1 /*
2  * reserved comment block
3  * DO NOT REMOVE OR ALTER!
4  */
5 /*
6  * jidctred.c
7  *
8  * Copyright (C) 1994-1998, Thomas G. Lane.
9  * This file is part of the Independent JPEG Group's software.
10  * For conditions of distribution and use, see the accompanying README file.
11  *
12  * This file contains inverse-DCT routines that produce reduced-size output:
13  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
14  *
15  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
16  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
17  * with an 8-to-4 step that produces the four averages of two adjacent outputs
18  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
19  * These steps were derived by computing the corresponding values at the end
20  * of the normal LL&M code, then simplifying as much as possible.
21  *
22  * 1x1 is trivial: just take the DC coefficient divided by 8.
23  *
24  * See jidctint.c for additional comments.
25  */
26 
27 #define JPEG_INTERNALS
28 #include "jinclude.h"
29 #include "jpeglib.h"
30 #include "jdct.h"               /* Private declarations for DCT subsystem */
31 
32 #ifdef IDCT_SCALING_SUPPORTED
33 
34 
35 /*
36  * This module is specialized to the case DCTSIZE = 8.
37  */
38 
39 #if DCTSIZE != 8
40   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
41 #endif
42 
43 
44 /* Scaling is the same as in jidctint.c. */
45 
46 #if BITS_IN_JSAMPLE == 8
47 #define CONST_BITS  13
48 #define PASS1_BITS  2
49 #else
50 #define CONST_BITS  13
51 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
52 #endif
53 
54 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
55  * causing a lot of useless floating-point operations at run time.
56  * To get around this we use the following pre-calculated constants.
57  * If you change CONST_BITS you may want to add appropriate values.
58  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
59  */
60 
61 #if CONST_BITS == 13
62 #define FIX_0_211164243  ((INT32)  1730)        /* FIX(0.211164243) */
63 #define FIX_0_509795579  ((INT32)  4176)        /* FIX(0.509795579) */
64 #define FIX_0_601344887  ((INT32)  4926)        /* FIX(0.601344887) */
65 #define FIX_0_720959822  ((INT32)  5906)        /* FIX(0.720959822) */
66 #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
67 #define FIX_0_850430095  ((INT32)  6967)        /* FIX(0.850430095) */
68 #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
69 #define FIX_1_061594337  ((INT32)  8697)        /* FIX(1.061594337) */
70 #define FIX_1_272758580  ((INT32)  10426)       /* FIX(1.272758580) */
71 #define FIX_1_451774981  ((INT32)  11893)       /* FIX(1.451774981) */
72 #define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
73 #define FIX_2_172734803  ((INT32)  17799)       /* FIX(2.172734803) */
74 #define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
75 #define FIX_3_624509785  ((INT32)  29692)       /* FIX(3.624509785) */
76 #else
77 #define FIX_0_211164243  FIX(0.211164243)
78 #define FIX_0_509795579  FIX(0.509795579)
79 #define FIX_0_601344887  FIX(0.601344887)
80 #define FIX_0_720959822  FIX(0.720959822)
81 #define FIX_0_765366865  FIX(0.765366865)
82 #define FIX_0_850430095  FIX(0.850430095)
83 #define FIX_0_899976223  FIX(0.899976223)
84 #define FIX_1_061594337  FIX(1.061594337)
85 #define FIX_1_272758580  FIX(1.272758580)
86 #define FIX_1_451774981  FIX(1.451774981)
87 #define FIX_1_847759065  FIX(1.847759065)
88 #define FIX_2_172734803  FIX(2.172734803)
89 #define FIX_2_562915447  FIX(2.562915447)
90 #define FIX_3_624509785  FIX(3.624509785)
91 #endif
92 
93 
94 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
95  * For 8-bit samples with the recommended scaling, all the variable
96  * and constant values involved are no more than 16 bits wide, so a
97  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
98  * For 12-bit samples, a full 32-bit multiplication will be needed.
99  */
100 
101 #if BITS_IN_JSAMPLE == 8
102 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
103 #else
104 #define MULTIPLY(var,const)  ((var) * (const))
105 #endif
106 
107 
108 /* Dequantize a coefficient by multiplying it by the multiplier-table
109  * entry; produce an int result.  In this module, both inputs and result
110  * are 16 bits or less, so either int or short multiply will work.
111  */
112 
113 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
114 
115 
116 /*
117  * Perform dequantization and inverse DCT on one block of coefficients,
118  * producing a reduced-size 4x4 output block.
119  */
120 
121 GLOBAL(void)
122 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
123                JCOEFPTR coef_block,
124                JSAMPARRAY output_buf, JDIMENSION output_col)
125 {
126   INT32 tmp0, tmp2, tmp10, tmp12;
127   INT32 z1, z2, z3, z4;
128   JCOEFPTR inptr;
129   ISLOW_MULT_TYPE * quantptr;
130   int * wsptr;
131   JSAMPROW outptr;
132   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
133   int ctr;
134   int workspace[DCTSIZE*4];     /* buffers data between passes */
135   SHIFT_TEMPS
136 
137   /* Pass 1: process columns from input, store into work array. */
138 
139   inptr = coef_block;
140   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
141   wsptr = workspace;
142   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
143     /* Don't bother to process column 4, because second pass won't use it */
144     if (ctr == DCTSIZE-4)
145       continue;
146     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
147         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
148         inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
149       /* AC terms all zero; we need not examine term 4 for 4x4 output */
150       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
151 
152       wsptr[DCTSIZE*0] = dcval;
153       wsptr[DCTSIZE*1] = dcval;
154       wsptr[DCTSIZE*2] = dcval;
155       wsptr[DCTSIZE*3] = dcval;
156 
157       continue;
158     }
159 
160     /* Even part */
161 
162     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
163     tmp0 <<= (CONST_BITS+1);
164 
165     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
166     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
167 
168     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
169 
170     tmp10 = tmp0 + tmp2;
171     tmp12 = tmp0 - tmp2;
172 
173     /* Odd part */
174 
175     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
176     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
177     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
178     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
179 
180     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
181          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
182          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
183          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
184 
185     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
186          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
187          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
188          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
189 
190     /* Final output stage */
191 
192     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
193     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
194     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
195     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
196   }
197 
198   /* Pass 2: process 4 rows from work array, store into output array. */
199 
200   wsptr = workspace;
201   for (ctr = 0; ctr < 4; ctr++) {
202     outptr = output_buf[ctr] + output_col;
203     /* It's not clear whether a zero row test is worthwhile here ... */
204 
205 #ifndef NO_ZERO_ROW_TEST
206     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
207         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
208       /* AC terms all zero */
209       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
210                                   & RANGE_MASK];
211 
212       outptr[0] = dcval;
213       outptr[1] = dcval;
214       outptr[2] = dcval;
215       outptr[3] = dcval;
216 
217       wsptr += DCTSIZE;         /* advance pointer to next row */
218       continue;
219     }
220 #endif
221 
222     /* Even part */
223 
224     tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
225 
226     tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
227          + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
228 
229     tmp10 = tmp0 + tmp2;
230     tmp12 = tmp0 - tmp2;
231 
232     /* Odd part */
233 
234     z1 = (INT32) wsptr[7];
235     z2 = (INT32) wsptr[5];
236     z3 = (INT32) wsptr[3];
237     z4 = (INT32) wsptr[1];
238 
239     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
240          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
241          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
242          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
243 
244     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
245          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
246          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
247          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
248 
249     /* Final output stage */
250 
251     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
252                                           CONST_BITS+PASS1_BITS+3+1)
253                             & RANGE_MASK];
254     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
255                                           CONST_BITS+PASS1_BITS+3+1)
256                             & RANGE_MASK];
257     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
258                                           CONST_BITS+PASS1_BITS+3+1)
259                             & RANGE_MASK];
260     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
261                                           CONST_BITS+PASS1_BITS+3+1)
262                             & RANGE_MASK];
263 
264     wsptr += DCTSIZE;           /* advance pointer to next row */
265   }
266 }
267 
268 
269 /*
270  * Perform dequantization and inverse DCT on one block of coefficients,
271  * producing a reduced-size 2x2 output block.
272  */
273 
274 GLOBAL(void)
jpeg_idct_2x2(j_decompress_ptr cinfo,jpeg_component_info * compptr,JCOEFPTR coef_block,JSAMPARRAY output_buf,JDIMENSION output_col)275 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
276                JCOEFPTR coef_block,
277                JSAMPARRAY output_buf, JDIMENSION output_col)
278 {
279   INT32 tmp0, tmp10, z1;
280   JCOEFPTR inptr;
281   ISLOW_MULT_TYPE * quantptr;
282   int * wsptr;
283   JSAMPROW outptr;
284   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
285   int ctr;
286   int workspace[DCTSIZE*2];     /* buffers data between passes */
287   SHIFT_TEMPS
288 
289   /* Pass 1: process columns from input, store into work array. */
290 
291   inptr = coef_block;
292   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
293   wsptr = workspace;
294   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
295     /* Don't bother to process columns 2,4,6 */
296     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
297       continue;
298     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
299         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
300       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
301       int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
302 
303       wsptr[DCTSIZE*0] = dcval;
304       wsptr[DCTSIZE*1] = dcval;
305 
306       continue;
307     }
308 
309     /* Even part */
310 
311     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
312     tmp10 = z1 << (CONST_BITS+2);
313 
314     /* Odd part */
315 
316     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
317     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
318     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
319     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
320     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
321     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
322     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
323     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
324 
325     /* Final output stage */
326 
327     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
328     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
329   }
330 
331   /* Pass 2: process 2 rows from work array, store into output array. */
332 
333   wsptr = workspace;
334   for (ctr = 0; ctr < 2; ctr++) {
335     outptr = output_buf[ctr] + output_col;
336     /* It's not clear whether a zero row test is worthwhile here ... */
337 
338 #ifndef NO_ZERO_ROW_TEST
339     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
340       /* AC terms all zero */
341       JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
342                                   & RANGE_MASK];
343 
344       outptr[0] = dcval;
345       outptr[1] = dcval;
346 
347       wsptr += DCTSIZE;         /* advance pointer to next row */
348       continue;
349     }
350 #endif
351 
352     /* Even part */
353 
354     tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
355 
356     /* Odd part */
357 
358     tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
359          + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
360          + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
361          + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
362 
363     /* Final output stage */
364 
365     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
366                                           CONST_BITS+PASS1_BITS+3+2)
367                             & RANGE_MASK];
368     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
369                                           CONST_BITS+PASS1_BITS+3+2)
370                             & RANGE_MASK];
371 
372     wsptr += DCTSIZE;           /* advance pointer to next row */
373   }
374 }
375 
376 
377 /*
378  * Perform dequantization and inverse DCT on one block of coefficients,
379  * producing a reduced-size 1x1 output block.
380  */
381 
382 GLOBAL(void)
jpeg_idct_1x1(j_decompress_ptr cinfo,jpeg_component_info * compptr,JCOEFPTR coef_block,JSAMPARRAY output_buf,JDIMENSION output_col)383 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
384                JCOEFPTR coef_block,
385                JSAMPARRAY output_buf, JDIMENSION output_col)
386 {
387   int dcval;
388   ISLOW_MULT_TYPE * quantptr;
389   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
390   SHIFT_TEMPS
391 
392   /* We hardly need an inverse DCT routine for this: just take the
393    * average pixel value, which is one-eighth of the DC coefficient.
394    */
395   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
396   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
397   dcval = (int) DESCALE((INT32) dcval, 3);
398 
399   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
400 }
401 
402 #endif /* IDCT_SCALING_SUPPORTED */
403