1 /*
2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "classfile/systemDictionary.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "memory/resourceArea.hpp"
29 #include "memory/universe.hpp"
30 #include "oops/oop.inline.hpp"
31 #include "oops/oopHandle.inline.hpp"
32 #include "runtime/handles.inline.hpp"
33 #include "runtime/interfaceSupport.inline.hpp"
34 #include "runtime/java.hpp"
35 #include "runtime/javaCalls.hpp"
36 #include "runtime/mutex.hpp"
37 #include "runtime/mutexLocker.hpp"
38 #include "services/lowMemoryDetector.hpp"
39 #include "services/management.hpp"
40 
41 volatile bool LowMemoryDetector::_enabled_for_collected_pools = false;
42 volatile jint LowMemoryDetector::_disabled_count = 0;
43 
has_pending_requests()44 bool LowMemoryDetector::has_pending_requests() {
45   assert(Notification_lock->owned_by_self(), "Must own Notification_lock");
46   bool has_requests = false;
47   int num_memory_pools = MemoryService::num_memory_pools();
48   for (int i = 0; i < num_memory_pools; i++) {
49     MemoryPool* pool = MemoryService::get_memory_pool(i);
50     SensorInfo* sensor = pool->usage_sensor();
51     if (sensor != NULL) {
52       has_requests = has_requests || sensor->has_pending_requests();
53     }
54 
55     SensorInfo* gc_sensor = pool->gc_usage_sensor();
56     if (gc_sensor != NULL) {
57       has_requests = has_requests || gc_sensor->has_pending_requests();
58     }
59   }
60   return has_requests;
61 }
62 
process_sensor_changes(TRAPS)63 void LowMemoryDetector::process_sensor_changes(TRAPS) {
64   ResourceMark rm(THREAD);
65   HandleMark hm(THREAD);
66 
67   // No need to hold Notification_lock to call out to Java
68   int num_memory_pools = MemoryService::num_memory_pools();
69   for (int i = 0; i < num_memory_pools; i++) {
70     MemoryPool* pool = MemoryService::get_memory_pool(i);
71     SensorInfo* sensor = pool->usage_sensor();
72     SensorInfo* gc_sensor = pool->gc_usage_sensor();
73     if (sensor != NULL && sensor->has_pending_requests()) {
74       sensor->process_pending_requests(CHECK);
75     }
76     if (gc_sensor != NULL && gc_sensor->has_pending_requests()) {
77       gc_sensor->process_pending_requests(CHECK);
78     }
79   }
80 }
81 
82 // This method could be called from any Java threads
83 // and also VMThread.
detect_low_memory()84 void LowMemoryDetector::detect_low_memory() {
85   MutexLocker ml(Notification_lock, Mutex::_no_safepoint_check_flag);
86 
87   bool has_pending_requests = false;
88   int num_memory_pools = MemoryService::num_memory_pools();
89   for (int i = 0; i < num_memory_pools; i++) {
90     MemoryPool* pool = MemoryService::get_memory_pool(i);
91     SensorInfo* sensor = pool->usage_sensor();
92     if (sensor != NULL &&
93         pool->usage_threshold()->is_high_threshold_supported() &&
94         pool->usage_threshold()->high_threshold() != 0) {
95       MemoryUsage usage = pool->get_memory_usage();
96       sensor->set_gauge_sensor_level(usage,
97                                      pool->usage_threshold());
98       has_pending_requests = has_pending_requests || sensor->has_pending_requests();
99     }
100   }
101 
102   if (has_pending_requests) {
103     Notification_lock->notify_all();
104   }
105 }
106 
107 // This method could be called from any Java threads
108 // and also VMThread.
detect_low_memory(MemoryPool * pool)109 void LowMemoryDetector::detect_low_memory(MemoryPool* pool) {
110   SensorInfo* sensor = pool->usage_sensor();
111   if (sensor == NULL ||
112       !pool->usage_threshold()->is_high_threshold_supported() ||
113       pool->usage_threshold()->high_threshold() == 0) {
114     return;
115   }
116 
117   {
118     MutexLocker ml(Notification_lock, Mutex::_no_safepoint_check_flag);
119 
120     MemoryUsage usage = pool->get_memory_usage();
121     sensor->set_gauge_sensor_level(usage,
122                                    pool->usage_threshold());
123     if (sensor->has_pending_requests()) {
124       // notify sensor state update
125       Notification_lock->notify_all();
126     }
127   }
128 }
129 
130 // Only called by VMThread at GC time
detect_after_gc_memory(MemoryPool * pool)131 void LowMemoryDetector::detect_after_gc_memory(MemoryPool* pool) {
132   SensorInfo* sensor = pool->gc_usage_sensor();
133   if (sensor == NULL ||
134       !pool->gc_usage_threshold()->is_high_threshold_supported() ||
135       pool->gc_usage_threshold()->high_threshold() == 0) {
136     return;
137   }
138 
139   {
140     MutexLocker ml(Notification_lock, Mutex::_no_safepoint_check_flag);
141 
142     MemoryUsage usage = pool->get_last_collection_usage();
143     sensor->set_counter_sensor_level(usage, pool->gc_usage_threshold());
144 
145     if (sensor->has_pending_requests()) {
146       // notify sensor state update
147       Notification_lock->notify_all();
148     }
149   }
150 }
151 
152 // recompute enabled flag
recompute_enabled_for_collected_pools()153 void LowMemoryDetector::recompute_enabled_for_collected_pools() {
154   bool enabled = false;
155   int num_memory_pools = MemoryService::num_memory_pools();
156   for (int i=0; i<num_memory_pools; i++) {
157     MemoryPool* pool = MemoryService::get_memory_pool(i);
158     if (pool->is_collected_pool() && is_enabled(pool)) {
159       enabled = true;
160       break;
161     }
162   }
163   _enabled_for_collected_pools = enabled;
164 }
165 
SensorInfo()166 SensorInfo::SensorInfo() {
167   _sensor_on = false;
168   _sensor_count = 0;
169   _pending_trigger_count = 0;
170   _pending_clear_count = 0;
171 }
172 
set_sensor(instanceOop sensor)173 void SensorInfo::set_sensor(instanceOop sensor) {
174   assert(_sensor_obj.peek() == NULL, "Should be set only once");
175   _sensor_obj = OopHandle(Universe::vm_global(), sensor);
176 }
177 
178 
179 // When this method is used, the memory usage is monitored
180 // as a gauge attribute.  Sensor notifications (trigger or
181 // clear) is only emitted at the first time it crosses
182 // a threshold.
183 //
184 // High and low thresholds are designed to provide a
185 // hysteresis mechanism to avoid repeated triggering
186 // of notifications when the attribute value makes small oscillations
187 // around the high or low threshold value.
188 //
189 // The sensor will be triggered if:
190 //  (1) the usage is crossing above the high threshold and
191 //      the sensor is currently off and no pending
192 //      trigger requests; or
193 //  (2) the usage is crossing above the high threshold and
194 //      the sensor will be off (i.e. sensor is currently on
195 //      and has pending clear requests).
196 //
197 // Subsequent crossings of the high threshold value do not cause
198 // any triggers unless the usage becomes less than the low threshold.
199 //
200 // The sensor will be cleared if:
201 //  (1) the usage is crossing below the low threshold and
202 //      the sensor is currently on and no pending
203 //      clear requests; or
204 //  (2) the usage is crossing below the low threshold and
205 //      the sensor will be on (i.e. sensor is currently off
206 //      and has pending trigger requests).
207 //
208 // Subsequent crossings of the low threshold value do not cause
209 // any clears unless the usage becomes greater than or equal
210 // to the high threshold.
211 //
212 // If the current level is between high and low threshold, no change.
213 //
set_gauge_sensor_level(MemoryUsage usage,ThresholdSupport * high_low_threshold)214 void SensorInfo::set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold) {
215   assert(Notification_lock->owned_by_self(), "Must own Notification_lock");
216   assert(high_low_threshold->is_high_threshold_supported(), "just checking");
217 
218   bool is_over_high = high_low_threshold->is_high_threshold_crossed(usage);
219   bool is_below_low = high_low_threshold->is_low_threshold_crossed(usage);
220 
221   assert(!(is_over_high && is_below_low), "Can't be both true");
222 
223   if (is_over_high &&
224         ((!_sensor_on && _pending_trigger_count == 0) ||
225          _pending_clear_count > 0)) {
226     // low memory detected and need to increment the trigger pending count
227     // if the sensor is off or will be off due to _pending_clear_ > 0
228     // Request to trigger the sensor
229     _pending_trigger_count++;
230     _usage = usage;
231 
232     if (_pending_clear_count > 0) {
233       // non-zero pending clear requests indicates that there are
234       // pending requests to clear this sensor.
235       // This trigger request needs to clear this clear count
236       // since the resulting sensor flag should be on.
237       _pending_clear_count = 0;
238     }
239   } else if (is_below_low &&
240                ((_sensor_on && _pending_clear_count == 0) ||
241                 (_pending_trigger_count > 0 && _pending_clear_count == 0))) {
242     // memory usage returns below the threshold
243     // Request to clear the sensor if the sensor is on or will be on due to
244     // _pending_trigger_count > 0 and also no clear request
245     _pending_clear_count++;
246   }
247 }
248 
249 // When this method is used, the memory usage is monitored as a
250 // simple counter attribute.  The sensor will be triggered
251 // whenever the usage is crossing the threshold to keep track
252 // of the number of times the VM detects such a condition occurs.
253 //
254 // High and low thresholds are designed to provide a
255 // hysteresis mechanism to avoid repeated triggering
256 // of notifications when the attribute value makes small oscillations
257 // around the high or low threshold value.
258 //
259 // The sensor will be triggered if:
260 //   - the usage is crossing above the high threshold regardless
261 //     of the current sensor state.
262 //
263 // The sensor will be cleared if:
264 //  (1) the usage is crossing below the low threshold and
265 //      the sensor is currently on; or
266 //  (2) the usage is crossing below the low threshold and
267 //      the sensor will be on (i.e. sensor is currently off
268 //      and has pending trigger requests).
set_counter_sensor_level(MemoryUsage usage,ThresholdSupport * counter_threshold)269 void SensorInfo::set_counter_sensor_level(MemoryUsage usage, ThresholdSupport* counter_threshold) {
270   assert(Notification_lock->owned_by_self(), "Must own Notification_lock");
271   assert(counter_threshold->is_high_threshold_supported(), "just checking");
272 
273   bool is_over_high = counter_threshold->is_high_threshold_crossed(usage);
274   bool is_below_low = counter_threshold->is_low_threshold_crossed(usage);
275 
276   assert(!(is_over_high && is_below_low), "Can't be both true");
277 
278   if (is_over_high) {
279     _pending_trigger_count++;
280     _usage = usage;
281     _pending_clear_count = 0;
282   } else if (is_below_low && (_sensor_on || _pending_trigger_count > 0)) {
283     _pending_clear_count++;
284   }
285 }
286 
process_pending_requests(TRAPS)287 void SensorInfo::process_pending_requests(TRAPS) {
288   int pending_count = pending_trigger_count();
289   if (pending_clear_count() > 0) {
290     clear(pending_count, CHECK);
291   } else {
292     trigger(pending_count, CHECK);
293   }
294 
295 }
296 
trigger(int count,TRAPS)297 void SensorInfo::trigger(int count, TRAPS) {
298   assert(count <= _pending_trigger_count, "just checking");
299   Handle sensor_h(THREAD, _sensor_obj.resolve());
300   if (sensor_h() != NULL) {
301     InstanceKlass* sensorKlass = Management::sun_management_Sensor_klass(CHECK);
302     Symbol* trigger_method_signature;
303 
304     JavaValue result(T_VOID);
305     JavaCallArguments args(sensor_h);
306     args.push_int((int) count);
307 
308     Handle usage_h = MemoryService::create_MemoryUsage_obj(_usage, THREAD);
309     // Call Sensor::trigger(int, MemoryUsage) to send notification to listeners.
310     // When OOME occurs and fails to allocate MemoryUsage object, call
311     // Sensor::trigger(int) instead.  The pending request will be processed
312     // but no notification will be sent.
313     if (HAS_PENDING_EXCEPTION) {
314        assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOME here");
315        CLEAR_PENDING_EXCEPTION;
316        trigger_method_signature = vmSymbols::int_void_signature();
317     } else {
318        trigger_method_signature = vmSymbols::trigger_method_signature();
319        args.push_oop(usage_h);
320     }
321 
322     JavaCalls::call_virtual(&result,
323                         sensorKlass,
324                         vmSymbols::trigger_name(),
325                         trigger_method_signature,
326                         &args,
327                         THREAD);
328 
329     if (HAS_PENDING_EXCEPTION) {
330        // We just clear the OOM pending exception that we might have encountered
331        // in Java's tiggerAction(), and continue with updating the counters since
332        // the Java counters have been updated too.
333        assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOME here");
334        CLEAR_PENDING_EXCEPTION;
335      }
336   }
337 
338   {
339     // Holds Notification_lock and update the sensor state
340     MutexLocker ml(THREAD, Notification_lock, Mutex::_no_safepoint_check_flag);
341     assert(_pending_trigger_count > 0, "Must have pending trigger");
342     _sensor_on = true;
343     _sensor_count += count;
344     _pending_trigger_count = _pending_trigger_count - count;
345   }
346 }
347 
clear(int count,TRAPS)348 void SensorInfo::clear(int count, TRAPS) {
349   {
350     // Holds Notification_lock and update the sensor state
351     MutexLocker ml(THREAD, Notification_lock, Mutex::_no_safepoint_check_flag);
352     if (_pending_clear_count == 0) {
353       // Bail out if we lost a race to set_*_sensor_level() which may have
354       // reactivated the sensor in the meantime because it was triggered again.
355       return;
356     }
357     _sensor_on = false;
358     _sensor_count += count;
359     _pending_clear_count = 0;
360     _pending_trigger_count = _pending_trigger_count - count;
361   }
362 
363   Handle sensor(THREAD, _sensor_obj.resolve());
364   if (sensor() != NULL) {
365     InstanceKlass* sensorKlass = Management::sun_management_Sensor_klass(CHECK);
366     JavaValue result(T_VOID);
367     JavaCallArguments args(sensor);
368     args.push_int((int) count);
369     JavaCalls::call_virtual(&result,
370                             sensorKlass,
371                             vmSymbols::clear_name(),
372                             vmSymbols::int_void_signature(),
373                             &args,
374                             CHECK);
375   }
376 }
377 
378 //--------------------------------------------------------------
379 // Non-product code
380 
381 #ifndef PRODUCT
print()382 void SensorInfo::print() {
383   tty->print_cr("%s count = " SIZE_FORMAT " pending_triggers = %d pending_clears = %d",
384                 (_sensor_on ? "on" : "off"),
385                 _sensor_count, _pending_trigger_count, _pending_clear_count);
386 }
387 
388 #endif // PRODUCT
389