1 /*
2 * Copyright (c) 2008, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/assembler.inline.hpp"
27 #include "code/debugInfoRec.hpp"
28 #include "code/icBuffer.hpp"
29 #include "code/vtableStubs.hpp"
30 #include "compiler/oopMap.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "logging/log.hpp"
33 #include "memory/resourceArea.hpp"
34 #include "oops/compiledICHolder.hpp"
35 #include "oops/klass.inline.hpp"
36 #include "prims/methodHandles.hpp"
37 #include "runtime/jniHandles.hpp"
38 #include "runtime/sharedRuntime.hpp"
39 #include "runtime/safepointMechanism.hpp"
40 #include "runtime/stubRoutines.hpp"
41 #include "runtime/vframeArray.hpp"
42 #include "utilities/align.hpp"
43 #include "utilities/powerOfTwo.hpp"
44 #include "vmreg_arm.inline.hpp"
45 #ifdef COMPILER1
46 #include "c1/c1_Runtime1.hpp"
47 #endif
48 #ifdef COMPILER2
49 #include "opto/runtime.hpp"
50 #endif
51
52 #define __ masm->
53
54 class RegisterSaver {
55 public:
56
57 // Special registers:
58 // 32-bit ARM 64-bit ARM
59 // Rthread: R10 R28
60 // LR: R14 R30
61
62 // Rthread is callee saved in the C ABI and never changed by compiled code:
63 // no need to save it.
64
65 // 2 slots for LR: the one at LR_offset and an other one at R14/R30_offset.
66 // The one at LR_offset is a return address that is needed by stack walking.
67 // A c2 method uses LR as a standard register so it may be live when we
68 // branch to the runtime. The slot at R14/R30_offset is for the value of LR
69 // in case it's live in the method we are coming from.
70
71
72 enum RegisterLayout {
73 fpu_save_size = FloatRegisterImpl::number_of_registers,
74 #ifndef __SOFTFP__
75 D0_offset = 0,
76 #endif
77 R0_offset = fpu_save_size,
78 R1_offset,
79 R2_offset,
80 R3_offset,
81 R4_offset,
82 R5_offset,
83 R6_offset,
84 #if (FP_REG_NUM != 7)
85 // if not saved as FP
86 R7_offset,
87 #endif
88 R8_offset,
89 R9_offset,
90 #if (FP_REG_NUM != 11)
91 // if not saved as FP
92 R11_offset,
93 #endif
94 R12_offset,
95 R14_offset,
96 FP_offset,
97 LR_offset,
98 reg_save_size,
99
100 Rmethod_offset = R9_offset,
101 Rtemp_offset = R12_offset,
102 };
103
104 // all regs but Rthread (R10), FP (R7 or R11), SP and PC
105 // (altFP_7_11 is the one amoung R7 and R11 which is not FP)
106 #define SAVED_BASE_REGS (RegisterSet(R0, R6) | RegisterSet(R8, R9) | RegisterSet(R12) | R14 | altFP_7_11)
107
108
109 // When LR may be live in the nmethod from which we are comming
110 // then lr_saved is true, the return address is saved before the
111 // call to save_live_register by the caller and LR contains the
112 // live value.
113
114 static OopMap* save_live_registers(MacroAssembler* masm,
115 int* total_frame_words,
116 bool lr_saved = false);
117 static void restore_live_registers(MacroAssembler* masm, bool restore_lr = true);
118
119 };
120
121
122
123
save_live_registers(MacroAssembler * masm,int * total_frame_words,bool lr_saved)124 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm,
125 int* total_frame_words,
126 bool lr_saved) {
127 *total_frame_words = reg_save_size;
128
129 OopMapSet *oop_maps = new OopMapSet();
130 OopMap* map = new OopMap(VMRegImpl::slots_per_word * (*total_frame_words), 0);
131
132 if (lr_saved) {
133 __ push(RegisterSet(FP));
134 } else {
135 __ push(RegisterSet(FP) | RegisterSet(LR));
136 }
137 __ push(SAVED_BASE_REGS);
138 if (HaveVFP) {
139 if (VM_Version::has_vfp3_32()) {
140 __ fpush(FloatRegisterSet(D16, 16));
141 } else {
142 if (FloatRegisterImpl::number_of_registers > 32) {
143 assert(FloatRegisterImpl::number_of_registers == 64, "nb fp registers should be 64");
144 __ sub(SP, SP, 32 * wordSize);
145 }
146 }
147 __ fpush(FloatRegisterSet(D0, 16));
148 } else {
149 __ sub(SP, SP, fpu_save_size * wordSize);
150 }
151
152 int i;
153 int j=0;
154 for (i = R0_offset; i <= R9_offset; i++) {
155 if (j == FP_REG_NUM) {
156 // skip the FP register, managed below.
157 j++;
158 }
159 map->set_callee_saved(VMRegImpl::stack2reg(i), as_Register(j)->as_VMReg());
160 j++;
161 }
162 assert(j == R10->encoding(), "must be");
163 #if (FP_REG_NUM != 11)
164 // add R11, if not managed as FP
165 map->set_callee_saved(VMRegImpl::stack2reg(R11_offset), R11->as_VMReg());
166 #endif
167 map->set_callee_saved(VMRegImpl::stack2reg(R12_offset), R12->as_VMReg());
168 map->set_callee_saved(VMRegImpl::stack2reg(R14_offset), R14->as_VMReg());
169 if (HaveVFP) {
170 for (i = 0; i < (VM_Version::has_vfp3_32() ? 64 : 32); i+=2) {
171 map->set_callee_saved(VMRegImpl::stack2reg(i), as_FloatRegister(i)->as_VMReg());
172 map->set_callee_saved(VMRegImpl::stack2reg(i + 1), as_FloatRegister(i)->as_VMReg()->next());
173 }
174 }
175
176 return map;
177 }
178
restore_live_registers(MacroAssembler * masm,bool restore_lr)179 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_lr) {
180 if (HaveVFP) {
181 __ fpop(FloatRegisterSet(D0, 16));
182 if (VM_Version::has_vfp3_32()) {
183 __ fpop(FloatRegisterSet(D16, 16));
184 } else {
185 if (FloatRegisterImpl::number_of_registers > 32) {
186 assert(FloatRegisterImpl::number_of_registers == 64, "nb fp registers should be 64");
187 __ add(SP, SP, 32 * wordSize);
188 }
189 }
190 } else {
191 __ add(SP, SP, fpu_save_size * wordSize);
192 }
193 __ pop(SAVED_BASE_REGS);
194 if (restore_lr) {
195 __ pop(RegisterSet(FP) | RegisterSet(LR));
196 } else {
197 __ pop(RegisterSet(FP));
198 }
199 }
200
201
push_result_registers(MacroAssembler * masm,BasicType ret_type)202 static void push_result_registers(MacroAssembler* masm, BasicType ret_type) {
203 #ifdef __ABI_HARD__
204 if (ret_type == T_DOUBLE || ret_type == T_FLOAT) {
205 __ sub(SP, SP, 8);
206 __ fstd(D0, Address(SP));
207 return;
208 }
209 #endif // __ABI_HARD__
210 __ raw_push(R0, R1);
211 }
212
pop_result_registers(MacroAssembler * masm,BasicType ret_type)213 static void pop_result_registers(MacroAssembler* masm, BasicType ret_type) {
214 #ifdef __ABI_HARD__
215 if (ret_type == T_DOUBLE || ret_type == T_FLOAT) {
216 __ fldd(D0, Address(SP));
217 __ add(SP, SP, 8);
218 return;
219 }
220 #endif // __ABI_HARD__
221 __ raw_pop(R0, R1);
222 }
223
push_param_registers(MacroAssembler * masm,int fp_regs_in_arguments)224 static void push_param_registers(MacroAssembler* masm, int fp_regs_in_arguments) {
225 // R1-R3 arguments need to be saved, but we push 4 registers for 8-byte alignment
226 __ push(RegisterSet(R0, R3));
227
228 // preserve arguments
229 // Likely not needed as the locking code won't probably modify volatile FP registers,
230 // but there is no way to guarantee that
231 if (fp_regs_in_arguments) {
232 // convert fp_regs_in_arguments to a number of double registers
233 int double_regs_num = (fp_regs_in_arguments + 1) >> 1;
234 __ fpush_hardfp(FloatRegisterSet(D0, double_regs_num));
235 }
236 }
237
pop_param_registers(MacroAssembler * masm,int fp_regs_in_arguments)238 static void pop_param_registers(MacroAssembler* masm, int fp_regs_in_arguments) {
239 if (fp_regs_in_arguments) {
240 int double_regs_num = (fp_regs_in_arguments + 1) >> 1;
241 __ fpop_hardfp(FloatRegisterSet(D0, double_regs_num));
242 }
243 __ pop(RegisterSet(R0, R3));
244 }
245
246
247
248 // Is vector's size (in bytes) bigger than a size saved by default?
249 // All vector registers are saved by default on ARM.
is_wide_vector(int size)250 bool SharedRuntime::is_wide_vector(int size) {
251 return false;
252 }
253
c_calling_convention(const BasicType * sig_bt,VMRegPair * regs,VMRegPair * regs2,int total_args_passed)254 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
255 VMRegPair *regs,
256 VMRegPair *regs2,
257 int total_args_passed) {
258 assert(regs2 == NULL, "not needed on arm");
259
260 int slot = 0;
261 int ireg = 0;
262 #ifdef __ABI_HARD__
263 int fp_slot = 0;
264 int single_fpr_slot = 0;
265 #endif // __ABI_HARD__
266 for (int i = 0; i < total_args_passed; i++) {
267 switch (sig_bt[i]) {
268 case T_SHORT:
269 case T_CHAR:
270 case T_BYTE:
271 case T_BOOLEAN:
272 case T_INT:
273 case T_ARRAY:
274 case T_OBJECT:
275 case T_ADDRESS:
276 case T_METADATA:
277 #ifndef __ABI_HARD__
278 case T_FLOAT:
279 #endif // !__ABI_HARD__
280 if (ireg < 4) {
281 Register r = as_Register(ireg);
282 regs[i].set1(r->as_VMReg());
283 ireg++;
284 } else {
285 regs[i].set1(VMRegImpl::stack2reg(slot));
286 slot++;
287 }
288 break;
289 case T_LONG:
290 #ifndef __ABI_HARD__
291 case T_DOUBLE:
292 #endif // !__ABI_HARD__
293 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "missing Half" );
294 if (ireg <= 2) {
295 #if (ALIGN_WIDE_ARGUMENTS == 1)
296 if(ireg & 1) ireg++; // Aligned location required
297 #endif
298 Register r1 = as_Register(ireg);
299 Register r2 = as_Register(ireg + 1);
300 regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
301 ireg += 2;
302 #if (ALIGN_WIDE_ARGUMENTS == 0)
303 } else if (ireg == 3) {
304 // uses R3 + one stack slot
305 Register r = as_Register(ireg);
306 regs[i].set_pair(VMRegImpl::stack2reg(slot), r->as_VMReg());
307 ireg += 1;
308 slot += 1;
309 #endif
310 } else {
311 if (slot & 1) slot++; // Aligned location required
312 regs[i].set_pair(VMRegImpl::stack2reg(slot+1), VMRegImpl::stack2reg(slot));
313 slot += 2;
314 ireg = 4;
315 }
316 break;
317 case T_VOID:
318 regs[i].set_bad();
319 break;
320 #ifdef __ABI_HARD__
321 case T_FLOAT:
322 if ((fp_slot < 16)||(single_fpr_slot & 1)) {
323 if ((single_fpr_slot & 1) == 0) {
324 single_fpr_slot = fp_slot;
325 fp_slot += 2;
326 }
327 FloatRegister r = as_FloatRegister(single_fpr_slot);
328 single_fpr_slot++;
329 regs[i].set1(r->as_VMReg());
330 } else {
331 regs[i].set1(VMRegImpl::stack2reg(slot));
332 slot++;
333 }
334 break;
335 case T_DOUBLE:
336 assert(ALIGN_WIDE_ARGUMENTS == 1, "ABI_HARD not supported with unaligned wide arguments");
337 if (fp_slot <= 14) {
338 FloatRegister r1 = as_FloatRegister(fp_slot);
339 FloatRegister r2 = as_FloatRegister(fp_slot+1);
340 regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
341 fp_slot += 2;
342 } else {
343 if(slot & 1) slot++;
344 regs[i].set_pair(VMRegImpl::stack2reg(slot+1), VMRegImpl::stack2reg(slot));
345 slot += 2;
346 single_fpr_slot = 16;
347 }
348 break;
349 #endif // __ABI_HARD__
350 default:
351 ShouldNotReachHere();
352 }
353 }
354 return slot;
355 }
356
vector_calling_convention(VMRegPair * regs,uint num_bits,uint total_args_passed)357 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
358 uint num_bits,
359 uint total_args_passed) {
360 Unimplemented();
361 return 0;
362 }
363
java_calling_convention(const BasicType * sig_bt,VMRegPair * regs,int total_args_passed)364 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
365 VMRegPair *regs,
366 int total_args_passed) {
367 #ifdef __SOFTFP__
368 // soft float is the same as the C calling convention.
369 return c_calling_convention(sig_bt, regs, NULL, total_args_passed);
370 #endif // __SOFTFP__
371 int slot = 0;
372 int ireg = 0;
373 int freg = 0;
374 int single_fpr = 0;
375
376 for (int i = 0; i < total_args_passed; i++) {
377 switch (sig_bt[i]) {
378 case T_SHORT:
379 case T_CHAR:
380 case T_BYTE:
381 case T_BOOLEAN:
382 case T_INT:
383 case T_ARRAY:
384 case T_OBJECT:
385 case T_ADDRESS:
386 if (ireg < 4) {
387 Register r = as_Register(ireg++);
388 regs[i].set1(r->as_VMReg());
389 } else {
390 regs[i].set1(VMRegImpl::stack2reg(slot++));
391 }
392 break;
393 case T_FLOAT:
394 // C2 utilizes S14/S15 for mem-mem moves
395 if ((freg < 16 COMPILER2_PRESENT(-2)) || (single_fpr & 1)) {
396 if ((single_fpr & 1) == 0) {
397 single_fpr = freg;
398 freg += 2;
399 }
400 FloatRegister r = as_FloatRegister(single_fpr++);
401 regs[i].set1(r->as_VMReg());
402 } else {
403 regs[i].set1(VMRegImpl::stack2reg(slot++));
404 }
405 break;
406 case T_DOUBLE:
407 // C2 utilizes S14/S15 for mem-mem moves
408 if (freg <= 14 COMPILER2_PRESENT(-2)) {
409 FloatRegister r1 = as_FloatRegister(freg);
410 FloatRegister r2 = as_FloatRegister(freg + 1);
411 regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
412 freg += 2;
413 } else {
414 // Keep internally the aligned calling convention,
415 // ignoring ALIGN_WIDE_ARGUMENTS
416 if (slot & 1) slot++;
417 regs[i].set_pair(VMRegImpl::stack2reg(slot + 1), VMRegImpl::stack2reg(slot));
418 slot += 2;
419 single_fpr = 16;
420 }
421 break;
422 case T_LONG:
423 // Keep internally the aligned calling convention,
424 // ignoring ALIGN_WIDE_ARGUMENTS
425 if (ireg <= 2) {
426 if (ireg & 1) ireg++;
427 Register r1 = as_Register(ireg);
428 Register r2 = as_Register(ireg + 1);
429 regs[i].set_pair(r2->as_VMReg(), r1->as_VMReg());
430 ireg += 2;
431 } else {
432 if (slot & 1) slot++;
433 regs[i].set_pair(VMRegImpl::stack2reg(slot + 1), VMRegImpl::stack2reg(slot));
434 slot += 2;
435 ireg = 4;
436 }
437 break;
438 case T_VOID:
439 regs[i].set_bad();
440 break;
441 default:
442 ShouldNotReachHere();
443 }
444 }
445
446 if (slot & 1) slot++;
447 return slot;
448 }
449
patch_callers_callsite(MacroAssembler * masm)450 static void patch_callers_callsite(MacroAssembler *masm) {
451 Label skip;
452
453 __ ldr(Rtemp, Address(Rmethod, Method::code_offset()));
454 __ cbz(Rtemp, skip);
455
456 // Pushing an even number of registers for stack alignment.
457 // Selecting R9, which had to be saved anyway for some platforms.
458 __ push(RegisterSet(R0, R3) | R9 | LR);
459 __ fpush_hardfp(FloatRegisterSet(D0, 8));
460
461 __ mov(R0, Rmethod);
462 __ mov(R1, LR);
463 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
464
465 __ fpop_hardfp(FloatRegisterSet(D0, 8));
466 __ pop(RegisterSet(R0, R3) | R9 | LR);
467
468 __ bind(skip);
469 }
470
gen_i2c_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs)471 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
472 int total_args_passed, int comp_args_on_stack,
473 const BasicType *sig_bt, const VMRegPair *regs) {
474 // TODO: ARM - May be can use ldm to load arguments
475 const Register tmp = Rtemp; // avoid erasing R5_mh
476
477 // Next assert may not be needed but safer. Extra analysis required
478 // if this there is not enough free registers and we need to use R5 here.
479 assert_different_registers(tmp, R5_mh);
480
481 // 6243940 We might end up in handle_wrong_method if
482 // the callee is deoptimized as we race thru here. If that
483 // happens we don't want to take a safepoint because the
484 // caller frame will look interpreted and arguments are now
485 // "compiled" so it is much better to make this transition
486 // invisible to the stack walking code. Unfortunately if
487 // we try and find the callee by normal means a safepoint
488 // is possible. So we stash the desired callee in the thread
489 // and the vm will find there should this case occur.
490 Address callee_target_addr(Rthread, JavaThread::callee_target_offset());
491 __ str(Rmethod, callee_target_addr);
492
493
494 assert_different_registers(tmp, R0, R1, R2, R3, Rsender_sp, Rmethod);
495
496 const Register initial_sp = Rmethod; // temporarily scratched
497
498 // Old code was modifying R4 but this looks unsafe (particularly with JSR292)
499 assert_different_registers(tmp, R0, R1, R2, R3, Rsender_sp, initial_sp);
500
501 __ mov(initial_sp, SP);
502
503 if (comp_args_on_stack) {
504 __ sub_slow(SP, SP, comp_args_on_stack * VMRegImpl::stack_slot_size);
505 }
506 __ bic(SP, SP, StackAlignmentInBytes - 1);
507
508 for (int i = 0; i < total_args_passed; i++) {
509 if (sig_bt[i] == T_VOID) {
510 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
511 continue;
512 }
513 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "must be ordered");
514 int arg_offset = Interpreter::expr_offset_in_bytes(total_args_passed - 1 - i);
515
516 VMReg r_1 = regs[i].first();
517 VMReg r_2 = regs[i].second();
518 if (r_1->is_stack()) {
519 int stack_offset = r_1->reg2stack() * VMRegImpl::stack_slot_size;
520 if (!r_2->is_valid()) {
521 __ ldr(tmp, Address(initial_sp, arg_offset));
522 __ str(tmp, Address(SP, stack_offset));
523 } else {
524 __ ldr(tmp, Address(initial_sp, arg_offset - Interpreter::stackElementSize));
525 __ str(tmp, Address(SP, stack_offset));
526 __ ldr(tmp, Address(initial_sp, arg_offset));
527 __ str(tmp, Address(SP, stack_offset + wordSize));
528 }
529 } else if (r_1->is_Register()) {
530 if (!r_2->is_valid()) {
531 __ ldr(r_1->as_Register(), Address(initial_sp, arg_offset));
532 } else {
533 __ ldr(r_1->as_Register(), Address(initial_sp, arg_offset - Interpreter::stackElementSize));
534 __ ldr(r_2->as_Register(), Address(initial_sp, arg_offset));
535 }
536 } else if (r_1->is_FloatRegister()) {
537 #ifdef __SOFTFP__
538 ShouldNotReachHere();
539 #endif // __SOFTFP__
540 if (!r_2->is_valid()) {
541 __ flds(r_1->as_FloatRegister(), Address(initial_sp, arg_offset));
542 } else {
543 __ fldd(r_1->as_FloatRegister(), Address(initial_sp, arg_offset - Interpreter::stackElementSize));
544 }
545 } else {
546 assert(!r_1->is_valid() && !r_2->is_valid(), "must be");
547 }
548 }
549
550 // restore Rmethod (scratched for initial_sp)
551 __ ldr(Rmethod, callee_target_addr);
552 __ ldr(PC, Address(Rmethod, Method::from_compiled_offset()));
553
554 }
555
gen_c2i_adapter(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,Label & skip_fixup)556 static void gen_c2i_adapter(MacroAssembler *masm,
557 int total_args_passed, int comp_args_on_stack,
558 const BasicType *sig_bt, const VMRegPair *regs,
559 Label& skip_fixup) {
560 // TODO: ARM - May be can use stm to deoptimize arguments
561 const Register tmp = Rtemp;
562
563 patch_callers_callsite(masm);
564 __ bind(skip_fixup);
565
566 __ mov(Rsender_sp, SP); // not yet saved
567
568
569 int extraspace = total_args_passed * Interpreter::stackElementSize;
570 if (extraspace) {
571 __ sub_slow(SP, SP, extraspace);
572 }
573
574 for (int i = 0; i < total_args_passed; i++) {
575 if (sig_bt[i] == T_VOID) {
576 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
577 continue;
578 }
579 int stack_offset = (total_args_passed - 1 - i) * Interpreter::stackElementSize;
580
581 VMReg r_1 = regs[i].first();
582 VMReg r_2 = regs[i].second();
583 if (r_1->is_stack()) {
584 int arg_offset = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
585 if (!r_2->is_valid()) {
586 __ ldr(tmp, Address(SP, arg_offset));
587 __ str(tmp, Address(SP, stack_offset));
588 } else {
589 __ ldr(tmp, Address(SP, arg_offset));
590 __ str(tmp, Address(SP, stack_offset - Interpreter::stackElementSize));
591 __ ldr(tmp, Address(SP, arg_offset + wordSize));
592 __ str(tmp, Address(SP, stack_offset));
593 }
594 } else if (r_1->is_Register()) {
595 if (!r_2->is_valid()) {
596 __ str(r_1->as_Register(), Address(SP, stack_offset));
597 } else {
598 __ str(r_1->as_Register(), Address(SP, stack_offset - Interpreter::stackElementSize));
599 __ str(r_2->as_Register(), Address(SP, stack_offset));
600 }
601 } else if (r_1->is_FloatRegister()) {
602 #ifdef __SOFTFP__
603 ShouldNotReachHere();
604 #endif // __SOFTFP__
605 if (!r_2->is_valid()) {
606 __ fsts(r_1->as_FloatRegister(), Address(SP, stack_offset));
607 } else {
608 __ fstd(r_1->as_FloatRegister(), Address(SP, stack_offset - Interpreter::stackElementSize));
609 }
610 } else {
611 assert(!r_1->is_valid() && !r_2->is_valid(), "must be");
612 }
613 }
614
615 __ ldr(PC, Address(Rmethod, Method::interpreter_entry_offset()));
616
617 }
618
generate_i2c2i_adapters(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,AdapterFingerPrint * fingerprint)619 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
620 int total_args_passed,
621 int comp_args_on_stack,
622 const BasicType *sig_bt,
623 const VMRegPair *regs,
624 AdapterFingerPrint* fingerprint) {
625 address i2c_entry = __ pc();
626 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
627
628 address c2i_unverified_entry = __ pc();
629 Label skip_fixup;
630 const Register receiver = R0;
631 const Register holder_klass = Rtemp; // XXX should be OK for C2 but not 100% sure
632 const Register receiver_klass = R4;
633
634 __ load_klass(receiver_klass, receiver);
635 __ ldr(holder_klass, Address(Ricklass, CompiledICHolder::holder_klass_offset()));
636 __ ldr(Rmethod, Address(Ricklass, CompiledICHolder::holder_metadata_offset()));
637 __ cmp(receiver_klass, holder_klass);
638
639 __ ldr(Rtemp, Address(Rmethod, Method::code_offset()), eq);
640 __ cmp(Rtemp, 0, eq);
641 __ b(skip_fixup, eq);
642 __ jump(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type, noreg, ne);
643
644 address c2i_entry = __ pc();
645 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
646
647 __ flush();
648 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
649 }
650
651
reg2offset_in(VMReg r)652 static int reg2offset_in(VMReg r) {
653 // Account for saved FP and LR
654 return r->reg2stack() * VMRegImpl::stack_slot_size + 2*wordSize;
655 }
656
reg2offset_out(VMReg r)657 static int reg2offset_out(VMReg r) {
658 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
659 }
660
661
verify_oop_args(MacroAssembler * masm,const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)662 static void verify_oop_args(MacroAssembler* masm,
663 const methodHandle& method,
664 const BasicType* sig_bt,
665 const VMRegPair* regs) {
666 Register temp_reg = Rmethod; // not part of any compiled calling seq
667 if (VerifyOops) {
668 for (int i = 0; i < method->size_of_parameters(); i++) {
669 if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
670 VMReg r = regs[i].first();
671 assert(r->is_valid(), "bad oop arg");
672 if (r->is_stack()) {
673 __ ldr(temp_reg, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
674 __ verify_oop(temp_reg);
675 } else {
676 __ verify_oop(r->as_Register());
677 }
678 }
679 }
680 }
681 }
682
gen_special_dispatch(MacroAssembler * masm,const methodHandle & method,const BasicType * sig_bt,const VMRegPair * regs)683 static void gen_special_dispatch(MacroAssembler* masm,
684 const methodHandle& method,
685 const BasicType* sig_bt,
686 const VMRegPair* regs) {
687 verify_oop_args(masm, method, sig_bt, regs);
688 vmIntrinsics::ID iid = method->intrinsic_id();
689
690 // Now write the args into the outgoing interpreter space
691 bool has_receiver = false;
692 Register receiver_reg = noreg;
693 int member_arg_pos = -1;
694 Register member_reg = noreg;
695 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
696 if (ref_kind != 0) {
697 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
698 member_reg = Rmethod; // known to be free at this point
699 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
700 } else if (iid == vmIntrinsics::_invokeBasic) {
701 has_receiver = true;
702 } else {
703 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
704 }
705
706 if (member_reg != noreg) {
707 // Load the member_arg into register, if necessary.
708 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
709 VMReg r = regs[member_arg_pos].first();
710 if (r->is_stack()) {
711 __ ldr(member_reg, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
712 } else {
713 // no data motion is needed
714 member_reg = r->as_Register();
715 }
716 }
717
718 if (has_receiver) {
719 // Make sure the receiver is loaded into a register.
720 assert(method->size_of_parameters() > 0, "oob");
721 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
722 VMReg r = regs[0].first();
723 assert(r->is_valid(), "bad receiver arg");
724 if (r->is_stack()) {
725 // Porting note: This assumes that compiled calling conventions always
726 // pass the receiver oop in a register. If this is not true on some
727 // platform, pick a temp and load the receiver from stack.
728 assert(false, "receiver always in a register");
729 receiver_reg = j_rarg0; // known to be free at this point
730 __ ldr(receiver_reg, Address(SP, r->reg2stack() * VMRegImpl::stack_slot_size));
731 } else {
732 // no data motion is needed
733 receiver_reg = r->as_Register();
734 }
735 }
736
737 // Figure out which address we are really jumping to:
738 MethodHandles::generate_method_handle_dispatch(masm, iid,
739 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
740 }
741
742 // ---------------------------------------------------------------------------
743 // Generate a native wrapper for a given method. The method takes arguments
744 // in the Java compiled code convention, marshals them to the native
745 // convention (handlizes oops, etc), transitions to native, makes the call,
746 // returns to java state (possibly blocking), unhandlizes any result and
747 // returns.
generate_native_wrapper(MacroAssembler * masm,const methodHandle & method,int compile_id,BasicType * in_sig_bt,VMRegPair * in_regs,BasicType ret_type,address critical_entry)748 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
749 const methodHandle& method,
750 int compile_id,
751 BasicType* in_sig_bt,
752 VMRegPair* in_regs,
753 BasicType ret_type,
754 address critical_entry) {
755 if (method->is_method_handle_intrinsic()) {
756 vmIntrinsics::ID iid = method->intrinsic_id();
757 intptr_t start = (intptr_t)__ pc();
758 int vep_offset = ((intptr_t)__ pc()) - start;
759 gen_special_dispatch(masm,
760 method,
761 in_sig_bt,
762 in_regs);
763 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
764 __ flush();
765 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
766 return nmethod::new_native_nmethod(method,
767 compile_id,
768 masm->code(),
769 vep_offset,
770 frame_complete,
771 stack_slots / VMRegImpl::slots_per_word,
772 in_ByteSize(-1),
773 in_ByteSize(-1),
774 (OopMapSet*)NULL);
775 }
776 // Arguments for JNI method include JNIEnv and Class if static
777
778 // Usage of Rtemp should be OK since scratched by native call
779
780 bool is_static = method->is_static();
781
782 const int total_in_args = method->size_of_parameters();
783 int total_c_args = total_in_args + 1;
784 if (is_static) {
785 total_c_args++;
786 }
787
788 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
789 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
790
791 int argc = 0;
792 out_sig_bt[argc++] = T_ADDRESS;
793 if (is_static) {
794 out_sig_bt[argc++] = T_OBJECT;
795 }
796
797 int i;
798 for (i = 0; i < total_in_args; i++) {
799 out_sig_bt[argc++] = in_sig_bt[i];
800 }
801
802 int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
803 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
804 // Since object arguments need to be wrapped, we must preserve space
805 // for those object arguments which come in registers (GPR_PARAMS maximum)
806 // plus one more slot for Klass handle (for static methods)
807 int oop_handle_offset = stack_slots;
808 stack_slots += (GPR_PARAMS + 1) * VMRegImpl::slots_per_word;
809
810 // Plus a lock if needed
811 int lock_slot_offset = 0;
812 if (method->is_synchronized()) {
813 lock_slot_offset = stack_slots;
814 assert(sizeof(BasicLock) == wordSize, "adjust this code");
815 stack_slots += VMRegImpl::slots_per_word;
816 }
817
818 // Space to save return address and FP
819 stack_slots += 2 * VMRegImpl::slots_per_word;
820
821 // Calculate the final stack size taking account of alignment
822 stack_slots = align_up(stack_slots, StackAlignmentInBytes / VMRegImpl::stack_slot_size);
823 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
824 int lock_slot_fp_offset = stack_size - 2 * wordSize -
825 lock_slot_offset * VMRegImpl::stack_slot_size;
826
827 // Unverified entry point
828 address start = __ pc();
829
830 // Inline cache check, same as in C1_MacroAssembler::inline_cache_check()
831 const Register receiver = R0; // see receiverOpr()
832 __ load_klass(Rtemp, receiver);
833 __ cmp(Rtemp, Ricklass);
834 Label verified;
835
836 __ b(verified, eq); // jump over alignment no-ops too
837 __ jump(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type, Rtemp);
838 __ align(CodeEntryAlignment);
839
840 // Verified entry point
841 __ bind(verified);
842 int vep_offset = __ pc() - start;
843
844
845 if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
846 // Object.hashCode, System.identityHashCode can pull the hashCode from the header word
847 // instead of doing a full VM transition once it's been computed.
848 Label slow_case;
849 const Register obj_reg = R0;
850
851 // Unlike for Object.hashCode, System.identityHashCode is static method and
852 // gets object as argument instead of the receiver.
853 if (method->intrinsic_id() == vmIntrinsics::_identityHashCode) {
854 assert(method->is_static(), "method should be static");
855 // return 0 for null reference input, return val = R0 = obj_reg = 0
856 __ cmp(obj_reg, 0);
857 __ bx(LR, eq);
858 }
859
860 __ ldr(Rtemp, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
861
862 assert(markWord::unlocked_value == 1, "adjust this code");
863 __ tbz(Rtemp, exact_log2(markWord::unlocked_value), slow_case);
864
865 if (UseBiasedLocking) {
866 assert(is_power_of_2(markWord::biased_lock_bit_in_place), "adjust this code");
867 __ tbnz(Rtemp, exact_log2(markWord::biased_lock_bit_in_place), slow_case);
868 }
869
870 __ bics(Rtemp, Rtemp, ~markWord::hash_mask_in_place);
871 __ mov(R0, AsmOperand(Rtemp, lsr, markWord::hash_shift), ne);
872 __ bx(LR, ne);
873
874 __ bind(slow_case);
875 }
876
877 // Bang stack pages
878 __ arm_stack_overflow_check(stack_size, Rtemp);
879
880 // Setup frame linkage
881 __ raw_push(FP, LR);
882 __ mov(FP, SP);
883 __ sub_slow(SP, SP, stack_size - 2*wordSize);
884
885 int frame_complete = __ pc() - start;
886
887 OopMapSet* oop_maps = new OopMapSet();
888 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
889 const int extra_args = is_static ? 2 : 1;
890 int receiver_offset = -1;
891 int fp_regs_in_arguments = 0;
892
893 for (i = total_in_args; --i >= 0; ) {
894 switch (in_sig_bt[i]) {
895 case T_ARRAY:
896 case T_OBJECT: {
897 VMReg src = in_regs[i].first();
898 VMReg dst = out_regs[i + extra_args].first();
899 if (src->is_stack()) {
900 assert(dst->is_stack(), "must be");
901 assert(i != 0, "Incoming receiver is always in a register");
902 __ ldr(Rtemp, Address(FP, reg2offset_in(src)));
903 __ cmp(Rtemp, 0);
904 __ add(Rtemp, FP, reg2offset_in(src), ne);
905 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
906 int offset_in_older_frame = src->reg2stack() + SharedRuntime::out_preserve_stack_slots();
907 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
908 } else {
909 int offset = oop_handle_offset * VMRegImpl::stack_slot_size;
910 __ str(src->as_Register(), Address(SP, offset));
911 map->set_oop(VMRegImpl::stack2reg(oop_handle_offset));
912 if ((i == 0) && (!is_static)) {
913 receiver_offset = offset;
914 }
915 oop_handle_offset += VMRegImpl::slots_per_word;
916
917 if (dst->is_stack()) {
918 __ movs(Rtemp, src->as_Register());
919 __ add(Rtemp, SP, offset, ne);
920 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
921 } else {
922 __ movs(dst->as_Register(), src->as_Register());
923 __ add(dst->as_Register(), SP, offset, ne);
924 }
925 }
926 }
927
928 case T_VOID:
929 break;
930
931
932 #ifdef __SOFTFP__
933 case T_DOUBLE:
934 #endif
935 case T_LONG: {
936 VMReg src_1 = in_regs[i].first();
937 VMReg src_2 = in_regs[i].second();
938 VMReg dst_1 = out_regs[i + extra_args].first();
939 VMReg dst_2 = out_regs[i + extra_args].second();
940 #if (ALIGN_WIDE_ARGUMENTS == 0)
941 // C convention can mix a register and a stack slot for a
942 // 64-bits native argument.
943
944 // Note: following code should work independently of whether
945 // the Java calling convention follows C convention or whether
946 // it aligns 64-bit values.
947 if (dst_2->is_Register()) {
948 if (src_1->as_Register() != dst_1->as_Register()) {
949 assert(src_1->as_Register() != dst_2->as_Register() &&
950 src_2->as_Register() != dst_2->as_Register(), "must be");
951 __ mov(dst_2->as_Register(), src_2->as_Register());
952 __ mov(dst_1->as_Register(), src_1->as_Register());
953 } else {
954 assert(src_2->as_Register() == dst_2->as_Register(), "must be");
955 }
956 } else if (src_2->is_Register()) {
957 if (dst_1->is_Register()) {
958 // dst mixes a register and a stack slot
959 assert(dst_2->is_stack() && src_1->is_Register() && src_2->is_Register(), "must be");
960 assert(src_1->as_Register() != dst_1->as_Register(), "must be");
961 __ str(src_2->as_Register(), Address(SP, reg2offset_out(dst_2)));
962 __ mov(dst_1->as_Register(), src_1->as_Register());
963 } else {
964 // registers to stack slots
965 assert(dst_2->is_stack() && src_1->is_Register() && src_2->is_Register(), "must be");
966 __ str(src_1->as_Register(), Address(SP, reg2offset_out(dst_1)));
967 __ str(src_2->as_Register(), Address(SP, reg2offset_out(dst_2)));
968 }
969 } else if (src_1->is_Register()) {
970 if (dst_1->is_Register()) {
971 // src and dst must be R3 + stack slot
972 assert(dst_1->as_Register() == src_1->as_Register(), "must be");
973 __ ldr(Rtemp, Address(FP, reg2offset_in(src_2)));
974 __ str(Rtemp, Address(SP, reg2offset_out(dst_2)));
975 } else {
976 // <R3,stack> -> <stack,stack>
977 assert(dst_2->is_stack() && src_2->is_stack(), "must be");
978 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
979 __ str(src_1->as_Register(), Address(SP, reg2offset_out(dst_1)));
980 __ str(LR, Address(SP, reg2offset_out(dst_2)));
981 }
982 } else {
983 assert(src_2->is_stack() && dst_1->is_stack() && dst_2->is_stack(), "must be");
984 __ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
985 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
986 __ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
987 __ str(LR, Address(SP, reg2offset_out(dst_2)));
988 }
989 #else // ALIGN_WIDE_ARGUMENTS
990 if (src_1->is_stack()) {
991 assert(src_2->is_stack() && dst_1->is_stack() && dst_2->is_stack(), "must be");
992 __ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
993 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
994 __ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
995 __ str(LR, Address(SP, reg2offset_out(dst_2)));
996 } else if (dst_1->is_stack()) {
997 assert(dst_2->is_stack() && src_1->is_Register() && src_2->is_Register(), "must be");
998 __ str(src_1->as_Register(), Address(SP, reg2offset_out(dst_1)));
999 __ str(src_2->as_Register(), Address(SP, reg2offset_out(dst_2)));
1000 } else if (src_1->as_Register() == dst_1->as_Register()) {
1001 assert(src_2->as_Register() == dst_2->as_Register(), "must be");
1002 } else {
1003 assert(src_1->as_Register() != dst_2->as_Register() &&
1004 src_2->as_Register() != dst_2->as_Register(), "must be");
1005 __ mov(dst_2->as_Register(), src_2->as_Register());
1006 __ mov(dst_1->as_Register(), src_1->as_Register());
1007 }
1008 #endif // ALIGN_WIDE_ARGUMENTS
1009 break;
1010 }
1011
1012 #if (!defined __SOFTFP__ && !defined __ABI_HARD__)
1013 case T_FLOAT: {
1014 VMReg src = in_regs[i].first();
1015 VMReg dst = out_regs[i + extra_args].first();
1016 if (src->is_stack()) {
1017 assert(dst->is_stack(), "must be");
1018 __ ldr(Rtemp, Address(FP, reg2offset_in(src)));
1019 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
1020 } else if (dst->is_stack()) {
1021 __ fsts(src->as_FloatRegister(), Address(SP, reg2offset_out(dst)));
1022 } else {
1023 assert(src->is_FloatRegister() && dst->is_Register(), "must be");
1024 __ fmrs(dst->as_Register(), src->as_FloatRegister());
1025 }
1026 break;
1027 }
1028
1029 case T_DOUBLE: {
1030 VMReg src_1 = in_regs[i].first();
1031 VMReg src_2 = in_regs[i].second();
1032 VMReg dst_1 = out_regs[i + extra_args].first();
1033 VMReg dst_2 = out_regs[i + extra_args].second();
1034 if (src_1->is_stack()) {
1035 assert(src_2->is_stack() && dst_1->is_stack() && dst_2->is_stack(), "must be");
1036 __ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
1037 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
1038 __ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
1039 __ str(LR, Address(SP, reg2offset_out(dst_2)));
1040 } else if (dst_1->is_stack()) {
1041 assert(dst_2->is_stack() && src_1->is_FloatRegister(), "must be");
1042 __ fstd(src_1->as_FloatRegister(), Address(SP, reg2offset_out(dst_1)));
1043 #if (ALIGN_WIDE_ARGUMENTS == 0)
1044 } else if (dst_2->is_stack()) {
1045 assert(! src_2->is_stack(), "must be"); // assuming internal java convention is aligned
1046 // double register must go into R3 + one stack slot
1047 __ fmrrd(dst_1->as_Register(), Rtemp, src_1->as_FloatRegister());
1048 __ str(Rtemp, Address(SP, reg2offset_out(dst_2)));
1049 #endif
1050 } else {
1051 assert(src_1->is_FloatRegister() && dst_1->is_Register() && dst_2->is_Register(), "must be");
1052 __ fmrrd(dst_1->as_Register(), dst_2->as_Register(), src_1->as_FloatRegister());
1053 }
1054 break;
1055 }
1056 #endif // __SOFTFP__
1057
1058 #ifdef __ABI_HARD__
1059 case T_FLOAT: {
1060 VMReg src = in_regs[i].first();
1061 VMReg dst = out_regs[i + extra_args].first();
1062 if (src->is_stack()) {
1063 if (dst->is_stack()) {
1064 __ ldr(Rtemp, Address(FP, reg2offset_in(src)));
1065 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
1066 } else {
1067 // C2 Java calling convention does not populate S14 and S15, therefore
1068 // those need to be loaded from stack here
1069 __ flds(dst->as_FloatRegister(), Address(FP, reg2offset_in(src)));
1070 fp_regs_in_arguments++;
1071 }
1072 } else {
1073 assert(src->is_FloatRegister(), "must be");
1074 fp_regs_in_arguments++;
1075 }
1076 break;
1077 }
1078 case T_DOUBLE: {
1079 VMReg src_1 = in_regs[i].first();
1080 VMReg src_2 = in_regs[i].second();
1081 VMReg dst_1 = out_regs[i + extra_args].first();
1082 VMReg dst_2 = out_regs[i + extra_args].second();
1083 if (src_1->is_stack()) {
1084 if (dst_1->is_stack()) {
1085 assert(dst_2->is_stack(), "must be");
1086 __ ldr(Rtemp, Address(FP, reg2offset_in(src_1)));
1087 __ ldr(LR, Address(FP, reg2offset_in(src_2)));
1088 __ str(Rtemp, Address(SP, reg2offset_out(dst_1)));
1089 __ str(LR, Address(SP, reg2offset_out(dst_2)));
1090 } else {
1091 // C2 Java calling convention does not populate S14 and S15, therefore
1092 // those need to be loaded from stack here
1093 __ fldd(dst_1->as_FloatRegister(), Address(FP, reg2offset_in(src_1)));
1094 fp_regs_in_arguments += 2;
1095 }
1096 } else {
1097 assert(src_1->is_FloatRegister() && src_2->is_FloatRegister(), "must be");
1098 fp_regs_in_arguments += 2;
1099 }
1100 break;
1101 }
1102 #endif // __ABI_HARD__
1103
1104 default: {
1105 assert(in_sig_bt[i] != T_ADDRESS, "found T_ADDRESS in java args");
1106 VMReg src = in_regs[i].first();
1107 VMReg dst = out_regs[i + extra_args].first();
1108 if (src->is_stack()) {
1109 assert(dst->is_stack(), "must be");
1110 __ ldr(Rtemp, Address(FP, reg2offset_in(src)));
1111 __ str(Rtemp, Address(SP, reg2offset_out(dst)));
1112 } else if (dst->is_stack()) {
1113 __ str(src->as_Register(), Address(SP, reg2offset_out(dst)));
1114 } else {
1115 assert(src->is_Register() && dst->is_Register(), "must be");
1116 __ mov(dst->as_Register(), src->as_Register());
1117 }
1118 }
1119 }
1120 }
1121
1122 // Get Klass mirror
1123 int klass_offset = -1;
1124 if (is_static) {
1125 klass_offset = oop_handle_offset * VMRegImpl::stack_slot_size;
1126 __ mov_oop(Rtemp, JNIHandles::make_local(method->method_holder()->java_mirror()));
1127 __ add(c_rarg1, SP, klass_offset);
1128 __ str(Rtemp, Address(SP, klass_offset));
1129 map->set_oop(VMRegImpl::stack2reg(oop_handle_offset));
1130 }
1131
1132 // the PC offset given to add_gc_map must match the PC saved in set_last_Java_frame
1133 int pc_offset = __ set_last_Java_frame(SP, FP, true, Rtemp);
1134 assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
1135 oop_maps->add_gc_map(pc_offset, map);
1136
1137 // Order last_Java_pc store with the thread state transition (to _thread_in_native)
1138 __ membar(MacroAssembler::StoreStore, Rtemp);
1139
1140 // RedefineClasses() tracing support for obsolete method entry
1141 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1142 __ save_caller_save_registers();
1143 __ mov(R0, Rthread);
1144 __ mov_metadata(R1, method());
1145 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), R0, R1);
1146 __ restore_caller_save_registers();
1147 }
1148
1149 const Register sync_handle = R5;
1150 const Register sync_obj = R6;
1151 const Register disp_hdr = altFP_7_11;
1152 const Register tmp = R8;
1153
1154 Label slow_lock, slow_lock_biased, lock_done, fast_lock;
1155 if (method->is_synchronized()) {
1156 // The first argument is a handle to sync object (a class or an instance)
1157 __ ldr(sync_obj, Address(R1));
1158 // Remember the handle for the unlocking code
1159 __ mov(sync_handle, R1);
1160
1161 if(UseBiasedLocking) {
1162 __ biased_locking_enter(sync_obj, tmp, disp_hdr/*scratched*/, false, Rtemp, lock_done, slow_lock_biased);
1163 }
1164
1165 const Register mark = tmp;
1166 // On MP platforms the next load could return a 'stale' value if the memory location has been modified by another thread.
1167 // That would be acceptable as either CAS or slow case path is taken in that case
1168
1169 __ ldr(mark, Address(sync_obj, oopDesc::mark_offset_in_bytes()));
1170 __ sub(disp_hdr, FP, lock_slot_fp_offset);
1171 __ tst(mark, markWord::unlocked_value);
1172 __ b(fast_lock, ne);
1173
1174 // Check for recursive lock
1175 // See comments in InterpreterMacroAssembler::lock_object for
1176 // explanations on the fast recursive locking check.
1177 // Check independently the low bits and the distance to SP
1178 // -1- test low 2 bits
1179 __ movs(Rtemp, AsmOperand(mark, lsl, 30));
1180 // -2- test (hdr - SP) if the low two bits are 0
1181 __ sub(Rtemp, mark, SP, eq);
1182 __ movs(Rtemp, AsmOperand(Rtemp, lsr, exact_log2(os::vm_page_size())), eq);
1183 // If still 'eq' then recursive locking OK
1184 // set to zero if recursive lock, set to non zero otherwise (see discussion in JDK-8267042)
1185 __ str(Rtemp, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()));
1186 __ b(lock_done, eq);
1187 __ b(slow_lock);
1188
1189 __ bind(fast_lock);
1190 __ str(mark, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()));
1191
1192 __ cas_for_lock_acquire(mark, disp_hdr, sync_obj, Rtemp, slow_lock);
1193
1194 __ bind(lock_done);
1195 }
1196
1197 // Get JNIEnv*
1198 __ add(c_rarg0, Rthread, in_bytes(JavaThread::jni_environment_offset()));
1199
1200 // Perform thread state transition
1201 __ mov(Rtemp, _thread_in_native);
1202 __ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1203
1204 // Finally, call the native method
1205 __ call(method->native_function());
1206
1207 // Set FPSCR/FPCR to a known state
1208 if (AlwaysRestoreFPU) {
1209 __ restore_default_fp_mode();
1210 }
1211
1212 // Ensure a Boolean result is mapped to 0..1
1213 if (ret_type == T_BOOLEAN) {
1214 __ c2bool(R0);
1215 }
1216
1217 // Do a safepoint check while thread is in transition state
1218 Label call_safepoint_runtime, return_to_java;
1219 __ mov(Rtemp, _thread_in_native_trans);
1220 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1221
1222 // make sure the store is observed before reading the SafepointSynchronize state and further mem refs
1223 __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
1224
1225 __ safepoint_poll(R2, call_safepoint_runtime);
1226 __ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset()));
1227 __ cmp(R3, 0);
1228 __ b(call_safepoint_runtime, ne);
1229
1230 __ bind(return_to_java);
1231
1232 // Perform thread state transition and reguard stack yellow pages if needed
1233 Label reguard, reguard_done;
1234 __ mov(Rtemp, _thread_in_Java);
1235 __ ldr_s32(R2, Address(Rthread, JavaThread::stack_guard_state_offset()));
1236 __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1237
1238 __ cmp(R2, StackOverflow::stack_guard_yellow_reserved_disabled);
1239 __ b(reguard, eq);
1240 __ bind(reguard_done);
1241
1242 Label slow_unlock, unlock_done;
1243 if (method->is_synchronized()) {
1244 __ ldr(sync_obj, Address(sync_handle));
1245
1246 if(UseBiasedLocking) {
1247 __ biased_locking_exit(sync_obj, Rtemp, unlock_done);
1248 // disp_hdr may not have been saved on entry with biased locking
1249 __ sub(disp_hdr, FP, lock_slot_fp_offset);
1250 }
1251
1252 // See C1_MacroAssembler::unlock_object() for more comments
1253 __ ldr(R2, Address(disp_hdr, BasicLock::displaced_header_offset_in_bytes()));
1254 __ cbz(R2, unlock_done);
1255
1256 __ cas_for_lock_release(disp_hdr, R2, sync_obj, Rtemp, slow_unlock);
1257
1258 __ bind(unlock_done);
1259 }
1260
1261 // Set last java frame and handle block to zero
1262 __ ldr(LR, Address(Rthread, JavaThread::active_handles_offset()));
1263 __ reset_last_Java_frame(Rtemp); // sets Rtemp to 0 on 32-bit ARM
1264
1265 __ str_32(Rtemp, Address(LR, JNIHandleBlock::top_offset_in_bytes()));
1266 if (CheckJNICalls) {
1267 __ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1268 }
1269
1270 // Unbox oop result, e.g. JNIHandles::resolve value in R0.
1271 if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1272 __ resolve_jobject(R0, // value
1273 Rtemp, // tmp1
1274 R1_tmp); // tmp2
1275 }
1276
1277 // Any exception pending?
1278 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
1279 __ mov(SP, FP);
1280
1281 __ cmp(Rtemp, 0);
1282 // Pop the frame and return if no exception pending
1283 __ pop(RegisterSet(FP) | RegisterSet(PC), eq);
1284 // Pop the frame and forward the exception. Rexception_pc contains return address.
1285 __ ldr(FP, Address(SP, wordSize, post_indexed), ne);
1286 __ ldr(Rexception_pc, Address(SP, wordSize, post_indexed), ne);
1287 __ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
1288
1289 // Safepoint operation and/or pending suspend request is in progress.
1290 // Save the return values and call the runtime function by hand.
1291 __ bind(call_safepoint_runtime);
1292 push_result_registers(masm, ret_type);
1293 __ mov(R0, Rthread);
1294 __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1295 pop_result_registers(masm, ret_type);
1296 __ b(return_to_java);
1297
1298 // Reguard stack pages. Save native results around a call to C runtime.
1299 __ bind(reguard);
1300 push_result_registers(masm, ret_type);
1301 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1302 pop_result_registers(masm, ret_type);
1303 __ b(reguard_done);
1304
1305 if (method->is_synchronized()) {
1306 // Locking slow case
1307 if(UseBiasedLocking) {
1308 __ bind(slow_lock_biased);
1309 __ sub(disp_hdr, FP, lock_slot_fp_offset);
1310 }
1311
1312 __ bind(slow_lock);
1313
1314 push_param_registers(masm, fp_regs_in_arguments);
1315
1316 // last_Java_frame is already set, so do call_VM manually; no exception can occur
1317 __ mov(R0, sync_obj);
1318 __ mov(R1, disp_hdr);
1319 __ mov(R2, Rthread);
1320 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C));
1321
1322 pop_param_registers(masm, fp_regs_in_arguments);
1323
1324 __ b(lock_done);
1325
1326 // Unlocking slow case
1327 __ bind(slow_unlock);
1328
1329 push_result_registers(masm, ret_type);
1330
1331 // Clear pending exception before reentering VM.
1332 // Can store the oop in register since it is a leaf call.
1333 assert_different_registers(Rtmp_save1, sync_obj, disp_hdr);
1334 __ ldr(Rtmp_save1, Address(Rthread, Thread::pending_exception_offset()));
1335 Register zero = __ zero_register(Rtemp);
1336 __ str(zero, Address(Rthread, Thread::pending_exception_offset()));
1337 __ mov(R0, sync_obj);
1338 __ mov(R1, disp_hdr);
1339 __ mov(R2, Rthread);
1340 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
1341 __ str(Rtmp_save1, Address(Rthread, Thread::pending_exception_offset()));
1342
1343 pop_result_registers(masm, ret_type);
1344
1345 __ b(unlock_done);
1346 }
1347
1348 __ flush();
1349 return nmethod::new_native_nmethod(method,
1350 compile_id,
1351 masm->code(),
1352 vep_offset,
1353 frame_complete,
1354 stack_slots / VMRegImpl::slots_per_word,
1355 in_ByteSize(is_static ? klass_offset : receiver_offset),
1356 in_ByteSize(lock_slot_offset * VMRegImpl::stack_slot_size),
1357 oop_maps);
1358 }
1359
1360 // this function returns the adjust size (in number of words) to a c2i adapter
1361 // activation for use during deoptimization
last_frame_adjust(int callee_parameters,int callee_locals)1362 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
1363 int extra_locals_size = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
1364 return extra_locals_size;
1365 }
1366
1367
1368 // Number of stack slots between incoming argument block and the start of
1369 // a new frame. The PROLOG must add this many slots to the stack. The
1370 // EPILOG must remove this many slots.
1371 // FP + LR
in_preserve_stack_slots()1372 uint SharedRuntime::in_preserve_stack_slots() {
1373 return 2 * VMRegImpl::slots_per_word;
1374 }
1375
out_preserve_stack_slots()1376 uint SharedRuntime::out_preserve_stack_slots() {
1377 return 0;
1378 }
1379
1380 //------------------------------generate_deopt_blob----------------------------
generate_deopt_blob()1381 void SharedRuntime::generate_deopt_blob() {
1382 ResourceMark rm;
1383 CodeBuffer buffer("deopt_blob", 1024, 1024);
1384 int frame_size_in_words;
1385 OopMapSet* oop_maps;
1386 int reexecute_offset;
1387 int exception_in_tls_offset;
1388 int exception_offset;
1389
1390 MacroAssembler* masm = new MacroAssembler(&buffer);
1391 Label cont;
1392 const Register Rkind = R9; // caller-saved
1393 const Register Rublock = R6;
1394 const Register Rsender = altFP_7_11;
1395 assert_different_registers(Rkind, Rublock, Rsender, Rexception_obj, Rexception_pc, R0, R1, R2, R3, R8, Rtemp);
1396
1397 address start = __ pc();
1398
1399 oop_maps = new OopMapSet();
1400 // LR saved by caller (can be live in c2 method)
1401
1402 // A deopt is a case where LR may be live in the c2 nmethod. So it's
1403 // not possible to call the deopt blob from the nmethod and pass the
1404 // address of the deopt handler of the nmethod in LR. What happens
1405 // now is that the caller of the deopt blob pushes the current
1406 // address so the deopt blob doesn't have to do it. This way LR can
1407 // be preserved, contains the live value from the nmethod and is
1408 // saved at R14/R30_offset here.
1409 OopMap* map = RegisterSaver::save_live_registers(masm, &frame_size_in_words, true);
1410 __ mov(Rkind, Deoptimization::Unpack_deopt);
1411 __ b(cont);
1412
1413 exception_offset = __ pc() - start;
1414
1415 // Transfer Rexception_obj & Rexception_pc in TLS and fall thru to the
1416 // exception_in_tls_offset entry point.
1417 __ str(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
1418 __ str(Rexception_pc, Address(Rthread, JavaThread::exception_pc_offset()));
1419 // Force return value to NULL to avoid confusing the escape analysis
1420 // logic. Everything is dead here anyway.
1421 __ mov(R0, 0);
1422
1423 exception_in_tls_offset = __ pc() - start;
1424
1425 // Exception data is in JavaThread structure
1426 // Patch the return address of the current frame
1427 __ ldr(LR, Address(Rthread, JavaThread::exception_pc_offset()));
1428 (void) RegisterSaver::save_live_registers(masm, &frame_size_in_words);
1429 {
1430 const Register Rzero = __ zero_register(Rtemp); // XXX should be OK for C2 but not 100% sure
1431 __ str(Rzero, Address(Rthread, JavaThread::exception_pc_offset()));
1432 }
1433 __ mov(Rkind, Deoptimization::Unpack_exception);
1434 __ b(cont);
1435
1436 reexecute_offset = __ pc() - start;
1437
1438 (void) RegisterSaver::save_live_registers(masm, &frame_size_in_words);
1439 __ mov(Rkind, Deoptimization::Unpack_reexecute);
1440
1441 // Calculate UnrollBlock and save the result in Rublock
1442 __ bind(cont);
1443 __ mov(R0, Rthread);
1444 __ mov(R1, Rkind);
1445
1446 int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp); // note: FP may not need to be saved (not on x86)
1447 assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
1448 __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info));
1449 if (pc_offset == -1) {
1450 pc_offset = __ offset();
1451 }
1452 oop_maps->add_gc_map(pc_offset, map);
1453 __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
1454
1455 __ mov(Rublock, R0);
1456
1457 // Reload Rkind from the UnrollBlock (might have changed)
1458 __ ldr_s32(Rkind, Address(Rublock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
1459 Label noException;
1460 __ cmp_32(Rkind, Deoptimization::Unpack_exception); // Was exception pending?
1461 __ b(noException, ne);
1462 // handle exception case
1463 #ifdef ASSERT
1464 // assert that exception_pc is zero in tls
1465 { Label L;
1466 __ ldr(Rexception_pc, Address(Rthread, JavaThread::exception_pc_offset()));
1467 __ cbz(Rexception_pc, L);
1468 __ stop("exception pc should be null");
1469 __ bind(L);
1470 }
1471 #endif
1472 __ ldr(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
1473 __ verify_oop(Rexception_obj);
1474 {
1475 const Register Rzero = __ zero_register(Rtemp);
1476 __ str(Rzero, Address(Rthread, JavaThread::exception_oop_offset()));
1477 }
1478
1479 __ bind(noException);
1480
1481 // This frame is going away. Fetch return value, so we can move it to
1482 // a new frame.
1483 __ ldr(R0, Address(SP, RegisterSaver::R0_offset * wordSize));
1484 __ ldr(R1, Address(SP, RegisterSaver::R1_offset * wordSize));
1485 #ifndef __SOFTFP__
1486 __ ldr_double(D0, Address(SP, RegisterSaver::D0_offset * wordSize));
1487 #endif
1488 // pop frame
1489 __ add(SP, SP, RegisterSaver::reg_save_size * wordSize);
1490
1491 // Set initial stack state before pushing interpreter frames
1492 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
1493 __ ldr(R2, Address(Rublock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
1494 __ ldr(R3, Address(Rublock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
1495
1496 __ add(SP, SP, Rtemp);
1497
1498 #ifdef ASSERT
1499 // Compilers generate code that bang the stack by as much as the
1500 // interpreter would need. So this stack banging should never
1501 // trigger a fault. Verify that it does not on non product builds.
1502 // See if it is enough stack to push deoptimized frames.
1503 //
1504 // The compiled method that we are deoptimizing was popped from the stack.
1505 // If the stack bang results in a stack overflow, we don't return to the
1506 // method that is being deoptimized. The stack overflow exception is
1507 // propagated to the caller of the deoptimized method. Need to get the pc
1508 // from the caller in LR and restore FP.
1509 __ ldr(LR, Address(R2, 0));
1510 __ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
1511 __ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
1512 __ arm_stack_overflow_check(R8, Rtemp);
1513 #endif
1514 __ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
1515
1516 // Pick up the initial fp we should save
1517 // XXX Note: was ldr(FP, Address(FP));
1518
1519 // The compiler no longer uses FP as a frame pointer for the
1520 // compiled code. It can be used by the allocator in C2 or to
1521 // memorize the original SP for JSR292 call sites.
1522
1523 // Hence, ldr(FP, Address(FP)) is probably not correct. For x86,
1524 // Deoptimization::fetch_unroll_info computes the right FP value and
1525 // stores it in Rublock.initial_info. This has been activated for ARM.
1526 __ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
1527
1528 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
1529 __ mov(Rsender, SP);
1530 __ sub(SP, SP, Rtemp);
1531
1532 // Push interpreter frames in a loop
1533 Label loop;
1534 __ bind(loop);
1535 __ ldr(LR, Address(R2, wordSize, post_indexed)); // load frame pc
1536 __ ldr(Rtemp, Address(R3, wordSize, post_indexed)); // load frame size
1537
1538 __ raw_push(FP, LR); // create new frame
1539 __ mov(FP, SP);
1540 __ sub(Rtemp, Rtemp, 2*wordSize);
1541
1542 __ sub(SP, SP, Rtemp);
1543
1544 __ str(Rsender, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
1545 __ mov(LR, 0);
1546 __ str(LR, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1547
1548 __ subs(R8, R8, 1); // decrement counter
1549 __ mov(Rsender, SP);
1550 __ b(loop, ne);
1551
1552 // Re-push self-frame
1553 __ ldr(LR, Address(R2));
1554 __ raw_push(FP, LR);
1555 __ mov(FP, SP);
1556 __ sub(SP, SP, (frame_size_in_words - 2) * wordSize);
1557
1558 // Restore frame locals after moving the frame
1559 __ str(R0, Address(SP, RegisterSaver::R0_offset * wordSize));
1560 __ str(R1, Address(SP, RegisterSaver::R1_offset * wordSize));
1561
1562 #ifndef __SOFTFP__
1563 __ str_double(D0, Address(SP, RegisterSaver::D0_offset * wordSize));
1564 #endif // !__SOFTFP__
1565
1566 #ifdef ASSERT
1567 // Reload Rkind from the UnrollBlock and check that it was not overwritten (Rkind is not callee-saved)
1568 { Label L;
1569 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
1570 __ cmp_32(Rkind, Rtemp);
1571 __ b(L, eq);
1572 __ stop("Rkind was overwritten");
1573 __ bind(L);
1574 }
1575 #endif
1576
1577 // Call unpack_frames with proper arguments
1578 __ mov(R0, Rthread);
1579 __ mov(R1, Rkind);
1580
1581 pc_offset = __ set_last_Java_frame(SP, FP, true, Rtemp);
1582 assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
1583 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
1584 if (pc_offset == -1) {
1585 pc_offset = __ offset();
1586 }
1587 oop_maps->add_gc_map(pc_offset, new OopMap(frame_size_in_words * VMRegImpl::slots_per_word, 0));
1588 __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
1589
1590 // Collect return values, pop self-frame and jump to interpreter
1591 __ ldr(R0, Address(SP, RegisterSaver::R0_offset * wordSize));
1592 __ ldr(R1, Address(SP, RegisterSaver::R1_offset * wordSize));
1593 // Interpreter floats controlled by __SOFTFP__, but compiler
1594 // float return value registers controlled by __ABI_HARD__
1595 // This matters for vfp-sflt builds.
1596 #ifndef __SOFTFP__
1597 // Interpreter hard float
1598 #ifdef __ABI_HARD__
1599 // Compiler float return value in FP registers
1600 __ ldr_double(D0, Address(SP, RegisterSaver::D0_offset * wordSize));
1601 #else
1602 // Compiler float return value in integer registers,
1603 // copy to D0 for interpreter (S0 <-- R0)
1604 __ fmdrr(D0_tos, R0, R1);
1605 #endif
1606 #endif // !__SOFTFP__
1607 __ mov(SP, FP);
1608
1609 __ pop(RegisterSet(FP) | RegisterSet(PC));
1610
1611 __ flush();
1612
1613 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset,
1614 reexecute_offset, frame_size_in_words);
1615 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
1616 }
1617
1618 #ifdef COMPILER2
1619
1620 //------------------------------generate_uncommon_trap_blob--------------------
1621 // Ought to generate an ideal graph & compile, but here's some ASM
1622 // instead.
generate_uncommon_trap_blob()1623 void SharedRuntime::generate_uncommon_trap_blob() {
1624 // allocate space for the code
1625 ResourceMark rm;
1626
1627 // setup code generation tools
1628 int pad = VerifyThread ? 512 : 0;
1629 #ifdef _LP64
1630 CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
1631 #else
1632 // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
1633 // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
1634 CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
1635 #endif
1636 // bypassed when code generation useless
1637 MacroAssembler* masm = new MacroAssembler(&buffer);
1638 const Register Rublock = R6;
1639 const Register Rsender = altFP_7_11;
1640 assert_different_registers(Rublock, Rsender, Rexception_obj, R0, R1, R2, R3, R8, Rtemp);
1641
1642 //
1643 // This is the entry point for all traps the compiler takes when it thinks
1644 // it cannot handle further execution of compilation code. The frame is
1645 // deoptimized in these cases and converted into interpreter frames for
1646 // execution
1647 // The steps taken by this frame are as follows:
1648 // - push a fake "unpack_frame"
1649 // - call the C routine Deoptimization::uncommon_trap (this function
1650 // packs the current compiled frame into vframe arrays and returns
1651 // information about the number and size of interpreter frames which
1652 // are equivalent to the frame which is being deoptimized)
1653 // - deallocate the "unpack_frame"
1654 // - deallocate the deoptimization frame
1655 // - in a loop using the information returned in the previous step
1656 // push interpreter frames;
1657 // - create a dummy "unpack_frame"
1658 // - call the C routine: Deoptimization::unpack_frames (this function
1659 // lays out values on the interpreter frame which was just created)
1660 // - deallocate the dummy unpack_frame
1661 // - return to the interpreter entry point
1662 //
1663 // Refer to the following methods for more information:
1664 // - Deoptimization::uncommon_trap
1665 // - Deoptimization::unpack_frame
1666
1667 // the unloaded class index is in R0 (first parameter to this blob)
1668
1669 __ raw_push(FP, LR);
1670 __ set_last_Java_frame(SP, FP, false, Rtemp);
1671 __ mov(R2, Deoptimization::Unpack_uncommon_trap);
1672 __ mov(R1, R0);
1673 __ mov(R0, Rthread);
1674 __ call(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap));
1675 __ mov(Rublock, R0);
1676 __ reset_last_Java_frame(Rtemp);
1677 __ raw_pop(FP, LR);
1678
1679 #ifdef ASSERT
1680 { Label L;
1681 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
1682 __ cmp_32(Rtemp, Deoptimization::Unpack_uncommon_trap);
1683 __ b(L, eq);
1684 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
1685 __ bind(L);
1686 }
1687 #endif
1688
1689
1690 // Set initial stack state before pushing interpreter frames
1691 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
1692 __ ldr(R2, Address(Rublock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
1693 __ ldr(R3, Address(Rublock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
1694
1695 __ add(SP, SP, Rtemp);
1696
1697 // See if it is enough stack to push deoptimized frames.
1698 #ifdef ASSERT
1699 // Compilers generate code that bang the stack by as much as the
1700 // interpreter would need. So this stack banging should never
1701 // trigger a fault. Verify that it does not on non product builds.
1702 //
1703 // The compiled method that we are deoptimizing was popped from the stack.
1704 // If the stack bang results in a stack overflow, we don't return to the
1705 // method that is being deoptimized. The stack overflow exception is
1706 // propagated to the caller of the deoptimized method. Need to get the pc
1707 // from the caller in LR and restore FP.
1708 __ ldr(LR, Address(R2, 0));
1709 __ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
1710 __ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
1711 __ arm_stack_overflow_check(R8, Rtemp);
1712 #endif
1713 __ ldr_s32(R8, Address(Rublock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
1714 __ ldr_s32(Rtemp, Address(Rublock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
1715 __ mov(Rsender, SP);
1716 __ sub(SP, SP, Rtemp);
1717 // __ ldr(FP, Address(FP));
1718 __ ldr(FP, Address(Rublock, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
1719
1720 // Push interpreter frames in a loop
1721 Label loop;
1722 __ bind(loop);
1723 __ ldr(LR, Address(R2, wordSize, post_indexed)); // load frame pc
1724 __ ldr(Rtemp, Address(R3, wordSize, post_indexed)); // load frame size
1725
1726 __ raw_push(FP, LR); // create new frame
1727 __ mov(FP, SP);
1728 __ sub(Rtemp, Rtemp, 2*wordSize);
1729
1730 __ sub(SP, SP, Rtemp);
1731
1732 __ str(Rsender, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
1733 __ mov(LR, 0);
1734 __ str(LR, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1735 __ subs(R8, R8, 1); // decrement counter
1736 __ mov(Rsender, SP);
1737 __ b(loop, ne);
1738
1739 // Re-push self-frame
1740 __ ldr(LR, Address(R2));
1741 __ raw_push(FP, LR);
1742 __ mov(FP, SP);
1743
1744 // Call unpack_frames with proper arguments
1745 __ mov(R0, Rthread);
1746 __ mov(R1, Deoptimization::Unpack_uncommon_trap);
1747 __ set_last_Java_frame(SP, FP, true, Rtemp);
1748 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
1749 // oop_maps->add_gc_map(__ pc() - start, new OopMap(frame_size_in_words, 0));
1750 __ reset_last_Java_frame(Rtemp);
1751
1752 __ mov(SP, FP);
1753 __ pop(RegisterSet(FP) | RegisterSet(PC));
1754
1755 masm->flush();
1756 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, 2 /* LR+FP */);
1757 }
1758
1759 #endif // COMPILER2
1760
1761 //------------------------------generate_handler_blob------
1762 //
1763 // Generate a special Compile2Runtime blob that saves all registers,
1764 // setup oopmap, and calls safepoint code to stop the compiled code for
1765 // a safepoint.
1766 //
generate_handler_blob(address call_ptr,int poll_type)1767 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
1768 assert(StubRoutines::forward_exception_entry() != NULL, "must be generated before");
1769
1770 ResourceMark rm;
1771 CodeBuffer buffer("handler_blob", 256, 256);
1772 int frame_size_words;
1773 OopMapSet* oop_maps;
1774
1775 bool cause_return = (poll_type == POLL_AT_RETURN);
1776
1777 MacroAssembler* masm = new MacroAssembler(&buffer);
1778 address start = __ pc();
1779 oop_maps = new OopMapSet();
1780
1781 if (!cause_return) {
1782 __ sub(SP, SP, 4); // make room for LR which may still be live
1783 // here if we are coming from a c2 method
1784 }
1785
1786 OopMap* map = RegisterSaver::save_live_registers(masm, &frame_size_words, !cause_return);
1787 if (!cause_return) {
1788 // update saved PC with correct value
1789 // need 2 steps because LR can be live in c2 method
1790 __ ldr(LR, Address(Rthread, JavaThread::saved_exception_pc_offset()));
1791 __ str(LR, Address(SP, RegisterSaver::LR_offset * wordSize));
1792 }
1793
1794 __ mov(R0, Rthread);
1795 int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp); // note: FP may not need to be saved (not on x86)
1796 assert(((__ pc()) - start) == __ offset(), "warning: start differs from code_begin");
1797 __ call(call_ptr);
1798 if (pc_offset == -1) {
1799 pc_offset = __ offset();
1800 }
1801 oop_maps->add_gc_map(pc_offset, map);
1802 __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
1803
1804 if (!cause_return) {
1805 // If our stashed return pc was modified by the runtime we avoid touching it
1806 __ ldr(R3_tmp, Address(Rthread, JavaThread::saved_exception_pc_offset()));
1807 __ ldr(R2_tmp, Address(SP, RegisterSaver::LR_offset * wordSize));
1808 __ cmp(R2_tmp, R3_tmp);
1809 // Adjust return pc forward to step over the safepoint poll instruction
1810 __ add(R2_tmp, R2_tmp, 4, eq);
1811 __ str(R2_tmp, Address(SP, RegisterSaver::LR_offset * wordSize), eq);
1812
1813 // Check for pending exception
1814 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
1815 __ cmp(Rtemp, 0);
1816
1817 RegisterSaver::restore_live_registers(masm, false);
1818 __ pop(PC, eq);
1819 __ pop(Rexception_pc);
1820 } else {
1821 // Check for pending exception
1822 __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
1823 __ cmp(Rtemp, 0);
1824
1825 RegisterSaver::restore_live_registers(masm);
1826 __ bx(LR, eq);
1827 __ mov(Rexception_pc, LR);
1828 }
1829
1830 __ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
1831
1832 __ flush();
1833
1834 return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
1835 }
1836
generate_resolve_blob(address destination,const char * name)1837 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
1838 assert(StubRoutines::forward_exception_entry() != NULL, "must be generated before");
1839
1840 ResourceMark rm;
1841 CodeBuffer buffer(name, 1000, 512);
1842 int frame_size_words;
1843 OopMapSet *oop_maps;
1844 int frame_complete;
1845
1846 MacroAssembler* masm = new MacroAssembler(&buffer);
1847 Label pending_exception;
1848
1849 int start = __ offset();
1850
1851 oop_maps = new OopMapSet();
1852 OopMap* map = RegisterSaver::save_live_registers(masm, &frame_size_words);
1853
1854 frame_complete = __ offset();
1855
1856 __ mov(R0, Rthread);
1857
1858 int pc_offset = __ set_last_Java_frame(SP, FP, false, Rtemp);
1859 assert(start == 0, "warning: start differs from code_begin");
1860 __ call(destination);
1861 if (pc_offset == -1) {
1862 pc_offset = __ offset();
1863 }
1864 oop_maps->add_gc_map(pc_offset, map);
1865 __ reset_last_Java_frame(Rtemp); // Rtemp free since scratched by far call
1866
1867 __ ldr(R1, Address(Rthread, Thread::pending_exception_offset()));
1868 __ cbnz(R1, pending_exception);
1869
1870 // Overwrite saved register values
1871
1872 // Place metadata result of VM call into Rmethod
1873 __ get_vm_result_2(R1, Rtemp);
1874 __ str(R1, Address(SP, RegisterSaver::Rmethod_offset * wordSize));
1875
1876 // Place target address (VM call result) into Rtemp
1877 __ str(R0, Address(SP, RegisterSaver::Rtemp_offset * wordSize));
1878
1879 RegisterSaver::restore_live_registers(masm);
1880 __ jump(Rtemp);
1881
1882 __ bind(pending_exception);
1883
1884 RegisterSaver::restore_live_registers(masm);
1885 const Register Rzero = __ zero_register(Rtemp);
1886 __ str(Rzero, Address(Rthread, JavaThread::vm_result_2_offset()));
1887 __ mov(Rexception_pc, LR);
1888 __ jump(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type, Rtemp);
1889
1890 __ flush();
1891
1892 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
1893 }
1894
1895 #ifdef COMPILER2
make_native_invoker(address call_target,int shadow_space_bytes,const GrowableArray<VMReg> & input_registers,const GrowableArray<VMReg> & output_registers)1896 RuntimeStub* SharedRuntime::make_native_invoker(address call_target,
1897 int shadow_space_bytes,
1898 const GrowableArray<VMReg>& input_registers,
1899 const GrowableArray<VMReg>& output_registers) {
1900 Unimplemented();
1901 return nullptr;
1902 }
1903 #endif
1904