1 /*
2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import jdk.internal.math.FloatingDecimal;
29 
30 import java.util.Arrays;
31 import java.util.Spliterator;
32 import java.util.stream.IntStream;
33 import java.util.stream.StreamSupport;
34 import jdk.internal.util.ArraysSupport;
35 
36 import static java.lang.String.COMPACT_STRINGS;
37 import static java.lang.String.UTF16;
38 import static java.lang.String.LATIN1;
39 import static java.lang.String.checkIndex;
40 import static java.lang.String.checkOffset;
41 
42 /**
43  * A mutable sequence of characters.
44  * <p>
45  * Implements a modifiable string. At any point in time it contains some
46  * particular sequence of characters, but the length and content of the
47  * sequence can be changed through certain method calls.
48  *
49  * <p>Unless otherwise noted, passing a {@code null} argument to a constructor
50  * or method in this class will cause a {@link NullPointerException} to be
51  * thrown.
52  *
53  * @author      Michael McCloskey
54  * @author      Martin Buchholz
55  * @author      Ulf Zibis
56  * @since       1.5
57  */
58 abstract class AbstractStringBuilder implements Appendable, CharSequence {
59     /**
60      * The value is used for character storage.
61      */
62     byte[] value;
63 
64     /**
65      * The id of the encoding used to encode the bytes in {@code value}.
66      */
67     byte coder;
68 
69     /**
70      * The count is the number of characters used.
71      */
72     int count;
73 
74     private static final byte[] EMPTYVALUE = new byte[0];
75 
76     /**
77      * This no-arg constructor is necessary for serialization of subclasses.
78      */
AbstractStringBuilder()79     AbstractStringBuilder() {
80         value = EMPTYVALUE;
81     }
82 
83     /**
84      * Creates an AbstractStringBuilder of the specified capacity.
85      */
AbstractStringBuilder(int capacity)86     AbstractStringBuilder(int capacity) {
87         if (COMPACT_STRINGS) {
88             value = new byte[capacity];
89             coder = LATIN1;
90         } else {
91             value = StringUTF16.newBytesFor(capacity);
92             coder = UTF16;
93         }
94     }
95 
96     /**
97      * Constructs an AbstractStringBuilder that contains the same characters
98      * as the specified {@code String}. The initial capacity of
99      * the string builder is {@code 16} plus the length of the
100      * {@code String} argument.
101      *
102      * @param      str   the string to copy.
103      */
AbstractStringBuilder(String str)104     AbstractStringBuilder(String str) {
105         int length = str.length();
106         int capacity = (length < Integer.MAX_VALUE - 16)
107                 ? length + 16 : Integer.MAX_VALUE;
108         final byte initCoder = str.coder();
109         coder = initCoder;
110         value = (initCoder == LATIN1)
111                 ? new byte[capacity] : StringUTF16.newBytesFor(capacity);
112         append(str);
113     }
114 
115     /**
116      * Constructs an AbstractStringBuilder that contains the same characters
117      * as the specified {@code CharSequence}. The initial capacity of
118      * the string builder is {@code 16} plus the length of the
119      * {@code CharSequence} argument.
120      *
121      * @param      seq   the sequence to copy.
122      */
AbstractStringBuilder(CharSequence seq)123     AbstractStringBuilder(CharSequence seq) {
124         int length = seq.length();
125         if (length < 0) {
126             throw new NegativeArraySizeException("Negative length: " + length);
127         }
128         int capacity = (length < Integer.MAX_VALUE - 16)
129                 ? length + 16 : Integer.MAX_VALUE;
130 
131         final byte initCoder;
132         if (COMPACT_STRINGS) {
133             if (seq instanceof AbstractStringBuilder) {
134                 initCoder = ((AbstractStringBuilder)seq).getCoder();
135             } else if (seq instanceof String) {
136                 initCoder = ((String)seq).coder();
137             } else {
138                 initCoder = LATIN1;
139             }
140         } else {
141             initCoder = UTF16;
142         }
143 
144         coder = initCoder;
145         value = (initCoder == LATIN1)
146                 ? new byte[capacity] : StringUTF16.newBytesFor(capacity);
147         append(seq);
148     }
149 
150     /**
151      * Compares the objects of two AbstractStringBuilder implementations lexicographically.
152      *
153      * @since 11
154      */
compareTo(AbstractStringBuilder another)155     int compareTo(AbstractStringBuilder another) {
156         if (this == another) {
157             return 0;
158         }
159 
160         byte[] val1 = value;
161         byte[] val2 = another.value;
162         int count1 = this.count;
163         int count2 = another.count;
164 
165         if (coder == another.coder) {
166             return isLatin1() ? StringLatin1.compareTo(val1, val2, count1, count2)
167                               : StringUTF16.compareTo(val1, val2, count1, count2);
168         }
169         return isLatin1() ? StringLatin1.compareToUTF16(val1, val2, count1, count2)
170                           : StringUTF16.compareToLatin1(val1, val2, count1, count2);
171     }
172 
173     /**
174      * Returns the length (character count).
175      *
176      * @return  the length of the sequence of characters currently
177      *          represented by this object
178      */
179     @Override
length()180     public int length() {
181         return count;
182     }
183 
184     /**
185      * Returns the current capacity. The capacity is the number of characters
186      * that can be stored (including already written characters), beyond which
187      * an allocation will occur.
188      *
189      * @return  the current capacity
190      */
capacity()191     public int capacity() {
192         return value.length >> coder;
193     }
194 
195     /**
196      * Ensures that the capacity is at least equal to the specified minimum.
197      * If the current capacity is less than the argument, then a new internal
198      * array is allocated with greater capacity. The new capacity is the
199      * larger of:
200      * <ul>
201      * <li>The {@code minimumCapacity} argument.
202      * <li>Twice the old capacity, plus {@code 2}.
203      * </ul>
204      * If the {@code minimumCapacity} argument is nonpositive, this
205      * method takes no action and simply returns.
206      * Note that subsequent operations on this object can reduce the
207      * actual capacity below that requested here.
208      *
209      * @param   minimumCapacity   the minimum desired capacity.
210      */
ensureCapacity(int minimumCapacity)211     public void ensureCapacity(int minimumCapacity) {
212         if (minimumCapacity > 0) {
213             ensureCapacityInternal(minimumCapacity);
214         }
215     }
216 
217     /**
218      * For positive values of {@code minimumCapacity}, this method
219      * behaves like {@code ensureCapacity}, however it is never
220      * synchronized.
221      * If {@code minimumCapacity} is non positive due to numeric
222      * overflow, this method throws {@code OutOfMemoryError}.
223      */
ensureCapacityInternal(int minimumCapacity)224     private void ensureCapacityInternal(int minimumCapacity) {
225         // overflow-conscious code
226         int oldCapacity = value.length >> coder;
227         if (minimumCapacity - oldCapacity > 0) {
228             value = Arrays.copyOf(value,
229                     newCapacity(minimumCapacity) << coder);
230         }
231     }
232 
233     /**
234      * The maximum size of array to allocate (unless necessary).
235      * Some VMs reserve some header words in an array.
236      * Attempts to allocate larger arrays may result in
237      * OutOfMemoryError: Requested array size exceeds VM limit
238      */
239     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
240 
241     /**
242      * Returns a capacity at least as large as the given minimum capacity.
243      * Returns the current capacity increased by the current length + 2 if
244      * that suffices.
245      * Will not return a capacity greater than
246      * {@code (MAX_ARRAY_SIZE >> coder)} unless the given minimum capacity
247      * is greater than that.
248      *
249      * @param  minCapacity the desired minimum capacity
250      * @throws OutOfMemoryError if minCapacity is less than zero or
251      *         greater than (Integer.MAX_VALUE >> coder)
252      */
newCapacity(int minCapacity)253     private int newCapacity(int minCapacity) {
254         int oldLength = value.length;
255         int newLength = minCapacity << coder;
256         int growth = newLength - oldLength;
257         int length = ArraysSupport.newLength(oldLength, growth, oldLength + (2 << coder));
258         if (length == Integer.MAX_VALUE) {
259             throw new OutOfMemoryError("Required length exceeds implementation limit");
260         }
261         return length >> coder;
262     }
263 
264     /**
265      * If the coder is "isLatin1", this inflates the internal 8-bit storage
266      * to 16-bit <hi=0, low> pair storage.
267      */
inflate()268     private void inflate() {
269         if (!isLatin1()) {
270             return;
271         }
272         byte[] buf = StringUTF16.newBytesFor(value.length);
273         StringLatin1.inflate(value, 0, buf, 0, count);
274         this.value = buf;
275         this.coder = UTF16;
276     }
277 
278     /**
279      * Attempts to reduce storage used for the character sequence.
280      * If the buffer is larger than necessary to hold its current sequence of
281      * characters, then it may be resized to become more space efficient.
282      * Calling this method may, but is not required to, affect the value
283      * returned by a subsequent call to the {@link #capacity()} method.
284      */
trimToSize()285     public void trimToSize() {
286         int length = count << coder;
287         if (length < value.length) {
288             value = Arrays.copyOf(value, length);
289         }
290     }
291 
292     /**
293      * Sets the length of the character sequence.
294      * The sequence is changed to a new character sequence
295      * whose length is specified by the argument. For every nonnegative
296      * index <i>k</i> less than {@code newLength}, the character at
297      * index <i>k</i> in the new character sequence is the same as the
298      * character at index <i>k</i> in the old sequence if <i>k</i> is less
299      * than the length of the old character sequence; otherwise, it is the
300      * null character {@code '\u005Cu0000'}.
301      *
302      * In other words, if the {@code newLength} argument is less than
303      * the current length, the length is changed to the specified length.
304      * <p>
305      * If the {@code newLength} argument is greater than or equal
306      * to the current length, sufficient null characters
307      * ({@code '\u005Cu0000'}) are appended so that
308      * length becomes the {@code newLength} argument.
309      * <p>
310      * The {@code newLength} argument must be greater than or equal
311      * to {@code 0}.
312      *
313      * @param      newLength   the new length
314      * @throws     IndexOutOfBoundsException  if the
315      *               {@code newLength} argument is negative.
316      */
setLength(int newLength)317     public void setLength(int newLength) {
318         if (newLength < 0) {
319             throw new StringIndexOutOfBoundsException(newLength);
320         }
321         ensureCapacityInternal(newLength);
322         if (count < newLength) {
323             if (isLatin1()) {
324                 StringLatin1.fillNull(value, count, newLength);
325             } else {
326                 StringUTF16.fillNull(value, count, newLength);
327             }
328         }
329         count = newLength;
330     }
331 
332     /**
333      * Returns the {@code char} value in this sequence at the specified index.
334      * The first {@code char} value is at index {@code 0}, the next at index
335      * {@code 1}, and so on, as in array indexing.
336      * <p>
337      * The index argument must be greater than or equal to
338      * {@code 0}, and less than the length of this sequence.
339      *
340      * <p>If the {@code char} value specified by the index is a
341      * <a href="Character.html#unicode">surrogate</a>, the surrogate
342      * value is returned.
343      *
344      * @param      index   the index of the desired {@code char} value.
345      * @return     the {@code char} value at the specified index.
346      * @throws     IndexOutOfBoundsException  if {@code index} is
347      *             negative or greater than or equal to {@code length()}.
348      */
349     @Override
charAt(int index)350     public char charAt(int index) {
351         checkIndex(index, count);
352         if (isLatin1()) {
353             return (char)(value[index] & 0xff);
354         }
355         return StringUTF16.charAt(value, index);
356     }
357 
358     /**
359      * Returns the character (Unicode code point) at the specified
360      * index. The index refers to {@code char} values
361      * (Unicode code units) and ranges from {@code 0} to
362      * {@link #length()}{@code  - 1}.
363      *
364      * <p> If the {@code char} value specified at the given index
365      * is in the high-surrogate range, the following index is less
366      * than the length of this sequence, and the
367      * {@code char} value at the following index is in the
368      * low-surrogate range, then the supplementary code point
369      * corresponding to this surrogate pair is returned. Otherwise,
370      * the {@code char} value at the given index is returned.
371      *
372      * @param      index the index to the {@code char} values
373      * @return     the code point value of the character at the
374      *             {@code index}
375      * @throws     IndexOutOfBoundsException  if the {@code index}
376      *             argument is negative or not less than the length of this
377      *             sequence.
378      */
codePointAt(int index)379     public int codePointAt(int index) {
380         int count = this.count;
381         byte[] value = this.value;
382         checkIndex(index, count);
383         if (isLatin1()) {
384             return value[index] & 0xff;
385         }
386         return StringUTF16.codePointAtSB(value, index, count);
387     }
388 
389     /**
390      * Returns the character (Unicode code point) before the specified
391      * index. The index refers to {@code char} values
392      * (Unicode code units) and ranges from {@code 1} to {@link
393      * #length()}.
394      *
395      * <p> If the {@code char} value at {@code (index - 1)}
396      * is in the low-surrogate range, {@code (index - 2)} is not
397      * negative, and the {@code char} value at {@code (index -
398      * 2)} is in the high-surrogate range, then the
399      * supplementary code point value of the surrogate pair is
400      * returned. If the {@code char} value at {@code index -
401      * 1} is an unpaired low-surrogate or a high-surrogate, the
402      * surrogate value is returned.
403      *
404      * @param     index the index following the code point that should be returned
405      * @return    the Unicode code point value before the given index.
406      * @throws    IndexOutOfBoundsException if the {@code index}
407      *            argument is less than 1 or greater than the length
408      *            of this sequence.
409      */
codePointBefore(int index)410     public int codePointBefore(int index) {
411         int i = index - 1;
412         if (i < 0 || i >= count) {
413             throw new StringIndexOutOfBoundsException(index);
414         }
415         if (isLatin1()) {
416             return value[i] & 0xff;
417         }
418         return StringUTF16.codePointBeforeSB(value, index);
419     }
420 
421     /**
422      * Returns the number of Unicode code points in the specified text
423      * range of this sequence. The text range begins at the specified
424      * {@code beginIndex} and extends to the {@code char} at
425      * index {@code endIndex - 1}. Thus the length (in
426      * {@code char}s) of the text range is
427      * {@code endIndex-beginIndex}. Unpaired surrogates within
428      * this sequence count as one code point each.
429      *
430      * @param beginIndex the index to the first {@code char} of
431      * the text range.
432      * @param endIndex the index after the last {@code char} of
433      * the text range.
434      * @return the number of Unicode code points in the specified text
435      * range
436      * @throws    IndexOutOfBoundsException if the
437      * {@code beginIndex} is negative, or {@code endIndex}
438      * is larger than the length of this sequence, or
439      * {@code beginIndex} is larger than {@code endIndex}.
440      */
codePointCount(int beginIndex, int endIndex)441     public int codePointCount(int beginIndex, int endIndex) {
442         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
443             throw new IndexOutOfBoundsException();
444         }
445         if (isLatin1()) {
446             return endIndex - beginIndex;
447         }
448         return StringUTF16.codePointCountSB(value, beginIndex, endIndex);
449     }
450 
451     /**
452      * Returns the index within this sequence that is offset from the
453      * given {@code index} by {@code codePointOffset} code
454      * points. Unpaired surrogates within the text range given by
455      * {@code index} and {@code codePointOffset} count as
456      * one code point each.
457      *
458      * @param index the index to be offset
459      * @param codePointOffset the offset in code points
460      * @return the index within this sequence
461      * @throws    IndexOutOfBoundsException if {@code index}
462      *   is negative or larger then the length of this sequence,
463      *   or if {@code codePointOffset} is positive and the subsequence
464      *   starting with {@code index} has fewer than
465      *   {@code codePointOffset} code points,
466      *   or if {@code codePointOffset} is negative and the subsequence
467      *   before {@code index} has fewer than the absolute value of
468      *   {@code codePointOffset} code points.
469      */
offsetByCodePoints(int index, int codePointOffset)470     public int offsetByCodePoints(int index, int codePointOffset) {
471         if (index < 0 || index > count) {
472             throw new IndexOutOfBoundsException();
473         }
474         return Character.offsetByCodePoints(this,
475                                             index, codePointOffset);
476     }
477 
478     /**
479      * Characters are copied from this sequence into the
480      * destination character array {@code dst}. The first character to
481      * be copied is at index {@code srcBegin}; the last character to
482      * be copied is at index {@code srcEnd-1}. The total number of
483      * characters to be copied is {@code srcEnd-srcBegin}. The
484      * characters are copied into the subarray of {@code dst} starting
485      * at index {@code dstBegin} and ending at index:
486      * <pre>{@code
487      * dstbegin + (srcEnd-srcBegin) - 1
488      * }</pre>
489      *
490      * @param      srcBegin   start copying at this offset.
491      * @param      srcEnd     stop copying at this offset.
492      * @param      dst        the array to copy the data into.
493      * @param      dstBegin   offset into {@code dst}.
494      * @throws     IndexOutOfBoundsException  if any of the following is true:
495      *             <ul>
496      *             <li>{@code srcBegin} is negative
497      *             <li>{@code dstBegin} is negative
498      *             <li>the {@code srcBegin} argument is greater than
499      *             the {@code srcEnd} argument.
500      *             <li>{@code srcEnd} is greater than
501      *             {@code this.length()}.
502      *             <li>{@code dstBegin+srcEnd-srcBegin} is greater than
503      *             {@code dst.length}
504      *             </ul>
505      */
getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)506     public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
507     {
508         checkRangeSIOOBE(srcBegin, srcEnd, count);  // compatible to old version
509         int n = srcEnd - srcBegin;
510         checkRange(dstBegin, dstBegin + n, dst.length);
511         if (isLatin1()) {
512             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
513         } else {
514             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
515         }
516     }
517 
518     /**
519      * The character at the specified index is set to {@code ch}. This
520      * sequence is altered to represent a new character sequence that is
521      * identical to the old character sequence, except that it contains the
522      * character {@code ch} at position {@code index}.
523      * <p>
524      * The index argument must be greater than or equal to
525      * {@code 0}, and less than the length of this sequence.
526      *
527      * @param      index   the index of the character to modify.
528      * @param      ch      the new character.
529      * @throws     IndexOutOfBoundsException  if {@code index} is
530      *             negative or greater than or equal to {@code length()}.
531      */
setCharAt(int index, char ch)532     public void setCharAt(int index, char ch) {
533         checkIndex(index, count);
534         if (isLatin1() && StringLatin1.canEncode(ch)) {
535             value[index] = (byte)ch;
536         } else {
537             if (isLatin1()) {
538                 inflate();
539             }
540             StringUTF16.putCharSB(value, index, ch);
541         }
542     }
543 
544     /**
545      * Appends the string representation of the {@code Object} argument.
546      * <p>
547      * The overall effect is exactly as if the argument were converted
548      * to a string by the method {@link String#valueOf(Object)},
549      * and the characters of that string were then
550      * {@link #append(String) appended} to this character sequence.
551      *
552      * @param   obj   an {@code Object}.
553      * @return  a reference to this object.
554      */
append(Object obj)555     public AbstractStringBuilder append(Object obj) {
556         return append(String.valueOf(obj));
557     }
558 
559     /**
560      * Appends the specified string to this character sequence.
561      * <p>
562      * The characters of the {@code String} argument are appended, in
563      * order, increasing the length of this sequence by the length of the
564      * argument. If {@code str} is {@code null}, then the four
565      * characters {@code "null"} are appended.
566      * <p>
567      * Let <i>n</i> be the length of this character sequence just prior to
568      * execution of the {@code append} method. Then the character at
569      * index <i>k</i> in the new character sequence is equal to the character
570      * at index <i>k</i> in the old character sequence, if <i>k</i> is less
571      * than <i>n</i>; otherwise, it is equal to the character at index
572      * <i>k-n</i> in the argument {@code str}.
573      *
574      * @param   str   a string.
575      * @return  a reference to this object.
576      */
append(String str)577     public AbstractStringBuilder append(String str) {
578         if (str == null) {
579             return appendNull();
580         }
581         int len = str.length();
582         ensureCapacityInternal(count + len);
583         putStringAt(count, str);
584         count += len;
585         return this;
586     }
587 
588     /**
589      * Appends the specified {@code StringBuffer} to this sequence.
590      *
591      * @param   sb   the {@code StringBuffer} to append.
592      * @return  a reference to this object.
593      */
append(StringBuffer sb)594     public AbstractStringBuilder append(StringBuffer sb) {
595         return this.append((AbstractStringBuilder)sb);
596     }
597 
598     /**
599      * @since 1.8
600      */
append(AbstractStringBuilder asb)601     AbstractStringBuilder append(AbstractStringBuilder asb) {
602         if (asb == null) {
603             return appendNull();
604         }
605         int len = asb.length();
606         ensureCapacityInternal(count + len);
607         if (getCoder() != asb.getCoder()) {
608             inflate();
609         }
610         asb.getBytes(value, count, coder);
611         count += len;
612         return this;
613     }
614 
615     // Documentation in subclasses because of synchro difference
616     @Override
append(CharSequence s)617     public AbstractStringBuilder append(CharSequence s) {
618         if (s == null) {
619             return appendNull();
620         }
621         if (s instanceof String) {
622             return this.append((String)s);
623         }
624         if (s instanceof AbstractStringBuilder) {
625             return this.append((AbstractStringBuilder)s);
626         }
627         return this.append(s, 0, s.length());
628     }
629 
appendNull()630     private AbstractStringBuilder appendNull() {
631         ensureCapacityInternal(count + 4);
632         int count = this.count;
633         byte[] val = this.value;
634         if (isLatin1()) {
635             val[count++] = 'n';
636             val[count++] = 'u';
637             val[count++] = 'l';
638             val[count++] = 'l';
639         } else {
640             count = StringUTF16.putCharsAt(val, count, 'n', 'u', 'l', 'l');
641         }
642         this.count = count;
643         return this;
644     }
645 
646     /**
647      * Appends a subsequence of the specified {@code CharSequence} to this
648      * sequence.
649      * <p>
650      * Characters of the argument {@code s}, starting at
651      * index {@code start}, are appended, in order, to the contents of
652      * this sequence up to the (exclusive) index {@code end}. The length
653      * of this sequence is increased by the value of {@code end - start}.
654      * <p>
655      * Let <i>n</i> be the length of this character sequence just prior to
656      * execution of the {@code append} method. Then the character at
657      * index <i>k</i> in this character sequence becomes equal to the
658      * character at index <i>k</i> in this sequence, if <i>k</i> is less than
659      * <i>n</i>; otherwise, it is equal to the character at index
660      * <i>k+start-n</i> in the argument {@code s}.
661      * <p>
662      * If {@code s} is {@code null}, then this method appends
663      * characters as if the s parameter was a sequence containing the four
664      * characters {@code "null"}.
665      *
666      * @param   s the sequence to append.
667      * @param   start   the starting index of the subsequence to be appended.
668      * @param   end     the end index of the subsequence to be appended.
669      * @return  a reference to this object.
670      * @throws     IndexOutOfBoundsException if
671      *             {@code start} is negative, or
672      *             {@code start} is greater than {@code end} or
673      *             {@code end} is greater than {@code s.length()}
674      */
675     @Override
append(CharSequence s, int start, int end)676     public AbstractStringBuilder append(CharSequence s, int start, int end) {
677         if (s == null) {
678             s = "null";
679         }
680         checkRange(start, end, s.length());
681         int len = end - start;
682         ensureCapacityInternal(count + len);
683         if (s instanceof String) {
684             appendChars((String)s, start, end);
685         } else {
686             appendChars(s, start, end);
687         }
688         return this;
689     }
690 
691 
692     /**
693      * Appends the string representation of the {@code char} array
694      * argument to this sequence.
695      * <p>
696      * The characters of the array argument are appended, in order, to
697      * the contents of this sequence. The length of this sequence
698      * increases by the length of the argument.
699      * <p>
700      * The overall effect is exactly as if the argument were converted
701      * to a string by the method {@link String#valueOf(char[])},
702      * and the characters of that string were then
703      * {@link #append(String) appended} to this character sequence.
704      *
705      * @param   str   the characters to be appended.
706      * @return  a reference to this object.
707      */
append(char[] str)708     public AbstractStringBuilder append(char[] str) {
709         int len = str.length;
710         ensureCapacityInternal(count + len);
711         appendChars(str, 0, len);
712         return this;
713     }
714 
715     /**
716      * Appends the string representation of a subarray of the
717      * {@code char} array argument to this sequence.
718      * <p>
719      * Characters of the {@code char} array {@code str}, starting at
720      * index {@code offset}, are appended, in order, to the contents
721      * of this sequence. The length of this sequence increases
722      * by the value of {@code len}.
723      * <p>
724      * The overall effect is exactly as if the arguments were converted
725      * to a string by the method {@link String#valueOf(char[],int,int)},
726      * and the characters of that string were then
727      * {@link #append(String) appended} to this character sequence.
728      *
729      * @param   str      the characters to be appended.
730      * @param   offset   the index of the first {@code char} to append.
731      * @param   len      the number of {@code char}s to append.
732      * @return  a reference to this object.
733      * @throws IndexOutOfBoundsException
734      *         if {@code offset < 0} or {@code len < 0}
735      *         or {@code offset+len > str.length}
736      */
append(char[] str, int offset, int len)737     public AbstractStringBuilder append(char[] str, int offset, int len) {
738         int end = offset + len;
739         checkRange(offset, end, str.length);
740         ensureCapacityInternal(count + len);
741         appendChars(str, offset, end);
742         return this;
743     }
744 
745     /**
746      * Appends the string representation of the {@code boolean}
747      * argument to the sequence.
748      * <p>
749      * The overall effect is exactly as if the argument were converted
750      * to a string by the method {@link String#valueOf(boolean)},
751      * and the characters of that string were then
752      * {@link #append(String) appended} to this character sequence.
753      *
754      * @param   b   a {@code boolean}.
755      * @return  a reference to this object.
756      */
append(boolean b)757     public AbstractStringBuilder append(boolean b) {
758         ensureCapacityInternal(count + (b ? 4 : 5));
759         int count = this.count;
760         byte[] val = this.value;
761         if (isLatin1()) {
762             if (b) {
763                 val[count++] = 't';
764                 val[count++] = 'r';
765                 val[count++] = 'u';
766                 val[count++] = 'e';
767             } else {
768                 val[count++] = 'f';
769                 val[count++] = 'a';
770                 val[count++] = 'l';
771                 val[count++] = 's';
772                 val[count++] = 'e';
773             }
774         } else {
775             if (b) {
776                 count = StringUTF16.putCharsAt(val, count, 't', 'r', 'u', 'e');
777             } else {
778                 count = StringUTF16.putCharsAt(val, count, 'f', 'a', 'l', 's', 'e');
779             }
780         }
781         this.count = count;
782         return this;
783     }
784 
785     /**
786      * Appends the string representation of the {@code char}
787      * argument to this sequence.
788      * <p>
789      * The argument is appended to the contents of this sequence.
790      * The length of this sequence increases by {@code 1}.
791      * <p>
792      * The overall effect is exactly as if the argument were converted
793      * to a string by the method {@link String#valueOf(char)},
794      * and the character in that string were then
795      * {@link #append(String) appended} to this character sequence.
796      *
797      * @param   c   a {@code char}.
798      * @return  a reference to this object.
799      */
800     @Override
append(char c)801     public AbstractStringBuilder append(char c) {
802         ensureCapacityInternal(count + 1);
803         if (isLatin1() && StringLatin1.canEncode(c)) {
804             value[count++] = (byte)c;
805         } else {
806             if (isLatin1()) {
807                 inflate();
808             }
809             StringUTF16.putCharSB(value, count++, c);
810         }
811         return this;
812     }
813 
814     /**
815      * Appends the string representation of the {@code int}
816      * argument to this sequence.
817      * <p>
818      * The overall effect is exactly as if the argument were converted
819      * to a string by the method {@link String#valueOf(int)},
820      * and the characters of that string were then
821      * {@link #append(String) appended} to this character sequence.
822      *
823      * @param   i   an {@code int}.
824      * @return  a reference to this object.
825      */
append(int i)826     public AbstractStringBuilder append(int i) {
827         int count = this.count;
828         int spaceNeeded = count + Integer.stringSize(i);
829         ensureCapacityInternal(spaceNeeded);
830         if (isLatin1()) {
831             Integer.getChars(i, spaceNeeded, value);
832         } else {
833             StringUTF16.getChars(i, count, spaceNeeded, value);
834         }
835         this.count = spaceNeeded;
836         return this;
837     }
838 
839     /**
840      * Appends the string representation of the {@code long}
841      * argument to this sequence.
842      * <p>
843      * The overall effect is exactly as if the argument were converted
844      * to a string by the method {@link String#valueOf(long)},
845      * and the characters of that string were then
846      * {@link #append(String) appended} to this character sequence.
847      *
848      * @param   l   a {@code long}.
849      * @return  a reference to this object.
850      */
append(long l)851     public AbstractStringBuilder append(long l) {
852         int count = this.count;
853         int spaceNeeded = count + Long.stringSize(l);
854         ensureCapacityInternal(spaceNeeded);
855         if (isLatin1()) {
856             Long.getChars(l, spaceNeeded, value);
857         } else {
858             StringUTF16.getChars(l, count, spaceNeeded, value);
859         }
860         this.count = spaceNeeded;
861         return this;
862     }
863 
864     /**
865      * Appends the string representation of the {@code float}
866      * argument to this sequence.
867      * <p>
868      * The overall effect is exactly as if the argument were converted
869      * to a string by the method {@link String#valueOf(float)},
870      * and the characters of that string were then
871      * {@link #append(String) appended} to this character sequence.
872      *
873      * @param   f   a {@code float}.
874      * @return  a reference to this object.
875      */
append(float f)876     public AbstractStringBuilder append(float f) {
877         FloatingDecimal.appendTo(f,this);
878         return this;
879     }
880 
881     /**
882      * Appends the string representation of the {@code double}
883      * argument to this sequence.
884      * <p>
885      * The overall effect is exactly as if the argument were converted
886      * to a string by the method {@link String#valueOf(double)},
887      * and the characters of that string were then
888      * {@link #append(String) appended} to this character sequence.
889      *
890      * @param   d   a {@code double}.
891      * @return  a reference to this object.
892      */
append(double d)893     public AbstractStringBuilder append(double d) {
894         FloatingDecimal.appendTo(d,this);
895         return this;
896     }
897 
898     /**
899      * Removes the characters in a substring of this sequence.
900      * The substring begins at the specified {@code start} and extends to
901      * the character at index {@code end - 1} or to the end of the
902      * sequence if no such character exists. If
903      * {@code start} is equal to {@code end}, no changes are made.
904      *
905      * @param      start  The beginning index, inclusive.
906      * @param      end    The ending index, exclusive.
907      * @return     This object.
908      * @throws     StringIndexOutOfBoundsException  if {@code start}
909      *             is negative, greater than {@code length()}, or
910      *             greater than {@code end}.
911      */
delete(int start, int end)912     public AbstractStringBuilder delete(int start, int end) {
913         int count = this.count;
914         if (end > count) {
915             end = count;
916         }
917         checkRangeSIOOBE(start, end, count);
918         int len = end - start;
919         if (len > 0) {
920             shift(end, -len);
921             this.count = count - len;
922         }
923         return this;
924     }
925 
926     /**
927      * Appends the string representation of the {@code codePoint}
928      * argument to this sequence.
929      *
930      * <p> The argument is appended to the contents of this sequence.
931      * The length of this sequence increases by
932      * {@link Character#charCount(int) Character.charCount(codePoint)}.
933      *
934      * <p> The overall effect is exactly as if the argument were
935      * converted to a {@code char} array by the method
936      * {@link Character#toChars(int)} and the character in that array
937      * were then {@link #append(char[]) appended} to this character
938      * sequence.
939      *
940      * @param   codePoint   a Unicode code point
941      * @return  a reference to this object.
942      * @throws    IllegalArgumentException if the specified
943      * {@code codePoint} isn't a valid Unicode code point
944      */
appendCodePoint(int codePoint)945     public AbstractStringBuilder appendCodePoint(int codePoint) {
946         if (Character.isBmpCodePoint(codePoint)) {
947             return append((char)codePoint);
948         }
949         return append(Character.toChars(codePoint));
950     }
951 
952     /**
953      * Removes the {@code char} at the specified position in this
954      * sequence. This sequence is shortened by one {@code char}.
955      *
956      * <p>Note: If the character at the given index is a supplementary
957      * character, this method does not remove the entire character. If
958      * correct handling of supplementary characters is required,
959      * determine the number of {@code char}s to remove by calling
960      * {@code Character.charCount(thisSequence.codePointAt(index))},
961      * where {@code thisSequence} is this sequence.
962      *
963      * @param       index  Index of {@code char} to remove
964      * @return      This object.
965      * @throws      StringIndexOutOfBoundsException  if the {@code index}
966      *              is negative or greater than or equal to
967      *              {@code length()}.
968      */
deleteCharAt(int index)969     public AbstractStringBuilder deleteCharAt(int index) {
970         checkIndex(index, count);
971         shift(index + 1, -1);
972         count--;
973         return this;
974     }
975 
976     /**
977      * Replaces the characters in a substring of this sequence
978      * with characters in the specified {@code String}. The substring
979      * begins at the specified {@code start} and extends to the character
980      * at index {@code end - 1} or to the end of the
981      * sequence if no such character exists. First the
982      * characters in the substring are removed and then the specified
983      * {@code String} is inserted at {@code start}. (This
984      * sequence will be lengthened to accommodate the
985      * specified String if necessary.)
986      *
987      * @param      start    The beginning index, inclusive.
988      * @param      end      The ending index, exclusive.
989      * @param      str   String that will replace previous contents.
990      * @return     This object.
991      * @throws     StringIndexOutOfBoundsException  if {@code start}
992      *             is negative, greater than {@code length()}, or
993      *             greater than {@code end}.
994      */
replace(int start, int end, String str)995     public AbstractStringBuilder replace(int start, int end, String str) {
996         int count = this.count;
997         if (end > count) {
998             end = count;
999         }
1000         checkRangeSIOOBE(start, end, count);
1001         int len = str.length();
1002         int newCount = count + len - (end - start);
1003         ensureCapacityInternal(newCount);
1004         shift(end, newCount - count);
1005         this.count = newCount;
1006         putStringAt(start, str);
1007         return this;
1008     }
1009 
1010     /**
1011      * Returns a new {@code String} that contains a subsequence of
1012      * characters currently contained in this character sequence. The
1013      * substring begins at the specified index and extends to the end of
1014      * this sequence.
1015      *
1016      * @param      start    The beginning index, inclusive.
1017      * @return     The new string.
1018      * @throws     StringIndexOutOfBoundsException  if {@code start} is
1019      *             less than zero, or greater than the length of this object.
1020      */
substring(int start)1021     public String substring(int start) {
1022         return substring(start, count);
1023     }
1024 
1025     /**
1026      * Returns a new character sequence that is a subsequence of this sequence.
1027      *
1028      * <p> An invocation of this method of the form
1029      *
1030      * <pre>{@code
1031      * sb.subSequence(begin, end)}</pre>
1032      *
1033      * behaves in exactly the same way as the invocation
1034      *
1035      * <pre>{@code
1036      * sb.substring(begin, end)}</pre>
1037      *
1038      * This method is provided so that this class can
1039      * implement the {@link CharSequence} interface.
1040      *
1041      * @param      start   the start index, inclusive.
1042      * @param      end     the end index, exclusive.
1043      * @return     the specified subsequence.
1044      *
1045      * @throws  IndexOutOfBoundsException
1046      *          if {@code start} or {@code end} are negative,
1047      *          if {@code end} is greater than {@code length()},
1048      *          or if {@code start} is greater than {@code end}
1049      */
1050     @Override
subSequence(int start, int end)1051     public CharSequence subSequence(int start, int end) {
1052         return substring(start, end);
1053     }
1054 
1055     /**
1056      * Returns a new {@code String} that contains a subsequence of
1057      * characters currently contained in this sequence. The
1058      * substring begins at the specified {@code start} and
1059      * extends to the character at index {@code end - 1}.
1060      *
1061      * @param      start    The beginning index, inclusive.
1062      * @param      end      The ending index, exclusive.
1063      * @return     The new string.
1064      * @throws     StringIndexOutOfBoundsException  if {@code start}
1065      *             or {@code end} are negative or greater than
1066      *             {@code length()}, or {@code start} is
1067      *             greater than {@code end}.
1068      */
substring(int start, int end)1069     public String substring(int start, int end) {
1070         checkRangeSIOOBE(start, end, count);
1071         if (isLatin1()) {
1072             return StringLatin1.newString(value, start, end - start);
1073         }
1074         return StringUTF16.newString(value, start, end - start);
1075     }
1076 
shift(int offset, int n)1077     private void shift(int offset, int n) {
1078         System.arraycopy(value, offset << coder,
1079                          value, (offset + n) << coder, (count - offset) << coder);
1080     }
1081 
1082     /**
1083      * Inserts the string representation of a subarray of the {@code str}
1084      * array argument into this sequence. The subarray begins at the
1085      * specified {@code offset} and extends {@code len} {@code char}s.
1086      * The characters of the subarray are inserted into this sequence at
1087      * the position indicated by {@code index}. The length of this
1088      * sequence increases by {@code len} {@code char}s.
1089      *
1090      * @param      index    position at which to insert subarray.
1091      * @param      str       A {@code char} array.
1092      * @param      offset   the index of the first {@code char} in subarray to
1093      *             be inserted.
1094      * @param      len      the number of {@code char}s in the subarray to
1095      *             be inserted.
1096      * @return     This object
1097      * @throws     StringIndexOutOfBoundsException  if {@code index}
1098      *             is negative or greater than {@code length()}, or
1099      *             {@code offset} or {@code len} are negative, or
1100      *             {@code (offset+len)} is greater than
1101      *             {@code str.length}.
1102      */
insert(int index, char[] str, int offset, int len)1103     public AbstractStringBuilder insert(int index, char[] str, int offset,
1104                                         int len)
1105     {
1106         checkOffset(index, count);
1107         checkRangeSIOOBE(offset, offset + len, str.length);
1108         ensureCapacityInternal(count + len);
1109         shift(index, len);
1110         count += len;
1111         putCharsAt(index, str, offset, offset + len);
1112         return this;
1113     }
1114 
1115     /**
1116      * Inserts the string representation of the {@code Object}
1117      * argument into this character sequence.
1118      * <p>
1119      * The overall effect is exactly as if the second argument were
1120      * converted to a string by the method {@link String#valueOf(Object)},
1121      * and the characters of that string were then
1122      * {@link #insert(int,String) inserted} into this character
1123      * sequence at the indicated offset.
1124      * <p>
1125      * The {@code offset} argument must be greater than or equal to
1126      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1127      * of this sequence.
1128      *
1129      * @param      offset   the offset.
1130      * @param      obj      an {@code Object}.
1131      * @return     a reference to this object.
1132      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1133      */
insert(int offset, Object obj)1134     public AbstractStringBuilder insert(int offset, Object obj) {
1135         return insert(offset, String.valueOf(obj));
1136     }
1137 
1138     /**
1139      * Inserts the string into this character sequence.
1140      * <p>
1141      * The characters of the {@code String} argument are inserted, in
1142      * order, into this sequence at the indicated offset, moving up any
1143      * characters originally above that position and increasing the length
1144      * of this sequence by the length of the argument. If
1145      * {@code str} is {@code null}, then the four characters
1146      * {@code "null"} are inserted into this sequence.
1147      * <p>
1148      * The character at index <i>k</i> in the new character sequence is
1149      * equal to:
1150      * <ul>
1151      * <li>the character at index <i>k</i> in the old character sequence, if
1152      * <i>k</i> is less than {@code offset}
1153      * <li>the character at index <i>k</i>{@code -offset} in the
1154      * argument {@code str}, if <i>k</i> is not less than
1155      * {@code offset} but is less than {@code offset+str.length()}
1156      * <li>the character at index <i>k</i>{@code -str.length()} in the
1157      * old character sequence, if <i>k</i> is not less than
1158      * {@code offset+str.length()}
1159      * </ul><p>
1160      * The {@code offset} argument must be greater than or equal to
1161      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1162      * of this sequence.
1163      *
1164      * @param      offset   the offset.
1165      * @param      str      a string.
1166      * @return     a reference to this object.
1167      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1168      */
insert(int offset, String str)1169     public AbstractStringBuilder insert(int offset, String str) {
1170         checkOffset(offset, count);
1171         if (str == null) {
1172             str = "null";
1173         }
1174         int len = str.length();
1175         ensureCapacityInternal(count + len);
1176         shift(offset, len);
1177         count += len;
1178         putStringAt(offset, str);
1179         return this;
1180     }
1181 
1182     /**
1183      * Inserts the string representation of the {@code char} array
1184      * argument into this sequence.
1185      * <p>
1186      * The characters of the array argument are inserted into the
1187      * contents of this sequence at the position indicated by
1188      * {@code offset}. The length of this sequence increases by
1189      * the length of the argument.
1190      * <p>
1191      * The overall effect is exactly as if the second argument were
1192      * converted to a string by the method {@link String#valueOf(char[])},
1193      * and the characters of that string were then
1194      * {@link #insert(int,String) inserted} into this character
1195      * sequence at the indicated offset.
1196      * <p>
1197      * The {@code offset} argument must be greater than or equal to
1198      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1199      * of this sequence.
1200      *
1201      * @param      offset   the offset.
1202      * @param      str      a character array.
1203      * @return     a reference to this object.
1204      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1205      */
insert(int offset, char[] str)1206     public AbstractStringBuilder insert(int offset, char[] str) {
1207         checkOffset(offset, count);
1208         int len = str.length;
1209         ensureCapacityInternal(count + len);
1210         shift(offset, len);
1211         count += len;
1212         putCharsAt(offset, str, 0, len);
1213         return this;
1214     }
1215 
1216     /**
1217      * Inserts the specified {@code CharSequence} into this sequence.
1218      * <p>
1219      * The characters of the {@code CharSequence} argument are inserted,
1220      * in order, into this sequence at the indicated offset, moving up
1221      * any characters originally above that position and increasing the length
1222      * of this sequence by the length of the argument s.
1223      * <p>
1224      * The result of this method is exactly the same as if it were an
1225      * invocation of this object's
1226      * {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length())
1227      * method.
1228      *
1229      * <p>If {@code s} is {@code null}, then the four characters
1230      * {@code "null"} are inserted into this sequence.
1231      *
1232      * @param      dstOffset   the offset.
1233      * @param      s the sequence to be inserted
1234      * @return     a reference to this object.
1235      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1236      */
insert(int dstOffset, CharSequence s)1237     public AbstractStringBuilder insert(int dstOffset, CharSequence s) {
1238         if (s == null) {
1239             s = "null";
1240         }
1241         return this.insert(dstOffset, s, 0, s.length());
1242     }
1243 
1244     /**
1245      * Inserts a subsequence of the specified {@code CharSequence} into
1246      * this sequence.
1247      * <p>
1248      * The subsequence of the argument {@code s} specified by
1249      * {@code start} and {@code end} are inserted,
1250      * in order, into this sequence at the specified destination offset, moving
1251      * up any characters originally above that position. The length of this
1252      * sequence is increased by {@code end - start}.
1253      * <p>
1254      * The character at index <i>k</i> in this sequence becomes equal to:
1255      * <ul>
1256      * <li>the character at index <i>k</i> in this sequence, if
1257      * <i>k</i> is less than {@code dstOffset}
1258      * <li>the character at index <i>k</i>{@code +start-dstOffset} in
1259      * the argument {@code s}, if <i>k</i> is greater than or equal to
1260      * {@code dstOffset} but is less than {@code dstOffset+end-start}
1261      * <li>the character at index <i>k</i>{@code -(end-start)} in this
1262      * sequence, if <i>k</i> is greater than or equal to
1263      * {@code dstOffset+end-start}
1264      * </ul><p>
1265      * The {@code dstOffset} argument must be greater than or equal to
1266      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1267      * of this sequence.
1268      * <p>The start argument must be nonnegative, and not greater than
1269      * {@code end}.
1270      * <p>The end argument must be greater than or equal to
1271      * {@code start}, and less than or equal to the length of s.
1272      *
1273      * <p>If {@code s} is {@code null}, then this method inserts
1274      * characters as if the s parameter was a sequence containing the four
1275      * characters {@code "null"}.
1276      *
1277      * @param      dstOffset   the offset in this sequence.
1278      * @param      s       the sequence to be inserted.
1279      * @param      start   the starting index of the subsequence to be inserted.
1280      * @param      end     the end index of the subsequence to be inserted.
1281      * @return     a reference to this object.
1282      * @throws     IndexOutOfBoundsException  if {@code dstOffset}
1283      *             is negative or greater than {@code this.length()}, or
1284      *              {@code start} or {@code end} are negative, or
1285      *              {@code start} is greater than {@code end} or
1286      *              {@code end} is greater than {@code s.length()}
1287      */
insert(int dstOffset, CharSequence s, int start, int end)1288     public AbstractStringBuilder insert(int dstOffset, CharSequence s,
1289                                         int start, int end)
1290     {
1291         if (s == null) {
1292             s = "null";
1293         }
1294         checkOffset(dstOffset, count);
1295         checkRange(start, end, s.length());
1296         int len = end - start;
1297         ensureCapacityInternal(count + len);
1298         shift(dstOffset, len);
1299         count += len;
1300         if (s instanceof String) {
1301             putStringAt(dstOffset, (String) s, start, end);
1302         } else {
1303             putCharsAt(dstOffset, s, start, end);
1304         }
1305         return this;
1306     }
1307 
1308     /**
1309      * Inserts the string representation of the {@code boolean}
1310      * argument into this sequence.
1311      * <p>
1312      * The overall effect is exactly as if the second argument were
1313      * converted to a string by the method {@link String#valueOf(boolean)},
1314      * and the characters of that string were then
1315      * {@link #insert(int,String) inserted} into this character
1316      * sequence at the indicated offset.
1317      * <p>
1318      * The {@code offset} argument must be greater than or equal to
1319      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1320      * of this sequence.
1321      *
1322      * @param      offset   the offset.
1323      * @param      b        a {@code boolean}.
1324      * @return     a reference to this object.
1325      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1326      */
insert(int offset, boolean b)1327     public AbstractStringBuilder insert(int offset, boolean b) {
1328         return insert(offset, String.valueOf(b));
1329     }
1330 
1331     /**
1332      * Inserts the string representation of the {@code char}
1333      * argument into this sequence.
1334      * <p>
1335      * The overall effect is exactly as if the second argument were
1336      * converted to a string by the method {@link String#valueOf(char)},
1337      * and the character in that string were then
1338      * {@link #insert(int,String) inserted} into this character
1339      * sequence at the indicated offset.
1340      * <p>
1341      * The {@code offset} argument must be greater than or equal to
1342      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1343      * of this sequence.
1344      *
1345      * @param      offset   the offset.
1346      * @param      c        a {@code char}.
1347      * @return     a reference to this object.
1348      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1349      */
insert(int offset, char c)1350     public AbstractStringBuilder insert(int offset, char c) {
1351         checkOffset(offset, count);
1352         ensureCapacityInternal(count + 1);
1353         shift(offset, 1);
1354         count += 1;
1355         if (isLatin1() && StringLatin1.canEncode(c)) {
1356             value[offset] = (byte)c;
1357         } else {
1358             if (isLatin1()) {
1359                 inflate();
1360             }
1361             StringUTF16.putCharSB(value, offset, c);
1362         }
1363         return this;
1364     }
1365 
1366     /**
1367      * Inserts the string representation of the second {@code int}
1368      * argument into this sequence.
1369      * <p>
1370      * The overall effect is exactly as if the second argument were
1371      * converted to a string by the method {@link String#valueOf(int)},
1372      * and the characters of that string were then
1373      * {@link #insert(int,String) inserted} into this character
1374      * sequence at the indicated offset.
1375      * <p>
1376      * The {@code offset} argument must be greater than or equal to
1377      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1378      * of this sequence.
1379      *
1380      * @param      offset   the offset.
1381      * @param      i        an {@code int}.
1382      * @return     a reference to this object.
1383      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1384      */
insert(int offset, int i)1385     public AbstractStringBuilder insert(int offset, int i) {
1386         return insert(offset, String.valueOf(i));
1387     }
1388 
1389     /**
1390      * Inserts the string representation of the {@code long}
1391      * argument into this sequence.
1392      * <p>
1393      * The overall effect is exactly as if the second argument were
1394      * converted to a string by the method {@link String#valueOf(long)},
1395      * and the characters of that string were then
1396      * {@link #insert(int,String) inserted} into this character
1397      * sequence at the indicated offset.
1398      * <p>
1399      * The {@code offset} argument must be greater than or equal to
1400      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1401      * of this sequence.
1402      *
1403      * @param      offset   the offset.
1404      * @param      l        a {@code long}.
1405      * @return     a reference to this object.
1406      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1407      */
insert(int offset, long l)1408     public AbstractStringBuilder insert(int offset, long l) {
1409         return insert(offset, String.valueOf(l));
1410     }
1411 
1412     /**
1413      * Inserts the string representation of the {@code float}
1414      * argument into this sequence.
1415      * <p>
1416      * The overall effect is exactly as if the second argument were
1417      * converted to a string by the method {@link String#valueOf(float)},
1418      * and the characters of that string were then
1419      * {@link #insert(int,String) inserted} into this character
1420      * sequence at the indicated offset.
1421      * <p>
1422      * The {@code offset} argument must be greater than or equal to
1423      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1424      * of this sequence.
1425      *
1426      * @param      offset   the offset.
1427      * @param      f        a {@code float}.
1428      * @return     a reference to this object.
1429      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1430      */
insert(int offset, float f)1431     public AbstractStringBuilder insert(int offset, float f) {
1432         return insert(offset, String.valueOf(f));
1433     }
1434 
1435     /**
1436      * Inserts the string representation of the {@code double}
1437      * argument into this sequence.
1438      * <p>
1439      * The overall effect is exactly as if the second argument were
1440      * converted to a string by the method {@link String#valueOf(double)},
1441      * and the characters of that string were then
1442      * {@link #insert(int,String) inserted} into this character
1443      * sequence at the indicated offset.
1444      * <p>
1445      * The {@code offset} argument must be greater than or equal to
1446      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1447      * of this sequence.
1448      *
1449      * @param      offset   the offset.
1450      * @param      d        a {@code double}.
1451      * @return     a reference to this object.
1452      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1453      */
insert(int offset, double d)1454     public AbstractStringBuilder insert(int offset, double d) {
1455         return insert(offset, String.valueOf(d));
1456     }
1457 
1458     /**
1459      * Returns the index within this string of the first occurrence of the
1460      * specified substring.
1461      *
1462      * <p>The returned index is the smallest value {@code k} for which:
1463      * <pre>{@code
1464      * this.toString().startsWith(str, k)
1465      * }</pre>
1466      * If no such value of {@code k} exists, then {@code -1} is returned.
1467      *
1468      * @param   str   the substring to search for.
1469      * @return  the index of the first occurrence of the specified substring,
1470      *          or {@code -1} if there is no such occurrence.
1471      */
indexOf(String str)1472     public int indexOf(String str) {
1473         return indexOf(str, 0);
1474     }
1475 
1476     /**
1477      * Returns the index within this string of the first occurrence of the
1478      * specified substring, starting at the specified index.
1479      *
1480      * <p>The returned index is the smallest value {@code k} for which:
1481      * <pre>{@code
1482      *     k >= Math.min(fromIndex, this.length()) &&
1483      *                   this.toString().startsWith(str, k)
1484      * }</pre>
1485      * If no such value of {@code k} exists, then {@code -1} is returned.
1486      *
1487      * @param   str         the substring to search for.
1488      * @param   fromIndex   the index from which to start the search.
1489      * @return  the index of the first occurrence of the specified substring,
1490      *          starting at the specified index,
1491      *          or {@code -1} if there is no such occurrence.
1492      */
indexOf(String str, int fromIndex)1493     public int indexOf(String str, int fromIndex) {
1494         return String.indexOf(value, coder, count, str, fromIndex);
1495     }
1496 
1497     /**
1498      * Returns the index within this string of the last occurrence of the
1499      * specified substring.  The last occurrence of the empty string "" is
1500      * considered to occur at the index value {@code this.length()}.
1501      *
1502      * <p>The returned index is the largest value {@code k} for which:
1503      * <pre>{@code
1504      * this.toString().startsWith(str, k)
1505      * }</pre>
1506      * If no such value of {@code k} exists, then {@code -1} is returned.
1507      *
1508      * @param   str   the substring to search for.
1509      * @return  the index of the last occurrence of the specified substring,
1510      *          or {@code -1} if there is no such occurrence.
1511      */
lastIndexOf(String str)1512     public int lastIndexOf(String str) {
1513         return lastIndexOf(str, count);
1514     }
1515 
1516     /**
1517      * Returns the index within this string of the last occurrence of the
1518      * specified substring, searching backward starting at the specified index.
1519      *
1520      * <p>The returned index is the largest value {@code k} for which:
1521      * <pre>{@code
1522      *     k <= Math.min(fromIndex, this.length()) &&
1523      *                   this.toString().startsWith(str, k)
1524      * }</pre>
1525      * If no such value of {@code k} exists, then {@code -1} is returned.
1526      *
1527      * @param   str         the substring to search for.
1528      * @param   fromIndex   the index to start the search from.
1529      * @return  the index of the last occurrence of the specified substring,
1530      *          searching backward from the specified index,
1531      *          or {@code -1} if there is no such occurrence.
1532      */
lastIndexOf(String str, int fromIndex)1533     public int lastIndexOf(String str, int fromIndex) {
1534         return String.lastIndexOf(value, coder, count, str, fromIndex);
1535     }
1536 
1537     /**
1538      * Causes this character sequence to be replaced by the reverse of
1539      * the sequence. If there are any surrogate pairs included in the
1540      * sequence, these are treated as single characters for the
1541      * reverse operation. Thus, the order of the high-low surrogates
1542      * is never reversed.
1543      *
1544      * Let <i>n</i> be the character length of this character sequence
1545      * (not the length in {@code char} values) just prior to
1546      * execution of the {@code reverse} method. Then the
1547      * character at index <i>k</i> in the new character sequence is
1548      * equal to the character at index <i>n-k-1</i> in the old
1549      * character sequence.
1550      *
1551      * <p>Note that the reverse operation may result in producing
1552      * surrogate pairs that were unpaired low-surrogates and
1553      * high-surrogates before the operation. For example, reversing
1554      * "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is
1555      * a valid surrogate pair.
1556      *
1557      * @return  a reference to this object.
1558      */
reverse()1559     public AbstractStringBuilder reverse() {
1560         byte[] val = this.value;
1561         int count = this.count;
1562         int n = count - 1;
1563         if (isLatin1()) {
1564             for (int j = (n-1) >> 1; j >= 0; j--) {
1565                 int k = n - j;
1566                 byte cj = val[j];
1567                 val[j] = val[k];
1568                 val[k] = cj;
1569             }
1570         } else {
1571             StringUTF16.reverse(val, count);
1572         }
1573         return this;
1574     }
1575 
1576     /**
1577      * Returns a string representing the data in this sequence.
1578      * A new {@code String} object is allocated and initialized to
1579      * contain the character sequence currently represented by this
1580      * object. This {@code String} is then returned. Subsequent
1581      * changes to this sequence do not affect the contents of the
1582      * {@code String}.
1583      *
1584      * @return  a string representation of this sequence of characters.
1585      */
1586     @Override
toString()1587     public abstract String toString();
1588 
1589     /**
1590      * {@inheritDoc}
1591      * @since 9
1592      */
1593     @Override
chars()1594     public IntStream chars() {
1595         // Reuse String-based spliterator. This requires a supplier to
1596         // capture the value and count when the terminal operation is executed
1597         return StreamSupport.intStream(
1598                 () -> {
1599                     // The combined set of field reads are not atomic and thread
1600                     // safe but bounds checks will ensure no unsafe reads from
1601                     // the byte array
1602                     byte[] val = this.value;
1603                     int count = this.count;
1604                     byte coder = this.coder;
1605                     return coder == LATIN1
1606                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1607                            : new StringUTF16.CharsSpliterator(val, 0, count, 0);
1608                 },
1609                 Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
1610                 false);
1611     }
1612 
1613     /**
1614      * {@inheritDoc}
1615      * @since 9
1616      */
1617     @Override
codePoints()1618     public IntStream codePoints() {
1619         // Reuse String-based spliterator. This requires a supplier to
1620         // capture the value and count when the terminal operation is executed
1621         return StreamSupport.intStream(
1622                 () -> {
1623                     // The combined set of field reads are not atomic and thread
1624                     // safe but bounds checks will ensure no unsafe reads from
1625                     // the byte array
1626                     byte[] val = this.value;
1627                     int count = this.count;
1628                     byte coder = this.coder;
1629                     return coder == LATIN1
1630                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1631                            : new StringUTF16.CodePointsSpliterator(val, 0, count, 0);
1632                 },
1633                 Spliterator.ORDERED,
1634                 false);
1635     }
1636 
1637     /**
1638      * Needed by {@code String} for the contentEquals method.
1639      */
1640     final byte[] getValue() {
1641         return value;
1642     }
1643 
1644     /*
1645      * Invoker guarantees it is in UTF16 (inflate itself for asb), if two
1646      * coders are different and the dstBegin has enough space
1647      *
1648      * @param dstBegin  the char index, not offset of byte[]
1649      * @param coder     the coder of dst[]
1650      */
1651     void getBytes(byte[] dst, int dstBegin, byte coder) {
1652         if (this.coder == coder) {
1653             System.arraycopy(value, 0, dst, dstBegin << coder, count << coder);
1654         } else {        // this.coder == LATIN && coder == UTF16
1655             StringLatin1.inflate(value, 0, dst, dstBegin, count);
1656         }
1657     }
1658 
1659     /* for readObject() */
1660     void initBytes(char[] value, int off, int len) {
1661         if (String.COMPACT_STRINGS) {
1662             this.value = StringUTF16.compress(value, off, len);
1663             if (this.value != null) {
1664                 this.coder = LATIN1;
1665                 return;
1666             }
1667         }
1668         this.coder = UTF16;
1669         this.value = StringUTF16.toBytes(value, off, len);
1670     }
1671 
1672     final byte getCoder() {
1673         return COMPACT_STRINGS ? coder : UTF16;
1674     }
1675 
1676     final boolean isLatin1() {
1677         return COMPACT_STRINGS && coder == LATIN1;
1678     }
1679 
1680     private final void putCharsAt(int index, char[] s, int off, int end) {
1681         if (isLatin1()) {
1682             byte[] val = this.value;
1683             for (int i = off, j = index; i < end; i++) {
1684                 char c = s[i];
1685                 if (StringLatin1.canEncode(c)) {
1686                     val[j++] = (byte)c;
1687                 } else {
1688                     inflate();
1689                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1690                     return;
1691                 }
1692             }
1693         } else {
1694             StringUTF16.putCharsSB(this.value, index, s, off, end);
1695         }
1696     }
1697 
1698     private final void putCharsAt(int index, CharSequence s, int off, int end) {
1699         if (isLatin1()) {
1700             byte[] val = this.value;
1701             for (int i = off, j = index; i < end; i++) {
1702                 char c = s.charAt(i);
1703                 if (StringLatin1.canEncode(c)) {
1704                     val[j++] = (byte)c;
1705                 } else {
1706                     inflate();
1707                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1708                     return;
1709                 }
1710             }
1711         } else {
1712             StringUTF16.putCharsSB(this.value, index, s, off, end);
1713         }
1714     }
1715 
1716     private void putStringAt(int index, String str, int off, int end) {
1717         if (getCoder() != str.coder()) {
1718             inflate();
1719         }
1720         str.getBytes(value, off, index, coder, end - off);
1721     }
1722 
1723     private void putStringAt(int index, String str) {
1724         putStringAt(index, str, 0, str.length());
1725     }
1726 
1727     private final void appendChars(char[] s, int off, int end) {
1728         int count = this.count;
1729         if (isLatin1()) {
1730             byte[] val = this.value;
1731             for (int i = off, j = count; i < end; i++) {
1732                 char c = s[i];
1733                 if (StringLatin1.canEncode(c)) {
1734                     val[j++] = (byte)c;
1735                 } else {
1736                     this.count = count = j;
1737                     inflate();
1738                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1739                     this.count = count + end - i;
1740                     return;
1741                 }
1742             }
1743         } else {
1744             StringUTF16.putCharsSB(this.value, count, s, off, end);
1745         }
1746         this.count = count + end - off;
1747     }
1748 
1749     private final void appendChars(String s, int off, int end) {
1750         if (isLatin1()) {
1751             if (s.isLatin1()) {
1752                 System.arraycopy(s.value(), off, this.value, this.count, end - off);
1753             } else {
1754                 // We might need to inflate, but do it as late as possible since
1755                 // the range of characters we're copying might all be latin1
1756                 byte[] val = this.value;
1757                 for (int i = off, j = count; i < end; i++) {
1758                     char c = s.charAt(i);
1759                     if (StringLatin1.canEncode(c)) {
1760                         val[j++] = (byte) c;
1761                     } else {
1762                         count = j;
1763                         inflate();
1764                         System.arraycopy(s.value(), i << UTF16, this.value, j << UTF16, (end - i) << UTF16);
1765                         count += end - i;
1766                         return;
1767                     }
1768                 }
1769             }
1770         } else if (s.isLatin1()) {
1771             StringUTF16.putCharsSB(this.value, this.count, s, off, end);
1772         } else { // both UTF16
1773             System.arraycopy(s.value(), off << UTF16, this.value, this.count << UTF16, (end - off) << UTF16);
1774         }
1775         count += end - off;
1776     }
1777 
1778     private final void appendChars(CharSequence s, int off, int end) {
1779         if (isLatin1()) {
1780             byte[] val = this.value;
1781             for (int i = off, j = count; i < end; i++) {
1782                 char c = s.charAt(i);
1783                 if (StringLatin1.canEncode(c)) {
1784                     val[j++] = (byte)c;
1785                 } else {
1786                     count = j;
1787                     inflate();
1788                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1789                     count += end - i;
1790                     return;
1791                 }
1792             }
1793         } else {
1794             StringUTF16.putCharsSB(this.value, count, s, off, end);
1795         }
1796         count += end - off;
1797     }
1798 
1799     /* IndexOutOfBoundsException, if out of bounds */
1800     private static void checkRange(int start, int end, int len) {
1801         if (start < 0 || start > end || end > len) {
1802             throw new IndexOutOfBoundsException(
1803                 "start " + start + ", end " + end + ", length " + len);
1804         }
1805     }
1806 
1807     /* StringIndexOutOfBoundsException, if out of bounds */
1808     private static void checkRangeSIOOBE(int start, int end, int len) {
1809         if (start < 0 || start > end || end > len) {
1810             throw new StringIndexOutOfBoundsException(
1811                 "start " + start + ", end " + end + ", length " + len);
1812         }
1813     }
1814 }
1815