1//
2// Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
3// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4//
5// This code is free software; you can redistribute it and/or modify it
6// under the terms of the GNU General Public License version 2 only, as
7// published by the Free Software Foundation.
8//
9// This code is distributed in the hope that it will be useful, but WITHOUT
10// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12// version 2 for more details (a copy is included in the LICENSE file that
13// accompanied this code).
14//
15// You should have received a copy of the GNU General Public License version
16// 2 along with this work; if not, write to the Free Software Foundation,
17// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20// or visit www.oracle.com if you need additional information or have any
21// questions.
22//
23
24// ARM Architecture Description File
25
26//----------REGISTER DEFINITION BLOCK------------------------------------------
27// This information is used by the matcher and the register allocator to
28// describe individual registers and classes of registers within the target
29// archtecture.
30register %{
31//----------Architecture Description Register Definitions----------------------
32// General Registers
33// "reg_def"  name ( register save type, C convention save type,
34//                   ideal register type, encoding, vm name );
35// Register Save Types:
36//
37// NS  = No-Save:       The register allocator assumes that these registers
38//                      can be used without saving upon entry to the method, &
39//                      that they do not need to be saved at call sites.
40//
41// SOC = Save-On-Call:  The register allocator assumes that these registers
42//                      can be used without saving upon entry to the method,
43//                      but that they must be saved at call sites.
44//
45// SOE = Save-On-Entry: The register allocator assumes that these registers
46//                      must be saved before using them upon entry to the
47//                      method, but they do not need to be saved at call
48//                      sites.
49//
50// AS  = Always-Save:   The register allocator assumes that these registers
51//                      must be saved before using them upon entry to the
52//                      method, & that they must be saved at call sites.
53//
54// Ideal Register Type is used to determine how to save & restore a
55// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
56// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
57//
58// The encoding number is the actual bit-pattern placed into the opcodes.
59
60
61// ----------------------------
62// Integer/Long Registers
63// ----------------------------
64
65reg_def R_R0 (SOC, SOC, Op_RegI,  0,  R(0)->as_VMReg());
66reg_def R_R1 (SOC, SOC, Op_RegI,  1,  R(1)->as_VMReg());
67reg_def R_R2 (SOC, SOC, Op_RegI,  2,  R(2)->as_VMReg());
68reg_def R_R3 (SOC, SOC, Op_RegI,  3,  R(3)->as_VMReg());
69reg_def R_R4 (SOC, SOE, Op_RegI,  4,  R(4)->as_VMReg());
70reg_def R_R5 (SOC, SOE, Op_RegI,  5,  R(5)->as_VMReg());
71reg_def R_R6 (SOC, SOE, Op_RegI,  6,  R(6)->as_VMReg());
72reg_def R_R7 (SOC, SOE, Op_RegI,  7,  R(7)->as_VMReg());
73reg_def R_R8 (SOC, SOE, Op_RegI,  8,  R(8)->as_VMReg());
74reg_def R_R9 (SOC, SOE, Op_RegI,  9,  R(9)->as_VMReg());
75reg_def R_R10(NS,  SOE, Op_RegI, 10, R(10)->as_VMReg());
76reg_def R_R11(NS,  SOE, Op_RegI, 11, R(11)->as_VMReg());
77reg_def R_R12(SOC, SOC, Op_RegI, 12, R(12)->as_VMReg());
78reg_def R_R13(NS,  NS,  Op_RegI, 13, R(13)->as_VMReg());
79reg_def R_R14(SOC, SOC, Op_RegI, 14, R(14)->as_VMReg());
80reg_def R_R15(NS,  NS,  Op_RegI, 15, R(15)->as_VMReg());
81
82// ----------------------------
83// Float/Double Registers
84// ----------------------------
85
86// Float Registers
87
88reg_def R_S0 ( SOC, SOC, Op_RegF,  0, S0->as_VMReg());
89reg_def R_S1 ( SOC, SOC, Op_RegF,  1, S1_reg->as_VMReg());
90reg_def R_S2 ( SOC, SOC, Op_RegF,  2, S2_reg->as_VMReg());
91reg_def R_S3 ( SOC, SOC, Op_RegF,  3, S3_reg->as_VMReg());
92reg_def R_S4 ( SOC, SOC, Op_RegF,  4, S4_reg->as_VMReg());
93reg_def R_S5 ( SOC, SOC, Op_RegF,  5, S5_reg->as_VMReg());
94reg_def R_S6 ( SOC, SOC, Op_RegF,  6, S6_reg->as_VMReg());
95reg_def R_S7 ( SOC, SOC, Op_RegF,  7, S7->as_VMReg());
96reg_def R_S8 ( SOC, SOC, Op_RegF,  8, S8->as_VMReg());
97reg_def R_S9 ( SOC, SOC, Op_RegF,  9, S9->as_VMReg());
98reg_def R_S10( SOC, SOC, Op_RegF, 10,S10->as_VMReg());
99reg_def R_S11( SOC, SOC, Op_RegF, 11,S11->as_VMReg());
100reg_def R_S12( SOC, SOC, Op_RegF, 12,S12->as_VMReg());
101reg_def R_S13( SOC, SOC, Op_RegF, 13,S13->as_VMReg());
102reg_def R_S14( SOC, SOC, Op_RegF, 14,S14->as_VMReg());
103reg_def R_S15( SOC, SOC, Op_RegF, 15,S15->as_VMReg());
104reg_def R_S16( SOC, SOE, Op_RegF, 16,S16->as_VMReg());
105reg_def R_S17( SOC, SOE, Op_RegF, 17,S17->as_VMReg());
106reg_def R_S18( SOC, SOE, Op_RegF, 18,S18->as_VMReg());
107reg_def R_S19( SOC, SOE, Op_RegF, 19,S19->as_VMReg());
108reg_def R_S20( SOC, SOE, Op_RegF, 20,S20->as_VMReg());
109reg_def R_S21( SOC, SOE, Op_RegF, 21,S21->as_VMReg());
110reg_def R_S22( SOC, SOE, Op_RegF, 22,S22->as_VMReg());
111reg_def R_S23( SOC, SOE, Op_RegF, 23,S23->as_VMReg());
112reg_def R_S24( SOC, SOE, Op_RegF, 24,S24->as_VMReg());
113reg_def R_S25( SOC, SOE, Op_RegF, 25,S25->as_VMReg());
114reg_def R_S26( SOC, SOE, Op_RegF, 26,S26->as_VMReg());
115reg_def R_S27( SOC, SOE, Op_RegF, 27,S27->as_VMReg());
116reg_def R_S28( SOC, SOE, Op_RegF, 28,S28->as_VMReg());
117reg_def R_S29( SOC, SOE, Op_RegF, 29,S29->as_VMReg());
118reg_def R_S30( SOC, SOE, Op_RegF, 30,S30->as_VMReg());
119reg_def R_S31( SOC, SOE, Op_RegF, 31,S31->as_VMReg());
120
121// Double Registers
122// The rules of ADL require that double registers be defined in pairs.
123// Each pair must be two 32-bit values, but not necessarily a pair of
124// single float registers.  In each pair, ADLC-assigned register numbers
125// must be adjacent, with the lower number even.  Finally, when the
126// CPU stores such a register pair to memory, the word associated with
127// the lower ADLC-assigned number must be stored to the lower address.
128
129reg_def R_D16 (SOC, SOC, Op_RegD, 32, D16->as_VMReg());
130reg_def R_D16x(SOC, SOC, Op_RegD,255, D16->as_VMReg()->next());
131reg_def R_D17 (SOC, SOC, Op_RegD, 34, D17->as_VMReg());
132reg_def R_D17x(SOC, SOC, Op_RegD,255, D17->as_VMReg()->next());
133reg_def R_D18 (SOC, SOC, Op_RegD, 36, D18->as_VMReg());
134reg_def R_D18x(SOC, SOC, Op_RegD,255, D18->as_VMReg()->next());
135reg_def R_D19 (SOC, SOC, Op_RegD, 38, D19->as_VMReg());
136reg_def R_D19x(SOC, SOC, Op_RegD,255, D19->as_VMReg()->next());
137reg_def R_D20 (SOC, SOC, Op_RegD, 40, D20->as_VMReg());
138reg_def R_D20x(SOC, SOC, Op_RegD,255, D20->as_VMReg()->next());
139reg_def R_D21 (SOC, SOC, Op_RegD, 42, D21->as_VMReg());
140reg_def R_D21x(SOC, SOC, Op_RegD,255, D21->as_VMReg()->next());
141reg_def R_D22 (SOC, SOC, Op_RegD, 44, D22->as_VMReg());
142reg_def R_D22x(SOC, SOC, Op_RegD,255, D22->as_VMReg()->next());
143reg_def R_D23 (SOC, SOC, Op_RegD, 46, D23->as_VMReg());
144reg_def R_D23x(SOC, SOC, Op_RegD,255, D23->as_VMReg()->next());
145reg_def R_D24 (SOC, SOC, Op_RegD, 48, D24->as_VMReg());
146reg_def R_D24x(SOC, SOC, Op_RegD,255, D24->as_VMReg()->next());
147reg_def R_D25 (SOC, SOC, Op_RegD, 50, D25->as_VMReg());
148reg_def R_D25x(SOC, SOC, Op_RegD,255, D25->as_VMReg()->next());
149reg_def R_D26 (SOC, SOC, Op_RegD, 52, D26->as_VMReg());
150reg_def R_D26x(SOC, SOC, Op_RegD,255, D26->as_VMReg()->next());
151reg_def R_D27 (SOC, SOC, Op_RegD, 54, D27->as_VMReg());
152reg_def R_D27x(SOC, SOC, Op_RegD,255, D27->as_VMReg()->next());
153reg_def R_D28 (SOC, SOC, Op_RegD, 56, D28->as_VMReg());
154reg_def R_D28x(SOC, SOC, Op_RegD,255, D28->as_VMReg()->next());
155reg_def R_D29 (SOC, SOC, Op_RegD, 58, D29->as_VMReg());
156reg_def R_D29x(SOC, SOC, Op_RegD,255, D29->as_VMReg()->next());
157reg_def R_D30 (SOC, SOC, Op_RegD, 60, D30->as_VMReg());
158reg_def R_D30x(SOC, SOC, Op_RegD,255, D30->as_VMReg()->next());
159reg_def R_D31 (SOC, SOC, Op_RegD, 62, D31->as_VMReg());
160reg_def R_D31x(SOC, SOC, Op_RegD,255, D31->as_VMReg()->next());
161
162// ----------------------------
163// Special Registers
164// Condition Codes Flag Registers
165reg_def APSR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
166reg_def FPSCR(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
167
168// ----------------------------
169// Specify the enum values for the registers.  These enums are only used by the
170// OptoReg "class". We can convert these enum values at will to VMReg when needed
171// for visibility to the rest of the vm. The order of this enum influences the
172// register allocator so having the freedom to set this order and not be stuck
173// with the order that is natural for the rest of the vm is worth it.
174
175// registers in that order so that R11/R12 is an aligned pair that can be used for longs
176alloc_class chunk0(
177                   R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R10, R_R13, R_R14, R_R15, R_R0, R_R1, R_R2, R_R3);
178
179// Note that a register is not allocatable unless it is also mentioned
180// in a widely-used reg_class below.
181
182alloc_class chunk1(
183                   R_S16, R_S17, R_S18, R_S19, R_S20, R_S21, R_S22, R_S23,
184                   R_S24, R_S25, R_S26, R_S27, R_S28, R_S29, R_S30, R_S31,
185                   R_S0,  R_S1,  R_S2,  R_S3,  R_S4,  R_S5,  R_S6,  R_S7,
186                   R_S8,  R_S9,  R_S10, R_S11, R_S12, R_S13, R_S14, R_S15,
187                   R_D16, R_D16x,R_D17, R_D17x,R_D18, R_D18x,R_D19, R_D19x,
188                   R_D20, R_D20x,R_D21, R_D21x,R_D22, R_D22x,R_D23, R_D23x,
189                   R_D24, R_D24x,R_D25, R_D25x,R_D26, R_D26x,R_D27, R_D27x,
190                   R_D28, R_D28x,R_D29, R_D29x,R_D30, R_D30x,R_D31, R_D31x
191);
192
193alloc_class chunk2(APSR, FPSCR);
194
195//----------Architecture Description Register Classes--------------------------
196// Several register classes are automatically defined based upon information in
197// this architecture description.
198// 1) reg_class inline_cache_reg           ( as defined in frame section )
199// 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
200//
201
202// ----------------------------
203// Integer Register Classes
204// ----------------------------
205// Exclusions from i_reg:
206// SP (R13), PC (R15)
207// R10: reserved by HotSpot to the TLS register (invariant within Java)
208reg_class int_reg(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R14);
209
210reg_class R0_regI(R_R0);
211reg_class R1_regI(R_R1);
212reg_class R2_regI(R_R2);
213reg_class R3_regI(R_R3);
214reg_class R12_regI(R_R12);
215
216// ----------------------------
217// Pointer Register Classes
218// ----------------------------
219reg_class ptr_reg(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R14);
220// Special class for storeP instructions, which can store SP or RPC to TLS.
221// It is also used for memory addressing, allowing direct TLS addressing.
222reg_class sp_ptr_reg(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7, R_R8, R_R9, R_R11, R_R12, R_R14, R_R10 /* TLS*/, R_R13 /* SP*/);
223
224#define R_Ricklass R_R8
225#define R_Rthread  R_R10
226#define R_Rexception_obj R_R4
227
228// Other special pointer regs
229reg_class R0_regP(R_R0);
230reg_class R1_regP(R_R1);
231reg_class R2_regP(R_R2);
232reg_class R4_regP(R_R4);
233reg_class R8_regP(R_R8);
234reg_class R9_regP(R_R9);
235reg_class R12_regP(R_R12);
236reg_class Rexception_regP(R_Rexception_obj);
237reg_class Ricklass_regP(R_Ricklass);
238reg_class Rthread_regP(R_Rthread);
239reg_class IP_regP(R_R12);
240reg_class SP_regP(R_R13);
241reg_class LR_regP(R_R14);
242
243reg_class FP_regP(R_R11);
244
245// ----------------------------
246// Long Register Classes
247// ----------------------------
248reg_class long_reg (             R_R0,R_R1, R_R2,R_R3, R_R4,R_R5, R_R6,R_R7, R_R8,R_R9, R_R11,R_R12);
249// for ldrexd, strexd: first reg of pair must be even
250reg_class long_reg_align (       R_R0,R_R1, R_R2,R_R3, R_R4,R_R5, R_R6,R_R7, R_R8,R_R9);
251
252reg_class R0R1_regL(R_R0,R_R1);
253reg_class R2R3_regL(R_R2,R_R3);
254
255// ----------------------------
256// Special Class for Condition Code Flags Register
257reg_class int_flags(APSR);
258reg_class float_flags(FPSCR);
259
260
261// ----------------------------
262// Float Point Register Classes
263// ----------------------------
264// Skip S14/S15, they are reserved for mem-mem copies
265reg_class sflt_reg(R_S0, R_S1, R_S2, R_S3, R_S4, R_S5, R_S6, R_S7, R_S8, R_S9, R_S10, R_S11, R_S12, R_S13,
266                   R_S16, R_S17, R_S18, R_S19, R_S20, R_S21, R_S22, R_S23, R_S24, R_S25, R_S26, R_S27, R_S28, R_S29, R_S30, R_S31);
267
268// Paired floating point registers--they show up in the same order as the floats,
269// but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
270reg_class dflt_reg(R_S0,R_S1, R_S2,R_S3, R_S4,R_S5, R_S6,R_S7, R_S8,R_S9, R_S10,R_S11, R_S12,R_S13,
271                   R_S16,R_S17, R_S18,R_S19, R_S20,R_S21, R_S22,R_S23, R_S24,R_S25, R_S26,R_S27, R_S28,R_S29, R_S30,R_S31,
272                   R_D16,R_D16x, R_D17,R_D17x, R_D18,R_D18x, R_D19,R_D19x, R_D20,R_D20x, R_D21,R_D21x, R_D22,R_D22x,
273                   R_D23,R_D23x, R_D24,R_D24x, R_D25,R_D25x, R_D26,R_D26x, R_D27,R_D27x, R_D28,R_D28x, R_D29,R_D29x,
274                   R_D30,R_D30x, R_D31,R_D31x);
275
276reg_class dflt_low_reg(R_S0,R_S1, R_S2,R_S3, R_S4,R_S5, R_S6,R_S7, R_S8,R_S9, R_S10,R_S11, R_S12,R_S13,
277                       R_S16,R_S17, R_S18,R_S19, R_S20,R_S21, R_S22,R_S23, R_S24,R_S25, R_S26,R_S27, R_S28,R_S29, R_S30,R_S31);
278
279
280reg_class actual_dflt_reg %{
281  if (VM_Version::has_vfp3_32()) {
282    return DFLT_REG_mask();
283  } else {
284    return DFLT_LOW_REG_mask();
285  }
286%}
287
288reg_class S0_regF(R_S0);
289reg_class D0_regD(R_S0,R_S1);
290reg_class D1_regD(R_S2,R_S3);
291reg_class D2_regD(R_S4,R_S5);
292reg_class D3_regD(R_S6,R_S7);
293reg_class D4_regD(R_S8,R_S9);
294reg_class D5_regD(R_S10,R_S11);
295reg_class D6_regD(R_S12,R_S13);
296reg_class D7_regD(R_S14,R_S15);
297
298reg_class D16_regD(R_D16,R_D16x);
299reg_class D17_regD(R_D17,R_D17x);
300reg_class D18_regD(R_D18,R_D18x);
301reg_class D19_regD(R_D19,R_D19x);
302reg_class D20_regD(R_D20,R_D20x);
303reg_class D21_regD(R_D21,R_D21x);
304reg_class D22_regD(R_D22,R_D22x);
305reg_class D23_regD(R_D23,R_D23x);
306reg_class D24_regD(R_D24,R_D24x);
307reg_class D25_regD(R_D25,R_D25x);
308reg_class D26_regD(R_D26,R_D26x);
309reg_class D27_regD(R_D27,R_D27x);
310reg_class D28_regD(R_D28,R_D28x);
311reg_class D29_regD(R_D29,R_D29x);
312reg_class D30_regD(R_D30,R_D30x);
313reg_class D31_regD(R_D31,R_D31x);
314
315reg_class vectorx_reg(R_S0,R_S1,R_S2,R_S3, R_S4,R_S5,R_S6,R_S7,
316                      R_S8,R_S9,R_S10,R_S11, /* skip S14/S15 */
317                      R_S16,R_S17,R_S18,R_S19, R_S20,R_S21,R_S22,R_S23,
318                      R_S24,R_S25,R_S26,R_S27, R_S28,R_S29,R_S30,R_S31,
319                      R_D16,R_D16x,R_D17,R_D17x, R_D18,R_D18x,R_D19,R_D19x,
320                      R_D20,R_D20x,R_D21,R_D21x, R_D22,R_D22x,R_D23,R_D23x,
321                      R_D24,R_D24x,R_D25,R_D25x, R_D26,R_D26x,R_D27,R_D27x,
322                      R_D28,R_D28x,R_D29,R_D29x, R_D30,R_D30x,R_D31,R_D31x);
323
324%}
325
326source_hpp %{
327// FIXME
328const MachRegisterNumbers R_mem_copy_lo_num = R_S14_num;
329const MachRegisterNumbers R_mem_copy_hi_num = R_S15_num;
330const FloatRegister Rmemcopy = S14;
331const MachRegisterNumbers R_hf_ret_lo_num = R_S0_num;
332const MachRegisterNumbers R_hf_ret_hi_num = R_S1_num;
333
334const MachRegisterNumbers R_Ricklass_num = R_R8_num;
335const MachRegisterNumbers R_Rmethod_num  = R_R9_num;
336
337#define LDR_DOUBLE "FLDD"
338#define LDR_FLOAT  "FLDS"
339#define STR_DOUBLE "FSTD"
340#define STR_FLOAT  "FSTS"
341#define LDR_64     "LDRD"
342#define STR_64     "STRD"
343#define LDR_32     "LDR"
344#define STR_32     "STR"
345#define MOV_DOUBLE "FCPYD"
346#define MOV_FLOAT  "FCPYS"
347#define FMSR       "FMSR"
348#define FMRS       "FMRS"
349#define LDREX      "ldrex "
350#define STREX      "strex "
351
352#define str_64     strd
353#define ldr_64     ldrd
354#define ldr_32     ldr
355#define ldrex      ldrex
356#define strex      strex
357
358static inline bool is_memoryD(int offset) {
359  return offset < 1024 && offset > -1024;
360}
361
362static inline bool is_memoryfp(int offset) {
363  return offset < 1024 && offset > -1024;
364}
365
366static inline bool is_memoryI(int offset) {
367  return offset < 4096 && offset > -4096;
368}
369
370static inline bool is_memoryP(int offset) {
371  return offset < 4096 && offset > -4096;
372}
373
374static inline bool is_memoryHD(int offset) {
375  return offset < 256 && offset > -256;
376}
377
378static inline bool is_aimm(int imm) {
379  return AsmOperand::is_rotated_imm(imm);
380}
381
382static inline bool is_limmI(jint imm) {
383  return AsmOperand::is_rotated_imm(imm);
384}
385
386static inline bool is_limmI_low(jint imm, int n) {
387  int imml = imm & right_n_bits(n);
388  return is_limmI(imml) || is_limmI(imm);
389}
390
391static inline int limmI_low(jint imm, int n) {
392  int imml = imm & right_n_bits(n);
393  return is_limmI(imml) ? imml : imm;
394}
395
396%}
397
398source %{
399
400// Given a register encoding, produce a Integer Register object
401static Register reg_to_register_object(int register_encoding) {
402  assert(R0->encoding() == R_R0_enc && R15->encoding() == R_R15_enc, "right coding");
403  return as_Register(register_encoding);
404}
405
406// Given a register encoding, produce a single-precision Float Register object
407static FloatRegister reg_to_FloatRegister_object(int register_encoding) {
408  assert(S0->encoding() == R_S0_enc && S31->encoding() == R_S31_enc, "right coding");
409  return as_FloatRegister(register_encoding);
410}
411
412void Compile::pd_compiler2_init() {
413  // Umimplemented
414}
415
416// Location of compiled Java return values.  Same as C
417OptoRegPair c2::return_value(int ideal_reg) {
418  assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
419#ifndef __ABI_HARD__
420  static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, R_R0_num,     R_R0_num,     R_R0_num,     R_R0_num, R_R0_num };
421  static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_R1_num, R_R1_num };
422#else
423  static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, R_R0_num,     R_R0_num,     R_hf_ret_lo_num,  R_hf_ret_lo_num, R_R0_num };
424  static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad,     R_hf_ret_hi_num, R_R1_num };
425#endif
426  return OptoRegPair( hi[ideal_reg], lo[ideal_reg]);
427}
428
429// !!!!! Special hack to get all type of calls to specify the byte offset
430//       from the start of the call to the point where the return address
431//       will point.
432
433int MachCallStaticJavaNode::ret_addr_offset() {
434  bool far = (_method == NULL) ? maybe_far_call(this) : !cache_reachable();
435  return ((far ? 3 : 1) + (_method_handle_invoke ? 1 : 0)) *
436    NativeInstruction::instruction_size;
437}
438
439int MachCallDynamicJavaNode::ret_addr_offset() {
440  bool far = !cache_reachable();
441  // mov_oop is always 2 words
442  return (2 + (far ? 3 : 1)) * NativeInstruction::instruction_size;
443}
444
445int MachCallRuntimeNode::ret_addr_offset() {
446  // bl or movw; movt; blx
447  bool far = maybe_far_call(this);
448  return (far ? 3 : 1) * NativeInstruction::instruction_size;
449}
450
451int MachCallNativeNode::ret_addr_offset() {
452  Unimplemented();
453  return -1;
454}
455%}
456
457// The intptr_t operand types, defined by textual substitution.
458// (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
459#define immX      immI
460#define immXRot   immIRot
461#define iRegX     iRegI
462#define aimmX     aimmI
463#define limmX     limmI
464#define immX10x2  immI10x2
465#define LShiftX   LShiftI
466#define shimmX    immU5
467
468// Compatibility interface
469#define aimmP     immPRot
470#define immIMov   immIRot
471
472#define store_RegL     iRegL
473#define store_RegLd    iRegLd
474#define store_RegI     iRegI
475#define store_ptr_RegP iRegP
476
477//----------ATTRIBUTES---------------------------------------------------------
478//----------Operand Attributes-------------------------------------------------
479op_attrib op_cost(1);          // Required cost attribute
480
481//----------OPERANDS-----------------------------------------------------------
482// Operand definitions must precede instruction definitions for correct parsing
483// in the ADLC because operands constitute user defined types which are used in
484// instruction definitions.
485
486//----------Simple Operands----------------------------------------------------
487// Immediate Operands
488
489operand immIRot() %{
490  predicate(AsmOperand::is_rotated_imm(n->get_int()));
491  match(ConI);
492
493  op_cost(0);
494  // formats are generated automatically for constants and base registers
495  format %{ %}
496  interface(CONST_INTER);
497%}
498
499operand immIRotn() %{
500  predicate(n->get_int() != 0 && AsmOperand::is_rotated_imm(~n->get_int()));
501  match(ConI);
502
503  op_cost(0);
504  // formats are generated automatically for constants and base registers
505  format %{ %}
506  interface(CONST_INTER);
507%}
508
509operand immIRotneg() %{
510  // if AsmOperand::is_rotated_imm() is true for this constant, it is
511  // a immIRot and an optimal instruction combination exists to handle the
512  // constant as an immIRot
513  predicate(!AsmOperand::is_rotated_imm(n->get_int()) && AsmOperand::is_rotated_imm(-n->get_int()));
514  match(ConI);
515
516  op_cost(0);
517  // formats are generated automatically for constants and base registers
518  format %{ %}
519  interface(CONST_INTER);
520%}
521
522// Non-negative integer immediate that is encodable using the rotation scheme,
523// and that when expanded fits in 31 bits.
524operand immU31Rot() %{
525  predicate((0 <= n->get_int()) && AsmOperand::is_rotated_imm(n->get_int()));
526  match(ConI);
527
528  op_cost(0);
529  // formats are generated automatically for constants and base registers
530  format %{ %}
531  interface(CONST_INTER);
532%}
533
534operand immPRot() %{
535  predicate(n->get_ptr() == 0 || (AsmOperand::is_rotated_imm(n->get_ptr()) && ((ConPNode*)n)->type()->reloc() == relocInfo::none));
536
537  match(ConP);
538
539  op_cost(0);
540  // formats are generated automatically for constants and base registers
541  format %{ %}
542  interface(CONST_INTER);
543%}
544
545operand immLlowRot() %{
546  predicate(n->get_long() >> 32 == 0 && AsmOperand::is_rotated_imm((int)n->get_long()));
547  match(ConL);
548  op_cost(0);
549
550  format %{ %}
551  interface(CONST_INTER);
552%}
553
554operand immLRot2() %{
555  predicate(AsmOperand::is_rotated_imm((int)(n->get_long() >> 32)) &&
556            AsmOperand::is_rotated_imm((int)(n->get_long())));
557  match(ConL);
558  op_cost(0);
559
560  format %{ %}
561  interface(CONST_INTER);
562%}
563
564// Integer Immediate: 12-bit - for addressing mode
565operand immI12() %{
566  predicate((-4096 < n->get_int()) && (n->get_int() < 4096));
567  match(ConI);
568  op_cost(0);
569
570  format %{ %}
571  interface(CONST_INTER);
572%}
573
574// Integer Immediate: 10-bit disp and disp+4 - for addressing float pair
575operand immI10x2() %{
576  predicate((-1024 < n->get_int()) && (n->get_int() < 1024 - 4));
577  match(ConI);
578  op_cost(0);
579
580  format %{ %}
581  interface(CONST_INTER);
582%}
583
584// Integer Immediate: 12-bit disp and disp+4 - for addressing word pair
585operand immI12x2() %{
586  predicate((-4096 < n->get_int()) && (n->get_int() < 4096 - 4));
587  match(ConI);
588  op_cost(0);
589
590  format %{ %}
591  interface(CONST_INTER);
592%}
593