1 /*
2  * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/codeBuffer.hpp"
27 #include "c1/c1_CodeStubs.hpp"
28 #include "c1/c1_Defs.hpp"
29 #include "c1/c1_FrameMap.hpp"
30 #include "c1/c1_LIRAssembler.hpp"
31 #include "c1/c1_MacroAssembler.hpp"
32 #include "c1/c1_Runtime1.hpp"
33 #include "classfile/javaClasses.inline.hpp"
34 #include "classfile/vmClasses.hpp"
35 #include "classfile/vmSymbols.hpp"
36 #include "code/codeBlob.hpp"
37 #include "code/compiledIC.hpp"
38 #include "code/pcDesc.hpp"
39 #include "code/scopeDesc.hpp"
40 #include "code/vtableStubs.hpp"
41 #include "compiler/compilationPolicy.hpp"
42 #include "compiler/disassembler.hpp"
43 #include "compiler/oopMap.hpp"
44 #include "gc/shared/barrierSet.hpp"
45 #include "gc/shared/c1/barrierSetC1.hpp"
46 #include "gc/shared/collectedHeap.hpp"
47 #include "interpreter/bytecode.hpp"
48 #include "interpreter/interpreter.hpp"
49 #include "jfr/support/jfrIntrinsics.hpp"
50 #include "logging/log.hpp"
51 #include "memory/allocation.inline.hpp"
52 #include "memory/oopFactory.hpp"
53 #include "memory/resourceArea.hpp"
54 #include "memory/universe.hpp"
55 #include "oops/access.inline.hpp"
56 #include "oops/klass.inline.hpp"
57 #include "oops/objArrayOop.inline.hpp"
58 #include "oops/objArrayKlass.hpp"
59 #include "oops/oop.inline.hpp"
60 #include "prims/jvmtiExport.hpp"
61 #include "runtime/atomic.hpp"
62 #include "runtime/biasedLocking.hpp"
63 #include "runtime/fieldDescriptor.inline.hpp"
64 #include "runtime/frame.inline.hpp"
65 #include "runtime/handles.inline.hpp"
66 #include "runtime/interfaceSupport.inline.hpp"
67 #include "runtime/javaCalls.hpp"
68 #include "runtime/sharedRuntime.hpp"
69 #include "runtime/stackWatermarkSet.hpp"
70 #include "runtime/stubRoutines.hpp"
71 #include "runtime/threadCritical.hpp"
72 #include "runtime/vframe.inline.hpp"
73 #include "runtime/vframeArray.hpp"
74 #include "runtime/vm_version.hpp"
75 #include "utilities/copy.hpp"
76 #include "utilities/events.hpp"
77 
78 
79 // Implementation of StubAssembler
80 
StubAssembler(CodeBuffer * code,const char * name,int stub_id)81 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
82   _name = name;
83   _must_gc_arguments = false;
84   _frame_size = no_frame_size;
85   _num_rt_args = 0;
86   _stub_id = stub_id;
87 }
88 
89 
set_info(const char * name,bool must_gc_arguments)90 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
91   _name = name;
92   _must_gc_arguments = must_gc_arguments;
93 }
94 
95 
set_frame_size(int size)96 void StubAssembler::set_frame_size(int size) {
97   if (_frame_size == no_frame_size) {
98     _frame_size = size;
99   }
100   assert(_frame_size == size, "can't change the frame size");
101 }
102 
103 
set_num_rt_args(int args)104 void StubAssembler::set_num_rt_args(int args) {
105   if (_num_rt_args == 0) {
106     _num_rt_args = args;
107   }
108   assert(_num_rt_args == args, "can't change the number of args");
109 }
110 
111 // Implementation of Runtime1
112 
113 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
114 const char *Runtime1::_blob_names[] = {
115   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
116 };
117 
118 #ifndef PRODUCT
119 // statistics
120 int Runtime1::_generic_arraycopystub_cnt = 0;
121 int Runtime1::_arraycopy_slowcase_cnt = 0;
122 int Runtime1::_arraycopy_checkcast_cnt = 0;
123 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
124 int Runtime1::_new_type_array_slowcase_cnt = 0;
125 int Runtime1::_new_object_array_slowcase_cnt = 0;
126 int Runtime1::_new_instance_slowcase_cnt = 0;
127 int Runtime1::_new_multi_array_slowcase_cnt = 0;
128 int Runtime1::_monitorenter_slowcase_cnt = 0;
129 int Runtime1::_monitorexit_slowcase_cnt = 0;
130 int Runtime1::_patch_code_slowcase_cnt = 0;
131 int Runtime1::_throw_range_check_exception_count = 0;
132 int Runtime1::_throw_index_exception_count = 0;
133 int Runtime1::_throw_div0_exception_count = 0;
134 int Runtime1::_throw_null_pointer_exception_count = 0;
135 int Runtime1::_throw_class_cast_exception_count = 0;
136 int Runtime1::_throw_incompatible_class_change_error_count = 0;
137 int Runtime1::_throw_count = 0;
138 
139 static int _byte_arraycopy_stub_cnt = 0;
140 static int _short_arraycopy_stub_cnt = 0;
141 static int _int_arraycopy_stub_cnt = 0;
142 static int _long_arraycopy_stub_cnt = 0;
143 static int _oop_arraycopy_stub_cnt = 0;
144 
arraycopy_count_address(BasicType type)145 address Runtime1::arraycopy_count_address(BasicType type) {
146   switch (type) {
147   case T_BOOLEAN:
148   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
149   case T_CHAR:
150   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
151   case T_FLOAT:
152   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
153   case T_DOUBLE:
154   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
155   case T_ARRAY:
156   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
157   default:
158     ShouldNotReachHere();
159     return NULL;
160   }
161 }
162 
163 
164 #endif
165 
166 // Simple helper to see if the caller of a runtime stub which
167 // entered the VM has been deoptimized
168 
caller_is_deopted(JavaThread * current)169 static bool caller_is_deopted(JavaThread* current) {
170   RegisterMap reg_map(current, false);
171   frame runtime_frame = current->last_frame();
172   frame caller_frame = runtime_frame.sender(&reg_map);
173   assert(caller_frame.is_compiled_frame(), "must be compiled");
174   return caller_frame.is_deoptimized_frame();
175 }
176 
177 // Stress deoptimization
deopt_caller(JavaThread * current)178 static void deopt_caller(JavaThread* current) {
179   if (!caller_is_deopted(current)) {
180     RegisterMap reg_map(current, false);
181     frame runtime_frame = current->last_frame();
182     frame caller_frame = runtime_frame.sender(&reg_map);
183     Deoptimization::deoptimize_frame(current, caller_frame.id());
184     assert(caller_is_deopted(current), "Must be deoptimized");
185   }
186 }
187 
188 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
189  private:
190   Runtime1::StubID _id;
191  public:
StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id)192   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
generate_code(StubAssembler * sasm)193   virtual OopMapSet* generate_code(StubAssembler* sasm) {
194     return Runtime1::generate_code_for(_id, sasm);
195   }
196 };
197 
generate_blob(BufferBlob * buffer_blob,int stub_id,const char * name,bool expect_oop_map,StubAssemblerCodeGenClosure * cl)198 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
199   ResourceMark rm;
200   // create code buffer for code storage
201   CodeBuffer code(buffer_blob);
202 
203   OopMapSet* oop_maps;
204   int frame_size;
205   bool must_gc_arguments;
206 
207   Compilation::setup_code_buffer(&code, 0);
208 
209   // create assembler for code generation
210   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
211   // generate code for runtime stub
212   oop_maps = cl->generate_code(sasm);
213   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
214          "if stub has an oop map it must have a valid frame size");
215   assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap");
216 
217   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
218   sasm->align(BytesPerWord);
219   // make sure all code is in code buffer
220   sasm->flush();
221 
222   frame_size = sasm->frame_size();
223   must_gc_arguments = sasm->must_gc_arguments();
224   // create blob - distinguish a few special cases
225   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
226                                                  &code,
227                                                  CodeOffsets::frame_never_safe,
228                                                  frame_size,
229                                                  oop_maps,
230                                                  must_gc_arguments);
231   assert(blob != NULL, "blob must exist");
232   return blob;
233 }
234 
generate_blob_for(BufferBlob * buffer_blob,StubID id)235 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
236   assert(0 <= id && id < number_of_ids, "illegal stub id");
237   bool expect_oop_map = true;
238 #ifdef ASSERT
239   // Make sure that stubs that need oopmaps have them
240   switch (id) {
241     // These stubs don't need to have an oopmap
242   case dtrace_object_alloc_id:
243   case slow_subtype_check_id:
244   case fpu2long_stub_id:
245   case unwind_exception_id:
246   case counter_overflow_id:
247 #if defined(PPC32)
248   case handle_exception_nofpu_id:
249 #endif
250     expect_oop_map = false;
251     break;
252   default:
253     break;
254   }
255 #endif
256   StubIDStubAssemblerCodeGenClosure cl(id);
257   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
258   // install blob
259   _blobs[id] = blob;
260 }
261 
initialize(BufferBlob * blob)262 void Runtime1::initialize(BufferBlob* blob) {
263   // platform-dependent initialization
264   initialize_pd();
265   // generate stubs
266   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
267   // printing
268 #ifndef PRODUCT
269   if (PrintSimpleStubs) {
270     ResourceMark rm;
271     for (int id = 0; id < number_of_ids; id++) {
272       _blobs[id]->print();
273       if (_blobs[id]->oop_maps() != NULL) {
274         _blobs[id]->oop_maps()->print();
275       }
276     }
277   }
278 #endif
279   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
280   bs->generate_c1_runtime_stubs(blob);
281 }
282 
blob_for(StubID id)283 CodeBlob* Runtime1::blob_for(StubID id) {
284   assert(0 <= id && id < number_of_ids, "illegal stub id");
285   return _blobs[id];
286 }
287 
288 
name_for(StubID id)289 const char* Runtime1::name_for(StubID id) {
290   assert(0 <= id && id < number_of_ids, "illegal stub id");
291   return _blob_names[id];
292 }
293 
name_for_address(address entry)294 const char* Runtime1::name_for_address(address entry) {
295   for (int id = 0; id < number_of_ids; id++) {
296     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
297   }
298 
299 #define FUNCTION_CASE(a, f) \
300   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
301 
302   FUNCTION_CASE(entry, os::javaTimeMillis);
303   FUNCTION_CASE(entry, os::javaTimeNanos);
304   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
305   FUNCTION_CASE(entry, SharedRuntime::d2f);
306   FUNCTION_CASE(entry, SharedRuntime::d2i);
307   FUNCTION_CASE(entry, SharedRuntime::d2l);
308   FUNCTION_CASE(entry, SharedRuntime::dcos);
309   FUNCTION_CASE(entry, SharedRuntime::dexp);
310   FUNCTION_CASE(entry, SharedRuntime::dlog);
311   FUNCTION_CASE(entry, SharedRuntime::dlog10);
312   FUNCTION_CASE(entry, SharedRuntime::dpow);
313   FUNCTION_CASE(entry, SharedRuntime::drem);
314   FUNCTION_CASE(entry, SharedRuntime::dsin);
315   FUNCTION_CASE(entry, SharedRuntime::dtan);
316   FUNCTION_CASE(entry, SharedRuntime::f2i);
317   FUNCTION_CASE(entry, SharedRuntime::f2l);
318   FUNCTION_CASE(entry, SharedRuntime::frem);
319   FUNCTION_CASE(entry, SharedRuntime::l2d);
320   FUNCTION_CASE(entry, SharedRuntime::l2f);
321   FUNCTION_CASE(entry, SharedRuntime::ldiv);
322   FUNCTION_CASE(entry, SharedRuntime::lmul);
323   FUNCTION_CASE(entry, SharedRuntime::lrem);
324   FUNCTION_CASE(entry, SharedRuntime::lrem);
325   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
326   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
327   FUNCTION_CASE(entry, is_instance_of);
328   FUNCTION_CASE(entry, trace_block_entry);
329 #ifdef JFR_HAVE_INTRINSICS
330   FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
331 #endif
332   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
333   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
334   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
335   FUNCTION_CASE(entry, StubRoutines::dexp());
336   FUNCTION_CASE(entry, StubRoutines::dlog());
337   FUNCTION_CASE(entry, StubRoutines::dlog10());
338   FUNCTION_CASE(entry, StubRoutines::dpow());
339   FUNCTION_CASE(entry, StubRoutines::dsin());
340   FUNCTION_CASE(entry, StubRoutines::dcos());
341   FUNCTION_CASE(entry, StubRoutines::dtan());
342 
343 #undef FUNCTION_CASE
344 
345   // Soft float adds more runtime names.
346   return pd_name_for_address(entry);
347 }
348 
349 
350 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* current, Klass* klass))
351   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
352 
353   assert(klass->is_klass(), "not a class");
354   Handle holder(current, klass->klass_holder()); // keep the klass alive
355   InstanceKlass* h = InstanceKlass::cast(klass);
356   h->check_valid_for_instantiation(true, CHECK);
357   // make sure klass is initialized
358   h->initialize(CHECK);
359   // allocate instance and return via TLS
360   oop obj = h->allocate_instance(CHECK);
361   current->set_vm_result(obj);
362 JRT_END
363 
364 
365 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* current, Klass* klass, jint length))
366   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
367   // Note: no handle for klass needed since they are not used
368   //       anymore after new_typeArray() and no GC can happen before.
369   //       (This may have to change if this code changes!)
370   assert(klass->is_klass(), "not a class");
371   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
372   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
373   current->set_vm_result(obj);
374   // This is pretty rare but this runtime patch is stressful to deoptimization
375   // if we deoptimize here so force a deopt to stress the path.
376   if (DeoptimizeALot) {
377     deopt_caller(current);
378   }
379 
380 JRT_END
381 
382 
383 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* current, Klass* array_klass, jint length))
384   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
385 
386   // Note: no handle for klass needed since they are not used
387   //       anymore after new_objArray() and no GC can happen before.
388   //       (This may have to change if this code changes!)
389   assert(array_klass->is_klass(), "not a class");
390   Handle holder(current, array_klass->klass_holder()); // keep the klass alive
391   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
392   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
393   current->set_vm_result(obj);
394   // This is pretty rare but this runtime patch is stressful to deoptimization
395   // if we deoptimize here so force a deopt to stress the path.
396   if (DeoptimizeALot) {
397     deopt_caller(current);
398   }
399 JRT_END
400 
401 
402 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* current, Klass* klass, int rank, jint* dims))
403   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
404 
405   assert(klass->is_klass(), "not a class");
406   assert(rank >= 1, "rank must be nonzero");
407   Handle holder(current, klass->klass_holder()); // keep the klass alive
408   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
409   current->set_vm_result(obj);
410 JRT_END
411 
412 
413 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* current, StubID id))
414   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
415 JRT_END
416 
417 
418 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* current, oopDesc* obj))
419   ResourceMark rm(current);
420   const char* klass_name = obj->klass()->external_name();
421   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayStoreException(), klass_name);
422 JRT_END
423 
424 
425 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
426 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
427 // method) method is passed as an argument. In order to do that it is embedded in the code as
428 // a constant.
counter_overflow_helper(JavaThread * current,int branch_bci,Method * m)429 static nmethod* counter_overflow_helper(JavaThread* current, int branch_bci, Method* m) {
430   nmethod* osr_nm = NULL;
431   methodHandle method(current, m);
432 
433   RegisterMap map(current, false);
434   frame fr =  current->last_frame().sender(&map);
435   nmethod* nm = (nmethod*) fr.cb();
436   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
437   methodHandle enclosing_method(current, nm->method());
438 
439   CompLevel level = (CompLevel)nm->comp_level();
440   int bci = InvocationEntryBci;
441   if (branch_bci != InvocationEntryBci) {
442     // Compute destination bci
443     address pc = method()->code_base() + branch_bci;
444     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
445     int offset = 0;
446     switch (branch) {
447       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
448       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
449       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
450       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
451       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
452       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
453       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
454         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
455         break;
456       case Bytecodes::_goto_w:
457         offset = Bytes::get_Java_u4(pc + 1);
458         break;
459       default: ;
460     }
461     bci = branch_bci + offset;
462   }
463   osr_nm = CompilationPolicy::event(enclosing_method, method, branch_bci, bci, level, nm, current);
464   return osr_nm;
465 }
466 
467 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* current, int bci, Method* method))
468   nmethod* osr_nm;
469   JRT_BLOCK
470     osr_nm = counter_overflow_helper(current, bci, method);
471     if (osr_nm != NULL) {
472       RegisterMap map(current, false);
473       frame fr =  current->last_frame().sender(&map);
474       Deoptimization::deoptimize_frame(current, fr.id());
475     }
476   JRT_BLOCK_END
477   return NULL;
478 JRT_END
479 
480 extern void vm_exit(int code);
481 
482 // Enter this method from compiled code handler below. This is where we transition
483 // to VM mode. This is done as a helper routine so that the method called directly
484 // from compiled code does not have to transition to VM. This allows the entry
485 // method to see if the nmethod that we have just looked up a handler for has
486 // been deoptimized while we were in the vm. This simplifies the assembly code
487 // cpu directories.
488 //
489 // We are entering here from exception stub (via the entry method below)
490 // If there is a compiled exception handler in this method, we will continue there;
491 // otherwise we will unwind the stack and continue at the caller of top frame method
492 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
493 // control the area where we can allow a safepoint. After we exit the safepoint area we can
494 // check to see if the handler we are going to return is now in a nmethod that has
495 // been deoptimized. If that is the case we return the deopt blob
496 // unpack_with_exception entry instead. This makes life for the exception blob easier
497 // because making that same check and diverting is painful from assembly language.
498 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* current, oopDesc* ex, address pc, nmethod*& nm))
499   // Reset method handle flag.
500   current->set_is_method_handle_return(false);
501 
502   Handle exception(current, ex);
503 
504   // This function is called when we are about to throw an exception. Therefore,
505   // we have to poll the stack watermark barrier to make sure that not yet safe
506   // stack frames are made safe before returning into them.
507   if (current->last_frame().cb() == Runtime1::blob_for(Runtime1::handle_exception_from_callee_id)) {
508     // The Runtime1::handle_exception_from_callee_id handler is invoked after the
509     // frame has been unwound. It instead builds its own stub frame, to call the
510     // runtime. But the throwing frame has already been unwound here.
511     StackWatermarkSet::after_unwind(current);
512   }
513 
514   nm = CodeCache::find_nmethod(pc);
515   assert(nm != NULL, "this is not an nmethod");
516   // Adjust the pc as needed/
517   if (nm->is_deopt_pc(pc)) {
518     RegisterMap map(current, false);
519     frame exception_frame = current->last_frame().sender(&map);
520     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
521     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
522     pc = exception_frame.pc();
523   }
524   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
525   // Check that exception is a subclass of Throwable
526   assert(exception->is_a(vmClasses::Throwable_klass()),
527          "Exception not subclass of Throwable");
528 
529   // debugging support
530   // tracing
531   if (log_is_enabled(Info, exceptions)) {
532     ResourceMark rm;
533     stringStream tempst;
534     assert(nm->method() != NULL, "Unexpected NULL method()");
535     tempst.print("C1 compiled method <%s>\n"
536                  " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
537                  nm->method()->print_value_string(), p2i(pc), p2i(current));
538     Exceptions::log_exception(exception, tempst.as_string());
539   }
540   // for AbortVMOnException flag
541   Exceptions::debug_check_abort(exception);
542 
543   // Check the stack guard pages and reenable them if necessary and there is
544   // enough space on the stack to do so.  Use fast exceptions only if the guard
545   // pages are enabled.
546   bool guard_pages_enabled = current->stack_overflow_state()->reguard_stack_if_needed();
547 
548   if (JvmtiExport::can_post_on_exceptions()) {
549     // To ensure correct notification of exception catches and throws
550     // we have to deoptimize here.  If we attempted to notify the
551     // catches and throws during this exception lookup it's possible
552     // we could deoptimize on the way out of the VM and end back in
553     // the interpreter at the throw site.  This would result in double
554     // notifications since the interpreter would also notify about
555     // these same catches and throws as it unwound the frame.
556 
557     RegisterMap reg_map(current);
558     frame stub_frame = current->last_frame();
559     frame caller_frame = stub_frame.sender(&reg_map);
560 
561     // We don't really want to deoptimize the nmethod itself since we
562     // can actually continue in the exception handler ourselves but I
563     // don't see an easy way to have the desired effect.
564     Deoptimization::deoptimize_frame(current, caller_frame.id());
565     assert(caller_is_deopted(current), "Must be deoptimized");
566 
567     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
568   }
569 
570   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
571   if (guard_pages_enabled) {
572     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
573     if (fast_continuation != NULL) {
574       // Set flag if return address is a method handle call site.
575       current->set_is_method_handle_return(nm->is_method_handle_return(pc));
576       return fast_continuation;
577     }
578   }
579 
580   // If the stack guard pages are enabled, check whether there is a handler in
581   // the current method.  Otherwise (guard pages disabled), force an unwind and
582   // skip the exception cache update (i.e., just leave continuation==NULL).
583   address continuation = NULL;
584   if (guard_pages_enabled) {
585 
586     // New exception handling mechanism can support inlined methods
587     // with exception handlers since the mappings are from PC to PC
588 
589     // Clear out the exception oop and pc since looking up an
590     // exception handler can cause class loading, which might throw an
591     // exception and those fields are expected to be clear during
592     // normal bytecode execution.
593     current->clear_exception_oop_and_pc();
594 
595     bool recursive_exception = false;
596     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
597     // If an exception was thrown during exception dispatch, the exception oop may have changed
598     current->set_exception_oop(exception());
599     current->set_exception_pc(pc);
600 
601     // the exception cache is used only by non-implicit exceptions
602     // Update the exception cache only when there didn't happen
603     // another exception during the computation of the compiled
604     // exception handler. Checking for exception oop equality is not
605     // sufficient because some exceptions are pre-allocated and reused.
606     if (continuation != NULL && !recursive_exception) {
607       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
608     }
609   }
610 
611   current->set_vm_result(exception());
612   // Set flag if return address is a method handle call site.
613   current->set_is_method_handle_return(nm->is_method_handle_return(pc));
614 
615   if (log_is_enabled(Info, exceptions)) {
616     ResourceMark rm;
617     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
618                          " for exception thrown at PC " PTR_FORMAT,
619                          p2i(current), p2i(continuation), p2i(pc));
620   }
621 
622   return continuation;
623 JRT_END
624 
625 // Enter this method from compiled code only if there is a Java exception handler
626 // in the method handling the exception.
627 // We are entering here from exception stub. We don't do a normal VM transition here.
628 // We do it in a helper. This is so we can check to see if the nmethod we have just
629 // searched for an exception handler has been deoptimized in the meantime.
exception_handler_for_pc(JavaThread * current)630 address Runtime1::exception_handler_for_pc(JavaThread* current) {
631   oop exception = current->exception_oop();
632   address pc = current->exception_pc();
633   // Still in Java mode
634   DEBUG_ONLY(NoHandleMark nhm);
635   nmethod* nm = NULL;
636   address continuation = NULL;
637   {
638     // Enter VM mode by calling the helper
639     ResetNoHandleMark rnhm;
640     continuation = exception_handler_for_pc_helper(current, exception, pc, nm);
641   }
642   // Back in JAVA, use no oops DON'T safepoint
643 
644   // Now check to see if the nmethod we were called from is now deoptimized.
645   // If so we must return to the deopt blob and deoptimize the nmethod
646   if (nm != NULL && caller_is_deopted(current)) {
647     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
648   }
649 
650   assert(continuation != NULL, "no handler found");
651   return continuation;
652 }
653 
654 
655 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* current, int index, arrayOopDesc* a))
656   NOT_PRODUCT(_throw_range_check_exception_count++;)
657   const int len = 35;
658   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
659   char message[2 * jintAsStringSize + len];
660   sprintf(message, "Index %d out of bounds for length %d", index, a->length());
661   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
662 JRT_END
663 
664 
665 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* current, int index))
666   NOT_PRODUCT(_throw_index_exception_count++;)
667   char message[16];
668   sprintf(message, "%d", index);
669   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
670 JRT_END
671 
672 
673 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* current))
674   NOT_PRODUCT(_throw_div0_exception_count++;)
675   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
676 JRT_END
677 
678 
679 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* current))
680   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
681   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException());
682 JRT_END
683 
684 
685 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* current, oopDesc* object))
686   NOT_PRODUCT(_throw_class_cast_exception_count++;)
687   ResourceMark rm(current);
688   char* message = SharedRuntime::generate_class_cast_message(current, object->klass());
689   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ClassCastException(), message);
690 JRT_END
691 
692 
693 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* current))
694   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
695   ResourceMark rm(current);
696   SharedRuntime::throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError());
697 JRT_END
698 
699 
700 JRT_BLOCK_ENTRY(void, Runtime1::monitorenter(JavaThread* current, oopDesc* obj, BasicObjectLock* lock))
701   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
702   if (!UseFastLocking) {
703     lock->set_obj(obj);
704   }
705   assert(obj == lock->obj(), "must match");
706   SharedRuntime::monitor_enter_helper(obj, lock->lock(), current);
707 JRT_END
708 
709 
710 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* current, BasicObjectLock* lock))
711   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
712   assert(current->last_Java_sp(), "last_Java_sp must be set");
713   oop obj = lock->obj();
714   assert(oopDesc::is_oop(obj), "must be NULL or an object");
715   SharedRuntime::monitor_exit_helper(obj, lock->lock(), current);
716 JRT_END
717 
718 // Cf. OptoRuntime::deoptimize_caller_frame
719 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* current, jint trap_request))
720   // Called from within the owner thread, so no need for safepoint
721   RegisterMap reg_map(current, false);
722   frame stub_frame = current->last_frame();
723   assert(stub_frame.is_runtime_frame(), "Sanity check");
724   frame caller_frame = stub_frame.sender(&reg_map);
725   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
726   assert(nm != NULL, "Sanity check");
727   methodHandle method(current, nm->method());
728   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
729   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
730   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
731 
732   if (action == Deoptimization::Action_make_not_entrant) {
733     if (nm->make_not_entrant()) {
734       if (reason == Deoptimization::Reason_tenured) {
735         MethodData* trap_mdo = Deoptimization::get_method_data(current, method, true /*create_if_missing*/);
736         if (trap_mdo != NULL) {
737           trap_mdo->inc_tenure_traps();
738         }
739       }
740     }
741   }
742 
743   // Deoptimize the caller frame.
744   Deoptimization::deoptimize_frame(current, caller_frame.id());
745   // Return to the now deoptimized frame.
746 JRT_END
747 
748 
749 #ifndef DEOPTIMIZE_WHEN_PATCHING
750 
resolve_field_return_klass(const methodHandle & caller,int bci,TRAPS)751 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
752   Bytecode_field field_access(caller, bci);
753   // This can be static or non-static field access
754   Bytecodes::Code code       = field_access.code();
755 
756   // We must load class, initialize class and resolve the field
757   fieldDescriptor result; // initialize class if needed
758   constantPoolHandle constants(THREAD, caller->constants());
759   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
760   return result.field_holder();
761 }
762 
763 
764 //
765 // This routine patches sites where a class wasn't loaded or
766 // initialized at the time the code was generated.  It handles
767 // references to classes, fields and forcing of initialization.  Most
768 // of the cases are straightforward and involving simply forcing
769 // resolution of a class, rewriting the instruction stream with the
770 // needed constant and replacing the call in this function with the
771 // patched code.  The case for static field is more complicated since
772 // the thread which is in the process of initializing a class can
773 // access it's static fields but other threads can't so the code
774 // either has to deoptimize when this case is detected or execute a
775 // check that the current thread is the initializing thread.  The
776 // current
777 //
778 // Patches basically look like this:
779 //
780 //
781 // patch_site: jmp patch stub     ;; will be patched
782 // continue:   ...
783 //             ...
784 //             ...
785 //             ...
786 //
787 // They have a stub which looks like this:
788 //
789 //             ;; patch body
790 //             movl <const>, reg           (for class constants)
791 //        <or> movl [reg1 + <const>], reg  (for field offsets)
792 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
793 //             <being_init offset> <bytes to copy> <bytes to skip>
794 // patch_stub: call Runtime1::patch_code (through a runtime stub)
795 //             jmp patch_site
796 //
797 //
798 // A normal patch is done by rewriting the patch body, usually a move,
799 // and then copying it into place over top of the jmp instruction
800 // being careful to flush caches and doing it in an MP-safe way.  The
801 // constants following the patch body are used to find various pieces
802 // of the patch relative to the call site for Runtime1::patch_code.
803 // The case for getstatic and putstatic is more complicated because
804 // getstatic and putstatic have special semantics when executing while
805 // the class is being initialized.  getstatic/putstatic on a class
806 // which is being_initialized may be executed by the initializing
807 // thread but other threads have to block when they execute it.  This
808 // is accomplished in compiled code by executing a test of the current
809 // thread against the initializing thread of the class.  It's emitted
810 // as boilerplate in their stub which allows the patched code to be
811 // executed before it's copied back into the main body of the nmethod.
812 //
813 // being_init: get_thread(<tmp reg>
814 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
815 //             jne patch_stub
816 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
817 //             movl reg, [reg1 + <const>]  (for field offsets)
818 //             jmp continue
819 //             <being_init offset> <bytes to copy> <bytes to skip>
820 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
821 //             jmp patch_site
822 //
823 // If the class is being initialized the patch body is rewritten and
824 // the patch site is rewritten to jump to being_init, instead of
825 // patch_stub.  Whenever this code is executed it checks the current
826 // thread against the intializing thread so other threads will enter
827 // the runtime and end up blocked waiting the class to finish
828 // initializing inside the calls to resolve_field below.  The
829 // initializing class will continue on it's way.  Once the class is
830 // fully_initialized, the intializing_thread of the class becomes
831 // NULL, so the next thread to execute this code will fail the test,
832 // call into patch_code and complete the patching process by copying
833 // the patch body back into the main part of the nmethod and resume
834 // executing.
835 
836 // NB:
837 //
838 // Patchable instruction sequences inherently exhibit race conditions,
839 // where thread A is patching an instruction at the same time thread B
840 // is executing it.  The algorithms we use ensure that any observation
841 // that B can make on any intermediate states during A's patching will
842 // always end up with a correct outcome.  This is easiest if there are
843 // few or no intermediate states.  (Some inline caches have two
844 // related instructions that must be patched in tandem.  For those,
845 // intermediate states seem to be unavoidable, but we will get the
846 // right answer from all possible observation orders.)
847 //
848 // When patching the entry instruction at the head of a method, or a
849 // linkable call instruction inside of a method, we try very hard to
850 // use a patch sequence which executes as a single memory transaction.
851 // This means, in practice, that when thread A patches an instruction,
852 // it should patch a 32-bit or 64-bit word that somehow overlaps the
853 // instruction or is contained in it.  We believe that memory hardware
854 // will never break up such a word write, if it is naturally aligned
855 // for the word being written.  We also know that some CPUs work very
856 // hard to create atomic updates even of naturally unaligned words,
857 // but we don't want to bet the farm on this always working.
858 //
859 // Therefore, if there is any chance of a race condition, we try to
860 // patch only naturally aligned words, as single, full-word writes.
861 
862 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id ))
863   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
864 
865   ResourceMark rm(current);
866   RegisterMap reg_map(current, false);
867   frame runtime_frame = current->last_frame();
868   frame caller_frame = runtime_frame.sender(&reg_map);
869 
870   // last java frame on stack
871   vframeStream vfst(current, true);
872   assert(!vfst.at_end(), "Java frame must exist");
873 
874   methodHandle caller_method(current, vfst.method());
875   // Note that caller_method->code() may not be same as caller_code because of OSR's
876   // Note also that in the presence of inlining it is not guaranteed
877   // that caller_method() == caller_code->method()
878 
879   int bci = vfst.bci();
880   Bytecodes::Code code = caller_method()->java_code_at(bci);
881 
882   // this is used by assertions in the access_field_patching_id
883   BasicType patch_field_type = T_ILLEGAL;
884   bool deoptimize_for_volatile = false;
885   bool deoptimize_for_atomic = false;
886   int patch_field_offset = -1;
887   Klass* init_klass = NULL; // klass needed by load_klass_patching code
888   Klass* load_klass = NULL; // klass needed by load_klass_patching code
889   Handle mirror(current, NULL);                    // oop needed by load_mirror_patching code
890   Handle appendix(current, NULL);                  // oop needed by appendix_patching code
891   bool load_klass_or_mirror_patch_id =
892     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
893 
894   if (stub_id == Runtime1::access_field_patching_id) {
895 
896     Bytecode_field field_access(caller_method, bci);
897     fieldDescriptor result; // initialize class if needed
898     Bytecodes::Code code = field_access.code();
899     constantPoolHandle constants(current, caller_method->constants());
900     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
901     patch_field_offset = result.offset();
902 
903     // If we're patching a field which is volatile then at compile it
904     // must not have been know to be volatile, so the generated code
905     // isn't correct for a volatile reference.  The nmethod has to be
906     // deoptimized so that the code can be regenerated correctly.
907     // This check is only needed for access_field_patching since this
908     // is the path for patching field offsets.  load_klass is only
909     // used for patching references to oops which don't need special
910     // handling in the volatile case.
911 
912     deoptimize_for_volatile = result.access_flags().is_volatile();
913 
914     // If we are patching a field which should be atomic, then
915     // the generated code is not correct either, force deoptimizing.
916     // We need to only cover T_LONG and T_DOUBLE fields, as we can
917     // break access atomicity only for them.
918 
919     // Strictly speaking, the deoptimization on 64-bit platforms
920     // is unnecessary, and T_LONG stores on 32-bit platforms need
921     // to be handled by special patching code when AlwaysAtomicAccesses
922     // becomes product feature. At this point, we are still going
923     // for the deoptimization for consistency against volatile
924     // accesses.
925 
926     patch_field_type = result.field_type();
927     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
928 
929   } else if (load_klass_or_mirror_patch_id) {
930     Klass* k = NULL;
931     switch (code) {
932       case Bytecodes::_putstatic:
933       case Bytecodes::_getstatic:
934         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
935           init_klass = klass;
936           mirror = Handle(current, klass->java_mirror());
937         }
938         break;
939       case Bytecodes::_new:
940         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
941           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
942         }
943         break;
944       case Bytecodes::_multianewarray:
945         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
946           k = caller_method->constants()->klass_at(mna.index(), CHECK);
947         }
948         break;
949       case Bytecodes::_instanceof:
950         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
951           k = caller_method->constants()->klass_at(io.index(), CHECK);
952         }
953         break;
954       case Bytecodes::_checkcast:
955         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
956           k = caller_method->constants()->klass_at(cc.index(), CHECK);
957         }
958         break;
959       case Bytecodes::_anewarray:
960         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
961           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
962           k = ek->array_klass(CHECK);
963         }
964         break;
965       case Bytecodes::_ldc:
966       case Bytecodes::_ldc_w:
967         {
968           Bytecode_loadconstant cc(caller_method, bci);
969           oop m = cc.resolve_constant(CHECK);
970           mirror = Handle(current, m);
971         }
972         break;
973       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
974     }
975     load_klass = k;
976   } else if (stub_id == load_appendix_patching_id) {
977     Bytecode_invoke bytecode(caller_method, bci);
978     Bytecodes::Code bc = bytecode.invoke_code();
979 
980     CallInfo info;
981     constantPoolHandle pool(current, caller_method->constants());
982     int index = bytecode.index();
983     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
984     switch (bc) {
985       case Bytecodes::_invokehandle: {
986         int cache_index = ConstantPool::decode_cpcache_index(index, true);
987         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
988         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
989         cpce->set_method_handle(pool, info);
990         appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
991         break;
992       }
993       case Bytecodes::_invokedynamic: {
994         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
995         cpce->set_dynamic_call(pool, info);
996         appendix = Handle(current, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
997         break;
998       }
999       default: fatal("unexpected bytecode for load_appendix_patching_id");
1000     }
1001   } else {
1002     ShouldNotReachHere();
1003   }
1004 
1005   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1006     // At compile time we assumed the field wasn't volatile/atomic but after
1007     // loading it turns out it was volatile/atomic so we have to throw the
1008     // compiled code out and let it be regenerated.
1009     if (TracePatching) {
1010       if (deoptimize_for_volatile) {
1011         tty->print_cr("Deoptimizing for patching volatile field reference");
1012       }
1013       if (deoptimize_for_atomic) {
1014         tty->print_cr("Deoptimizing for patching atomic field reference");
1015       }
1016     }
1017 
1018     // It's possible the nmethod was invalidated in the last
1019     // safepoint, but if it's still alive then make it not_entrant.
1020     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1021     if (nm != NULL) {
1022       nm->make_not_entrant();
1023     }
1024 
1025     Deoptimization::deoptimize_frame(current, caller_frame.id());
1026 
1027     // Return to the now deoptimized frame.
1028   }
1029 
1030   // Now copy code back
1031 
1032   {
1033     MutexLocker ml_patch (current, Patching_lock, Mutex::_no_safepoint_check_flag);
1034     //
1035     // Deoptimization may have happened while we waited for the lock.
1036     // In that case we don't bother to do any patching we just return
1037     // and let the deopt happen
1038     if (!caller_is_deopted(current)) {
1039       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1040       address instr_pc = jump->jump_destination();
1041       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1042       if (ni->is_jump() ) {
1043         // the jump has not been patched yet
1044         // The jump destination is slow case and therefore not part of the stubs
1045         // (stubs are only for StaticCalls)
1046 
1047         // format of buffer
1048         //    ....
1049         //    instr byte 0     <-- copy_buff
1050         //    instr byte 1
1051         //    ..
1052         //    instr byte n-1
1053         //      n
1054         //    ....             <-- call destination
1055 
1056         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1057         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1058         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1059         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1060         address copy_buff = stub_location - *byte_skip - *byte_count;
1061         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1062         if (TracePatching) {
1063           ttyLocker ttyl;
1064           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1065                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1066           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1067           assert(caller_code != NULL, "nmethod not found");
1068 
1069           // NOTE we use pc() not original_pc() because we already know they are
1070           // identical otherwise we'd have never entered this block of code
1071 
1072           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1073           assert(map != NULL, "null check");
1074           map->print();
1075           tty->cr();
1076 
1077           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1078         }
1079         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1080         bool do_patch = true;
1081         if (stub_id == Runtime1::access_field_patching_id) {
1082           // The offset may not be correct if the class was not loaded at code generation time.
1083           // Set it now.
1084           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1085           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1086           assert(patch_field_offset >= 0, "illegal offset");
1087           n_move->add_offset_in_bytes(patch_field_offset);
1088         } else if (load_klass_or_mirror_patch_id) {
1089           // If a getstatic or putstatic is referencing a klass which
1090           // isn't fully initialized, the patch body isn't copied into
1091           // place until initialization is complete.  In this case the
1092           // patch site is setup so that any threads besides the
1093           // initializing thread are forced to come into the VM and
1094           // block.
1095           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1096                      InstanceKlass::cast(init_klass)->is_initialized();
1097           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1098           if (jump->jump_destination() == being_initialized_entry) {
1099             assert(do_patch == true, "initialization must be complete at this point");
1100           } else {
1101             // patch the instruction <move reg, klass>
1102             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1103 
1104             assert(n_copy->data() == 0 ||
1105                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1106                    "illegal init value");
1107             if (stub_id == Runtime1::load_klass_patching_id) {
1108               assert(load_klass != NULL, "klass not set");
1109               n_copy->set_data((intx) (load_klass));
1110             } else {
1111               assert(mirror() != NULL, "klass not set");
1112               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1113               n_copy->set_data(cast_from_oop<intx>(mirror()));
1114             }
1115 
1116             if (TracePatching) {
1117               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1118             }
1119           }
1120         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1121           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1122           assert(n_copy->data() == 0 ||
1123                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1124                  "illegal init value");
1125           n_copy->set_data(cast_from_oop<intx>(appendix()));
1126 
1127           if (TracePatching) {
1128             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1129           }
1130         } else {
1131           ShouldNotReachHere();
1132         }
1133 
1134 #if defined(PPC32)
1135         if (load_klass_or_mirror_patch_id ||
1136             stub_id == Runtime1::load_appendix_patching_id) {
1137           // Update the location in the nmethod with the proper
1138           // metadata.  When the code was generated, a NULL was stuffed
1139           // in the metadata table and that table needs to be update to
1140           // have the right value.  On intel the value is kept
1141           // directly in the instruction instead of in the metadata
1142           // table, so set_data above effectively updated the value.
1143           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1144           assert(nm != NULL, "invalid nmethod_pc");
1145           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1146           bool found = false;
1147           while (mds.next() && !found) {
1148             if (mds.type() == relocInfo::oop_type) {
1149               assert(stub_id == Runtime1::load_mirror_patching_id ||
1150                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1151               oop_Relocation* r = mds.oop_reloc();
1152               oop* oop_adr = r->oop_addr();
1153               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1154               r->fix_oop_relocation();
1155               found = true;
1156             } else if (mds.type() == relocInfo::metadata_type) {
1157               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1158               metadata_Relocation* r = mds.metadata_reloc();
1159               Metadata** metadata_adr = r->metadata_addr();
1160               *metadata_adr = load_klass;
1161               r->fix_metadata_relocation();
1162               found = true;
1163             }
1164           }
1165           assert(found, "the metadata must exist!");
1166         }
1167 #endif
1168         if (do_patch) {
1169           // replace instructions
1170           // first replace the tail, then the call
1171 #ifdef ARM
1172           if((load_klass_or_mirror_patch_id ||
1173               stub_id == Runtime1::load_appendix_patching_id) &&
1174               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1175             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1176             address addr = NULL;
1177             assert(nm != NULL, "invalid nmethod_pc");
1178             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1179             while (mds.next()) {
1180               if (mds.type() == relocInfo::oop_type) {
1181                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1182                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1183                 oop_Relocation* r = mds.oop_reloc();
1184                 addr = (address)r->oop_addr();
1185                 break;
1186               } else if (mds.type() == relocInfo::metadata_type) {
1187                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1188                 metadata_Relocation* r = mds.metadata_reloc();
1189                 addr = (address)r->metadata_addr();
1190                 break;
1191               }
1192             }
1193             assert(addr != NULL, "metadata relocation must exist");
1194             copy_buff -= *byte_count;
1195             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1196             n_copy2->set_pc_relative_offset(addr, instr_pc);
1197           }
1198 #endif
1199 
1200           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1201             address ptr = copy_buff + i;
1202             int a_byte = (*ptr) & 0xFF;
1203             address dst = instr_pc + i;
1204             *(unsigned char*)dst = (unsigned char) a_byte;
1205           }
1206           ICache::invalidate_range(instr_pc, *byte_count);
1207           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1208 
1209           if (load_klass_or_mirror_patch_id ||
1210               stub_id == Runtime1::load_appendix_patching_id) {
1211             relocInfo::relocType rtype =
1212               (stub_id == Runtime1::load_klass_patching_id) ?
1213                                    relocInfo::metadata_type :
1214                                    relocInfo::oop_type;
1215             // update relocInfo to metadata
1216             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1217             assert(nm != NULL, "invalid nmethod_pc");
1218 
1219             // The old patch site is now a move instruction so update
1220             // the reloc info so that it will get updated during
1221             // future GCs.
1222             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1223             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1224                                                      relocInfo::none, rtype);
1225 #ifdef PPC32
1226           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1227             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1228             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1229                                                      relocInfo::none, rtype);
1230           }
1231 #endif
1232           }
1233 
1234         } else {
1235           ICache::invalidate_range(copy_buff, *byte_count);
1236           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1237         }
1238       }
1239     }
1240   }
1241 
1242   // If we are patching in a non-perm oop, make sure the nmethod
1243   // is on the right list.
1244   {
1245     MutexLocker ml_code (current, CodeCache_lock, Mutex::_no_safepoint_check_flag);
1246     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1247     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1248 
1249     // Since we've patched some oops in the nmethod,
1250     // (re)register it with the heap.
1251     Universe::heap()->register_nmethod(nm);
1252   }
1253 JRT_END
1254 
1255 #else // DEOPTIMIZE_WHEN_PATCHING
1256 
1257 void Runtime1::patch_code(JavaThread* current, Runtime1::StubID stub_id) {
1258   NOT_PRODUCT(_patch_code_slowcase_cnt++);
1259 
1260   // Enable WXWrite: the function is called by c1 stub as a runtime function
1261   // (see another implementation above).
1262   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
1263 
1264   if (TracePatching) {
1265     tty->print_cr("Deoptimizing because patch is needed");
1266   }
1267 
1268   RegisterMap reg_map(current, false);
1269 
1270   frame runtime_frame = current->last_frame();
1271   frame caller_frame = runtime_frame.sender(&reg_map);
1272   assert(caller_frame.is_compiled_frame(), "Wrong frame type");
1273 
1274   // Make sure the nmethod is invalidated, i.e. made not entrant.
1275   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1276   if (nm != NULL) {
1277     nm->make_not_entrant();
1278   }
1279 
1280   Deoptimization::deoptimize_frame(current, caller_frame.id());
1281   // Return to the now deoptimized frame.
1282   postcond(caller_is_deopted(current));
1283 }
1284 
1285 #endif // DEOPTIMIZE_WHEN_PATCHING
1286 
1287 // Entry point for compiled code. We want to patch a nmethod.
1288 // We don't do a normal VM transition here because we want to
1289 // know after the patching is complete and any safepoint(s) are taken
1290 // if the calling nmethod was deoptimized. We do this by calling a
1291 // helper method which does the normal VM transition and when it
1292 // completes we can check for deoptimization. This simplifies the
1293 // assembly code in the cpu directories.
1294 //
move_klass_patching(JavaThread * current)1295 int Runtime1::move_klass_patching(JavaThread* current) {
1296 //
1297 // NOTE: we are still in Java
1298 //
1299   debug_only(NoHandleMark nhm;)
1300   {
1301     // Enter VM mode
1302     ResetNoHandleMark rnhm;
1303     patch_code(current, load_klass_patching_id);
1304   }
1305   // Back in JAVA, use no oops DON'T safepoint
1306 
1307   // Return true if calling code is deoptimized
1308 
1309   return caller_is_deopted(current);
1310 }
1311 
move_mirror_patching(JavaThread * current)1312 int Runtime1::move_mirror_patching(JavaThread* current) {
1313 //
1314 // NOTE: we are still in Java
1315 //
1316   debug_only(NoHandleMark nhm;)
1317   {
1318     // Enter VM mode
1319     ResetNoHandleMark rnhm;
1320     patch_code(current, load_mirror_patching_id);
1321   }
1322   // Back in JAVA, use no oops DON'T safepoint
1323 
1324   // Return true if calling code is deoptimized
1325 
1326   return caller_is_deopted(current);
1327 }
1328 
move_appendix_patching(JavaThread * current)1329 int Runtime1::move_appendix_patching(JavaThread* current) {
1330 //
1331 // NOTE: we are still in Java
1332 //
1333   debug_only(NoHandleMark nhm;)
1334   {
1335     // Enter VM mode
1336     ResetNoHandleMark rnhm;
1337     patch_code(current, load_appendix_patching_id);
1338   }
1339   // Back in JAVA, use no oops DON'T safepoint
1340 
1341   // Return true if calling code is deoptimized
1342 
1343   return caller_is_deopted(current);
1344 }
1345 
1346 // Entry point for compiled code. We want to patch a nmethod.
1347 // We don't do a normal VM transition here because we want to
1348 // know after the patching is complete and any safepoint(s) are taken
1349 // if the calling nmethod was deoptimized. We do this by calling a
1350 // helper method which does the normal VM transition and when it
1351 // completes we can check for deoptimization. This simplifies the
1352 // assembly code in the cpu directories.
1353 //
access_field_patching(JavaThread * current)1354 int Runtime1::access_field_patching(JavaThread* current) {
1355   //
1356   // NOTE: we are still in Java
1357   //
1358   // Handles created in this function will be deleted by the
1359   // HandleMarkCleaner in the transition to the VM.
1360   NoHandleMark nhm;
1361   {
1362     // Enter VM mode
1363     ResetNoHandleMark rnhm;
1364     patch_code(current, access_field_patching_id);
1365   }
1366   // Back in JAVA, use no oops DON'T safepoint
1367 
1368   // Return true if calling code is deoptimized
1369 
1370   return caller_is_deopted(current);
1371 }
1372 
1373 
1374 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1375   // for now we just print out the block id
1376   tty->print("%d ", block_id);
1377 JRT_END
1378 
1379 
1380 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1381   // had to return int instead of bool, otherwise there may be a mismatch
1382   // between the C calling convention and the Java one.
1383   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1384   // JVM takes the whole %eax as the return value, which may misinterpret
1385   // the return value as a boolean true.
1386 
1387   assert(mirror != NULL, "should null-check on mirror before calling");
1388   Klass* k = java_lang_Class::as_Klass(mirror);
1389   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1390 JRT_END
1391 
1392 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* current))
1393   ResourceMark rm;
1394 
1395   RegisterMap reg_map(current, false);
1396   frame runtime_frame = current->last_frame();
1397   frame caller_frame = runtime_frame.sender(&reg_map);
1398 
1399   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1400   assert (nm != NULL, "no more nmethod?");
1401   nm->make_not_entrant();
1402 
1403   methodHandle m(current, nm->method());
1404   MethodData* mdo = m->method_data();
1405 
1406   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1407     // Build an MDO.  Ignore errors like OutOfMemory;
1408     // that simply means we won't have an MDO to update.
1409     Method::build_interpreter_method_data(m, THREAD);
1410     if (HAS_PENDING_EXCEPTION) {
1411       // Only metaspace OOM is expected. No Java code executed.
1412       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1413       CLEAR_PENDING_EXCEPTION;
1414     }
1415     mdo = m->method_data();
1416   }
1417 
1418   if (mdo != NULL) {
1419     mdo->inc_trap_count(Deoptimization::Reason_none);
1420   }
1421 
1422   if (TracePredicateFailedTraps) {
1423     stringStream ss1, ss2;
1424     vframeStream vfst(current);
1425     Method* inlinee = vfst.method();
1426     inlinee->print_short_name(&ss1);
1427     m->print_short_name(&ss2);
1428     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1429   }
1430 
1431 
1432   Deoptimization::deoptimize_frame(current, caller_frame.id());
1433 
1434 JRT_END
1435 
1436 #ifndef PRODUCT
print_statistics()1437 void Runtime1::print_statistics() {
1438   tty->print_cr("C1 Runtime statistics:");
1439   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1440   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1441   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1442   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1443   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1444   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1445   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1446   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1447   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1448   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1449   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1450   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1451   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1452   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1453 
1454   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1455   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1456   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1457   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1458   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1459   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1460   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1461 
1462   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1463   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1464   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1465   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1466   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1467   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1468   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1469 
1470   SharedRuntime::print_ic_miss_histogram();
1471   tty->cr();
1472 }
1473 #endif // PRODUCT
1474