884 
3885   reverse_words((julong *)a_ints, a, longwords);
3886   reverse_words((julong *)n_ints, n, longwords);
3887 
3888   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3889     ::montgomery_square(a, n, m, (julong)inv, longwords);
3890   } else {
3891     ::montgomery_multiply(a, a, n, m, (julong)inv, longwords);
3892   }
3893 
3894   reverse_words(m, (julong *)m_ints, longwords);
3895 }
3896 
3897 #ifdef COMPILER2
3898 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3899 //
3900 //------------------------------generate_exception_blob---------------------------
3901 // creates exception blob at the end
3902 // Using exception blob, this code is jumped from a compiled method.
3903 // (see emit_exception_handler in x86_64.ad file)
3904 //
3905 // Given an exception pc at a call we call into the runtime for the
3906 // handler in this method. This handler might merely restore state
3907 // (i.e. callee save registers) unwind the frame and jump to the
3908 // exception handler for the nmethod if there is no Java level handler
3909 // for the nmethod.
3910 //
3911 // This code is entered with a jmp.
3912 //
3913 // Arguments:
3914 //   rax: exception oop
3915 //   rdx: exception pc
3916 //
3917 // Results:
3918 //   rax: exception oop
3919 //   rdx: exception pc in caller or ???
3920 //   destination: exception handler of caller
3921 //
3922 // Note: the exception pc MUST be at a call (precise debug information)
3923 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3924 //
3925 
generate_exception_blob()3926 void OptoRuntime::generate_exception_blob() {
3927   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3928   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3929   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3930 
3931   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3932 
3933   // Allocate space for the code
3934   ResourceMark rm;
3935   // Setup code generation tools
3936   CodeBuffer buffer("exception_blob", 2048, 1024);
3937   MacroAssembler* masm = new MacroAssembler(&buffer);
3938 
3939 
3940   address start = __ pc();
3941 
3942   // Exception pc is 'return address' for stack walker
3943   __ push(rdx);
3944   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3945 
3946   // Save callee-saved registers.  See x86_64.ad.
3947 
3948   // rbp is an implicitly saved callee saved register (i.e., the calling
3949   // convention will save/restore it in the prolog/epilog). Other than that
3950   // there are no callee save registers now that adapter frames are gone.
3951 
3952   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3953 
3954   // Store exception in Thread object. We cannot pass any arguments to the
3955   // handle_exception call, since we do not want to make any assumption
3956   // about the size of the frame where the exception happened in.
3957   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3958   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3959   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3960 
3961   // This call does all the hard work.  It checks if an exception handler
3962   // exists in the method.
3963   // If so, it returns the handler address.
3964   // If not, it prepares for stack-unwinding, restoring the callee-save
3965   // registers of the frame being removed.
3966   //
3967   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3968 
3969   // At a method handle call, the stack may not be properly aligned
3970   // when returning with an exception.
3971   address the_pc = __ pc();
3972   __ set_last_Java_frame(noreg, noreg, the_pc);
3973   __ mov(c_rarg0, r15_thread);
3974   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3975   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3976 
3977   // Set an oopmap for the call site.  This oopmap will only be used if we
3978   // are unwinding the stack.  Hence, all locations will be dead.
3979   // Callee-saved registers will be the same as the frame above (i.e.,
3980   // handle_exception_stub), since they were restored when we got the
3981   // exception.
3982 
3983   OopMapSet* oop_maps = new OopMapSet();
3984 
3985   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3986 
3987   __ reset_last_Java_frame(false);
3988 
3989   // Restore callee-saved registers
3990 
3991   // rbp is an implicitly saved callee-saved register (i.e., the calling
3992   // convention will save restore it in prolog/epilog) Other than that
3993   // there are no callee save registers now that adapter frames are gone.
3994 
3995   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3996 
3997   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3998   __ pop(rdx);                  // No need for exception pc anymore
3999 
4000   // rax: exception handler
4001 
4002   // We have a handler in rax (could be deopt blob).
4003   __ mov(r8, rax);
4004 
4005   // Get the exception oop
4006   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4007   // Get the exception pc in case we are deoptimized
4008   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4009 #ifdef ASSERT
4010   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4011   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4012 #endif
4013   // Clear the exception oop so GC no longer processes it as a root.
4014   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4015 
4016   // rax: exception oop
4017   // r8:  exception handler
4018   // rdx: exception pc
4019   // Jump to handler
4020 
4021   __ jmp(r8);
4022 
4023   // Make sure all code is generated
4024   masm->flush();
4025 
4026   // Set exception blob
4027   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4028 }
4029 #endif // COMPILER2
4030