1 /*
2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/javaClasses.hpp"
27 #include "jvm.h"
28 #include "aot/aotLoader.hpp"
29 #include "classfile/stringTable.hpp"
30 #include "classfile/systemDictionary.hpp"
31 #include "classfile/vmSymbols.hpp"
32 #include "code/codeCache.hpp"
33 #include "code/compiledIC.hpp"
34 #include "code/icBuffer.hpp"
35 #include "code/compiledMethod.inline.hpp"
36 #include "code/scopeDesc.hpp"
37 #include "code/vtableStubs.hpp"
38 #include "compiler/abstractCompiler.hpp"
39 #include "compiler/compileBroker.hpp"
40 #include "compiler/disassembler.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/gcLocker.inline.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/interpreterRuntime.hpp"
45 #include "jfr/jfrEvents.hpp"
46 #include "logging/log.hpp"
47 #include "memory/metaspaceShared.hpp"
48 #include "memory/resourceArea.hpp"
49 #include "memory/universe.hpp"
50 #include "oops/klass.hpp"
51 #include "oops/method.inline.hpp"
52 #include "oops/objArrayKlass.hpp"
53 #include "oops/oop.inline.hpp"
54 #include "prims/forte.hpp"
55 #include "prims/jvmtiExport.hpp"
56 #include "prims/methodHandles.hpp"
57 #include "prims/nativeLookup.hpp"
58 #include "runtime/arguments.hpp"
59 #include "runtime/atomic.hpp"
60 #include "runtime/biasedLocking.hpp"
61 #include "runtime/frame.inline.hpp"
62 #include "runtime/handles.inline.hpp"
63 #include "runtime/init.hpp"
64 #include "runtime/interfaceSupport.inline.hpp"
65 #include "runtime/java.hpp"
66 #include "runtime/javaCalls.hpp"
67 #include "runtime/sharedRuntime.hpp"
68 #include "runtime/stackWatermarkSet.hpp"
69 #include "runtime/stubRoutines.hpp"
70 #include "runtime/synchronizer.hpp"
71 #include "runtime/vframe.inline.hpp"
72 #include "runtime/vframeArray.hpp"
73 #include "utilities/copy.hpp"
74 #include "utilities/dtrace.hpp"
75 #include "utilities/events.hpp"
76 #include "utilities/hashtable.inline.hpp"
77 #include "utilities/macros.hpp"
78 #include "utilities/xmlstream.hpp"
79 #ifdef COMPILER1
80 #include "c1/c1_Runtime1.hpp"
81 #endif
82 
83 // Shared stub locations
84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
85 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
86 RuntimeStub*        SharedRuntime::_ic_miss_blob;
87 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
88 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
89 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
90 address             SharedRuntime::_resolve_static_call_entry;
91 
92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
93 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
94 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
95 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
96 
97 #ifdef COMPILER2
98 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
99 #endif // COMPILER2
100 
101 
102 //----------------------------generate_stubs-----------------------------------
generate_stubs()103 void SharedRuntime::generate_stubs() {
104   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
105   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
106   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
107   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
108   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
109   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
110   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
111 
112 #if COMPILER2_OR_JVMCI
113   // Vectors are generated only by C2 and JVMCI.
114   bool support_wide = is_wide_vector(MaxVectorSize);
115   if (support_wide) {
116     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
117   }
118 #endif // COMPILER2_OR_JVMCI
119   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
120   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
121 
122   generate_deopt_blob();
123 
124 #ifdef COMPILER2
125   generate_uncommon_trap_blob();
126 #endif // COMPILER2
127 }
128 
129 #include <math.h>
130 
131 // Implementation of SharedRuntime
132 
133 #ifndef PRODUCT
134 // For statistics
135 int SharedRuntime::_ic_miss_ctr = 0;
136 int SharedRuntime::_wrong_method_ctr = 0;
137 int SharedRuntime::_resolve_static_ctr = 0;
138 int SharedRuntime::_resolve_virtual_ctr = 0;
139 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
140 int SharedRuntime::_implicit_null_throws = 0;
141 int SharedRuntime::_implicit_div0_throws = 0;
142 int SharedRuntime::_throw_null_ctr = 0;
143 
144 int SharedRuntime::_nof_normal_calls = 0;
145 int SharedRuntime::_nof_optimized_calls = 0;
146 int SharedRuntime::_nof_inlined_calls = 0;
147 int SharedRuntime::_nof_megamorphic_calls = 0;
148 int SharedRuntime::_nof_static_calls = 0;
149 int SharedRuntime::_nof_inlined_static_calls = 0;
150 int SharedRuntime::_nof_interface_calls = 0;
151 int SharedRuntime::_nof_optimized_interface_calls = 0;
152 int SharedRuntime::_nof_inlined_interface_calls = 0;
153 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
154 int SharedRuntime::_nof_removable_exceptions = 0;
155 
156 int SharedRuntime::_new_instance_ctr=0;
157 int SharedRuntime::_new_array_ctr=0;
158 int SharedRuntime::_multi1_ctr=0;
159 int SharedRuntime::_multi2_ctr=0;
160 int SharedRuntime::_multi3_ctr=0;
161 int SharedRuntime::_multi4_ctr=0;
162 int SharedRuntime::_multi5_ctr=0;
163 int SharedRuntime::_mon_enter_stub_ctr=0;
164 int SharedRuntime::_mon_exit_stub_ctr=0;
165 int SharedRuntime::_mon_enter_ctr=0;
166 int SharedRuntime::_mon_exit_ctr=0;
167 int SharedRuntime::_partial_subtype_ctr=0;
168 int SharedRuntime::_jbyte_array_copy_ctr=0;
169 int SharedRuntime::_jshort_array_copy_ctr=0;
170 int SharedRuntime::_jint_array_copy_ctr=0;
171 int SharedRuntime::_jlong_array_copy_ctr=0;
172 int SharedRuntime::_oop_array_copy_ctr=0;
173 int SharedRuntime::_checkcast_array_copy_ctr=0;
174 int SharedRuntime::_unsafe_array_copy_ctr=0;
175 int SharedRuntime::_generic_array_copy_ctr=0;
176 int SharedRuntime::_slow_array_copy_ctr=0;
177 int SharedRuntime::_find_handler_ctr=0;
178 int SharedRuntime::_rethrow_ctr=0;
179 
180 int     SharedRuntime::_ICmiss_index                    = 0;
181 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
182 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
183 
184 
trace_ic_miss(address at)185 void SharedRuntime::trace_ic_miss(address at) {
186   for (int i = 0; i < _ICmiss_index; i++) {
187     if (_ICmiss_at[i] == at) {
188       _ICmiss_count[i]++;
189       return;
190     }
191   }
192   int index = _ICmiss_index++;
193   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
194   _ICmiss_at[index] = at;
195   _ICmiss_count[index] = 1;
196 }
197 
print_ic_miss_histogram()198 void SharedRuntime::print_ic_miss_histogram() {
199   if (ICMissHistogram) {
200     tty->print_cr("IC Miss Histogram:");
201     int tot_misses = 0;
202     for (int i = 0; i < _ICmiss_index; i++) {
203       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
204       tot_misses += _ICmiss_count[i];
205     }
206     tty->print_cr("Total IC misses: %7d", tot_misses);
207   }
208 }
209 #endif // PRODUCT
210 
211 
212 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
213   return x * y;
214 JRT_END
215 
216 
217 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
218   if (x == min_jlong && y == CONST64(-1)) {
219     return x;
220   } else {
221     return x / y;
222   }
223 JRT_END
224 
225 
226 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
227   if (x == min_jlong && y == CONST64(-1)) {
228     return 0;
229   } else {
230     return x % y;
231   }
232 JRT_END
233 
234 
235 const juint  float_sign_mask  = 0x7FFFFFFF;
236 const juint  float_infinity   = 0x7F800000;
237 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
238 const julong double_infinity  = CONST64(0x7FF0000000000000);
239 
240 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
241 #ifdef _WIN64
242   // 64-bit Windows on amd64 returns the wrong values for
243   // infinity operands.
244   union { jfloat f; juint i; } xbits, ybits;
245   xbits.f = x;
246   ybits.f = y;
247   // x Mod Infinity == x unless x is infinity
248   if (((xbits.i & float_sign_mask) != float_infinity) &&
249        ((ybits.i & float_sign_mask) == float_infinity) ) {
250     return x;
251   }
252   return ((jfloat)fmod_winx64((double)x, (double)y));
253 #else
254   return ((jfloat)fmod((double)x,(double)y));
255 #endif
256 JRT_END
257 
258 
259 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
260 #ifdef _WIN64
261   union { jdouble d; julong l; } xbits, ybits;
262   xbits.d = x;
263   ybits.d = y;
264   // x Mod Infinity == x unless x is infinity
265   if (((xbits.l & double_sign_mask) != double_infinity) &&
266        ((ybits.l & double_sign_mask) == double_infinity) ) {
267     return x;
268   }
269   return ((jdouble)fmod_winx64((double)x, (double)y));
270 #else
271   return ((jdouble)fmod((double)x,(double)y));
272 #endif
273 JRT_END
274 
275 #ifdef __SOFTFP__
276 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
277   return x + y;
278 JRT_END
279 
280 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
281   return x - y;
282 JRT_END
283 
284 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
285   return x * y;
286 JRT_END
287 
288 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
289   return x / y;
290 JRT_END
291 
292 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
293   return x + y;
294 JRT_END
295 
296 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
297   return x - y;
298 JRT_END
299 
300 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
301   return x * y;
302 JRT_END
303 
304 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
305   return x / y;
306 JRT_END
307 
308 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
309   return (jfloat)x;
310 JRT_END
311 
312 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
313   return (jdouble)x;
314 JRT_END
315 
316 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
317   return (jdouble)x;
318 JRT_END
319 
320 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
321   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
322 JRT_END
323 
324 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
325   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
326 JRT_END
327 
328 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
329   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
330 JRT_END
331 
332 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
333   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
334 JRT_END
335 
336 // Functions to return the opposite of the aeabi functions for nan.
337 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
338   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
339 JRT_END
340 
341 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
342   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
343 JRT_END
344 
345 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
346   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
347 JRT_END
348 
349 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
350   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
351 JRT_END
352 
353 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
354   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
355 JRT_END
356 
357 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
358   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
359 JRT_END
360 
361 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
362   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
363 JRT_END
364 
365 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
366   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
367 JRT_END
368 
369 // Intrinsics make gcc generate code for these.
fneg(float f)370 float  SharedRuntime::fneg(float f)   {
371   return -f;
372 }
373 
dneg(double f)374 double SharedRuntime::dneg(double f)  {
375   return -f;
376 }
377 
378 #endif // __SOFTFP__
379 
380 #if defined(__SOFTFP__) || defined(E500V2)
381 // Intrinsics make gcc generate code for these.
dabs(double f)382 double SharedRuntime::dabs(double f)  {
383   return (f <= (double)0.0) ? (double)0.0 - f : f;
384 }
385 
386 #endif
387 
388 #if defined(__SOFTFP__) || defined(PPC)
dsqrt(double f)389 double SharedRuntime::dsqrt(double f) {
390   return sqrt(f);
391 }
392 #endif
393 
394 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
395   if (g_isnan(x))
396     return 0;
397   if (x >= (jfloat) max_jint)
398     return max_jint;
399   if (x <= (jfloat) min_jint)
400     return min_jint;
401   return (jint) x;
402 JRT_END
403 
404 
405 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
406   if (g_isnan(x))
407     return 0;
408   if (x >= (jfloat) max_jlong)
409     return max_jlong;
410   if (x <= (jfloat) min_jlong)
411     return min_jlong;
412   return (jlong) x;
413 JRT_END
414 
415 
416 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
417   if (g_isnan(x))
418     return 0;
419   if (x >= (jdouble) max_jint)
420     return max_jint;
421   if (x <= (jdouble) min_jint)
422     return min_jint;
423   return (jint) x;
424 JRT_END
425 
426 
427 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
428   if (g_isnan(x))
429     return 0;
430   if (x >= (jdouble) max_jlong)
431     return max_jlong;
432   if (x <= (jdouble) min_jlong)
433     return min_jlong;
434   return (jlong) x;
435 JRT_END
436 
437 
438 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
439   return (jfloat)x;
440 JRT_END
441 
442 
443 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
444   return (jfloat)x;
445 JRT_END
446 
447 
448 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
449   return (jdouble)x;
450 JRT_END
451 
452 // Exception handling across interpreter/compiler boundaries
453 //
454 // exception_handler_for_return_address(...) returns the continuation address.
455 // The continuation address is the entry point of the exception handler of the
456 // previous frame depending on the return address.
457 
raw_exception_handler_for_return_address(JavaThread * thread,address return_address)458 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
459   // Note: This is called when we have unwound the frame of the callee that did
460   // throw an exception. So far, no check has been performed by the StackWatermarkSet.
461   // Notably, the stack is not walkable at this point, and hence the check must
462   // be deferred until later. Specifically, any of the handlers returned here in
463   // this function, will get dispatched to, and call deferred checks to
464   // StackWatermarkSet::after_unwind at a point where the stack is walkable.
465   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
466   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
467 
468   // Reset method handle flag.
469   thread->set_is_method_handle_return(false);
470 
471 #if INCLUDE_JVMCI
472   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
473   // and other exception handler continuations do not read it
474   thread->set_exception_pc(NULL);
475 #endif // INCLUDE_JVMCI
476 
477   // The fastest case first
478   CodeBlob* blob = CodeCache::find_blob(return_address);
479   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
480   if (nm != NULL) {
481     // Set flag if return address is a method handle call site.
482     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
483     // native nmethods don't have exception handlers
484     assert(!nm->is_native_method(), "no exception handler");
485     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
486     if (nm->is_deopt_pc(return_address)) {
487       // If we come here because of a stack overflow, the stack may be
488       // unguarded. Reguard the stack otherwise if we return to the
489       // deopt blob and the stack bang causes a stack overflow we
490       // crash.
491       StackOverflow* overflow_state = thread->stack_overflow_state();
492       bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
493       if (overflow_state->reserved_stack_activation() != thread->stack_base()) {
494         overflow_state->set_reserved_stack_activation(thread->stack_base());
495       }
496       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
497       // The deferred StackWatermarkSet::after_unwind check will be performed in
498       // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
499       return SharedRuntime::deopt_blob()->unpack_with_exception();
500     } else {
501       // The deferred StackWatermarkSet::after_unwind check will be performed in
502       // * OptoRuntime::rethrow_C for C2 code
503       // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
504       return nm->exception_begin();
505     }
506   }
507 
508   // Entry code
509   if (StubRoutines::returns_to_call_stub(return_address)) {
510     // The deferred StackWatermarkSet::after_unwind check will be performed in
511     // JavaCallWrapper::~JavaCallWrapper
512     return StubRoutines::catch_exception_entry();
513   }
514   // Interpreted code
515   if (Interpreter::contains(return_address)) {
516     // The deferred StackWatermarkSet::after_unwind check will be performed in
517     // InterpreterRuntime::exception_handler_for_exception
518     return Interpreter::rethrow_exception_entry();
519   }
520 
521   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
522   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
523 
524 #ifndef PRODUCT
525   { ResourceMark rm;
526     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
527     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
528     tty->print_cr("b) other problem");
529   }
530 #endif // PRODUCT
531 
532   ShouldNotReachHere();
533   return NULL;
534 }
535 
536 
537 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
538   return raw_exception_handler_for_return_address(thread, return_address);
539 JRT_END
540 
541 
get_poll_stub(address pc)542 address SharedRuntime::get_poll_stub(address pc) {
543   address stub;
544   // Look up the code blob
545   CodeBlob *cb = CodeCache::find_blob(pc);
546 
547   // Should be an nmethod
548   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
549 
550   // Look up the relocation information
551   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
552     "safepoint polling: type must be poll");
553 
554 #ifdef ASSERT
555   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
556     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
557     Disassembler::decode(cb);
558     fatal("Only polling locations are used for safepoint");
559   }
560 #endif
561 
562   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
563   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
564   if (at_poll_return) {
565     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
566            "polling page return stub not created yet");
567     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
568   } else if (has_wide_vectors) {
569     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
570            "polling page vectors safepoint stub not created yet");
571     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
572   } else {
573     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
574            "polling page safepoint stub not created yet");
575     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
576   }
577   log_debug(safepoint)("... found polling page %s exception at pc = "
578                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
579                        at_poll_return ? "return" : "loop",
580                        (intptr_t)pc, (intptr_t)stub);
581   return stub;
582 }
583 
584 
retrieve_receiver(Symbol * sig,frame caller)585 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
586   assert(caller.is_interpreted_frame(), "");
587   int args_size = ArgumentSizeComputer(sig).size() + 1;
588   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
589   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
590   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
591   return result;
592 }
593 
594 
throw_and_post_jvmti_exception(JavaThread * thread,Handle h_exception)595 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
596   if (JvmtiExport::can_post_on_exceptions()) {
597     vframeStream vfst(thread, true);
598     methodHandle method = methodHandle(thread, vfst.method());
599     address bcp = method()->bcp_from(vfst.bci());
600     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
601   }
602 
603 #if INCLUDE_JVMCI
604   if (EnableJVMCI && UseJVMCICompiler) {
605     vframeStream vfst(thread, true);
606     methodHandle method = methodHandle(thread, vfst.method());
607     int bci = vfst.bci();
608     MethodData* trap_mdo = method->method_data();
609     if (trap_mdo != NULL) {
610       // Set exception_seen if the exceptional bytecode is an invoke
611       Bytecode_invoke call = Bytecode_invoke_check(method, bci);
612       if (call.is_valid()) {
613         ResourceMark rm(thread);
614         ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, NULL);
615         if (pdata != NULL && pdata->is_BitData()) {
616           BitData* bit_data = (BitData*) pdata;
617           bit_data->set_exception_seen();
618         }
619       }
620     }
621   }
622 #endif
623 
624   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
625 }
626 
throw_and_post_jvmti_exception(JavaThread * thread,Symbol * name,const char * message)627 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
628   Handle h_exception = Exceptions::new_exception(thread, name, message);
629   throw_and_post_jvmti_exception(thread, h_exception);
630 }
631 
632 // The interpreter code to call this tracing function is only
633 // called/generated when UL is on for redefine, class and has the right level
634 // and tags. Since obsolete methods are never compiled, we don't have
635 // to modify the compilers to generate calls to this function.
636 //
637 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
638     JavaThread* thread, Method* method))
639   if (method->is_obsolete()) {
640     // We are calling an obsolete method, but this is not necessarily
641     // an error. Our method could have been redefined just after we
642     // fetched the Method* from the constant pool.
643     ResourceMark rm;
644     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
645   }
646   return 0;
647 JRT_END
648 
649 // ret_pc points into caller; we are returning caller's exception handler
650 // for given exception
compute_compiled_exc_handler(CompiledMethod * cm,address ret_pc,Handle & exception,bool force_unwind,bool top_frame_only,bool & recursive_exception_occurred)651 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
652                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
653   assert(cm != NULL, "must exist");
654   ResourceMark rm;
655 
656 #if INCLUDE_JVMCI
657   if (cm->is_compiled_by_jvmci()) {
658     // lookup exception handler for this pc
659     int catch_pco = ret_pc - cm->code_begin();
660     ExceptionHandlerTable table(cm);
661     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
662     if (t != NULL) {
663       return cm->code_begin() + t->pco();
664     } else {
665       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
666     }
667   }
668 #endif // INCLUDE_JVMCI
669 
670   nmethod* nm = cm->as_nmethod();
671   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
672   // determine handler bci, if any
673   EXCEPTION_MARK;
674 
675   int handler_bci = -1;
676   int scope_depth = 0;
677   if (!force_unwind) {
678     int bci = sd->bci();
679     bool recursive_exception = false;
680     do {
681       bool skip_scope_increment = false;
682       // exception handler lookup
683       Klass* ek = exception->klass();
684       methodHandle mh(THREAD, sd->method());
685       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
686       if (HAS_PENDING_EXCEPTION) {
687         recursive_exception = true;
688         // We threw an exception while trying to find the exception handler.
689         // Transfer the new exception to the exception handle which will
690         // be set into thread local storage, and do another lookup for an
691         // exception handler for this exception, this time starting at the
692         // BCI of the exception handler which caused the exception to be
693         // thrown (bugs 4307310 and 4546590). Set "exception" reference
694         // argument to ensure that the correct exception is thrown (4870175).
695         recursive_exception_occurred = true;
696         exception = Handle(THREAD, PENDING_EXCEPTION);
697         CLEAR_PENDING_EXCEPTION;
698         if (handler_bci >= 0) {
699           bci = handler_bci;
700           handler_bci = -1;
701           skip_scope_increment = true;
702         }
703       }
704       else {
705         recursive_exception = false;
706       }
707       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
708         sd = sd->sender();
709         if (sd != NULL) {
710           bci = sd->bci();
711         }
712         ++scope_depth;
713       }
714     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
715   }
716 
717   // found handling method => lookup exception handler
718   int catch_pco = ret_pc - nm->code_begin();
719 
720   ExceptionHandlerTable table(nm);
721   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
722   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
723     // Allow abbreviated catch tables.  The idea is to allow a method
724     // to materialize its exceptions without committing to the exact
725     // routing of exceptions.  In particular this is needed for adding
726     // a synthetic handler to unlock monitors when inlining
727     // synchronized methods since the unlock path isn't represented in
728     // the bytecodes.
729     t = table.entry_for(catch_pco, -1, 0);
730   }
731 
732 #ifdef COMPILER1
733   if (t == NULL && nm->is_compiled_by_c1()) {
734     assert(nm->unwind_handler_begin() != NULL, "");
735     return nm->unwind_handler_begin();
736   }
737 #endif
738 
739   if (t == NULL) {
740     ttyLocker ttyl;
741     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
742     tty->print_cr("   Exception:");
743     exception->print();
744     tty->cr();
745     tty->print_cr(" Compiled exception table :");
746     table.print();
747     nm->print_code();
748     guarantee(false, "missing exception handler");
749     return NULL;
750   }
751 
752   return nm->code_begin() + t->pco();
753 }
754 
755 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
756   // These errors occur only at call sites
757   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
758 JRT_END
759 
760 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
761   // These errors occur only at call sites
762   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
763 JRT_END
764 
765 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
766   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
767 JRT_END
768 
769 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
770   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
771 JRT_END
772 
773 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
774   // This entry point is effectively only used for NullPointerExceptions which occur at inline
775   // cache sites (when the callee activation is not yet set up) so we are at a call site
776   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
777 JRT_END
778 
779 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
780   throw_StackOverflowError_common(thread, false);
781 JRT_END
782 
783 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
784   throw_StackOverflowError_common(thread, true);
785 JRT_END
786 
throw_StackOverflowError_common(JavaThread * thread,bool delayed)787 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
788   // We avoid using the normal exception construction in this case because
789   // it performs an upcall to Java, and we're already out of stack space.
790   Thread* THREAD = thread;
791   Klass* k = SystemDictionary::StackOverflowError_klass();
792   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
793   if (delayed) {
794     java_lang_Throwable::set_message(exception_oop,
795                                      Universe::delayed_stack_overflow_error_message());
796   }
797   Handle exception (thread, exception_oop);
798   if (StackTraceInThrowable) {
799     java_lang_Throwable::fill_in_stack_trace(exception);
800   }
801   // Increment counter for hs_err file reporting
802   Atomic::inc(&Exceptions::_stack_overflow_errors);
803   throw_and_post_jvmti_exception(thread, exception);
804 }
805 
continuation_for_implicit_exception(JavaThread * thread,address pc,ImplicitExceptionKind exception_kind)806 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
807                                                            address pc,
808                                                            ImplicitExceptionKind exception_kind)
809 {
810   address target_pc = NULL;
811 
812   if (Interpreter::contains(pc)) {
813     switch (exception_kind) {
814       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
815       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
816       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
817       default:                      ShouldNotReachHere();
818     }
819   } else {
820     switch (exception_kind) {
821       case STACK_OVERFLOW: {
822         // Stack overflow only occurs upon frame setup; the callee is
823         // going to be unwound. Dispatch to a shared runtime stub
824         // which will cause the StackOverflowError to be fabricated
825         // and processed.
826         // Stack overflow should never occur during deoptimization:
827         // the compiled method bangs the stack by as much as the
828         // interpreter would need in case of a deoptimization. The
829         // deoptimization blob and uncommon trap blob bang the stack
830         // in a debug VM to verify the correctness of the compiled
831         // method stack banging.
832         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
833         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
834         return StubRoutines::throw_StackOverflowError_entry();
835       }
836 
837       case IMPLICIT_NULL: {
838         if (VtableStubs::contains(pc)) {
839           // We haven't yet entered the callee frame. Fabricate an
840           // exception and begin dispatching it in the caller. Since
841           // the caller was at a call site, it's safe to destroy all
842           // caller-saved registers, as these entry points do.
843           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
844 
845           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
846           if (vt_stub == NULL) return NULL;
847 
848           if (vt_stub->is_abstract_method_error(pc)) {
849             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
850             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
851             // Instead of throwing the abstract method error here directly, we re-resolve
852             // and will throw the AbstractMethodError during resolve. As a result, we'll
853             // get a more detailed error message.
854             return SharedRuntime::get_handle_wrong_method_stub();
855           } else {
856             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
857             // Assert that the signal comes from the expected location in stub code.
858             assert(vt_stub->is_null_pointer_exception(pc),
859                    "obtained signal from unexpected location in stub code");
860             return StubRoutines::throw_NullPointerException_at_call_entry();
861           }
862         } else {
863           CodeBlob* cb = CodeCache::find_blob(pc);
864 
865           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
866           if (cb == NULL) return NULL;
867 
868           // Exception happened in CodeCache. Must be either:
869           // 1. Inline-cache check in C2I handler blob,
870           // 2. Inline-cache check in nmethod, or
871           // 3. Implicit null exception in nmethod
872 
873           if (!cb->is_compiled()) {
874             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
875             if (!is_in_blob) {
876               // Allow normal crash reporting to handle this
877               return NULL;
878             }
879             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
880             // There is no handler here, so we will simply unwind.
881             return StubRoutines::throw_NullPointerException_at_call_entry();
882           }
883 
884           // Otherwise, it's a compiled method.  Consult its exception handlers.
885           CompiledMethod* cm = (CompiledMethod*)cb;
886           if (cm->inlinecache_check_contains(pc)) {
887             // exception happened inside inline-cache check code
888             // => the nmethod is not yet active (i.e., the frame
889             // is not set up yet) => use return address pushed by
890             // caller => don't push another return address
891             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
892             return StubRoutines::throw_NullPointerException_at_call_entry();
893           }
894 
895           if (cm->method()->is_method_handle_intrinsic()) {
896             // exception happened inside MH dispatch code, similar to a vtable stub
897             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
898             return StubRoutines::throw_NullPointerException_at_call_entry();
899           }
900 
901 #ifndef PRODUCT
902           _implicit_null_throws++;
903 #endif
904           target_pc = cm->continuation_for_implicit_null_exception(pc);
905           // If there's an unexpected fault, target_pc might be NULL,
906           // in which case we want to fall through into the normal
907           // error handling code.
908         }
909 
910         break; // fall through
911       }
912 
913 
914       case IMPLICIT_DIVIDE_BY_ZERO: {
915         CompiledMethod* cm = CodeCache::find_compiled(pc);
916         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
917 #ifndef PRODUCT
918         _implicit_div0_throws++;
919 #endif
920         target_pc = cm->continuation_for_implicit_div0_exception(pc);
921         // If there's an unexpected fault, target_pc might be NULL,
922         // in which case we want to fall through into the normal
923         // error handling code.
924         break; // fall through
925       }
926 
927       default: ShouldNotReachHere();
928     }
929 
930     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
931 
932     if (exception_kind == IMPLICIT_NULL) {
933 #ifndef PRODUCT
934       // for AbortVMOnException flag
935       Exceptions::debug_check_abort("java.lang.NullPointerException");
936 #endif //PRODUCT
937       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
938     } else {
939 #ifndef PRODUCT
940       // for AbortVMOnException flag
941       Exceptions::debug_check_abort("java.lang.ArithmeticException");
942 #endif //PRODUCT
943       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
944     }
945     return target_pc;
946   }
947 
948   ShouldNotReachHere();
949   return NULL;
950 }
951 
952 
953 /**
954  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
955  * installed in the native function entry of all native Java methods before
956  * they get linked to their actual native methods.
957  *
958  * \note
959  * This method actually never gets called!  The reason is because
960  * the interpreter's native entries call NativeLookup::lookup() which
961  * throws the exception when the lookup fails.  The exception is then
962  * caught and forwarded on the return from NativeLookup::lookup() call
963  * before the call to the native function.  This might change in the future.
964  */
JNI_ENTRY(void *,throw_unsatisfied_link_error (JNIEnv * env,...))965 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
966 {
967   // We return a bad value here to make sure that the exception is
968   // forwarded before we look at the return value.
969   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
970 }
971 JNI_END
972 
native_method_throw_unsatisfied_link_error_entry()973 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
974   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
975 }
976 
977 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
978 #if INCLUDE_JVMCI
979   if (!obj->klass()->has_finalizer()) {
980     return;
981   }
982 #endif // INCLUDE_JVMCI
983   assert(oopDesc::is_oop(obj), "must be a valid oop");
984   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
985   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
986 JRT_END
987 
988 
get_java_tid(Thread * thread)989 jlong SharedRuntime::get_java_tid(Thread* thread) {
990   if (thread != NULL) {
991     if (thread->is_Java_thread()) {
992       oop obj = thread->as_Java_thread()->threadObj();
993       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
994     }
995   }
996   return 0;
997 }
998 
999 /**
1000  * This function ought to be a void function, but cannot be because
1001  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1002  * 6254741.  Once that is fixed we can remove the dummy return value.
1003  */
dtrace_object_alloc(oopDesc * o,int size)1004 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1005   return dtrace_object_alloc_base(Thread::current(), o, size);
1006 }
1007 
dtrace_object_alloc_base(Thread * thread,oopDesc * o,int size)1008 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1009   assert(DTraceAllocProbes, "wrong call");
1010   Klass* klass = o->klass();
1011   Symbol* name = klass->name();
1012   HOTSPOT_OBJECT_ALLOC(
1013                    get_java_tid(thread),
1014                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1015   return 0;
1016 }
1017 
1018 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1019     JavaThread* thread, Method* method))
1020   assert(DTraceMethodProbes, "wrong call");
1021   Symbol* kname = method->klass_name();
1022   Symbol* name = method->name();
1023   Symbol* sig = method->signature();
1024   HOTSPOT_METHOD_ENTRY(
1025       get_java_tid(thread),
1026       (char *) kname->bytes(), kname->utf8_length(),
1027       (char *) name->bytes(), name->utf8_length(),
1028       (char *) sig->bytes(), sig->utf8_length());
1029   return 0;
1030 JRT_END
1031 
1032 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1033     JavaThread* thread, Method* method))
1034   assert(DTraceMethodProbes, "wrong call");
1035   Symbol* kname = method->klass_name();
1036   Symbol* name = method->name();
1037   Symbol* sig = method->signature();
1038   HOTSPOT_METHOD_RETURN(
1039       get_java_tid(thread),
1040       (char *) kname->bytes(), kname->utf8_length(),
1041       (char *) name->bytes(), name->utf8_length(),
1042       (char *) sig->bytes(), sig->utf8_length());
1043   return 0;
1044 JRT_END
1045 
1046 
1047 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1048 // for a call current in progress, i.e., arguments has been pushed on stack
1049 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1050 // vtable updates, etc.  Caller frame must be compiled.
find_callee_info(JavaThread * thread,Bytecodes::Code & bc,CallInfo & callinfo,TRAPS)1051 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1052   ResourceMark rm(THREAD);
1053 
1054   // last java frame on stack (which includes native call frames)
1055   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1056 
1057   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1058 }
1059 
extract_attached_method(vframeStream & vfst)1060 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1061   CompiledMethod* caller = vfst.nm();
1062 
1063   nmethodLocker caller_lock(caller);
1064 
1065   address pc = vfst.frame_pc();
1066   { // Get call instruction under lock because another thread may be busy patching it.
1067     CompiledICLocker ic_locker(caller);
1068     return caller->attached_method_before_pc(pc);
1069   }
1070   return NULL;
1071 }
1072 
1073 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1074 // for a call current in progress, i.e., arguments has been pushed on stack
1075 // but callee has not been invoked yet.  Caller frame must be compiled.
find_callee_info_helper(JavaThread * thread,vframeStream & vfst,Bytecodes::Code & bc,CallInfo & callinfo,TRAPS)1076 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1077                                               vframeStream& vfst,
1078                                               Bytecodes::Code& bc,
1079                                               CallInfo& callinfo, TRAPS) {
1080   Handle receiver;
1081   Handle nullHandle;  //create a handy null handle for exception returns
1082 
1083   assert(!vfst.at_end(), "Java frame must exist");
1084 
1085   // Find caller and bci from vframe
1086   methodHandle caller(THREAD, vfst.method());
1087   int          bci   = vfst.bci();
1088 
1089   Bytecode_invoke bytecode(caller, bci);
1090   int bytecode_index = bytecode.index();
1091   bc = bytecode.invoke_code();
1092 
1093   methodHandle attached_method(THREAD, extract_attached_method(vfst));
1094   if (attached_method.not_null()) {
1095     Method* callee = bytecode.static_target(CHECK_NH);
1096     vmIntrinsics::ID id = callee->intrinsic_id();
1097     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1098     // it attaches statically resolved method to the call site.
1099     if (MethodHandles::is_signature_polymorphic(id) &&
1100         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1101       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1102 
1103       // Adjust invocation mode according to the attached method.
1104       switch (bc) {
1105         case Bytecodes::_invokevirtual:
1106           if (attached_method->method_holder()->is_interface()) {
1107             bc = Bytecodes::_invokeinterface;
1108           }
1109           break;
1110         case Bytecodes::_invokeinterface:
1111           if (!attached_method->method_holder()->is_interface()) {
1112             bc = Bytecodes::_invokevirtual;
1113           }
1114           break;
1115         case Bytecodes::_invokehandle:
1116           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1117             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1118                                               : Bytecodes::_invokevirtual;
1119           }
1120           break;
1121         default:
1122           break;
1123       }
1124     }
1125   }
1126 
1127   assert(bc != Bytecodes::_illegal, "not initialized");
1128 
1129   bool has_receiver = bc != Bytecodes::_invokestatic &&
1130                       bc != Bytecodes::_invokedynamic &&
1131                       bc != Bytecodes::_invokehandle;
1132 
1133   // Find receiver for non-static call
1134   if (has_receiver) {
1135     // This register map must be update since we need to find the receiver for
1136     // compiled frames. The receiver might be in a register.
1137     RegisterMap reg_map2(thread);
1138     frame stubFrame   = thread->last_frame();
1139     // Caller-frame is a compiled frame
1140     frame callerFrame = stubFrame.sender(&reg_map2);
1141 
1142     if (attached_method.is_null()) {
1143       Method* callee = bytecode.static_target(CHECK_NH);
1144       if (callee == NULL) {
1145         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1146       }
1147     }
1148 
1149     // Retrieve from a compiled argument list
1150     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1151 
1152     if (receiver.is_null()) {
1153       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1154     }
1155   }
1156 
1157   // Resolve method
1158   if (attached_method.not_null()) {
1159     // Parameterized by attached method.
1160     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1161   } else {
1162     // Parameterized by bytecode.
1163     constantPoolHandle constants(THREAD, caller->constants());
1164     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1165   }
1166 
1167 #ifdef ASSERT
1168   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1169   if (has_receiver) {
1170     assert(receiver.not_null(), "should have thrown exception");
1171     Klass* receiver_klass = receiver->klass();
1172     Klass* rk = NULL;
1173     if (attached_method.not_null()) {
1174       // In case there's resolved method attached, use its holder during the check.
1175       rk = attached_method->method_holder();
1176     } else {
1177       // Klass is already loaded.
1178       constantPoolHandle constants(THREAD, caller->constants());
1179       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1180     }
1181     Klass* static_receiver_klass = rk;
1182     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1183            "actual receiver must be subclass of static receiver klass");
1184     if (receiver_klass->is_instance_klass()) {
1185       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1186         tty->print_cr("ERROR: Klass not yet initialized!!");
1187         receiver_klass->print();
1188       }
1189       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1190     }
1191   }
1192 #endif
1193 
1194   return receiver;
1195 }
1196 
find_callee_method(JavaThread * thread,TRAPS)1197 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1198   ResourceMark rm(THREAD);
1199   // We need first to check if any Java activations (compiled, interpreted)
1200   // exist on the stack since last JavaCall.  If not, we need
1201   // to get the target method from the JavaCall wrapper.
1202   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1203   methodHandle callee_method;
1204   if (vfst.at_end()) {
1205     // No Java frames were found on stack since we did the JavaCall.
1206     // Hence the stack can only contain an entry_frame.  We need to
1207     // find the target method from the stub frame.
1208     RegisterMap reg_map(thread, false);
1209     frame fr = thread->last_frame();
1210     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1211     fr = fr.sender(&reg_map);
1212     assert(fr.is_entry_frame(), "must be");
1213     // fr is now pointing to the entry frame.
1214     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1215   } else {
1216     Bytecodes::Code bc;
1217     CallInfo callinfo;
1218     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1219     callee_method = methodHandle(THREAD, callinfo.selected_method());
1220   }
1221   assert(callee_method()->is_method(), "must be");
1222   return callee_method;
1223 }
1224 
1225 // Resolves a call.
resolve_helper(JavaThread * thread,bool is_virtual,bool is_optimized,TRAPS)1226 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1227                                            bool is_virtual,
1228                                            bool is_optimized, TRAPS) {
1229   methodHandle callee_method;
1230   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1231   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1232     int retry_count = 0;
1233     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1234            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1235       // If has a pending exception then there is no need to re-try to
1236       // resolve this method.
1237       // If the method has been redefined, we need to try again.
1238       // Hack: we have no way to update the vtables of arrays, so don't
1239       // require that java.lang.Object has been updated.
1240 
1241       // It is very unlikely that method is redefined more than 100 times
1242       // in the middle of resolve. If it is looping here more than 100 times
1243       // means then there could be a bug here.
1244       guarantee((retry_count++ < 100),
1245                 "Could not resolve to latest version of redefined method");
1246       // method is redefined in the middle of resolve so re-try.
1247       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1248     }
1249   }
1250   return callee_method;
1251 }
1252 
1253 // This fails if resolution required refilling of IC stubs
resolve_sub_helper_internal(methodHandle callee_method,const frame & caller_frame,CompiledMethod * caller_nm,bool is_virtual,bool is_optimized,Handle receiver,CallInfo & call_info,Bytecodes::Code invoke_code,TRAPS)1254 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1255                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1256                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1257   StaticCallInfo static_call_info;
1258   CompiledICInfo virtual_call_info;
1259 
1260   // Make sure the callee nmethod does not get deoptimized and removed before
1261   // we are done patching the code.
1262   CompiledMethod* callee = callee_method->code();
1263 
1264   if (callee != NULL) {
1265     assert(callee->is_compiled(), "must be nmethod for patching");
1266   }
1267 
1268   if (callee != NULL && !callee->is_in_use()) {
1269     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1270     callee = NULL;
1271   }
1272   nmethodLocker nl_callee(callee);
1273 #ifdef ASSERT
1274   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1275 #endif
1276 
1277   bool is_nmethod = caller_nm->is_nmethod();
1278 
1279   if (is_virtual) {
1280     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1281     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1282     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1283     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1284                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1285                      CHECK_false);
1286   } else {
1287     // static call
1288     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1289   }
1290 
1291   // grab lock, check for deoptimization and potentially patch caller
1292   {
1293     CompiledICLocker ml(caller_nm);
1294 
1295     // Lock blocks for safepoint during which both nmethods can change state.
1296 
1297     // Now that we are ready to patch if the Method* was redefined then
1298     // don't update call site and let the caller retry.
1299     // Don't update call site if callee nmethod was unloaded or deoptimized.
1300     // Don't update call site if callee nmethod was replaced by an other nmethod
1301     // which may happen when multiply alive nmethod (tiered compilation)
1302     // will be supported.
1303     if (!callee_method->is_old() &&
1304         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1305       NoSafepointVerifier nsv;
1306 #ifdef ASSERT
1307       // We must not try to patch to jump to an already unloaded method.
1308       if (dest_entry_point != 0) {
1309         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1310         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1311                "should not call unloaded nmethod");
1312       }
1313 #endif
1314       if (is_virtual) {
1315         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1316         if (inline_cache->is_clean()) {
1317           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1318             return false;
1319           }
1320         }
1321       } else {
1322         if (VM_Version::supports_fast_class_init_checks() &&
1323             invoke_code == Bytecodes::_invokestatic &&
1324             callee_method->needs_clinit_barrier() &&
1325             callee != NULL && (callee->is_compiled_by_jvmci() || callee->is_aot())) {
1326           return true; // skip patching for JVMCI or AOT code
1327         }
1328         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1329         if (ssc->is_clean()) ssc->set(static_call_info);
1330       }
1331     }
1332   } // unlock CompiledICLocker
1333   return true;
1334 }
1335 
1336 // Resolves a call.  The compilers generate code for calls that go here
1337 // and are patched with the real destination of the call.
resolve_sub_helper(JavaThread * thread,bool is_virtual,bool is_optimized,TRAPS)1338 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1339                                                bool is_virtual,
1340                                                bool is_optimized, TRAPS) {
1341 
1342   ResourceMark rm(thread);
1343   RegisterMap cbl_map(thread, false);
1344   frame caller_frame = thread->last_frame().sender(&cbl_map);
1345 
1346   CodeBlob* caller_cb = caller_frame.cb();
1347   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1348   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1349 
1350   // make sure caller is not getting deoptimized
1351   // and removed before we are done with it.
1352   // CLEANUP - with lazy deopt shouldn't need this lock
1353   nmethodLocker caller_lock(caller_nm);
1354 
1355   // determine call info & receiver
1356   // note: a) receiver is NULL for static calls
1357   //       b) an exception is thrown if receiver is NULL for non-static calls
1358   CallInfo call_info;
1359   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1360   Handle receiver = find_callee_info(thread, invoke_code,
1361                                      call_info, CHECK_(methodHandle()));
1362   methodHandle callee_method(THREAD, call_info.selected_method());
1363 
1364   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1365          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1366          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1367          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1368          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1369 
1370   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1371 
1372 #ifndef PRODUCT
1373   // tracing/debugging/statistics
1374   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1375                 (is_virtual) ? (&_resolve_virtual_ctr) :
1376                                (&_resolve_static_ctr);
1377   Atomic::inc(addr);
1378 
1379   if (TraceCallFixup) {
1380     ResourceMark rm(thread);
1381     tty->print("resolving %s%s (%s) call to",
1382       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1383       Bytecodes::name(invoke_code));
1384     callee_method->print_short_name(tty);
1385     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1386                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1387   }
1388 #endif
1389 
1390   if (invoke_code == Bytecodes::_invokestatic) {
1391     assert(callee_method->method_holder()->is_initialized() ||
1392            callee_method->method_holder()->is_reentrant_initialization(thread),
1393            "invalid class initialization state for invoke_static");
1394     if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1395       // In order to keep class initialization check, do not patch call
1396       // site for static call when the class is not fully initialized.
1397       // Proper check is enforced by call site re-resolution on every invocation.
1398       //
1399       // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1400       // explicit class initialization check is put in nmethod entry (VEP).
1401       assert(callee_method->method_holder()->is_linked(), "must be");
1402       return callee_method;
1403     }
1404   }
1405 
1406   // JSR 292 key invariant:
1407   // If the resolved method is a MethodHandle invoke target, the call
1408   // site must be a MethodHandle call site, because the lambda form might tail-call
1409   // leaving the stack in a state unknown to either caller or callee
1410   // TODO detune for now but we might need it again
1411 //  assert(!callee_method->is_compiled_lambda_form() ||
1412 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1413 
1414   // Compute entry points. This might require generation of C2I converter
1415   // frames, so we cannot be holding any locks here. Furthermore, the
1416   // computation of the entry points is independent of patching the call.  We
1417   // always return the entry-point, but we only patch the stub if the call has
1418   // not been deoptimized.  Return values: For a virtual call this is an
1419   // (cached_oop, destination address) pair. For a static call/optimized
1420   // virtual this is just a destination address.
1421 
1422   // Patching IC caches may fail if we run out if transition stubs.
1423   // We refill the ic stubs then and try again.
1424   for (;;) {
1425     ICRefillVerifier ic_refill_verifier;
1426     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1427                                                   is_virtual, is_optimized, receiver,
1428                                                   call_info, invoke_code, CHECK_(methodHandle()));
1429     if (successful) {
1430       return callee_method;
1431     } else {
1432       InlineCacheBuffer::refill_ic_stubs();
1433     }
1434   }
1435 
1436 }
1437 
1438 
1439 // Inline caches exist only in compiled code
1440 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1441 #ifdef ASSERT
1442   RegisterMap reg_map(thread, false);
1443   frame stub_frame = thread->last_frame();
1444   assert(stub_frame.is_runtime_frame(), "sanity check");
1445   frame caller_frame = stub_frame.sender(&reg_map);
1446   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1447 #endif /* ASSERT */
1448 
1449   methodHandle callee_method;
1450   JRT_BLOCK
1451     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1452     // Return Method* through TLS
1453     thread->set_vm_result_2(callee_method());
1454   JRT_BLOCK_END
1455   // return compiled code entry point after potential safepoints
1456   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1457   return callee_method->verified_code_entry();
1458 JRT_END
1459 
1460 
1461 // Handle call site that has been made non-entrant
1462 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1463   // 6243940 We might end up in here if the callee is deoptimized
1464   // as we race to call it.  We don't want to take a safepoint if
1465   // the caller was interpreted because the caller frame will look
1466   // interpreted to the stack walkers and arguments are now
1467   // "compiled" so it is much better to make this transition
1468   // invisible to the stack walking code. The i2c path will
1469   // place the callee method in the callee_target. It is stashed
1470   // there because if we try and find the callee by normal means a
1471   // safepoint is possible and have trouble gc'ing the compiled args.
1472   RegisterMap reg_map(thread, false);
1473   frame stub_frame = thread->last_frame();
1474   assert(stub_frame.is_runtime_frame(), "sanity check");
1475   frame caller_frame = stub_frame.sender(&reg_map);
1476 
1477   if (caller_frame.is_interpreted_frame() ||
1478       caller_frame.is_entry_frame()) {
1479     Method* callee = thread->callee_target();
1480     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1481     thread->set_vm_result_2(callee);
1482     thread->set_callee_target(NULL);
1483     if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1484       // Bypass class initialization checks in c2i when caller is in native.
1485       // JNI calls to static methods don't have class initialization checks.
1486       // Fast class initialization checks are present in c2i adapters and call into
1487       // SharedRuntime::handle_wrong_method() on the slow path.
1488       //
1489       // JVM upcalls may land here as well, but there's a proper check present in
1490       // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1491       // so bypassing it in c2i adapter is benign.
1492       return callee->get_c2i_no_clinit_check_entry();
1493     } else {
1494       return callee->get_c2i_entry();
1495     }
1496   }
1497 
1498   // Must be compiled to compiled path which is safe to stackwalk
1499   methodHandle callee_method;
1500   JRT_BLOCK
1501     // Force resolving of caller (if we called from compiled frame)
1502     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1503     thread->set_vm_result_2(callee_method());
1504   JRT_BLOCK_END
1505   // return compiled code entry point after potential safepoints
1506   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1507   return callee_method->verified_code_entry();
1508 JRT_END
1509 
1510 // Handle abstract method call
1511 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1512   // Verbose error message for AbstractMethodError.
1513   // Get the called method from the invoke bytecode.
1514   vframeStream vfst(thread, true);
1515   assert(!vfst.at_end(), "Java frame must exist");
1516   methodHandle caller(thread, vfst.method());
1517   Bytecode_invoke invoke(caller, vfst.bci());
1518   DEBUG_ONLY( invoke.verify(); )
1519 
1520   // Find the compiled caller frame.
1521   RegisterMap reg_map(thread);
1522   frame stubFrame = thread->last_frame();
1523   assert(stubFrame.is_runtime_frame(), "must be");
1524   frame callerFrame = stubFrame.sender(&reg_map);
1525   assert(callerFrame.is_compiled_frame(), "must be");
1526 
1527   // Install exception and return forward entry.
1528   address res = StubRoutines::throw_AbstractMethodError_entry();
1529   JRT_BLOCK
1530     methodHandle callee(thread, invoke.static_target(thread));
1531     if (!callee.is_null()) {
1532       oop recv = callerFrame.retrieve_receiver(&reg_map);
1533       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1534       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1535       res = StubRoutines::forward_exception_entry();
1536     }
1537   JRT_BLOCK_END
1538   return res;
1539 JRT_END
1540 
1541 
1542 // resolve a static call and patch code
1543 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1544   methodHandle callee_method;
1545   JRT_BLOCK
1546     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1547     thread->set_vm_result_2(callee_method());
1548   JRT_BLOCK_END
1549   // return compiled code entry point after potential safepoints
1550   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1551   return callee_method->verified_code_entry();
1552 JRT_END
1553 
1554 
1555 // resolve virtual call and update inline cache to monomorphic
1556 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1557   methodHandle callee_method;
1558   JRT_BLOCK
1559     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1560     thread->set_vm_result_2(callee_method());
1561   JRT_BLOCK_END
1562   // return compiled code entry point after potential safepoints
1563   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1564   return callee_method->verified_code_entry();
1565 JRT_END
1566 
1567 
1568 // Resolve a virtual call that can be statically bound (e.g., always
1569 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1570 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1571   methodHandle callee_method;
1572   JRT_BLOCK
1573     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1574     thread->set_vm_result_2(callee_method());
1575   JRT_BLOCK_END
1576   // return compiled code entry point after potential safepoints
1577   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1578   return callee_method->verified_code_entry();
1579 JRT_END
1580 
1581 // The handle_ic_miss_helper_internal function returns false if it failed due
1582 // to either running out of vtable stubs or ic stubs due to IC transitions
1583 // to transitional states. The needs_ic_stub_refill value will be set if
1584 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1585 // refills the IC stubs and tries again.
handle_ic_miss_helper_internal(Handle receiver,CompiledMethod * caller_nm,const frame & caller_frame,methodHandle callee_method,Bytecodes::Code bc,CallInfo & call_info,bool & needs_ic_stub_refill,TRAPS)1586 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1587                                                    const frame& caller_frame, methodHandle callee_method,
1588                                                    Bytecodes::Code bc, CallInfo& call_info,
1589                                                    bool& needs_ic_stub_refill, TRAPS) {
1590   CompiledICLocker ml(caller_nm);
1591   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1592   bool should_be_mono = false;
1593   if (inline_cache->is_optimized()) {
1594     if (TraceCallFixup) {
1595       ResourceMark rm(THREAD);
1596       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1597       callee_method->print_short_name(tty);
1598       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1599     }
1600     should_be_mono = true;
1601   } else if (inline_cache->is_icholder_call()) {
1602     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1603     if (ic_oop != NULL) {
1604       if (!ic_oop->is_loader_alive()) {
1605         // Deferred IC cleaning due to concurrent class unloading
1606         if (!inline_cache->set_to_clean()) {
1607           needs_ic_stub_refill = true;
1608           return false;
1609         }
1610       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1611         // This isn't a real miss. We must have seen that compiled code
1612         // is now available and we want the call site converted to a
1613         // monomorphic compiled call site.
1614         // We can't assert for callee_method->code() != NULL because it
1615         // could have been deoptimized in the meantime
1616         if (TraceCallFixup) {
1617           ResourceMark rm(THREAD);
1618           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1619           callee_method->print_short_name(tty);
1620           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1621         }
1622         should_be_mono = true;
1623       }
1624     }
1625   }
1626 
1627   if (should_be_mono) {
1628     // We have a path that was monomorphic but was going interpreted
1629     // and now we have (or had) a compiled entry. We correct the IC
1630     // by using a new icBuffer.
1631     CompiledICInfo info;
1632     Klass* receiver_klass = receiver()->klass();
1633     inline_cache->compute_monomorphic_entry(callee_method,
1634                                             receiver_klass,
1635                                             inline_cache->is_optimized(),
1636                                             false, caller_nm->is_nmethod(),
1637                                             info, CHECK_false);
1638     if (!inline_cache->set_to_monomorphic(info)) {
1639       needs_ic_stub_refill = true;
1640       return false;
1641     }
1642   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1643     // Potential change to megamorphic
1644 
1645     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1646     if (needs_ic_stub_refill) {
1647       return false;
1648     }
1649     if (!successful) {
1650       if (!inline_cache->set_to_clean()) {
1651         needs_ic_stub_refill = true;
1652         return false;
1653       }
1654     }
1655   } else {
1656     // Either clean or megamorphic
1657   }
1658   return true;
1659 }
1660 
handle_ic_miss_helper(JavaThread * thread,TRAPS)1661 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1662   ResourceMark rm(thread);
1663   CallInfo call_info;
1664   Bytecodes::Code bc;
1665 
1666   // receiver is NULL for static calls. An exception is thrown for NULL
1667   // receivers for non-static calls
1668   Handle receiver = find_callee_info(thread, bc, call_info,
1669                                      CHECK_(methodHandle()));
1670   // Compiler1 can produce virtual call sites that can actually be statically bound
1671   // If we fell thru to below we would think that the site was going megamorphic
1672   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1673   // we'd try and do a vtable dispatch however methods that can be statically bound
1674   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1675   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1676   // plain ic_miss) and the site will be converted to an optimized virtual call site
1677   // never to miss again. I don't believe C2 will produce code like this but if it
1678   // did this would still be the correct thing to do for it too, hence no ifdef.
1679   //
1680   if (call_info.resolved_method()->can_be_statically_bound()) {
1681     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1682     if (TraceCallFixup) {
1683       RegisterMap reg_map(thread, false);
1684       frame caller_frame = thread->last_frame().sender(&reg_map);
1685       ResourceMark rm(thread);
1686       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1687       callee_method->print_short_name(tty);
1688       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1689       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1690     }
1691     return callee_method;
1692   }
1693 
1694   methodHandle callee_method(thread, call_info.selected_method());
1695 
1696 #ifndef PRODUCT
1697   Atomic::inc(&_ic_miss_ctr);
1698 
1699   // Statistics & Tracing
1700   if (TraceCallFixup) {
1701     ResourceMark rm(thread);
1702     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1703     callee_method->print_short_name(tty);
1704     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1705   }
1706 
1707   if (ICMissHistogram) {
1708     MutexLocker m(VMStatistic_lock);
1709     RegisterMap reg_map(thread, false);
1710     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1711     // produce statistics under the lock
1712     trace_ic_miss(f.pc());
1713   }
1714 #endif
1715 
1716   // install an event collector so that when a vtable stub is created the
1717   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1718   // event can't be posted when the stub is created as locks are held
1719   // - instead the event will be deferred until the event collector goes
1720   // out of scope.
1721   JvmtiDynamicCodeEventCollector event_collector;
1722 
1723   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1724   // Transitioning IC caches may require transition stubs. If we run out
1725   // of transition stubs, we have to drop locks and perform a safepoint
1726   // that refills them.
1727   RegisterMap reg_map(thread, false);
1728   frame caller_frame = thread->last_frame().sender(&reg_map);
1729   CodeBlob* cb = caller_frame.cb();
1730   CompiledMethod* caller_nm = cb->as_compiled_method();
1731 
1732   for (;;) {
1733     ICRefillVerifier ic_refill_verifier;
1734     bool needs_ic_stub_refill = false;
1735     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1736                                                      bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1737     if (successful || !needs_ic_stub_refill) {
1738       return callee_method;
1739     } else {
1740       InlineCacheBuffer::refill_ic_stubs();
1741     }
1742   }
1743 }
1744 
clear_ic_at_addr(CompiledMethod * caller_nm,address call_addr,bool is_static_call)1745 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1746   CompiledICLocker ml(caller_nm);
1747   if (is_static_call) {
1748     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1749     if (!ssc->is_clean()) {
1750       return ssc->set_to_clean();
1751     }
1752   } else {
1753     // compiled, dispatched call (which used to call an interpreted method)
1754     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1755     if (!inline_cache->is_clean()) {
1756       return inline_cache->set_to_clean();
1757     }
1758   }
1759   return true;
1760 }
1761 
1762 //
1763 // Resets a call-site in compiled code so it will get resolved again.
1764 // This routines handles both virtual call sites, optimized virtual call
1765 // sites, and static call sites. Typically used to change a call sites
1766 // destination from compiled to interpreted.
1767 //
reresolve_call_site(JavaThread * thread,TRAPS)1768 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1769   ResourceMark rm(thread);
1770   RegisterMap reg_map(thread, false);
1771   frame stub_frame = thread->last_frame();
1772   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1773   frame caller = stub_frame.sender(&reg_map);
1774 
1775   // Do nothing if the frame isn't a live compiled frame.
1776   // nmethod could be deoptimized by the time we get here
1777   // so no update to the caller is needed.
1778 
1779   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1780 
1781     address pc = caller.pc();
1782 
1783     // Check for static or virtual call
1784     bool is_static_call = false;
1785     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1786 
1787     // Default call_addr is the location of the "basic" call.
1788     // Determine the address of the call we a reresolving. With
1789     // Inline Caches we will always find a recognizable call.
1790     // With Inline Caches disabled we may or may not find a
1791     // recognizable call. We will always find a call for static
1792     // calls and for optimized virtual calls. For vanilla virtual
1793     // calls it depends on the state of the UseInlineCaches switch.
1794     //
1795     // With Inline Caches disabled we can get here for a virtual call
1796     // for two reasons:
1797     //   1 - calling an abstract method. The vtable for abstract methods
1798     //       will run us thru handle_wrong_method and we will eventually
1799     //       end up in the interpreter to throw the ame.
1800     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1801     //       call and between the time we fetch the entry address and
1802     //       we jump to it the target gets deoptimized. Similar to 1
1803     //       we will wind up in the interprter (thru a c2i with c2).
1804     //
1805     address call_addr = NULL;
1806     {
1807       // Get call instruction under lock because another thread may be
1808       // busy patching it.
1809       CompiledICLocker ml(caller_nm);
1810       // Location of call instruction
1811       call_addr = caller_nm->call_instruction_address(pc);
1812     }
1813     // Make sure nmethod doesn't get deoptimized and removed until
1814     // this is done with it.
1815     // CLEANUP - with lazy deopt shouldn't need this lock
1816     nmethodLocker nmlock(caller_nm);
1817 
1818     if (call_addr != NULL) {
1819       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1820       int ret = iter.next(); // Get item
1821       if (ret) {
1822         assert(iter.addr() == call_addr, "must find call");
1823         if (iter.type() == relocInfo::static_call_type) {
1824           is_static_call = true;
1825         } else {
1826           assert(iter.type() == relocInfo::virtual_call_type ||
1827                  iter.type() == relocInfo::opt_virtual_call_type
1828                 , "unexpected relocInfo. type");
1829         }
1830       } else {
1831         assert(!UseInlineCaches, "relocation info. must exist for this address");
1832       }
1833 
1834       // Cleaning the inline cache will force a new resolve. This is more robust
1835       // than directly setting it to the new destination, since resolving of calls
1836       // is always done through the same code path. (experience shows that it
1837       // leads to very hard to track down bugs, if an inline cache gets updated
1838       // to a wrong method). It should not be performance critical, since the
1839       // resolve is only done once.
1840 
1841       for (;;) {
1842         ICRefillVerifier ic_refill_verifier;
1843         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1844           InlineCacheBuffer::refill_ic_stubs();
1845         } else {
1846           break;
1847         }
1848       }
1849     }
1850   }
1851 
1852   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1853 
1854 
1855 #ifndef PRODUCT
1856   Atomic::inc(&_wrong_method_ctr);
1857 
1858   if (TraceCallFixup) {
1859     ResourceMark rm(thread);
1860     tty->print("handle_wrong_method reresolving call to");
1861     callee_method->print_short_name(tty);
1862     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1863   }
1864 #endif
1865 
1866   return callee_method;
1867 }
1868 
handle_unsafe_access(JavaThread * thread,address next_pc)1869 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1870   // The faulting unsafe accesses should be changed to throw the error
1871   // synchronously instead. Meanwhile the faulting instruction will be
1872   // skipped over (effectively turning it into a no-op) and an
1873   // asynchronous exception will be raised which the thread will
1874   // handle at a later point. If the instruction is a load it will
1875   // return garbage.
1876 
1877   // Request an async exception.
1878   thread->set_pending_unsafe_access_error();
1879 
1880   // Return address of next instruction to execute.
1881   return next_pc;
1882 }
1883 
1884 #ifdef ASSERT
check_member_name_argument_is_last_argument(const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)1885 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1886                                                                 const BasicType* sig_bt,
1887                                                                 const VMRegPair* regs) {
1888   ResourceMark rm;
1889   const int total_args_passed = method->size_of_parameters();
1890   const VMRegPair*    regs_with_member_name = regs;
1891         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1892 
1893   const int member_arg_pos = total_args_passed - 1;
1894   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1895   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1896 
1897   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1898 
1899   for (int i = 0; i < member_arg_pos; i++) {
1900     VMReg a =    regs_with_member_name[i].first();
1901     VMReg b = regs_without_member_name[i].first();
1902     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1903   }
1904   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1905 }
1906 #endif
1907 
should_fixup_call_destination(address destination,address entry_point,address caller_pc,Method * moop,CodeBlob * cb)1908 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1909   if (destination != entry_point) {
1910     CodeBlob* callee = CodeCache::find_blob(destination);
1911     // callee == cb seems weird. It means calling interpreter thru stub.
1912     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1913       // static call or optimized virtual
1914       if (TraceCallFixup) {
1915         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1916         moop->print_short_name(tty);
1917         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1918       }
1919       return true;
1920     } else {
1921       if (TraceCallFixup) {
1922         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1923         moop->print_short_name(tty);
1924         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1925       }
1926       // assert is too strong could also be resolve destinations.
1927       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1928     }
1929   } else {
1930     if (TraceCallFixup) {
1931       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1932       moop->print_short_name(tty);
1933       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1934     }
1935   }
1936   return false;
1937 }
1938 
1939 // ---------------------------------------------------------------------------
1940 // We are calling the interpreter via a c2i. Normally this would mean that
1941 // we were called by a compiled method. However we could have lost a race
1942 // where we went int -> i2c -> c2i and so the caller could in fact be
1943 // interpreted. If the caller is compiled we attempt to patch the caller
1944 // so he no longer calls into the interpreter.
1945 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1946   Method* moop(method);
1947 
1948   address entry_point = moop->from_compiled_entry_no_trampoline();
1949 
1950   // It's possible that deoptimization can occur at a call site which hasn't
1951   // been resolved yet, in which case this function will be called from
1952   // an nmethod that has been patched for deopt and we can ignore the
1953   // request for a fixup.
1954   // Also it is possible that we lost a race in that from_compiled_entry
1955   // is now back to the i2c in that case we don't need to patch and if
1956   // we did we'd leap into space because the callsite needs to use
1957   // "to interpreter" stub in order to load up the Method*. Don't
1958   // ask me how I know this...
1959 
1960   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1961   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1962     return;
1963   }
1964 
1965   // The check above makes sure this is a nmethod.
1966   CompiledMethod* nm = cb->as_compiled_method_or_null();
1967   assert(nm, "must be");
1968 
1969   // Get the return PC for the passed caller PC.
1970   address return_pc = caller_pc + frame::pc_return_offset;
1971 
1972   // There is a benign race here. We could be attempting to patch to a compiled
1973   // entry point at the same time the callee is being deoptimized. If that is
1974   // the case then entry_point may in fact point to a c2i and we'd patch the
1975   // call site with the same old data. clear_code will set code() to NULL
1976   // at the end of it. If we happen to see that NULL then we can skip trying
1977   // to patch. If we hit the window where the callee has a c2i in the
1978   // from_compiled_entry and the NULL isn't present yet then we lose the race
1979   // and patch the code with the same old data. Asi es la vida.
1980 
1981   if (moop->code() == NULL) return;
1982 
1983   if (nm->is_in_use()) {
1984     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1985     CompiledICLocker ic_locker(nm);
1986     if (NativeCall::is_call_before(return_pc)) {
1987       ResourceMark mark;
1988       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1989       //
1990       // bug 6281185. We might get here after resolving a call site to a vanilla
1991       // virtual call. Because the resolvee uses the verified entry it may then
1992       // see compiled code and attempt to patch the site by calling us. This would
1993       // then incorrectly convert the call site to optimized and its downhill from
1994       // there. If you're lucky you'll get the assert in the bugid, if not you've
1995       // just made a call site that could be megamorphic into a monomorphic site
1996       // for the rest of its life! Just another racing bug in the life of
1997       // fixup_callers_callsite ...
1998       //
1999       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2000       iter.next();
2001       assert(iter.has_current(), "must have a reloc at java call site");
2002       relocInfo::relocType typ = iter.reloc()->type();
2003       if (typ != relocInfo::static_call_type &&
2004            typ != relocInfo::opt_virtual_call_type &&
2005            typ != relocInfo::static_stub_type) {
2006         return;
2007       }
2008       address destination = call->destination();
2009       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2010         call->set_destination_mt_safe(entry_point);
2011       }
2012     }
2013   }
2014 JRT_END
2015 
2016 
2017 // same as JVM_Arraycopy, but called directly from compiled code
JRT_ENTRY(void,SharedRuntime::slow_arraycopy_C (oopDesc * src,jint src_pos,oopDesc * dest,jint dest_pos,jint length,JavaThread * thread))2018 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2019                                                 oopDesc* dest, jint dest_pos,
2020                                                 jint length,
2021                                                 JavaThread* thread)) {
2022 #ifndef PRODUCT
2023   _slow_array_copy_ctr++;
2024 #endif
2025   // Check if we have null pointers
2026   if (src == NULL || dest == NULL) {
2027     THROW(vmSymbols::java_lang_NullPointerException());
2028   }
2029   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2030   // even though the copy_array API also performs dynamic checks to ensure
2031   // that src and dest are truly arrays (and are conformable).
2032   // The copy_array mechanism is awkward and could be removed, but
2033   // the compilers don't call this function except as a last resort,
2034   // so it probably doesn't matter.
2035   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2036                                         (arrayOopDesc*)dest, dest_pos,
2037                                         length, thread);
2038 }
2039 JRT_END
2040 
2041 // The caller of generate_class_cast_message() (or one of its callers)
2042 // must use a ResourceMark in order to correctly free the result.
generate_class_cast_message(JavaThread * thread,Klass * caster_klass)2043 char* SharedRuntime::generate_class_cast_message(
2044     JavaThread* thread, Klass* caster_klass) {
2045 
2046   // Get target class name from the checkcast instruction
2047   vframeStream vfst(thread, true);
2048   assert(!vfst.at_end(), "Java frame must exist");
2049   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2050   constantPoolHandle cpool(thread, vfst.method()->constants());
2051   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2052   Symbol* target_klass_name = NULL;
2053   if (target_klass == NULL) {
2054     // This klass should be resolved, but just in case, get the name in the klass slot.
2055     target_klass_name = cpool->klass_name_at(cc.index());
2056   }
2057   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2058 }
2059 
2060 
2061 // The caller of generate_class_cast_message() (or one of its callers)
2062 // must use a ResourceMark in order to correctly free the result.
generate_class_cast_message(Klass * caster_klass,Klass * target_klass,Symbol * target_klass_name)2063 char* SharedRuntime::generate_class_cast_message(
2064     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2065   const char* caster_name = caster_klass->external_name();
2066 
2067   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2068   const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2069                                                    target_klass->external_name();
2070 
2071   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2072 
2073   const char* caster_klass_description = "";
2074   const char* target_klass_description = "";
2075   const char* klass_separator = "";
2076   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2077     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2078   } else {
2079     caster_klass_description = caster_klass->class_in_module_of_loader();
2080     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2081     klass_separator = (target_klass != NULL) ? "; " : "";
2082   }
2083 
2084   // add 3 for parenthesis and preceeding space
2085   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2086 
2087   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2088   if (message == NULL) {
2089     // Shouldn't happen, but don't cause even more problems if it does
2090     message = const_cast<char*>(caster_klass->external_name());
2091   } else {
2092     jio_snprintf(message,
2093                  msglen,
2094                  "class %s cannot be cast to class %s (%s%s%s)",
2095                  caster_name,
2096                  target_name,
2097                  caster_klass_description,
2098                  klass_separator,
2099                  target_klass_description
2100                  );
2101   }
2102   return message;
2103 }
2104 
2105 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2106   (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2107 JRT_END
2108 
monitor_enter_helper(oopDesc * obj,BasicLock * lock,JavaThread * thread)2109 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread) {
2110   if (!SafepointSynchronize::is_synchronizing()) {
2111     // Only try quick_enter() if we're not trying to reach a safepoint
2112     // so that the calling thread reaches the safepoint more quickly.
2113     if (ObjectSynchronizer::quick_enter(obj, thread, lock)) return;
2114   }
2115   // NO_ASYNC required because an async exception on the state transition destructor
2116   // would leave you with the lock held and it would never be released.
2117   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2118   // and the model is that an exception implies the method failed.
2119   JRT_BLOCK_NO_ASYNC
2120   if (PrintBiasedLockingStatistics) {
2121     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2122   }
2123   Handle h_obj(THREAD, obj);
2124   ObjectSynchronizer::enter(h_obj, lock, CHECK);
2125   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2126   JRT_BLOCK_END
2127 }
2128 
2129 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2130 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2131   SharedRuntime::monitor_enter_helper(obj, lock, thread);
2132 JRT_END
2133 
monitor_exit_helper(oopDesc * obj,BasicLock * lock,JavaThread * thread)2134 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* thread) {
2135   assert(JavaThread::current() == thread, "invariant");
2136   // Exit must be non-blocking, and therefore no exceptions can be thrown.
2137   EXCEPTION_MARK;
2138   // The object could become unlocked through a JNI call, which we have no other checks for.
2139   // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2140   if (obj->is_unlocked()) {
2141     if (CheckJNICalls) {
2142       fatal("Object has been unlocked by JNI");
2143     }
2144     return;
2145   }
2146   ObjectSynchronizer::exit(obj, lock, THREAD);
2147 }
2148 
2149 // Handles the uncommon cases of monitor unlocking in compiled code
2150 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* thread))
2151   SharedRuntime::monitor_exit_helper(obj, lock, thread);
2152 JRT_END
2153 
2154 #ifndef PRODUCT
2155 
print_statistics()2156 void SharedRuntime::print_statistics() {
2157   ttyLocker ttyl;
2158   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2159 
2160   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2161 
2162   SharedRuntime::print_ic_miss_histogram();
2163 
2164   if (CountRemovableExceptions) {
2165     if (_nof_removable_exceptions > 0) {
2166       Unimplemented(); // this counter is not yet incremented
2167       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2168     }
2169   }
2170 
2171   // Dump the JRT_ENTRY counters
2172   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2173   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2174   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2175   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2176   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2177   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2178   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2179 
2180   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2181   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2182   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2183   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2184   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2185 
2186   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2187   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2188   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2189   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2190   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2191   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2192   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2193   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2194   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2195   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2196   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2197   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2198   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2199   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2200   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2201   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2202 
2203   AdapterHandlerLibrary::print_statistics();
2204 
2205   if (xtty != NULL)  xtty->tail("statistics");
2206 }
2207 
percent(int x,int y)2208 inline double percent(int x, int y) {
2209   return 100.0 * x / MAX2(y, 1);
2210 }
2211 
2212 class MethodArityHistogram {
2213  public:
2214   enum { MAX_ARITY = 256 };
2215  private:
2216   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2217   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2218   static int _max_arity;                      // max. arity seen
2219   static int _max_size;                       // max. arg size seen
2220 
add_method_to_histogram(nmethod * nm)2221   static void add_method_to_histogram(nmethod* nm) {
2222     Method* method = (nm == NULL) ? NULL : nm->method();
2223     if ((method != NULL) && nm->is_alive()) {
2224       ArgumentCount args(method->signature());
2225       int arity   = args.size() + (method->is_static() ? 0 : 1);
2226       int argsize = method->size_of_parameters();
2227       arity   = MIN2(arity, MAX_ARITY-1);
2228       argsize = MIN2(argsize, MAX_ARITY-1);
2229       int count = method->compiled_invocation_count();
2230       _arity_histogram[arity]  += count;
2231       _size_histogram[argsize] += count;
2232       _max_arity = MAX2(_max_arity, arity);
2233       _max_size  = MAX2(_max_size, argsize);
2234     }
2235   }
2236 
print_histogram_helper(int n,int * histo,const char * name)2237   void print_histogram_helper(int n, int* histo, const char* name) {
2238     const int N = MIN2(5, n);
2239     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2240     double sum = 0;
2241     double weighted_sum = 0;
2242     int i;
2243     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2244     double rest = sum;
2245     double percent = sum / 100;
2246     for (i = 0; i <= N; i++) {
2247       rest -= histo[i];
2248       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2249     }
2250     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2251     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2252   }
2253 
print_histogram()2254   void print_histogram() {
2255     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2256     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2257     tty->print_cr("\nSame for parameter size (in words):");
2258     print_histogram_helper(_max_size, _size_histogram, "size");
2259     tty->cr();
2260   }
2261 
2262  public:
MethodArityHistogram()2263   MethodArityHistogram() {
2264     // Take the Compile_lock to protect against changes in the CodeBlob structures
2265     MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2266     // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2267     MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2268     _max_arity = _max_size = 0;
2269     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2270     CodeCache::nmethods_do(add_method_to_histogram);
2271     print_histogram();
2272   }
2273 };
2274 
2275 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2276 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2277 int MethodArityHistogram::_max_arity;
2278 int MethodArityHistogram::_max_size;
2279 
print_call_statistics(int comp_total)2280 void SharedRuntime::print_call_statistics(int comp_total) {
2281   tty->print_cr("Calls from compiled code:");
2282   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2283   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2284   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2285   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2286   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2287   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2288   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2289   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2290   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2291   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2292   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2293   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2294   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2295   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2296   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2297   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2298   tty->cr();
2299   tty->print_cr("Note 1: counter updates are not MT-safe.");
2300   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2301   tty->print_cr("        %% in nested categories are relative to their category");
2302   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2303   tty->cr();
2304 
2305   MethodArityHistogram h;
2306 }
2307 #endif
2308 
2309 
2310 // A simple wrapper class around the calling convention information
2311 // that allows sharing of adapters for the same calling convention.
2312 class AdapterFingerPrint : public CHeapObj<mtCode> {
2313  private:
2314   enum {
2315     _basic_type_bits = 4,
2316     _basic_type_mask = right_n_bits(_basic_type_bits),
2317     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2318     _compact_int_count = 3
2319   };
2320   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2321   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2322 
2323   union {
2324     int  _compact[_compact_int_count];
2325     int* _fingerprint;
2326   } _value;
2327   int _length; // A negative length indicates the fingerprint is in the compact form,
2328                // Otherwise _value._fingerprint is the array.
2329 
2330   // Remap BasicTypes that are handled equivalently by the adapters.
2331   // These are correct for the current system but someday it might be
2332   // necessary to make this mapping platform dependent.
adapter_encoding(BasicType in)2333   static int adapter_encoding(BasicType in) {
2334     switch (in) {
2335       case T_BOOLEAN:
2336       case T_BYTE:
2337       case T_SHORT:
2338       case T_CHAR:
2339         // There are all promoted to T_INT in the calling convention
2340         return T_INT;
2341 
2342       case T_OBJECT:
2343       case T_ARRAY:
2344         // In other words, we assume that any register good enough for
2345         // an int or long is good enough for a managed pointer.
2346 #ifdef _LP64
2347         return T_LONG;
2348 #else
2349         return T_INT;
2350 #endif
2351 
2352       case T_INT:
2353       case T_LONG:
2354       case T_FLOAT:
2355       case T_DOUBLE:
2356       case T_VOID:
2357         return in;
2358 
2359       default:
2360         ShouldNotReachHere();
2361         return T_CONFLICT;
2362     }
2363   }
2364 
2365  public:
AdapterFingerPrint(int total_args_passed,BasicType * sig_bt)2366   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2367     // The fingerprint is based on the BasicType signature encoded
2368     // into an array of ints with eight entries per int.
2369     int* ptr;
2370     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2371     if (len <= _compact_int_count) {
2372       assert(_compact_int_count == 3, "else change next line");
2373       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2374       // Storing the signature encoded as signed chars hits about 98%
2375       // of the time.
2376       _length = -len;
2377       ptr = _value._compact;
2378     } else {
2379       _length = len;
2380       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2381       ptr = _value._fingerprint;
2382     }
2383 
2384     // Now pack the BasicTypes with 8 per int
2385     int sig_index = 0;
2386     for (int index = 0; index < len; index++) {
2387       int value = 0;
2388       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2389         int bt = ((sig_index < total_args_passed)
2390                   ? adapter_encoding(sig_bt[sig_index++])
2391                   : 0);
2392         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2393         value = (value << _basic_type_bits) | bt;
2394       }
2395       ptr[index] = value;
2396     }
2397   }
2398 
~AdapterFingerPrint()2399   ~AdapterFingerPrint() {
2400     if (_length > 0) {
2401       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2402     }
2403   }
2404 
value(int index)2405   int value(int index) {
2406     if (_length < 0) {
2407       return _value._compact[index];
2408     }
2409     return _value._fingerprint[index];
2410   }
length()2411   int length() {
2412     if (_length < 0) return -_length;
2413     return _length;
2414   }
2415 
is_compact()2416   bool is_compact() {
2417     return _length <= 0;
2418   }
2419 
compute_hash()2420   unsigned int compute_hash() {
2421     int hash = 0;
2422     for (int i = 0; i < length(); i++) {
2423       int v = value(i);
2424       hash = (hash << 8) ^ v ^ (hash >> 5);
2425     }
2426     return (unsigned int)hash;
2427   }
2428 
as_string()2429   const char* as_string() {
2430     stringStream st;
2431     st.print("0x");
2432     for (int i = 0; i < length(); i++) {
2433       st.print("%08x", value(i));
2434     }
2435     return st.as_string();
2436   }
2437 
equals(AdapterFingerPrint * other)2438   bool equals(AdapterFingerPrint* other) {
2439     if (other->_length != _length) {
2440       return false;
2441     }
2442     if (_length < 0) {
2443       assert(_compact_int_count == 3, "else change next line");
2444       return _value._compact[0] == other->_value._compact[0] &&
2445              _value._compact[1] == other->_value._compact[1] &&
2446              _value._compact[2] == other->_value._compact[2];
2447     } else {
2448       for (int i = 0; i < _length; i++) {
2449         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2450           return false;
2451         }
2452       }
2453     }
2454     return true;
2455   }
2456 };
2457 
2458 
2459 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2460 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2461   friend class AdapterHandlerTableIterator;
2462 
2463  private:
2464 
2465 #ifndef PRODUCT
2466   static int _lookups; // number of calls to lookup
2467   static int _buckets; // number of buckets checked
2468   static int _equals;  // number of buckets checked with matching hash
2469   static int _hits;    // number of successful lookups
2470   static int _compact; // number of equals calls with compact signature
2471 #endif
2472 
bucket(int i)2473   AdapterHandlerEntry* bucket(int i) {
2474     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2475   }
2476 
2477  public:
AdapterHandlerTable()2478   AdapterHandlerTable()
2479     : BasicHashtable<mtCode>(293, (sizeof(AdapterHandlerEntry))) { }
2480 
2481   // Create a new entry suitable for insertion in the table
new_entry(AdapterFingerPrint * fingerprint,address i2c_entry,address c2i_entry,address c2i_unverified_entry,address c2i_no_clinit_check_entry)2482   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2483     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2484     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2485     return entry;
2486   }
2487 
2488   // Insert an entry into the table
add(AdapterHandlerEntry * entry)2489   void add(AdapterHandlerEntry* entry) {
2490     int index = hash_to_index(entry->hash());
2491     add_entry(index, entry);
2492   }
2493 
free_entry(AdapterHandlerEntry * entry)2494   void free_entry(AdapterHandlerEntry* entry) {
2495     entry->deallocate();
2496     BasicHashtable<mtCode>::free_entry(entry);
2497   }
2498 
2499   // Find a entry with the same fingerprint if it exists
lookup(int total_args_passed,BasicType * sig_bt)2500   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2501     NOT_PRODUCT(_lookups++);
2502     AdapterFingerPrint fp(total_args_passed, sig_bt);
2503     unsigned int hash = fp.compute_hash();
2504     int index = hash_to_index(hash);
2505     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2506       NOT_PRODUCT(_buckets++);
2507       if (e->hash() == hash) {
2508         NOT_PRODUCT(_equals++);
2509         if (fp.equals(e->fingerprint())) {
2510 #ifndef PRODUCT
2511           if (fp.is_compact()) _compact++;
2512           _hits++;
2513 #endif
2514           return e;
2515         }
2516       }
2517     }
2518     return NULL;
2519   }
2520 
2521 #ifndef PRODUCT
print_statistics()2522   void print_statistics() {
2523     ResourceMark rm;
2524     int longest = 0;
2525     int empty = 0;
2526     int total = 0;
2527     int nonempty = 0;
2528     for (int index = 0; index < table_size(); index++) {
2529       int count = 0;
2530       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2531         count++;
2532       }
2533       if (count != 0) nonempty++;
2534       if (count == 0) empty++;
2535       if (count > longest) longest = count;
2536       total += count;
2537     }
2538     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2539                   empty, longest, total, total / (double)nonempty);
2540     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2541                   _lookups, _buckets, _equals, _hits, _compact);
2542   }
2543 #endif
2544 };
2545 
2546 
2547 #ifndef PRODUCT
2548 
2549 int AdapterHandlerTable::_lookups;
2550 int AdapterHandlerTable::_buckets;
2551 int AdapterHandlerTable::_equals;
2552 int AdapterHandlerTable::_hits;
2553 int AdapterHandlerTable::_compact;
2554 
2555 #endif
2556 
2557 class AdapterHandlerTableIterator : public StackObj {
2558  private:
2559   AdapterHandlerTable* _table;
2560   int _index;
2561   AdapterHandlerEntry* _current;
2562 
scan()2563   void scan() {
2564     while (_index < _table->table_size()) {
2565       AdapterHandlerEntry* a = _table->bucket(_index);
2566       _index++;
2567       if (a != NULL) {
2568         _current = a;
2569         return;
2570       }
2571     }
2572   }
2573 
2574  public:
AdapterHandlerTableIterator(AdapterHandlerTable * table)2575   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2576     scan();
2577   }
has_next()2578   bool has_next() {
2579     return _current != NULL;
2580   }
next()2581   AdapterHandlerEntry* next() {
2582     if (_current != NULL) {
2583       AdapterHandlerEntry* result = _current;
2584       _current = _current->next();
2585       if (_current == NULL) scan();
2586       return result;
2587     } else {
2588       return NULL;
2589     }
2590   }
2591 };
2592 
2593 
2594 // ---------------------------------------------------------------------------
2595 // Implementation of AdapterHandlerLibrary
2596 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2597 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2598 const int AdapterHandlerLibrary_size = 16*K;
2599 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2600 
buffer_blob()2601 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2602   // Should be called only when AdapterHandlerLibrary_lock is active.
2603   if (_buffer == NULL) // Initialize lazily
2604       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2605   return _buffer;
2606 }
2607 
unexpected_adapter_call()2608 extern "C" void unexpected_adapter_call() {
2609   ShouldNotCallThis();
2610 }
2611 
initialize()2612 void AdapterHandlerLibrary::initialize() {
2613   if (_adapters != NULL) return;
2614   _adapters = new AdapterHandlerTable();
2615 
2616   // Create a special handler for abstract methods.  Abstract methods
2617   // are never compiled so an i2c entry is somewhat meaningless, but
2618   // throw AbstractMethodError just in case.
2619   // Pass wrong_method_abstract for the c2i transitions to return
2620   // AbstractMethodError for invalid invocations.
2621   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2622   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2623                                                               StubRoutines::throw_AbstractMethodError_entry(),
2624                                                               wrong_method_abstract, wrong_method_abstract);
2625 }
2626 
new_entry(AdapterFingerPrint * fingerprint,address i2c_entry,address c2i_entry,address c2i_unverified_entry,address c2i_no_clinit_check_entry)2627 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2628                                                       address i2c_entry,
2629                                                       address c2i_entry,
2630                                                       address c2i_unverified_entry,
2631                                                       address c2i_no_clinit_check_entry) {
2632   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2633 }
2634 
get_adapter(const methodHandle & method)2635 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2636   AdapterHandlerEntry* entry = get_adapter0(method);
2637   if (entry != NULL && method->is_shared()) {
2638     // See comments around Method::link_method()
2639     MutexLocker mu(AdapterHandlerLibrary_lock);
2640     if (method->adapter() == NULL) {
2641       method->update_adapter_trampoline(entry);
2642     }
2643     address trampoline = method->from_compiled_entry();
2644     if (*(int*)trampoline == 0) {
2645       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2646       MacroAssembler _masm(&buffer);
2647       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2648       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2649       _masm.flush();
2650 
2651       if (PrintInterpreter) {
2652         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2653       }
2654     }
2655   }
2656 
2657   return entry;
2658 }
2659 
get_adapter0(const methodHandle & method)2660 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2661   // Use customized signature handler.  Need to lock around updates to
2662   // the AdapterHandlerTable (it is not safe for concurrent readers
2663   // and a single writer: this could be fixed if it becomes a
2664   // problem).
2665 
2666   ResourceMark rm;
2667 
2668   NOT_PRODUCT(int insts_size);
2669   AdapterBlob* new_adapter = NULL;
2670   AdapterHandlerEntry* entry = NULL;
2671   AdapterFingerPrint* fingerprint = NULL;
2672   {
2673     MutexLocker mu(AdapterHandlerLibrary_lock);
2674     // make sure data structure is initialized
2675     initialize();
2676 
2677     if (method->is_abstract()) {
2678       return _abstract_method_handler;
2679     }
2680 
2681     // Fill in the signature array, for the calling-convention call.
2682     int total_args_passed = method->size_of_parameters(); // All args on stack
2683 
2684     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2685     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2686     int i = 0;
2687     if (!method->is_static())  // Pass in receiver first
2688       sig_bt[i++] = T_OBJECT;
2689     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2690       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2691       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2692         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2693     }
2694     assert(i == total_args_passed, "");
2695 
2696     // Lookup method signature's fingerprint
2697     entry = _adapters->lookup(total_args_passed, sig_bt);
2698 
2699 #ifdef ASSERT
2700     AdapterHandlerEntry* shared_entry = NULL;
2701     // Start adapter sharing verification only after the VM is booted.
2702     if (VerifyAdapterSharing && (entry != NULL)) {
2703       shared_entry = entry;
2704       entry = NULL;
2705     }
2706 #endif
2707 
2708     if (entry != NULL) {
2709       return entry;
2710     }
2711 
2712     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2713     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2714 
2715     // Make a C heap allocated version of the fingerprint to store in the adapter
2716     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2717 
2718     // StubRoutines::code2() is initialized after this function can be called. As a result,
2719     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2720     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2721     // stub that ensure that an I2C stub is called from an interpreter frame.
2722     bool contains_all_checks = StubRoutines::code2() != NULL;
2723 
2724     // Create I2C & C2I handlers
2725     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2726     if (buf != NULL) {
2727       CodeBuffer buffer(buf);
2728       short buffer_locs[20];
2729       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2730                                              sizeof(buffer_locs)/sizeof(relocInfo));
2731 
2732       MacroAssembler _masm(&buffer);
2733       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2734                                                      total_args_passed,
2735                                                      comp_args_on_stack,
2736                                                      sig_bt,
2737                                                      regs,
2738                                                      fingerprint);
2739 #ifdef ASSERT
2740       if (VerifyAdapterSharing) {
2741         if (shared_entry != NULL) {
2742           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2743           // Release the one just created and return the original
2744           _adapters->free_entry(entry);
2745           return shared_entry;
2746         } else  {
2747           entry->save_code(buf->code_begin(), buffer.insts_size());
2748         }
2749       }
2750 #endif
2751 
2752       new_adapter = AdapterBlob::create(&buffer);
2753       NOT_PRODUCT(insts_size = buffer.insts_size());
2754     }
2755     if (new_adapter == NULL) {
2756       // CodeCache is full, disable compilation
2757       // Ought to log this but compile log is only per compile thread
2758       // and we're some non descript Java thread.
2759       return NULL; // Out of CodeCache space
2760     }
2761     entry->relocate(new_adapter->content_begin());
2762 #ifndef PRODUCT
2763     // debugging suppport
2764     if (PrintAdapterHandlers || PrintStubCode) {
2765       ttyLocker ttyl;
2766       entry->print_adapter_on(tty);
2767       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2768                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2769                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2770       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2771       if (Verbose || PrintStubCode) {
2772         address first_pc = entry->base_address();
2773         if (first_pc != NULL) {
2774           Disassembler::decode(first_pc, first_pc + insts_size);
2775           tty->cr();
2776         }
2777       }
2778     }
2779 #endif
2780     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2781     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2782     if (contains_all_checks || !VerifyAdapterCalls) {
2783       _adapters->add(entry);
2784     }
2785   }
2786   // Outside of the lock
2787   if (new_adapter != NULL) {
2788     char blob_id[256];
2789     jio_snprintf(blob_id,
2790                  sizeof(blob_id),
2791                  "%s(%s)@" PTR_FORMAT,
2792                  new_adapter->name(),
2793                  fingerprint->as_string(),
2794                  new_adapter->content_begin());
2795     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2796 
2797     if (JvmtiExport::should_post_dynamic_code_generated()) {
2798       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2799     }
2800   }
2801   return entry;
2802 }
2803 
base_address()2804 address AdapterHandlerEntry::base_address() {
2805   address base = _i2c_entry;
2806   if (base == NULL)  base = _c2i_entry;
2807   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2808   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2809   assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2810   return base;
2811 }
2812 
relocate(address new_base)2813 void AdapterHandlerEntry::relocate(address new_base) {
2814   address old_base = base_address();
2815   assert(old_base != NULL, "");
2816   ptrdiff_t delta = new_base - old_base;
2817   if (_i2c_entry != NULL)
2818     _i2c_entry += delta;
2819   if (_c2i_entry != NULL)
2820     _c2i_entry += delta;
2821   if (_c2i_unverified_entry != NULL)
2822     _c2i_unverified_entry += delta;
2823   if (_c2i_no_clinit_check_entry != NULL)
2824     _c2i_no_clinit_check_entry += delta;
2825   assert(base_address() == new_base, "");
2826 }
2827 
2828 
deallocate()2829 void AdapterHandlerEntry::deallocate() {
2830   delete _fingerprint;
2831 #ifdef ASSERT
2832   FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2833 #endif
2834 }
2835 
2836 
2837 #ifdef ASSERT
2838 // Capture the code before relocation so that it can be compared
2839 // against other versions.  If the code is captured after relocation
2840 // then relative instructions won't be equivalent.
save_code(unsigned char * buffer,int length)2841 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2842   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2843   _saved_code_length = length;
2844   memcpy(_saved_code, buffer, length);
2845 }
2846 
2847 
compare_code(unsigned char * buffer,int length)2848 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2849   if (length != _saved_code_length) {
2850     return false;
2851   }
2852 
2853   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2854 }
2855 #endif
2856 
2857 
2858 /**
2859  * Create a native wrapper for this native method.  The wrapper converts the
2860  * Java-compiled calling convention to the native convention, handles
2861  * arguments, and transitions to native.  On return from the native we transition
2862  * back to java blocking if a safepoint is in progress.
2863  */
create_native_wrapper(const methodHandle & method)2864 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2865   ResourceMark rm;
2866   nmethod* nm = NULL;
2867   address critical_entry = NULL;
2868 
2869   assert(method->is_native(), "must be native");
2870   assert(method->is_method_handle_intrinsic() ||
2871          method->has_native_function(), "must have something valid to call!");
2872 
2873   if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
2874     // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
2875     critical_entry = NativeLookup::lookup_critical_entry(method);
2876   }
2877 
2878   {
2879     // Perform the work while holding the lock, but perform any printing outside the lock
2880     MutexLocker mu(AdapterHandlerLibrary_lock);
2881     // See if somebody beat us to it
2882     if (method->code() != NULL) {
2883       return;
2884     }
2885 
2886     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2887     assert(compile_id > 0, "Must generate native wrapper");
2888 
2889 
2890     ResourceMark rm;
2891     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2892     if (buf != NULL) {
2893       CodeBuffer buffer(buf);
2894       struct { double data[20]; } locs_buf;
2895       buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, (sizeof(locs_buf)) / (sizeof(relocInfo)));
2896 #if defined(AARCH64)
2897       // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
2898       // in the constant pool to ensure ordering between the barrier and oops
2899       // accesses. For native_wrappers we need a constant.
2900       buffer.initialize_consts_size(8);
2901 #endif
2902       MacroAssembler _masm(&buffer);
2903 
2904       // Fill in the signature array, for the calling-convention call.
2905       const int total_args_passed = method->size_of_parameters();
2906 
2907       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2908       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2909       int i=0;
2910       if (!method->is_static())  // Pass in receiver first
2911         sig_bt[i++] = T_OBJECT;
2912       SignatureStream ss(method->signature());
2913       for (; !ss.at_return_type(); ss.next()) {
2914         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2915         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2916           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2917       }
2918       assert(i == total_args_passed, "");
2919       BasicType ret_type = ss.type();
2920 
2921       // Now get the compiled-Java arguments layout.
2922       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2923 
2924       // Generate the compiled-to-native wrapper code
2925       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
2926 
2927       if (nm != NULL) {
2928         {
2929           MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
2930           if (nm->make_in_use()) {
2931             method->set_code(method, nm);
2932           }
2933         }
2934 
2935         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2936         if (directive->PrintAssemblyOption) {
2937           nm->print_code();
2938         }
2939         DirectivesStack::release(directive);
2940       }
2941     }
2942   } // Unlock AdapterHandlerLibrary_lock
2943 
2944 
2945   // Install the generated code.
2946   if (nm != NULL) {
2947     const char *msg = method->is_static() ? "(static)" : "";
2948     CompileTask::print_ul(nm, msg);
2949     if (PrintCompilation) {
2950       ttyLocker ttyl;
2951       CompileTask::print(tty, nm, msg);
2952     }
2953     nm->post_compiled_method_load_event();
2954   }
2955 }
2956 
2957 // -------------------------------------------------------------------------
2958 // Java-Java calling convention
2959 // (what you use when Java calls Java)
2960 
2961 //------------------------------name_for_receiver----------------------------------
2962 // For a given signature, return the VMReg for parameter 0.
name_for_receiver()2963 VMReg SharedRuntime::name_for_receiver() {
2964   VMRegPair regs;
2965   BasicType sig_bt = T_OBJECT;
2966   (void) java_calling_convention(&sig_bt, &regs, 1);
2967   // Return argument 0 register.  In the LP64 build pointers
2968   // take 2 registers, but the VM wants only the 'main' name.
2969   return regs.first();
2970 }
2971 
find_callee_arguments(Symbol * sig,bool has_receiver,bool has_appendix,int * arg_size)2972 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2973   // This method is returning a data structure allocating as a
2974   // ResourceObject, so do not put any ResourceMarks in here.
2975 
2976   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2977   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2978   int cnt = 0;
2979   if (has_receiver) {
2980     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2981   }
2982 
2983   for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
2984     BasicType type = ss.type();
2985     sig_bt[cnt++] = type;
2986     if (is_double_word_type(type))
2987       sig_bt[cnt++] = T_VOID;
2988   }
2989 
2990   if (has_appendix) {
2991     sig_bt[cnt++] = T_OBJECT;
2992   }
2993 
2994   assert(cnt < 256, "grow table size");
2995 
2996   int comp_args_on_stack;
2997   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
2998 
2999   // the calling convention doesn't count out_preserve_stack_slots so
3000   // we must add that in to get "true" stack offsets.
3001 
3002   if (comp_args_on_stack) {
3003     for (int i = 0; i < cnt; i++) {
3004       VMReg reg1 = regs[i].first();
3005       if (reg1->is_stack()) {
3006         // Yuck
3007         reg1 = reg1->bias(out_preserve_stack_slots());
3008       }
3009       VMReg reg2 = regs[i].second();
3010       if (reg2->is_stack()) {
3011         // Yuck
3012         reg2 = reg2->bias(out_preserve_stack_slots());
3013       }
3014       regs[i].set_pair(reg2, reg1);
3015     }
3016   }
3017 
3018   // results
3019   *arg_size = cnt;
3020   return regs;
3021 }
3022 
3023 // OSR Migration Code
3024 //
3025 // This code is used convert interpreter frames into compiled frames.  It is
3026 // called from very start of a compiled OSR nmethod.  A temp array is
3027 // allocated to hold the interesting bits of the interpreter frame.  All
3028 // active locks are inflated to allow them to move.  The displaced headers and
3029 // active interpreter locals are copied into the temp buffer.  Then we return
3030 // back to the compiled code.  The compiled code then pops the current
3031 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3032 // copies the interpreter locals and displaced headers where it wants.
3033 // Finally it calls back to free the temp buffer.
3034 //
3035 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3036 
3037 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3038   // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3039   // frame. The stack watermark code below ensures that the interpreted frame is processed
3040   // before it gets unwound. This is helpful as the size of the compiled frame could be
3041   // larger than the interpreted frame, which could result in the new frame not being
3042   // processed correctly.
3043   StackWatermarkSet::before_unwind(thread);
3044 
3045   //
3046   // This code is dependent on the memory layout of the interpreter local
3047   // array and the monitors. On all of our platforms the layout is identical
3048   // so this code is shared. If some platform lays the their arrays out
3049   // differently then this code could move to platform specific code or
3050   // the code here could be modified to copy items one at a time using
3051   // frame accessor methods and be platform independent.
3052 
3053   frame fr = thread->last_frame();
3054   assert(fr.is_interpreted_frame(), "");
3055   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3056 
3057   // Figure out how many monitors are active.
3058   int active_monitor_count = 0;
3059   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3060        kptr < fr.interpreter_frame_monitor_begin();
3061        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3062     if (kptr->obj() != NULL) active_monitor_count++;
3063   }
3064 
3065   // QQQ we could place number of active monitors in the array so that compiled code
3066   // could double check it.
3067 
3068   Method* moop = fr.interpreter_frame_method();
3069   int max_locals = moop->max_locals();
3070   // Allocate temp buffer, 1 word per local & 2 per active monitor
3071   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3072   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3073 
3074   // Copy the locals.  Order is preserved so that loading of longs works.
3075   // Since there's no GC I can copy the oops blindly.
3076   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3077   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3078                        (HeapWord*)&buf[0],
3079                        max_locals);
3080 
3081   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3082   int i = max_locals;
3083   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3084        kptr2 < fr.interpreter_frame_monitor_begin();
3085        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3086     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3087       BasicLock *lock = kptr2->lock();
3088       // Inflate so the object's header no longer refers to the BasicLock.
3089       if (lock->displaced_header().is_unlocked()) {
3090         // The object is locked and the resulting ObjectMonitor* will also be
3091         // locked so it can't be async deflated until ownership is dropped.
3092         // See the big comment in basicLock.cpp: BasicLock::move_to().
3093         ObjectSynchronizer::inflate_helper(kptr2->obj());
3094       }
3095       // Now the displaced header is free to move because the
3096       // object's header no longer refers to it.
3097       buf[i++] = (intptr_t)lock->displaced_header().value();
3098       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3099     }
3100   }
3101   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3102 
3103   return buf;
3104 JRT_END
3105 
3106 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3107   FREE_C_HEAP_ARRAY(intptr_t, buf);
3108 JRT_END
3109 
contains(const CodeBlob * b)3110 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3111   AdapterHandlerTableIterator iter(_adapters);
3112   while (iter.has_next()) {
3113     AdapterHandlerEntry* a = iter.next();
3114     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3115   }
3116   return false;
3117 }
3118 
print_handler_on(outputStream * st,const CodeBlob * b)3119 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3120   AdapterHandlerTableIterator iter(_adapters);
3121   while (iter.has_next()) {
3122     AdapterHandlerEntry* a = iter.next();
3123     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3124       st->print("Adapter for signature: ");
3125       a->print_adapter_on(tty);
3126       return;
3127     }
3128   }
3129   assert(false, "Should have found handler");
3130 }
3131 
print_adapter_on(outputStream * st) const3132 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3133   st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3134   if (get_i2c_entry() != NULL) {
3135     st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3136   }
3137   if (get_c2i_entry() != NULL) {
3138     st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3139   }
3140   if (get_c2i_unverified_entry() != NULL) {
3141     st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3142   }
3143   if (get_c2i_no_clinit_check_entry() != NULL) {
3144     st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3145   }
3146   st->cr();
3147 }
3148 
3149 #ifndef PRODUCT
3150 
print_statistics()3151 void AdapterHandlerLibrary::print_statistics() {
3152   _adapters->print_statistics();
3153 }
3154 
3155 #endif /* PRODUCT */
3156 
3157 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3158   StackOverflow* overflow_state = thread->stack_overflow_state();
3159   overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3160   overflow_state->set_reserved_stack_activation(thread->stack_base());
3161 JRT_END
3162 
look_for_reserved_stack_annotated_method(JavaThread * thread,frame fr)3163 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3164   ResourceMark rm(thread);
3165   frame activation;
3166   CompiledMethod* nm = NULL;
3167   int count = 1;
3168 
3169   assert(fr.is_java_frame(), "Must start on Java frame");
3170 
3171   while (true) {
3172     Method* method = NULL;
3173     bool found = false;
3174     if (fr.is_interpreted_frame()) {
3175       method = fr.interpreter_frame_method();
3176       if (method != NULL && method->has_reserved_stack_access()) {
3177         found = true;
3178       }
3179     } else {
3180       CodeBlob* cb = fr.cb();
3181       if (cb != NULL && cb->is_compiled()) {
3182         nm = cb->as_compiled_method();
3183         method = nm->method();
3184         // scope_desc_near() must be used, instead of scope_desc_at() because on
3185         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3186         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3187           method = sd->method();
3188           if (method != NULL && method->has_reserved_stack_access()) {
3189             found = true;
3190       }
3191     }
3192       }
3193     }
3194     if (found) {
3195       activation = fr;
3196       warning("Potentially dangerous stack overflow in "
3197               "ReservedStackAccess annotated method %s [%d]",
3198               method->name_and_sig_as_C_string(), count++);
3199       EventReservedStackActivation event;
3200       if (event.should_commit()) {
3201         event.set_method(method);
3202         event.commit();
3203       }
3204     }
3205     if (fr.is_first_java_frame()) {
3206       break;
3207     } else {
3208       fr = fr.java_sender();
3209     }
3210   }
3211   return activation;
3212 }
3213 
on_slowpath_allocation_exit(JavaThread * thread)3214 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3215   // After any safepoint, just before going back to compiled code,
3216   // we inform the GC that we will be doing initializing writes to
3217   // this object in the future without emitting card-marks, so
3218   // GC may take any compensating steps.
3219 
3220   oop new_obj = thread->vm_result();
3221   if (new_obj == NULL) return;
3222 
3223   BarrierSet *bs = BarrierSet::barrier_set();
3224   bs->on_slowpath_allocation_exit(thread, new_obj);
3225 }
3226