1 /*
2  * Copyright (c) 1994, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.lang.annotation.Native;
29 import java.lang.invoke.MethodHandles;
30 import java.lang.constant.Constable;
31 import java.lang.constant.ConstantDesc;
32 import java.math.*;
33 import java.util.Objects;
34 import java.util.Optional;
35 
36 import jdk.internal.misc.CDS;
37 import jdk.internal.vm.annotation.IntrinsicCandidate;
38 
39 import static java.lang.String.COMPACT_STRINGS;
40 import static java.lang.String.LATIN1;
41 import static java.lang.String.UTF16;
42 
43 /**
44  * The {@code Long} class wraps a value of the primitive type {@code
45  * long} in an object. An object of type {@code Long} contains a
46  * single field whose type is {@code long}.
47  *
48  * <p> In addition, this class provides several methods for converting
49  * a {@code long} to a {@code String} and a {@code String} to a {@code
50  * long}, as well as other constants and methods useful when dealing
51  * with a {@code long}.
52  *
53  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
54  * class; programmers should treat instances that are
55  * {@linkplain #equals(Object) equal} as interchangeable and should not
56  * use instances for synchronization, or unpredictable behavior may
57  * occur. For example, in a future release, synchronization may fail.
58  *
59  * <p>Implementation note: The implementations of the "bit twiddling"
60  * methods (such as {@link #highestOneBit(long) highestOneBit} and
61  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
62  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
63  * Delight</i>, (Addison Wesley, 2002).
64  *
65  * @author  Lee Boynton
66  * @author  Arthur van Hoff
67  * @author  Josh Bloch
68  * @author  Joseph D. Darcy
69  * @since   1.0
70  */
71 @jdk.internal.ValueBased
72 public final class Long extends Number
73         implements Comparable<Long>, Constable, ConstantDesc {
74     /**
75      * A constant holding the minimum value a {@code long} can
76      * have, -2<sup>63</sup>.
77      */
78     @Native public static final long MIN_VALUE = 0x8000000000000000L;
79 
80     /**
81      * A constant holding the maximum value a {@code long} can
82      * have, 2<sup>63</sup>-1.
83      */
84     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
85 
86     /**
87      * The {@code Class} instance representing the primitive type
88      * {@code long}.
89      *
90      * @since   1.1
91      */
92     @SuppressWarnings("unchecked")
93     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
94 
95     /**
96      * Returns a string representation of the first argument in the
97      * radix specified by the second argument.
98      *
99      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
100      * or larger than {@code Character.MAX_RADIX}, then the radix
101      * {@code 10} is used instead.
102      *
103      * <p>If the first argument is negative, the first element of the
104      * result is the ASCII minus sign {@code '-'}
105      * ({@code '\u005Cu002d'}). If the first argument is not
106      * negative, no sign character appears in the result.
107      *
108      * <p>The remaining characters of the result represent the magnitude
109      * of the first argument. If the magnitude is zero, it is
110      * represented by a single zero character {@code '0'}
111      * ({@code '\u005Cu0030'}); otherwise, the first character of
112      * the representation of the magnitude will not be the zero
113      * character.  The following ASCII characters are used as digits:
114      *
115      * <blockquote>
116      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
117      * </blockquote>
118      *
119      * These are {@code '\u005Cu0030'} through
120      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
121      * {@code '\u005Cu007a'}. If {@code radix} is
122      * <var>N</var>, then the first <var>N</var> of these characters
123      * are used as radix-<var>N</var> digits in the order shown. Thus,
124      * the digits for hexadecimal (radix 16) are
125      * {@code 0123456789abcdef}. If uppercase letters are
126      * desired, the {@link java.lang.String#toUpperCase()} method may
127      * be called on the result:
128      *
129      * <blockquote>
130      *  {@code Long.toString(n, 16).toUpperCase()}
131      * </blockquote>
132      *
133      * @param   i       a {@code long} to be converted to a string.
134      * @param   radix   the radix to use in the string representation.
135      * @return  a string representation of the argument in the specified radix.
136      * @see     java.lang.Character#MAX_RADIX
137      * @see     java.lang.Character#MIN_RADIX
138      */
toString(long i, int radix)139     public static String toString(long i, int radix) {
140         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
141             radix = 10;
142         if (radix == 10)
143             return toString(i);
144 
145         if (COMPACT_STRINGS) {
146             byte[] buf = new byte[65];
147             int charPos = 64;
148             boolean negative = (i < 0);
149 
150             if (!negative) {
151                 i = -i;
152             }
153 
154             while (i <= -radix) {
155                 buf[charPos--] = (byte)Integer.digits[(int)(-(i % radix))];
156                 i = i / radix;
157             }
158             buf[charPos] = (byte)Integer.digits[(int)(-i)];
159 
160             if (negative) {
161                 buf[--charPos] = '-';
162             }
163             return StringLatin1.newString(buf, charPos, (65 - charPos));
164         }
165         return toStringUTF16(i, radix);
166     }
167 
toStringUTF16(long i, int radix)168     private static String toStringUTF16(long i, int radix) {
169         byte[] buf = new byte[65 * 2];
170         int charPos = 64;
171         boolean negative = (i < 0);
172         if (!negative) {
173             i = -i;
174         }
175         while (i <= -radix) {
176             StringUTF16.putChar(buf, charPos--, Integer.digits[(int)(-(i % radix))]);
177             i = i / radix;
178         }
179         StringUTF16.putChar(buf, charPos, Integer.digits[(int)(-i)]);
180         if (negative) {
181             StringUTF16.putChar(buf, --charPos, '-');
182         }
183         return StringUTF16.newString(buf, charPos, (65 - charPos));
184     }
185 
186     /**
187      * Returns a string representation of the first argument as an
188      * unsigned integer value in the radix specified by the second
189      * argument.
190      *
191      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
192      * or larger than {@code Character.MAX_RADIX}, then the radix
193      * {@code 10} is used instead.
194      *
195      * <p>Note that since the first argument is treated as an unsigned
196      * value, no leading sign character is printed.
197      *
198      * <p>If the magnitude is zero, it is represented by a single zero
199      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
200      * the first character of the representation of the magnitude will
201      * not be the zero character.
202      *
203      * <p>The behavior of radixes and the characters used as digits
204      * are the same as {@link #toString(long, int) toString}.
205      *
206      * @param   i       an integer to be converted to an unsigned string.
207      * @param   radix   the radix to use in the string representation.
208      * @return  an unsigned string representation of the argument in the specified radix.
209      * @see     #toString(long, int)
210      * @since 1.8
211      */
toUnsignedString(long i, int radix)212     public static String toUnsignedString(long i, int radix) {
213         if (i >= 0)
214             return toString(i, radix);
215         else {
216             switch (radix) {
217             case 2:
218                 return toBinaryString(i);
219 
220             case 4:
221                 return toUnsignedString0(i, 2);
222 
223             case 8:
224                 return toOctalString(i);
225 
226             case 10:
227                 /*
228                  * We can get the effect of an unsigned division by 10
229                  * on a long value by first shifting right, yielding a
230                  * positive value, and then dividing by 5.  This
231                  * allows the last digit and preceding digits to be
232                  * isolated more quickly than by an initial conversion
233                  * to BigInteger.
234                  */
235                 long quot = (i >>> 1) / 5;
236                 long rem = i - quot * 10;
237                 return toString(quot) + rem;
238 
239             case 16:
240                 return toHexString(i);
241 
242             case 32:
243                 return toUnsignedString0(i, 5);
244 
245             default:
246                 return toUnsignedBigInteger(i).toString(radix);
247             }
248         }
249     }
250 
251     /**
252      * Return a BigInteger equal to the unsigned value of the
253      * argument.
254      */
toUnsignedBigInteger(long i)255     private static BigInteger toUnsignedBigInteger(long i) {
256         if (i >= 0L)
257             return BigInteger.valueOf(i);
258         else {
259             int upper = (int) (i >>> 32);
260             int lower = (int) i;
261 
262             // return (upper << 32) + lower
263             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
264                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
265         }
266     }
267 
268     /**
269      * Returns a string representation of the {@code long}
270      * argument as an unsigned integer in base&nbsp;16.
271      *
272      * <p>The unsigned {@code long} value is the argument plus
273      * 2<sup>64</sup> if the argument is negative; otherwise, it is
274      * equal to the argument.  This value is converted to a string of
275      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
276      * leading {@code 0}s.
277      *
278      * <p>The value of the argument can be recovered from the returned
279      * string {@code s} by calling {@link
280      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
281      * 16)}.
282      *
283      * <p>If the unsigned magnitude is zero, it is represented by a
284      * single zero character {@code '0'} ({@code '\u005Cu0030'});
285      * otherwise, the first character of the representation of the
286      * unsigned magnitude will not be the zero character. The
287      * following characters are used as hexadecimal digits:
288      *
289      * <blockquote>
290      *  {@code 0123456789abcdef}
291      * </blockquote>
292      *
293      * These are the characters {@code '\u005Cu0030'} through
294      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
295      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
296      * the {@link java.lang.String#toUpperCase()} method may be called
297      * on the result:
298      *
299      * <blockquote>
300      *  {@code Long.toHexString(n).toUpperCase()}
301      * </blockquote>
302      *
303      * @param   i   a {@code long} to be converted to a string.
304      * @return  the string representation of the unsigned {@code long}
305      *          value represented by the argument in hexadecimal
306      *          (base&nbsp;16).
307      * @see #parseUnsignedLong(String, int)
308      * @see #toUnsignedString(long, int)
309      * @since   1.0.2
310      */
toHexString(long i)311     public static String toHexString(long i) {
312         return toUnsignedString0(i, 4);
313     }
314 
315     /**
316      * Returns a string representation of the {@code long}
317      * argument as an unsigned integer in base&nbsp;8.
318      *
319      * <p>The unsigned {@code long} value is the argument plus
320      * 2<sup>64</sup> if the argument is negative; otherwise, it is
321      * equal to the argument.  This value is converted to a string of
322      * ASCII digits in octal (base&nbsp;8) with no extra leading
323      * {@code 0}s.
324      *
325      * <p>The value of the argument can be recovered from the returned
326      * string {@code s} by calling {@link
327      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
328      * 8)}.
329      *
330      * <p>If the unsigned magnitude is zero, it is represented by a
331      * single zero character {@code '0'} ({@code '\u005Cu0030'});
332      * otherwise, the first character of the representation of the
333      * unsigned magnitude will not be the zero character. The
334      * following characters are used as octal digits:
335      *
336      * <blockquote>
337      *  {@code 01234567}
338      * </blockquote>
339      *
340      * These are the characters {@code '\u005Cu0030'} through
341      * {@code '\u005Cu0037'}.
342      *
343      * @param   i   a {@code long} to be converted to a string.
344      * @return  the string representation of the unsigned {@code long}
345      *          value represented by the argument in octal (base&nbsp;8).
346      * @see #parseUnsignedLong(String, int)
347      * @see #toUnsignedString(long, int)
348      * @since   1.0.2
349      */
toOctalString(long i)350     public static String toOctalString(long i) {
351         return toUnsignedString0(i, 3);
352     }
353 
354     /**
355      * Returns a string representation of the {@code long}
356      * argument as an unsigned integer in base&nbsp;2.
357      *
358      * <p>The unsigned {@code long} value is the argument plus
359      * 2<sup>64</sup> if the argument is negative; otherwise, it is
360      * equal to the argument.  This value is converted to a string of
361      * ASCII digits in binary (base&nbsp;2) with no extra leading
362      * {@code 0}s.
363      *
364      * <p>The value of the argument can be recovered from the returned
365      * string {@code s} by calling {@link
366      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
367      * 2)}.
368      *
369      * <p>If the unsigned magnitude is zero, it is represented by a
370      * single zero character {@code '0'} ({@code '\u005Cu0030'});
371      * otherwise, the first character of the representation of the
372      * unsigned magnitude will not be the zero character. The
373      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
374      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
375      *
376      * @param   i   a {@code long} to be converted to a string.
377      * @return  the string representation of the unsigned {@code long}
378      *          value represented by the argument in binary (base&nbsp;2).
379      * @see #parseUnsignedLong(String, int)
380      * @see #toUnsignedString(long, int)
381      * @since   1.0.2
382      */
toBinaryString(long i)383     public static String toBinaryString(long i) {
384         return toUnsignedString0(i, 1);
385     }
386 
387     /**
388      * Format a long (treated as unsigned) into a String.
389      * @param val the value to format
390      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
391      */
toUnsignedString0(long val, int shift)392     static String toUnsignedString0(long val, int shift) {
393         // assert shift > 0 && shift <=5 : "Illegal shift value";
394         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
395         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
396         if (COMPACT_STRINGS) {
397             byte[] buf = new byte[chars];
398             formatUnsignedLong0(val, shift, buf, 0, chars);
399             return new String(buf, LATIN1);
400         } else {
401             byte[] buf = new byte[chars * 2];
402             formatUnsignedLong0UTF16(val, shift, buf, 0, chars);
403             return new String(buf, UTF16);
404         }
405     }
406 
407     /**
408      * Format a long (treated as unsigned) into a byte buffer (LATIN1 version). If
409      * {@code len} exceeds the formatted ASCII representation of {@code val},
410      * {@code buf} will be padded with leading zeroes.
411      *
412      * @param val the unsigned long to format
413      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
414      * @param buf the byte buffer to write to
415      * @param offset the offset in the destination buffer to start at
416      * @param len the number of characters to write
417      */
formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len)418     private static void formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len) {
419         int charPos = offset + len;
420         int radix = 1 << shift;
421         int mask = radix - 1;
422         do {
423             buf[--charPos] = (byte)Integer.digits[((int) val) & mask];
424             val >>>= shift;
425         } while (charPos > offset);
426     }
427 
428     /**
429      * Format a long (treated as unsigned) into a byte buffer (UTF16 version). If
430      * {@code len} exceeds the formatted ASCII representation of {@code val},
431      * {@code buf} will be padded with leading zeroes.
432      *
433      * @param val the unsigned long to format
434      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
435      * @param buf the byte buffer to write to
436      * @param offset the offset in the destination buffer to start at
437      * @param len the number of characters to write
438      */
formatUnsignedLong0UTF16(long val, int shift, byte[] buf, int offset, int len)439     private static void formatUnsignedLong0UTF16(long val, int shift, byte[] buf, int offset, int len) {
440         int charPos = offset + len;
441         int radix = 1 << shift;
442         int mask = radix - 1;
443         do {
444             StringUTF16.putChar(buf, --charPos, Integer.digits[((int) val) & mask]);
445             val >>>= shift;
446         } while (charPos > offset);
447     }
448 
fastUUID(long lsb, long msb)449     static String fastUUID(long lsb, long msb) {
450         if (COMPACT_STRINGS) {
451             byte[] buf = new byte[36];
452             formatUnsignedLong0(lsb,        4, buf, 24, 12);
453             formatUnsignedLong0(lsb >>> 48, 4, buf, 19, 4);
454             formatUnsignedLong0(msb,        4, buf, 14, 4);
455             formatUnsignedLong0(msb >>> 16, 4, buf, 9,  4);
456             formatUnsignedLong0(msb >>> 32, 4, buf, 0,  8);
457 
458             buf[23] = '-';
459             buf[18] = '-';
460             buf[13] = '-';
461             buf[8]  = '-';
462 
463             return new String(buf, LATIN1);
464         } else {
465             byte[] buf = new byte[72];
466 
467             formatUnsignedLong0UTF16(lsb,        4, buf, 24, 12);
468             formatUnsignedLong0UTF16(lsb >>> 48, 4, buf, 19, 4);
469             formatUnsignedLong0UTF16(msb,        4, buf, 14, 4);
470             formatUnsignedLong0UTF16(msb >>> 16, 4, buf, 9,  4);
471             formatUnsignedLong0UTF16(msb >>> 32, 4, buf, 0,  8);
472 
473             StringUTF16.putChar(buf, 23, '-');
474             StringUTF16.putChar(buf, 18, '-');
475             StringUTF16.putChar(buf, 13, '-');
476             StringUTF16.putChar(buf,  8, '-');
477 
478             return new String(buf, UTF16);
479         }
480     }
481 
482     /**
483      * Returns a {@code String} object representing the specified
484      * {@code long}.  The argument is converted to signed decimal
485      * representation and returned as a string, exactly as if the
486      * argument and the radix 10 were given as arguments to the {@link
487      * #toString(long, int)} method.
488      *
489      * @param   i   a {@code long} to be converted.
490      * @return  a string representation of the argument in base&nbsp;10.
491      */
toString(long i)492     public static String toString(long i) {
493         int size = stringSize(i);
494         if (COMPACT_STRINGS) {
495             byte[] buf = new byte[size];
496             getChars(i, size, buf);
497             return new String(buf, LATIN1);
498         } else {
499             byte[] buf = new byte[size * 2];
500             StringUTF16.getChars(i, size, buf);
501             return new String(buf, UTF16);
502         }
503     }
504 
505     /**
506      * Returns a string representation of the argument as an unsigned
507      * decimal value.
508      *
509      * The argument is converted to unsigned decimal representation
510      * and returned as a string exactly as if the argument and radix
511      * 10 were given as arguments to the {@link #toUnsignedString(long,
512      * int)} method.
513      *
514      * @param   i  an integer to be converted to an unsigned string.
515      * @return  an unsigned string representation of the argument.
516      * @see     #toUnsignedString(long, int)
517      * @since 1.8
518      */
toUnsignedString(long i)519     public static String toUnsignedString(long i) {
520         return toUnsignedString(i, 10);
521     }
522 
523     /**
524      * Places characters representing the long i into the
525      * character array buf. The characters are placed into
526      * the buffer backwards starting with the least significant
527      * digit at the specified index (exclusive), and working
528      * backwards from there.
529      *
530      * @implNote This method converts positive inputs into negative
531      * values, to cover the Long.MIN_VALUE case. Converting otherwise
532      * (negative to positive) will expose -Long.MIN_VALUE that overflows
533      * long.
534      *
535      * @param i     value to convert
536      * @param index next index, after the least significant digit
537      * @param buf   target buffer, Latin1-encoded
538      * @return index of the most significant digit or minus sign, if present
539      */
getChars(long i, int index, byte[] buf)540     static int getChars(long i, int index, byte[] buf) {
541         long q;
542         int r;
543         int charPos = index;
544 
545         boolean negative = (i < 0);
546         if (!negative) {
547             i = -i;
548         }
549 
550         // Get 2 digits/iteration using longs until quotient fits into an int
551         while (i <= Integer.MIN_VALUE) {
552             q = i / 100;
553             r = (int)((q * 100) - i);
554             i = q;
555             buf[--charPos] = Integer.DigitOnes[r];
556             buf[--charPos] = Integer.DigitTens[r];
557         }
558 
559         // Get 2 digits/iteration using ints
560         int q2;
561         int i2 = (int)i;
562         while (i2 <= -100) {
563             q2 = i2 / 100;
564             r  = (q2 * 100) - i2;
565             i2 = q2;
566             buf[--charPos] = Integer.DigitOnes[r];
567             buf[--charPos] = Integer.DigitTens[r];
568         }
569 
570         // We know there are at most two digits left at this point.
571         q2 = i2 / 10;
572         r  = (q2 * 10) - i2;
573         buf[--charPos] = (byte)('0' + r);
574 
575         // Whatever left is the remaining digit.
576         if (q2 < 0) {
577             buf[--charPos] = (byte)('0' - q2);
578         }
579 
580         if (negative) {
581             buf[--charPos] = (byte)'-';
582         }
583         return charPos;
584     }
585 
586     /**
587      * Returns the string representation size for a given long value.
588      *
589      * @param x long value
590      * @return string size
591      *
592      * @implNote There are other ways to compute this: e.g. binary search,
593      * but values are biased heavily towards zero, and therefore linear search
594      * wins. The iteration results are also routinely inlined in the generated
595      * code after loop unrolling.
596      */
stringSize(long x)597     static int stringSize(long x) {
598         int d = 1;
599         if (x >= 0) {
600             d = 0;
601             x = -x;
602         }
603         long p = -10;
604         for (int i = 1; i < 19; i++) {
605             if (x > p)
606                 return i + d;
607             p = 10 * p;
608         }
609         return 19 + d;
610     }
611 
612     /**
613      * Parses the string argument as a signed {@code long} in the
614      * radix specified by the second argument. The characters in the
615      * string must all be digits of the specified radix (as determined
616      * by whether {@link java.lang.Character#digit(char, int)} returns
617      * a nonnegative value), except that the first character may be an
618      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
619      * indicate a negative value or an ASCII plus sign {@code '+'}
620      * ({@code '\u005Cu002B'}) to indicate a positive value. The
621      * resulting {@code long} value is returned.
622      *
623      * <p>Note that neither the character {@code L}
624      * ({@code '\u005Cu004C'}) nor {@code l}
625      * ({@code '\u005Cu006C'}) is permitted to appear at the end
626      * of the string as a type indicator, as would be permitted in
627      * Java programming language source code - except that either
628      * {@code L} or {@code l} may appear as a digit for a
629      * radix greater than or equal to 22.
630      *
631      * <p>An exception of type {@code NumberFormatException} is
632      * thrown if any of the following situations occurs:
633      * <ul>
634      *
635      * <li>The first argument is {@code null} or is a string of
636      * length zero.
637      *
638      * <li>The {@code radix} is either smaller than {@link
639      * java.lang.Character#MIN_RADIX} or larger than {@link
640      * java.lang.Character#MAX_RADIX}.
641      *
642      * <li>Any character of the string is not a digit of the specified
643      * radix, except that the first character may be a minus sign
644      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
645      * '+'} ({@code '\u005Cu002B'}) provided that the string is
646      * longer than length 1.
647      *
648      * <li>The value represented by the string is not a value of type
649      *      {@code long}.
650      * </ul>
651      *
652      * <p>Examples:
653      * <blockquote><pre>
654      * parseLong("0", 10) returns 0L
655      * parseLong("473", 10) returns 473L
656      * parseLong("+42", 10) returns 42L
657      * parseLong("-0", 10) returns 0L
658      * parseLong("-FF", 16) returns -255L
659      * parseLong("1100110", 2) returns 102L
660      * parseLong("99", 8) throws a NumberFormatException
661      * parseLong("Hazelnut", 10) throws a NumberFormatException
662      * parseLong("Hazelnut", 36) returns 1356099454469L
663      * </pre></blockquote>
664      *
665      * @param      s       the {@code String} containing the
666      *                     {@code long} representation to be parsed.
667      * @param      radix   the radix to be used while parsing {@code s}.
668      * @return     the {@code long} represented by the string argument in
669      *             the specified radix.
670      * @throws     NumberFormatException  if the string does not contain a
671      *             parsable {@code long}.
672      */
parseLong(String s, int radix)673     public static long parseLong(String s, int radix)
674               throws NumberFormatException
675     {
676         if (s == null) {
677             throw new NumberFormatException("null");
678         }
679 
680         if (radix < Character.MIN_RADIX) {
681             throw new NumberFormatException("radix " + radix +
682                                             " less than Character.MIN_RADIX");
683         }
684         if (radix > Character.MAX_RADIX) {
685             throw new NumberFormatException("radix " + radix +
686                                             " greater than Character.MAX_RADIX");
687         }
688 
689         boolean negative = false;
690         int i = 0, len = s.length();
691         long limit = -Long.MAX_VALUE;
692 
693         if (len > 0) {
694             char firstChar = s.charAt(0);
695             if (firstChar < '0') { // Possible leading "+" or "-"
696                 if (firstChar == '-') {
697                     negative = true;
698                     limit = Long.MIN_VALUE;
699                 } else if (firstChar != '+') {
700                     throw NumberFormatException.forInputString(s, radix);
701                 }
702 
703                 if (len == 1) { // Cannot have lone "+" or "-"
704                     throw NumberFormatException.forInputString(s, radix);
705                 }
706                 i++;
707             }
708             long multmin = limit / radix;
709             long result = 0;
710             while (i < len) {
711                 // Accumulating negatively avoids surprises near MAX_VALUE
712                 int digit = Character.digit(s.charAt(i++),radix);
713                 if (digit < 0 || result < multmin) {
714                     throw NumberFormatException.forInputString(s, radix);
715                 }
716                 result *= radix;
717                 if (result < limit + digit) {
718                     throw NumberFormatException.forInputString(s, radix);
719                 }
720                 result -= digit;
721             }
722             return negative ? result : -result;
723         } else {
724             throw NumberFormatException.forInputString(s, radix);
725         }
726     }
727 
728     /**
729      * Parses the {@link CharSequence} argument as a signed {@code long} in
730      * the specified {@code radix}, beginning at the specified
731      * {@code beginIndex} and extending to {@code endIndex - 1}.
732      *
733      * <p>The method does not take steps to guard against the
734      * {@code CharSequence} being mutated while parsing.
735      *
736      * @param      s   the {@code CharSequence} containing the {@code long}
737      *                  representation to be parsed
738      * @param      beginIndex   the beginning index, inclusive.
739      * @param      endIndex     the ending index, exclusive.
740      * @param      radix   the radix to be used while parsing {@code s}.
741      * @return     the signed {@code long} represented by the subsequence in
742      *             the specified radix.
743      * @throws     NullPointerException  if {@code s} is null.
744      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
745      *             negative, or if {@code beginIndex} is greater than
746      *             {@code endIndex} or if {@code endIndex} is greater than
747      *             {@code s.length()}.
748      * @throws     NumberFormatException  if the {@code CharSequence} does not
749      *             contain a parsable {@code long} in the specified
750      *             {@code radix}, or if {@code radix} is either smaller than
751      *             {@link java.lang.Character#MIN_RADIX} or larger than
752      *             {@link java.lang.Character#MAX_RADIX}.
753      * @since  9
754      */
parseLong(CharSequence s, int beginIndex, int endIndex, int radix)755     public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
756                 throws NumberFormatException {
757         Objects.requireNonNull(s);
758 
759         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
760             throw new IndexOutOfBoundsException();
761         }
762         if (radix < Character.MIN_RADIX) {
763             throw new NumberFormatException("radix " + radix +
764                     " less than Character.MIN_RADIX");
765         }
766         if (radix > Character.MAX_RADIX) {
767             throw new NumberFormatException("radix " + radix +
768                     " greater than Character.MAX_RADIX");
769         }
770 
771         boolean negative = false;
772         int i = beginIndex;
773         long limit = -Long.MAX_VALUE;
774 
775         if (i < endIndex) {
776             char firstChar = s.charAt(i);
777             if (firstChar < '0') { // Possible leading "+" or "-"
778                 if (firstChar == '-') {
779                     negative = true;
780                     limit = Long.MIN_VALUE;
781                 } else if (firstChar != '+') {
782                     throw NumberFormatException.forCharSequence(s, beginIndex,
783                             endIndex, i);
784                 }
785                 i++;
786             }
787             if (i >= endIndex) { // Cannot have lone "+", "-" or ""
788                 throw NumberFormatException.forCharSequence(s, beginIndex,
789                         endIndex, i);
790             }
791             long multmin = limit / radix;
792             long result = 0;
793             while (i < endIndex) {
794                 // Accumulating negatively avoids surprises near MAX_VALUE
795                 int digit = Character.digit(s.charAt(i), radix);
796                 if (digit < 0 || result < multmin) {
797                     throw NumberFormatException.forCharSequence(s, beginIndex,
798                             endIndex, i);
799                 }
800                 result *= radix;
801                 if (result < limit + digit) {
802                     throw NumberFormatException.forCharSequence(s, beginIndex,
803                             endIndex, i);
804                 }
805                 i++;
806                 result -= digit;
807             }
808             return negative ? result : -result;
809         } else {
810             throw new NumberFormatException("");
811         }
812     }
813 
814     /**
815      * Parses the string argument as a signed decimal {@code long}.
816      * The characters in the string must all be decimal digits, except
817      * that the first character may be an ASCII minus sign {@code '-'}
818      * ({@code \u005Cu002D'}) to indicate a negative value or an
819      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
820      * indicate a positive value. The resulting {@code long} value is
821      * returned, exactly as if the argument and the radix {@code 10}
822      * were given as arguments to the {@link
823      * #parseLong(java.lang.String, int)} method.
824      *
825      * <p>Note that neither the character {@code L}
826      * ({@code '\u005Cu004C'}) nor {@code l}
827      * ({@code '\u005Cu006C'}) is permitted to appear at the end
828      * of the string as a type indicator, as would be permitted in
829      * Java programming language source code.
830      *
831      * @param      s   a {@code String} containing the {@code long}
832      *             representation to be parsed
833      * @return     the {@code long} represented by the argument in
834      *             decimal.
835      * @throws     NumberFormatException  if the string does not contain a
836      *             parsable {@code long}.
837      */
parseLong(String s)838     public static long parseLong(String s) throws NumberFormatException {
839         return parseLong(s, 10);
840     }
841 
842     /**
843      * Parses the string argument as an unsigned {@code long} in the
844      * radix specified by the second argument.  An unsigned integer
845      * maps the values usually associated with negative numbers to
846      * positive numbers larger than {@code MAX_VALUE}.
847      *
848      * The characters in the string must all be digits of the
849      * specified radix (as determined by whether {@link
850      * java.lang.Character#digit(char, int)} returns a nonnegative
851      * value), except that the first character may be an ASCII plus
852      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
853      * integer value is returned.
854      *
855      * <p>An exception of type {@code NumberFormatException} is
856      * thrown if any of the following situations occurs:
857      * <ul>
858      * <li>The first argument is {@code null} or is a string of
859      * length zero.
860      *
861      * <li>The radix is either smaller than
862      * {@link java.lang.Character#MIN_RADIX} or
863      * larger than {@link java.lang.Character#MAX_RADIX}.
864      *
865      * <li>Any character of the string is not a digit of the specified
866      * radix, except that the first character may be a plus sign
867      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
868      * string is longer than length 1.
869      *
870      * <li>The value represented by the string is larger than the
871      * largest unsigned {@code long}, 2<sup>64</sup>-1.
872      *
873      * </ul>
874      *
875      *
876      * @param      s   the {@code String} containing the unsigned integer
877      *                  representation to be parsed
878      * @param      radix   the radix to be used while parsing {@code s}.
879      * @return     the unsigned {@code long} represented by the string
880      *             argument in the specified radix.
881      * @throws     NumberFormatException if the {@code String}
882      *             does not contain a parsable {@code long}.
883      * @since 1.8
884      */
parseUnsignedLong(String s, int radix)885     public static long parseUnsignedLong(String s, int radix)
886                 throws NumberFormatException {
887         if (s == null)  {
888             throw new NumberFormatException("null");
889         }
890 
891         int len = s.length();
892         if (len > 0) {
893             char firstChar = s.charAt(0);
894             if (firstChar == '-') {
895                 throw new
896                     NumberFormatException(String.format("Illegal leading minus sign " +
897                                                        "on unsigned string %s.", s));
898             } else {
899                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
900                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
901                     return parseLong(s, radix);
902                 }
903 
904                 // No need for range checks on len due to testing above.
905                 long first = parseLong(s, 0, len - 1, radix);
906                 int second = Character.digit(s.charAt(len - 1), radix);
907                 if (second < 0) {
908                     throw new NumberFormatException("Bad digit at end of " + s);
909                 }
910                 long result = first * radix + second;
911 
912                 /*
913                  * Test leftmost bits of multiprecision extension of first*radix
914                  * for overflow. The number of bits needed is defined by
915                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
916                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
917                  * overflow is tested by splitting guard in the ranges
918                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
919                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
920                  * on a value which does not include a prime factor in the legal
921                  * radix range.
922                  */
923                 int guard = radix * (int) (first >>> 57);
924                 if (guard >= 128 ||
925                     (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
926                     /*
927                      * For purposes of exposition, the programmatic statements
928                      * below should be taken to be multi-precision, i.e., not
929                      * subject to overflow.
930                      *
931                      * A) Condition guard >= 128:
932                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
933                      * hence always overflow.
934                      *
935                      * B) Condition guard < 92:
936                      * Define left7 = first >>> 57.
937                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
938                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
939                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
940                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
941                      * never overflow.
942                      *
943                      * C) Condition 92 <= guard < 128:
944                      * first*radix + second >= radix*left7*2^57 + second
945                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
946                      *
947                      * D) Condition guard < 128:
948                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
949                      * so
950                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
951                      * thus
952                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
953                      * whence
954                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
955                      *
956                      * E) Conditions C, D, and result >= 0:
957                      * C and D combined imply the mathematical result
958                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
959                      * bound is therefore negative as a signed long, but the
960                      * upper bound is too small to overflow again after the
961                      * signed long overflows to positive above 2^64 - 1. Hence
962                      * result >= 0 implies overflow given C and D.
963                      */
964                     throw new NumberFormatException(String.format("String value %s exceeds " +
965                                                                   "range of unsigned long.", s));
966                 }
967                 return result;
968             }
969         } else {
970             throw NumberFormatException.forInputString(s, radix);
971         }
972     }
973 
974     /**
975      * Parses the {@link CharSequence} argument as an unsigned {@code long} in
976      * the specified {@code radix}, beginning at the specified
977      * {@code beginIndex} and extending to {@code endIndex - 1}.
978      *
979      * <p>The method does not take steps to guard against the
980      * {@code CharSequence} being mutated while parsing.
981      *
982      * @param      s   the {@code CharSequence} containing the unsigned
983      *                 {@code long} representation to be parsed
984      * @param      beginIndex   the beginning index, inclusive.
985      * @param      endIndex     the ending index, exclusive.
986      * @param      radix   the radix to be used while parsing {@code s}.
987      * @return     the unsigned {@code long} represented by the subsequence in
988      *             the specified radix.
989      * @throws     NullPointerException  if {@code s} is null.
990      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
991      *             negative, or if {@code beginIndex} is greater than
992      *             {@code endIndex} or if {@code endIndex} is greater than
993      *             {@code s.length()}.
994      * @throws     NumberFormatException  if the {@code CharSequence} does not
995      *             contain a parsable unsigned {@code long} in the specified
996      *             {@code radix}, or if {@code radix} is either smaller than
997      *             {@link java.lang.Character#MIN_RADIX} or larger than
998      *             {@link java.lang.Character#MAX_RADIX}.
999      * @since  9
1000      */
parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)1001     public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
1002                 throws NumberFormatException {
1003         Objects.requireNonNull(s);
1004 
1005         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
1006             throw new IndexOutOfBoundsException();
1007         }
1008         int start = beginIndex, len = endIndex - beginIndex;
1009 
1010         if (len > 0) {
1011             char firstChar = s.charAt(start);
1012             if (firstChar == '-') {
1013                 throw new NumberFormatException(String.format("Illegal leading minus sign " +
1014                         "on unsigned string %s.", s.subSequence(start, start + len)));
1015             } else {
1016                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
1017                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
1018                     return parseLong(s, start, start + len, radix);
1019                 }
1020 
1021                 // No need for range checks on end due to testing above.
1022                 long first = parseLong(s, start, start + len - 1, radix);
1023                 int second = Character.digit(s.charAt(start + len - 1), radix);
1024                 if (second < 0) {
1025                     throw new NumberFormatException("Bad digit at end of " +
1026                             s.subSequence(start, start + len));
1027                 }
1028                 long result = first * radix + second;
1029 
1030                 /*
1031                  * Test leftmost bits of multiprecision extension of first*radix
1032                  * for overflow. The number of bits needed is defined by
1033                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
1034                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
1035                  * overflow is tested by splitting guard in the ranges
1036                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
1037                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
1038                  * on a value which does not include a prime factor in the legal
1039                  * radix range.
1040                  */
1041                 int guard = radix * (int) (first >>> 57);
1042                 if (guard >= 128 ||
1043                         (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
1044                     /*
1045                      * For purposes of exposition, the programmatic statements
1046                      * below should be taken to be multi-precision, i.e., not
1047                      * subject to overflow.
1048                      *
1049                      * A) Condition guard >= 128:
1050                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
1051                      * hence always overflow.
1052                      *
1053                      * B) Condition guard < 92:
1054                      * Define left7 = first >>> 57.
1055                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
1056                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
1057                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
1058                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
1059                      * never overflow.
1060                      *
1061                      * C) Condition 92 <= guard < 128:
1062                      * first*radix + second >= radix*left7*2^57 + second
1063                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
1064                      *
1065                      * D) Condition guard < 128:
1066                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
1067                      * so
1068                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
1069                      * thus
1070                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
1071                      * whence
1072                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
1073                      *
1074                      * E) Conditions C, D, and result >= 0:
1075                      * C and D combined imply the mathematical result
1076                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
1077                      * bound is therefore negative as a signed long, but the
1078                      * upper bound is too small to overflow again after the
1079                      * signed long overflows to positive above 2^64 - 1. Hence
1080                      * result >= 0 implies overflow given C and D.
1081                      */
1082                     throw new NumberFormatException(String.format("String value %s exceeds " +
1083                             "range of unsigned long.", s.subSequence(start, start + len)));
1084                 }
1085                 return result;
1086             }
1087         } else {
1088             throw NumberFormatException.forInputString("", radix);
1089         }
1090     }
1091 
1092     /**
1093      * Parses the string argument as an unsigned decimal {@code long}. The
1094      * characters in the string must all be decimal digits, except
1095      * that the first character may be an ASCII plus sign {@code
1096      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
1097      * is returned, exactly as if the argument and the radix 10 were
1098      * given as arguments to the {@link
1099      * #parseUnsignedLong(java.lang.String, int)} method.
1100      *
1101      * @param s   a {@code String} containing the unsigned {@code long}
1102      *            representation to be parsed
1103      * @return    the unsigned {@code long} value represented by the decimal string argument
1104      * @throws    NumberFormatException  if the string does not contain a
1105      *            parsable unsigned integer.
1106      * @since 1.8
1107      */
parseUnsignedLong(String s)1108     public static long parseUnsignedLong(String s) throws NumberFormatException {
1109         return parseUnsignedLong(s, 10);
1110     }
1111 
1112     /**
1113      * Returns a {@code Long} object holding the value
1114      * extracted from the specified {@code String} when parsed
1115      * with the radix given by the second argument.  The first
1116      * argument is interpreted as representing a signed
1117      * {@code long} in the radix specified by the second
1118      * argument, exactly as if the arguments were given to the {@link
1119      * #parseLong(java.lang.String, int)} method. The result is a
1120      * {@code Long} object that represents the {@code long}
1121      * value specified by the string.
1122      *
1123      * <p>In other words, this method returns a {@code Long} object equal
1124      * to the value of:
1125      *
1126      * <blockquote>
1127      *  {@code new Long(Long.parseLong(s, radix))}
1128      * </blockquote>
1129      *
1130      * @param      s       the string to be parsed
1131      * @param      radix   the radix to be used in interpreting {@code s}
1132      * @return     a {@code Long} object holding the value
1133      *             represented by the string argument in the specified
1134      *             radix.
1135      * @throws     NumberFormatException  If the {@code String} does not
1136      *             contain a parsable {@code long}.
1137      */
valueOf(String s, int radix)1138     public static Long valueOf(String s, int radix) throws NumberFormatException {
1139         return Long.valueOf(parseLong(s, radix));
1140     }
1141 
1142     /**
1143      * Returns a {@code Long} object holding the value
1144      * of the specified {@code String}. The argument is
1145      * interpreted as representing a signed decimal {@code long},
1146      * exactly as if the argument were given to the {@link
1147      * #parseLong(java.lang.String)} method. The result is a
1148      * {@code Long} object that represents the integer value
1149      * specified by the string.
1150      *
1151      * <p>In other words, this method returns a {@code Long} object
1152      * equal to the value of:
1153      *
1154      * <blockquote>
1155      *  {@code new Long(Long.parseLong(s))}
1156      * </blockquote>
1157      *
1158      * @param      s   the string to be parsed.
1159      * @return     a {@code Long} object holding the value
1160      *             represented by the string argument.
1161      * @throws     NumberFormatException  If the string cannot be parsed
1162      *             as a {@code long}.
1163      */
valueOf(String s)1164     public static Long valueOf(String s) throws NumberFormatException
1165     {
1166         return Long.valueOf(parseLong(s, 10));
1167     }
1168 
1169     private static class LongCache {
LongCache()1170         private LongCache() {}
1171 
1172         static final Long[] cache;
1173         static Long[] archivedCache;
1174 
1175         static {
1176             int size = -(-128) + 127 + 1;
1177 
1178             // Load and use the archived cache if it exists
1179             CDS.initializeFromArchive(LongCache.class);
1180             if (archivedCache == null || archivedCache.length != size) {
1181                 Long[] c = new Long[size];
1182                 long value = -128;
1183                 for(int i = 0; i < size; i++) {
1184                     c[i] = new Long(value++);
1185                 }
1186                 archivedCache = c;
1187             }
1188             cache = archivedCache;
1189         }
1190     }
1191 
1192     /**
1193      * Returns a {@code Long} instance representing the specified
1194      * {@code long} value.
1195      * If a new {@code Long} instance is not required, this method
1196      * should generally be used in preference to the constructor
1197      * {@link #Long(long)}, as this method is likely to yield
1198      * significantly better space and time performance by caching
1199      * frequently requested values.
1200      *
1201      * This method will always cache values in the range -128 to 127,
1202      * inclusive, and may cache other values outside of this range.
1203      *
1204      * @param  l a long value.
1205      * @return a {@code Long} instance representing {@code l}.
1206      * @since  1.5
1207      */
1208     @IntrinsicCandidate
valueOf(long l)1209     public static Long valueOf(long l) {
1210         final int offset = 128;
1211         if (l >= -128 && l <= 127) { // will cache
1212             return LongCache.cache[(int)l + offset];
1213         }
1214         return new Long(l);
1215     }
1216 
1217     /**
1218      * Decodes a {@code String} into a {@code Long}.
1219      * Accepts decimal, hexadecimal, and octal numbers given by the
1220      * following grammar:
1221      *
1222      * <blockquote>
1223      * <dl>
1224      * <dt><i>DecodableString:</i>
1225      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1226      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1227      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1228      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1229      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1230      *
1231      * <dt><i>Sign:</i>
1232      * <dd>{@code -}
1233      * <dd>{@code +}
1234      * </dl>
1235      * </blockquote>
1236      *
1237      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1238      * are as defined in section {@jls 3.10.1} of
1239      * <cite>The Java Language Specification</cite>,
1240      * except that underscores are not accepted between digits.
1241      *
1242      * <p>The sequence of characters following an optional
1243      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1244      * "{@code #}", or leading zero) is parsed as by the {@code
1245      * Long.parseLong} method with the indicated radix (10, 16, or 8).
1246      * This sequence of characters must represent a positive value or
1247      * a {@link NumberFormatException} will be thrown.  The result is
1248      * negated if first character of the specified {@code String} is
1249      * the minus sign.  No whitespace characters are permitted in the
1250      * {@code String}.
1251      *
1252      * @param     nm the {@code String} to decode.
1253      * @return    a {@code Long} object holding the {@code long}
1254      *            value represented by {@code nm}
1255      * @throws    NumberFormatException  if the {@code String} does not
1256      *            contain a parsable {@code long}.
1257      * @see java.lang.Long#parseLong(String, int)
1258      * @since 1.2
1259      */
decode(String nm)1260     public static Long decode(String nm) throws NumberFormatException {
1261         int radix = 10;
1262         int index = 0;
1263         boolean negative = false;
1264         Long result;
1265 
1266         if (nm.isEmpty())
1267             throw new NumberFormatException("Zero length string");
1268         char firstChar = nm.charAt(0);
1269         // Handle sign, if present
1270         if (firstChar == '-') {
1271             negative = true;
1272             index++;
1273         } else if (firstChar == '+')
1274             index++;
1275 
1276         // Handle radix specifier, if present
1277         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1278             index += 2;
1279             radix = 16;
1280         }
1281         else if (nm.startsWith("#", index)) {
1282             index ++;
1283             radix = 16;
1284         }
1285         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1286             index ++;
1287             radix = 8;
1288         }
1289 
1290         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1291             throw new NumberFormatException("Sign character in wrong position");
1292 
1293         try {
1294             result = Long.valueOf(nm.substring(index), radix);
1295             result = negative ? Long.valueOf(-result.longValue()) : result;
1296         } catch (NumberFormatException e) {
1297             // If number is Long.MIN_VALUE, we'll end up here. The next line
1298             // handles this case, and causes any genuine format error to be
1299             // rethrown.
1300             String constant = negative ? ("-" + nm.substring(index))
1301                                        : nm.substring(index);
1302             result = Long.valueOf(constant, radix);
1303         }
1304         return result;
1305     }
1306 
1307     /**
1308      * The value of the {@code Long}.
1309      *
1310      * @serial
1311      */
1312     private final long value;
1313 
1314     /**
1315      * Constructs a newly allocated {@code Long} object that
1316      * represents the specified {@code long} argument.
1317      *
1318      * @param   value   the value to be represented by the
1319      *          {@code Long} object.
1320      *
1321      * @deprecated
1322      * It is rarely appropriate to use this constructor. The static factory
1323      * {@link #valueOf(long)} is generally a better choice, as it is
1324      * likely to yield significantly better space and time performance.
1325      */
1326     @Deprecated(since="9", forRemoval = true)
Long(long value)1327     public Long(long value) {
1328         this.value = value;
1329     }
1330 
1331     /**
1332      * Constructs a newly allocated {@code Long} object that
1333      * represents the {@code long} value indicated by the
1334      * {@code String} parameter. The string is converted to a
1335      * {@code long} value in exactly the manner used by the
1336      * {@code parseLong} method for radix 10.
1337      *
1338      * @param      s   the {@code String} to be converted to a
1339      *             {@code Long}.
1340      * @throws     NumberFormatException  if the {@code String} does not
1341      *             contain a parsable {@code long}.
1342      *
1343      * @deprecated
1344      * It is rarely appropriate to use this constructor.
1345      * Use {@link #parseLong(String)} to convert a string to a
1346      * {@code long} primitive, or use {@link #valueOf(String)}
1347      * to convert a string to a {@code Long} object.
1348      */
1349     @Deprecated(since="9", forRemoval = true)
Long(String s)1350     public Long(String s) throws NumberFormatException {
1351         this.value = parseLong(s, 10);
1352     }
1353 
1354     /**
1355      * Returns the value of this {@code Long} as a {@code byte} after
1356      * a narrowing primitive conversion.
1357      * @jls 5.1.3 Narrowing Primitive Conversion
1358      */
byteValue()1359     public byte byteValue() {
1360         return (byte)value;
1361     }
1362 
1363     /**
1364      * Returns the value of this {@code Long} as a {@code short} after
1365      * a narrowing primitive conversion.
1366      * @jls 5.1.3 Narrowing Primitive Conversion
1367      */
shortValue()1368     public short shortValue() {
1369         return (short)value;
1370     }
1371 
1372     /**
1373      * Returns the value of this {@code Long} as an {@code int} after
1374      * a narrowing primitive conversion.
1375      * @jls 5.1.3 Narrowing Primitive Conversion
1376      */
intValue()1377     public int intValue() {
1378         return (int)value;
1379     }
1380 
1381     /**
1382      * Returns the value of this {@code Long} as a
1383      * {@code long} value.
1384      */
1385     @IntrinsicCandidate
longValue()1386     public long longValue() {
1387         return value;
1388     }
1389 
1390     /**
1391      * Returns the value of this {@code Long} as a {@code float} after
1392      * a widening primitive conversion.
1393      * @jls 5.1.2 Widening Primitive Conversion
1394      */
floatValue()1395     public float floatValue() {
1396         return (float)value;
1397     }
1398 
1399     /**
1400      * Returns the value of this {@code Long} as a {@code double}
1401      * after a widening primitive conversion.
1402      * @jls 5.1.2 Widening Primitive Conversion
1403      */
doubleValue()1404     public double doubleValue() {
1405         return (double)value;
1406     }
1407 
1408     /**
1409      * Returns a {@code String} object representing this
1410      * {@code Long}'s value.  The value is converted to signed
1411      * decimal representation and returned as a string, exactly as if
1412      * the {@code long} value were given as an argument to the
1413      * {@link java.lang.Long#toString(long)} method.
1414      *
1415      * @return  a string representation of the value of this object in
1416      *          base&nbsp;10.
1417      */
toString()1418     public String toString() {
1419         return toString(value);
1420     }
1421 
1422     /**
1423      * Returns a hash code for this {@code Long}. The result is
1424      * the exclusive OR of the two halves of the primitive
1425      * {@code long} value held by this {@code Long}
1426      * object. That is, the hashcode is the value of the expression:
1427      *
1428      * <blockquote>
1429      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1430      * </blockquote>
1431      *
1432      * @return  a hash code value for this object.
1433      */
1434     @Override
hashCode()1435     public int hashCode() {
1436         return Long.hashCode(value);
1437     }
1438 
1439     /**
1440      * Returns a hash code for a {@code long} value; compatible with
1441      * {@code Long.hashCode()}.
1442      *
1443      * @param value the value to hash
1444      * @return a hash code value for a {@code long} value.
1445      * @since 1.8
1446      */
hashCode(long value)1447     public static int hashCode(long value) {
1448         return (int)(value ^ (value >>> 32));
1449     }
1450 
1451     /**
1452      * Compares this object to the specified object.  The result is
1453      * {@code true} if and only if the argument is not
1454      * {@code null} and is a {@code Long} object that
1455      * contains the same {@code long} value as this object.
1456      *
1457      * @param   obj   the object to compare with.
1458      * @return  {@code true} if the objects are the same;
1459      *          {@code false} otherwise.
1460      */
equals(Object obj)1461     public boolean equals(Object obj) {
1462         if (obj instanceof Long) {
1463             return value == ((Long)obj).longValue();
1464         }
1465         return false;
1466     }
1467 
1468     /**
1469      * Determines the {@code long} value of the system property
1470      * with the specified name.
1471      *
1472      * <p>The first argument is treated as the name of a system
1473      * property.  System properties are accessible through the {@link
1474      * java.lang.System#getProperty(java.lang.String)} method. The
1475      * string value of this property is then interpreted as a {@code
1476      * long} value using the grammar supported by {@link Long#decode decode}
1477      * and a {@code Long} object representing this value is returned.
1478      *
1479      * <p>If there is no property with the specified name, if the
1480      * specified name is empty or {@code null}, or if the property
1481      * does not have the correct numeric format, then {@code null} is
1482      * returned.
1483      *
1484      * <p>In other words, this method returns a {@code Long} object
1485      * equal to the value of:
1486      *
1487      * <blockquote>
1488      *  {@code getLong(nm, null)}
1489      * </blockquote>
1490      *
1491      * @param   nm   property name.
1492      * @return  the {@code Long} value of the property.
1493      * @throws  SecurityException for the same reasons as
1494      *          {@link System#getProperty(String) System.getProperty}
1495      * @see     java.lang.System#getProperty(java.lang.String)
1496      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1497      */
getLong(String nm)1498     public static Long getLong(String nm) {
1499         return getLong(nm, null);
1500     }
1501 
1502     /**
1503      * Determines the {@code long} value of the system property
1504      * with the specified name.
1505      *
1506      * <p>The first argument is treated as the name of a system
1507      * property.  System properties are accessible through the {@link
1508      * java.lang.System#getProperty(java.lang.String)} method. The
1509      * string value of this property is then interpreted as a {@code
1510      * long} value using the grammar supported by {@link Long#decode decode}
1511      * and a {@code Long} object representing this value is returned.
1512      *
1513      * <p>The second argument is the default value. A {@code Long} object
1514      * that represents the value of the second argument is returned if there
1515      * is no property of the specified name, if the property does not have
1516      * the correct numeric format, or if the specified name is empty or null.
1517      *
1518      * <p>In other words, this method returns a {@code Long} object equal
1519      * to the value of:
1520      *
1521      * <blockquote>
1522      *  {@code getLong(nm, new Long(val))}
1523      * </blockquote>
1524      *
1525      * but in practice it may be implemented in a manner such as:
1526      *
1527      * <blockquote><pre>
1528      * Long result = getLong(nm, null);
1529      * return (result == null) ? new Long(val) : result;
1530      * </pre></blockquote>
1531      *
1532      * to avoid the unnecessary allocation of a {@code Long} object when
1533      * the default value is not needed.
1534      *
1535      * @param   nm    property name.
1536      * @param   val   default value.
1537      * @return  the {@code Long} value of the property.
1538      * @throws  SecurityException for the same reasons as
1539      *          {@link System#getProperty(String) System.getProperty}
1540      * @see     java.lang.System#getProperty(java.lang.String)
1541      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1542      */
getLong(String nm, long val)1543     public static Long getLong(String nm, long val) {
1544         Long result = Long.getLong(nm, null);
1545         return (result == null) ? Long.valueOf(val) : result;
1546     }
1547 
1548     /**
1549      * Returns the {@code long} value of the system property with
1550      * the specified name.  The first argument is treated as the name
1551      * of a system property.  System properties are accessible through
1552      * the {@link java.lang.System#getProperty(java.lang.String)}
1553      * method. The string value of this property is then interpreted
1554      * as a {@code long} value, as per the
1555      * {@link Long#decode decode} method, and a {@code Long} object
1556      * representing this value is returned; in summary:
1557      *
1558      * <ul>
1559      * <li>If the property value begins with the two ASCII characters
1560      * {@code 0x} or the ASCII character {@code #}, not followed by
1561      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1562      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1563      * with radix 16.
1564      * <li>If the property value begins with the ASCII character
1565      * {@code 0} followed by another character, it is parsed as
1566      * an octal integer exactly as by the method {@link
1567      * #valueOf(java.lang.String, int)} with radix 8.
1568      * <li>Otherwise the property value is parsed as a decimal
1569      * integer exactly as by the method
1570      * {@link #valueOf(java.lang.String, int)} with radix 10.
1571      * </ul>
1572      *
1573      * <p>Note that, in every case, neither {@code L}
1574      * ({@code '\u005Cu004C'}) nor {@code l}
1575      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1576      * of the property value as a type indicator, as would be
1577      * permitted in Java programming language source code.
1578      *
1579      * <p>The second argument is the default value. The default value is
1580      * returned if there is no property of the specified name, if the
1581      * property does not have the correct numeric format, or if the
1582      * specified name is empty or {@code null}.
1583      *
1584      * @param   nm   property name.
1585      * @param   val   default value.
1586      * @return  the {@code Long} value of the property.
1587      * @throws  SecurityException for the same reasons as
1588      *          {@link System#getProperty(String) System.getProperty}
1589      * @see     System#getProperty(java.lang.String)
1590      * @see     System#getProperty(java.lang.String, java.lang.String)
1591      */
getLong(String nm, Long val)1592     public static Long getLong(String nm, Long val) {
1593         String v = null;
1594         try {
1595             v = System.getProperty(nm);
1596         } catch (IllegalArgumentException | NullPointerException e) {
1597         }
1598         if (v != null) {
1599             try {
1600                 return Long.decode(v);
1601             } catch (NumberFormatException e) {
1602             }
1603         }
1604         return val;
1605     }
1606 
1607     /**
1608      * Compares two {@code Long} objects numerically.
1609      *
1610      * @param   anotherLong   the {@code Long} to be compared.
1611      * @return  the value {@code 0} if this {@code Long} is
1612      *          equal to the argument {@code Long}; a value less than
1613      *          {@code 0} if this {@code Long} is numerically less
1614      *          than the argument {@code Long}; and a value greater
1615      *          than {@code 0} if this {@code Long} is numerically
1616      *           greater than the argument {@code Long} (signed
1617      *           comparison).
1618      * @since   1.2
1619      */
compareTo(Long anotherLong)1620     public int compareTo(Long anotherLong) {
1621         return compare(this.value, anotherLong.value);
1622     }
1623 
1624     /**
1625      * Compares two {@code long} values numerically.
1626      * The value returned is identical to what would be returned by:
1627      * <pre>
1628      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1629      * </pre>
1630      *
1631      * @param  x the first {@code long} to compare
1632      * @param  y the second {@code long} to compare
1633      * @return the value {@code 0} if {@code x == y};
1634      *         a value less than {@code 0} if {@code x < y}; and
1635      *         a value greater than {@code 0} if {@code x > y}
1636      * @since 1.7
1637      */
compare(long x, long y)1638     public static int compare(long x, long y) {
1639         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1640     }
1641 
1642     /**
1643      * Compares two {@code long} values numerically treating the values
1644      * as unsigned.
1645      *
1646      * @param  x the first {@code long} to compare
1647      * @param  y the second {@code long} to compare
1648      * @return the value {@code 0} if {@code x == y}; a value less
1649      *         than {@code 0} if {@code x < y} as unsigned values; and
1650      *         a value greater than {@code 0} if {@code x > y} as
1651      *         unsigned values
1652      * @since 1.8
1653      */
compareUnsigned(long x, long y)1654     public static int compareUnsigned(long x, long y) {
1655         return compare(x + MIN_VALUE, y + MIN_VALUE);
1656     }
1657 
1658 
1659     /**
1660      * Returns the unsigned quotient of dividing the first argument by
1661      * the second where each argument and the result is interpreted as
1662      * an unsigned value.
1663      *
1664      * <p>Note that in two's complement arithmetic, the three other
1665      * basic arithmetic operations of add, subtract, and multiply are
1666      * bit-wise identical if the two operands are regarded as both
1667      * being signed or both being unsigned.  Therefore separate {@code
1668      * addUnsigned}, etc. methods are not provided.
1669      *
1670      * @param dividend the value to be divided
1671      * @param divisor the value doing the dividing
1672      * @return the unsigned quotient of the first argument divided by
1673      * the second argument
1674      * @see #remainderUnsigned
1675      * @since 1.8
1676      */
divideUnsigned(long dividend, long divisor)1677     public static long divideUnsigned(long dividend, long divisor) {
1678         /* See Hacker's Delight (2nd ed), section 9.3 */
1679         if (divisor >= 0) {
1680             final long q = (dividend >>> 1) / divisor << 1;
1681             final long r = dividend - q * divisor;
1682             return q + ((r | ~(r - divisor)) >>> (Long.SIZE - 1));
1683         }
1684         return (dividend & ~(dividend - divisor)) >>> (Long.SIZE - 1);
1685     }
1686 
1687     /**
1688      * Returns the unsigned remainder from dividing the first argument
1689      * by the second where each argument and the result is interpreted
1690      * as an unsigned value.
1691      *
1692      * @param dividend the value to be divided
1693      * @param divisor the value doing the dividing
1694      * @return the unsigned remainder of the first argument divided by
1695      * the second argument
1696      * @see #divideUnsigned
1697      * @since 1.8
1698      */
remainderUnsigned(long dividend, long divisor)1699     public static long remainderUnsigned(long dividend, long divisor) {
1700         /* See Hacker's Delight (2nd ed), section 9.3 */
1701         if (divisor >= 0) {
1702             final long q = (dividend >>> 1) / divisor << 1;
1703             final long r = dividend - q * divisor;
1704             /*
1705              * Here, 0 <= r < 2 * divisor
1706              * (1) When 0 <= r < divisor, the remainder is simply r.
1707              * (2) Otherwise the remainder is r - divisor.
1708              *
1709              * In case (1), r - divisor < 0. Applying ~ produces a long with
1710              * sign bit 0, so >> produces 0. The returned value is thus r.
1711              *
1712              * In case (2), a similar reasoning shows that >> produces -1,
1713              * so the returned value is r - divisor.
1714              */
1715             return r - ((~(r - divisor) >> (Long.SIZE - 1)) & divisor);
1716         }
1717         /*
1718          * (1) When dividend >= 0, the remainder is dividend.
1719          * (2) Otherwise
1720          *      (2.1) When dividend < divisor, the remainder is dividend.
1721          *      (2.2) Otherwise the remainder is dividend - divisor
1722          *
1723          * A reasoning similar to the above shows that the returned value
1724          * is as expected.
1725          */
1726         return dividend - (((dividend & ~(dividend - divisor)) >> (Long.SIZE - 1)) & divisor);
1727     }
1728 
1729     // Bit Twiddling
1730 
1731     /**
1732      * The number of bits used to represent a {@code long} value in two's
1733      * complement binary form.
1734      *
1735      * @since 1.5
1736      */
1737     @Native public static final int SIZE = 64;
1738 
1739     /**
1740      * The number of bytes used to represent a {@code long} value in two's
1741      * complement binary form.
1742      *
1743      * @since 1.8
1744      */
1745     public static final int BYTES = SIZE / Byte.SIZE;
1746 
1747     /**
1748      * Returns a {@code long} value with at most a single one-bit, in the
1749      * position of the highest-order ("leftmost") one-bit in the specified
1750      * {@code long} value.  Returns zero if the specified value has no
1751      * one-bits in its two's complement binary representation, that is, if it
1752      * is equal to zero.
1753      *
1754      * @param i the value whose highest one bit is to be computed
1755      * @return a {@code long} value with a single one-bit, in the position
1756      *     of the highest-order one-bit in the specified value, or zero if
1757      *     the specified value is itself equal to zero.
1758      * @since 1.5
1759      */
highestOneBit(long i)1760     public static long highestOneBit(long i) {
1761         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1762     }
1763 
1764     /**
1765      * Returns a {@code long} value with at most a single one-bit, in the
1766      * position of the lowest-order ("rightmost") one-bit in the specified
1767      * {@code long} value.  Returns zero if the specified value has no
1768      * one-bits in its two's complement binary representation, that is, if it
1769      * is equal to zero.
1770      *
1771      * @param i the value whose lowest one bit is to be computed
1772      * @return a {@code long} value with a single one-bit, in the position
1773      *     of the lowest-order one-bit in the specified value, or zero if
1774      *     the specified value is itself equal to zero.
1775      * @since 1.5
1776      */
lowestOneBit(long i)1777     public static long lowestOneBit(long i) {
1778         // HD, Section 2-1
1779         return i & -i;
1780     }
1781 
1782     /**
1783      * Returns the number of zero bits preceding the highest-order
1784      * ("leftmost") one-bit in the two's complement binary representation
1785      * of the specified {@code long} value.  Returns 64 if the
1786      * specified value has no one-bits in its two's complement representation,
1787      * in other words if it is equal to zero.
1788      *
1789      * <p>Note that this method is closely related to the logarithm base 2.
1790      * For all positive {@code long} values x:
1791      * <ul>
1792      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1793      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1794      * </ul>
1795      *
1796      * @param i the value whose number of leading zeros is to be computed
1797      * @return the number of zero bits preceding the highest-order
1798      *     ("leftmost") one-bit in the two's complement binary representation
1799      *     of the specified {@code long} value, or 64 if the value
1800      *     is equal to zero.
1801      * @since 1.5
1802      */
1803     @IntrinsicCandidate
numberOfLeadingZeros(long i)1804     public static int numberOfLeadingZeros(long i) {
1805         int x = (int)(i >>> 32);
1806         return x == 0 ? 32 + Integer.numberOfLeadingZeros((int)i)
1807                 : Integer.numberOfLeadingZeros(x);
1808     }
1809 
1810     /**
1811      * Returns the number of zero bits following the lowest-order ("rightmost")
1812      * one-bit in the two's complement binary representation of the specified
1813      * {@code long} value.  Returns 64 if the specified value has no
1814      * one-bits in its two's complement representation, in other words if it is
1815      * equal to zero.
1816      *
1817      * @param i the value whose number of trailing zeros is to be computed
1818      * @return the number of zero bits following the lowest-order ("rightmost")
1819      *     one-bit in the two's complement binary representation of the
1820      *     specified {@code long} value, or 64 if the value is equal
1821      *     to zero.
1822      * @since 1.5
1823      */
1824     @IntrinsicCandidate
numberOfTrailingZeros(long i)1825     public static int numberOfTrailingZeros(long i) {
1826         int x = (int)i;
1827         return x == 0 ? 32 + Integer.numberOfTrailingZeros((int)(i >>> 32))
1828                 : Integer.numberOfTrailingZeros(x);
1829     }
1830 
1831     /**
1832      * Returns the number of one-bits in the two's complement binary
1833      * representation of the specified {@code long} value.  This function is
1834      * sometimes referred to as the <i>population count</i>.
1835      *
1836      * @param i the value whose bits are to be counted
1837      * @return the number of one-bits in the two's complement binary
1838      *     representation of the specified {@code long} value.
1839      * @since 1.5
1840      */
1841      @IntrinsicCandidate
bitCount(long i)1842      public static int bitCount(long i) {
1843         // HD, Figure 5-2
1844         i = i - ((i >>> 1) & 0x5555555555555555L);
1845         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1846         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1847         i = i + (i >>> 8);
1848         i = i + (i >>> 16);
1849         i = i + (i >>> 32);
1850         return (int)i & 0x7f;
1851      }
1852 
1853     /**
1854      * Returns the value obtained by rotating the two's complement binary
1855      * representation of the specified {@code long} value left by the
1856      * specified number of bits.  (Bits shifted out of the left hand, or
1857      * high-order, side reenter on the right, or low-order.)
1858      *
1859      * <p>Note that left rotation with a negative distance is equivalent to
1860      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1861      * distance)}.  Note also that rotation by any multiple of 64 is a
1862      * no-op, so all but the last six bits of the rotation distance can be
1863      * ignored, even if the distance is negative: {@code rotateLeft(val,
1864      * distance) == rotateLeft(val, distance & 0x3F)}.
1865      *
1866      * @param i the value whose bits are to be rotated left
1867      * @param distance the number of bit positions to rotate left
1868      * @return the value obtained by rotating the two's complement binary
1869      *     representation of the specified {@code long} value left by the
1870      *     specified number of bits.
1871      * @since 1.5
1872      */
rotateLeft(long i, int distance)1873     public static long rotateLeft(long i, int distance) {
1874         return (i << distance) | (i >>> -distance);
1875     }
1876 
1877     /**
1878      * Returns the value obtained by rotating the two's complement binary
1879      * representation of the specified {@code long} value right by the
1880      * specified number of bits.  (Bits shifted out of the right hand, or
1881      * low-order, side reenter on the left, or high-order.)
1882      *
1883      * <p>Note that right rotation with a negative distance is equivalent to
1884      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1885      * distance)}.  Note also that rotation by any multiple of 64 is a
1886      * no-op, so all but the last six bits of the rotation distance can be
1887      * ignored, even if the distance is negative: {@code rotateRight(val,
1888      * distance) == rotateRight(val, distance & 0x3F)}.
1889      *
1890      * @param i the value whose bits are to be rotated right
1891      * @param distance the number of bit positions to rotate right
1892      * @return the value obtained by rotating the two's complement binary
1893      *     representation of the specified {@code long} value right by the
1894      *     specified number of bits.
1895      * @since 1.5
1896      */
rotateRight(long i, int distance)1897     public static long rotateRight(long i, int distance) {
1898         return (i >>> distance) | (i << -distance);
1899     }
1900 
1901     /**
1902      * Returns the value obtained by reversing the order of the bits in the
1903      * two's complement binary representation of the specified {@code long}
1904      * value.
1905      *
1906      * @param i the value to be reversed
1907      * @return the value obtained by reversing order of the bits in the
1908      *     specified {@code long} value.
1909      * @since 1.5
1910      */
reverse(long i)1911     public static long reverse(long i) {
1912         // HD, Figure 7-1
1913         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1914         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1915         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1916 
1917         return reverseBytes(i);
1918     }
1919 
1920     /**
1921      * Returns the signum function of the specified {@code long} value.  (The
1922      * return value is -1 if the specified value is negative; 0 if the
1923      * specified value is zero; and 1 if the specified value is positive.)
1924      *
1925      * @param i the value whose signum is to be computed
1926      * @return the signum function of the specified {@code long} value.
1927      * @since 1.5
1928      */
signum(long i)1929     public static int signum(long i) {
1930         // HD, Section 2-7
1931         return (int) ((i >> 63) | (-i >>> 63));
1932     }
1933 
1934     /**
1935      * Returns the value obtained by reversing the order of the bytes in the
1936      * two's complement representation of the specified {@code long} value.
1937      *
1938      * @param i the value whose bytes are to be reversed
1939      * @return the value obtained by reversing the bytes in the specified
1940      *     {@code long} value.
1941      * @since 1.5
1942      */
1943     @IntrinsicCandidate
reverseBytes(long i)1944     public static long reverseBytes(long i) {
1945         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1946         return (i << 48) | ((i & 0xffff0000L) << 16) |
1947             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1948     }
1949 
1950     /**
1951      * Adds two {@code long} values together as per the + operator.
1952      *
1953      * @param a the first operand
1954      * @param b the second operand
1955      * @return the sum of {@code a} and {@code b}
1956      * @see java.util.function.BinaryOperator
1957      * @since 1.8
1958      */
sum(long a, long b)1959     public static long sum(long a, long b) {
1960         return a + b;
1961     }
1962 
1963     /**
1964      * Returns the greater of two {@code long} values
1965      * as if by calling {@link Math#max(long, long) Math.max}.
1966      *
1967      * @param a the first operand
1968      * @param b the second operand
1969      * @return the greater of {@code a} and {@code b}
1970      * @see java.util.function.BinaryOperator
1971      * @since 1.8
1972      */
max(long a, long b)1973     public static long max(long a, long b) {
1974         return Math.max(a, b);
1975     }
1976 
1977     /**
1978      * Returns the smaller of two {@code long} values
1979      * as if by calling {@link Math#min(long, long) Math.min}.
1980      *
1981      * @param a the first operand
1982      * @param b the second operand
1983      * @return the smaller of {@code a} and {@code b}
1984      * @see java.util.function.BinaryOperator
1985      * @since 1.8
1986      */
min(long a, long b)1987     public static long min(long a, long b) {
1988         return Math.min(a, b);
1989     }
1990 
1991     /**
1992      * Returns an {@link Optional} containing the nominal descriptor for this
1993      * instance, which is the instance itself.
1994      *
1995      * @return an {@link Optional} describing the {@linkplain Long} instance
1996      * @since 12
1997      */
1998     @Override
describeConstable()1999     public Optional<Long> describeConstable() {
2000         return Optional.of(this);
2001     }
2002 
2003     /**
2004      * Resolves this instance as a {@link ConstantDesc}, the result of which is
2005      * the instance itself.
2006      *
2007      * @param lookup ignored
2008      * @return the {@linkplain Long} instance
2009      * @since 12
2010      */
2011     @Override
resolveConstantDesc(MethodHandles.Lookup lookup)2012     public Long resolveConstantDesc(MethodHandles.Lookup lookup) {
2013         return this;
2014     }
2015 
2016     /** use serialVersionUID from JDK 1.0.2 for interoperability */
2017     @java.io.Serial
2018     @Native private static final long serialVersionUID = 4290774380558885855L;
2019 }
2020