1 /*
2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.inline.hpp"
27 #include "code/debugInfoRec.hpp"
28 #include "code/icBuffer.hpp"
29 #include "code/vtableStubs.hpp"
30 #include "interpreter/interpreter.hpp"
31 #include "oops/compiledICHolder.hpp"
32 #include "prims/jvmtiRedefineClassesTrace.hpp"
33 #include "runtime/sharedRuntime.hpp"
34 #include "runtime/vframeArray.hpp"
35 #include "vmreg_sparc.inline.hpp"
36 #ifdef COMPILER1
37 #include "c1/c1_Runtime1.hpp"
38 #endif
39 #ifdef COMPILER2
40 #include "opto/runtime.hpp"
41 #endif
42 #ifdef SHARK
43 #include "compiler/compileBroker.hpp"
44 #include "shark/sharkCompiler.hpp"
45 #endif
46 
47 #define __ masm->
48 
49 
50 class RegisterSaver {
51 
52   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
53   // The Oregs are problematic. In the 32bit build the compiler can
54   // have O registers live with 64 bit quantities. A window save will
55   // cut the heads off of the registers. We have to do a very extensive
56   // stack dance to save and restore these properly.
57 
58   // Note that the Oregs problem only exists if we block at either a polling
59   // page exception a compiled code safepoint that was not originally a call
60   // or deoptimize following one of these kinds of safepoints.
61 
62   // Lots of registers to save.  For all builds, a window save will preserve
63   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
64   // builds a window-save will preserve the %o registers.  In the LION build
65   // we need to save the 64-bit %o registers which requires we save them
66   // before the window-save (as then they become %i registers and get their
67   // heads chopped off on interrupt).  We have to save some %g registers here
68   // as well.
69   enum {
70     // This frame's save area.  Includes extra space for the native call:
71     // vararg's layout space and the like.  Briefly holds the caller's
72     // register save area.
73     call_args_area = frame::register_save_words_sp_offset +
74                      frame::memory_parameter_word_sp_offset*wordSize,
75     // Make sure save locations are always 8 byte aligned.
76     // can't use round_to because it doesn't produce compile time constant
77     start_of_extra_save_area = ((call_args_area + 7) & ~7),
78     g1_offset = start_of_extra_save_area, // g-regs needing saving
79     g3_offset = g1_offset+8,
80     g4_offset = g3_offset+8,
81     g5_offset = g4_offset+8,
82     o0_offset = g5_offset+8,
83     o1_offset = o0_offset+8,
84     o2_offset = o1_offset+8,
85     o3_offset = o2_offset+8,
86     o4_offset = o3_offset+8,
87     o5_offset = o4_offset+8,
88     start_of_flags_save_area = o5_offset+8,
89     ccr_offset = start_of_flags_save_area,
90     fsr_offset = ccr_offset + 8,
91     d00_offset = fsr_offset+8,  // Start of float save area
92     register_save_size = d00_offset+8*32
93   };
94 
95 
96   public:
97 
Oexception_offset()98   static int Oexception_offset() { return o0_offset; };
G3_offset()99   static int G3_offset() { return g3_offset; };
G5_offset()100   static int G5_offset() { return g5_offset; };
101   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
102   static void restore_live_registers(MacroAssembler* masm);
103 
104   // During deoptimization only the result register need to be restored
105   // all the other values have already been extracted.
106 
107   static void restore_result_registers(MacroAssembler* masm);
108 };
109 
save_live_registers(MacroAssembler * masm,int additional_frame_words,int * total_frame_words)110 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
111   // Record volatile registers as callee-save values in an OopMap so their save locations will be
112   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
113   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
114   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
115   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
116   int i;
117   // Always make the frame size 16 byte aligned.
118   int frame_size = round_to(additional_frame_words + register_save_size, 16);
119   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
120   int frame_size_in_slots = frame_size / sizeof(jint);
121   // CodeBlob frame size is in words.
122   *total_frame_words = frame_size / wordSize;
123   // OopMap* map = new OopMap(*total_frame_words, 0);
124   OopMap* map = new OopMap(frame_size_in_slots, 0);
125 
126 #if !defined(_LP64)
127 
128   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
129   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
130   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
131   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
132   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
133   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
134   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
135 #endif /* _LP64 */
136 
137   __ save(SP, -frame_size, SP);
138 
139 #ifndef _LP64
140   // Reload the 64 bit Oregs. Although they are now Iregs we load them
141   // to Oregs here to avoid interrupts cutting off their heads
142 
143   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
149 
150   __ stx(O0, SP, o0_offset+STACK_BIAS);
151   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
152 
153   __ stx(O1, SP, o1_offset+STACK_BIAS);
154 
155   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
156 
157   __ stx(O2, SP, o2_offset+STACK_BIAS);
158   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
159 
160   __ stx(O3, SP, o3_offset+STACK_BIAS);
161   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
162 
163   __ stx(O4, SP, o4_offset+STACK_BIAS);
164   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
165 
166   __ stx(O5, SP, o5_offset+STACK_BIAS);
167   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
168 #endif /* _LP64 */
169 
170 
171 #ifdef _LP64
172   int debug_offset = 0;
173 #else
174   int debug_offset = 4;
175 #endif
176   // Save the G's
177   __ stx(G1, SP, g1_offset+STACK_BIAS);
178   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
179 
180   __ stx(G3, SP, g3_offset+STACK_BIAS);
181   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
182 
183   __ stx(G4, SP, g4_offset+STACK_BIAS);
184   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
185 
186   __ stx(G5, SP, g5_offset+STACK_BIAS);
187   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
188 
189   // This is really a waste but we'll keep things as they were for now
190   if (true) {
191 #ifndef _LP64
192     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
193     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
194     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
195     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
196     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
197     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
198     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
199     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
200     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
201     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
202 #endif /* _LP64 */
203   }
204 
205 
206   // Save the flags
207   __ rdccr( G5 );
208   __ stx(G5, SP, ccr_offset+STACK_BIAS);
209   __ stxfsr(SP, fsr_offset+STACK_BIAS);
210 
211   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
212   int offset = d00_offset;
213   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
214     FloatRegister f = as_FloatRegister(i);
215     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
216     // Record as callee saved both halves of double registers (2 float registers).
217     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
218     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
219     offset += sizeof(double);
220   }
221 
222   // And we're done.
223 
224   return map;
225 }
226 
227 
228 // Pop the current frame and restore all the registers that we
229 // saved.
restore_live_registers(MacroAssembler * masm)230 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
231 
232   // Restore all the FP registers
233   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
234     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
235   }
236 
237   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
238   __ wrccr (G1) ;
239 
240   // Restore the G's
241   // Note that G2 (AKA GThread) must be saved and restored separately.
242   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
243 
244   __ ldx(SP, g1_offset+STACK_BIAS, G1);
245   __ ldx(SP, g3_offset+STACK_BIAS, G3);
246   __ ldx(SP, g4_offset+STACK_BIAS, G4);
247   __ ldx(SP, g5_offset+STACK_BIAS, G5);
248 
249 
250 #if !defined(_LP64)
251   // Restore the 64-bit O's.
252   __ ldx(SP, o0_offset+STACK_BIAS, O0);
253   __ ldx(SP, o1_offset+STACK_BIAS, O1);
254   __ ldx(SP, o2_offset+STACK_BIAS, O2);
255   __ ldx(SP, o3_offset+STACK_BIAS, O3);
256   __ ldx(SP, o4_offset+STACK_BIAS, O4);
257   __ ldx(SP, o5_offset+STACK_BIAS, O5);
258 
259   // And temporarily place them in TLS
260 
261   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
262   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
263   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
264   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
265   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
266   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
267 #endif /* _LP64 */
268 
269   // Restore flags
270 
271   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
272 
273   __ restore();
274 
275 #if !defined(_LP64)
276   // Now reload the 64bit Oregs after we've restore the window.
277   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
283 #endif /* _LP64 */
284 
285 }
286 
287 // Pop the current frame and restore the registers that might be holding
288 // a result.
restore_result_registers(MacroAssembler * masm)289 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
290 
291 #if !defined(_LP64)
292   // 32bit build returns longs in G1
293   __ ldx(SP, g1_offset+STACK_BIAS, G1);
294 
295   // Retrieve the 64-bit O's.
296   __ ldx(SP, o0_offset+STACK_BIAS, O0);
297   __ ldx(SP, o1_offset+STACK_BIAS, O1);
298   // and save to TLS
299   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
300   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
301 #endif /* _LP64 */
302 
303   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
304 
305   __ restore();
306 
307 #if !defined(_LP64)
308   // Now reload the 64bit Oregs after we've restore the window.
309   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
311 #endif /* _LP64 */
312 
313 }
314 
315 // Is vector's size (in bytes) bigger than a size saved by default?
316 // 8 bytes FP registers are saved by default on SPARC.
is_wide_vector(int size)317 bool SharedRuntime::is_wide_vector(int size) {
318   // Note, MaxVectorSize == 8 on SPARC.
319   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
320   return size > 8;
321 }
322 
323 // The java_calling_convention describes stack locations as ideal slots on
324 // a frame with no abi restrictions. Since we must observe abi restrictions
325 // (like the placement of the register window) the slots must be biased by
326 // the following value.
reg2offset(VMReg r)327 static int reg2offset(VMReg r) {
328   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
329 }
330 
reg64_to_VMRegPair(Register r)331 static VMRegPair reg64_to_VMRegPair(Register r) {
332   VMRegPair ret;
333   if (wordSize == 8) {
334     ret.set2(r->as_VMReg());
335   } else {
336     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
337   }
338   return ret;
339 }
340 
341 // ---------------------------------------------------------------------------
342 // Read the array of BasicTypes from a signature, and compute where the
343 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
344 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
345 // refer to 4-byte stack slots.  All stack slots are based off of the window
346 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
347 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
348 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
349 // integer registers.  Values 64-95 are the (32-bit only) float registers.
350 // Each 32-bit quantity is given its own number, so the integer registers
351 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
352 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
353 
354 // Register results are passed in O0-O5, for outgoing call arguments.  To
355 // convert to incoming arguments, convert all O's to I's.  The regs array
356 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
357 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
358 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
359 // passed (used as a placeholder for the other half of longs and doubles in
360 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
361 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
362 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
363 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
364 // same VMRegPair.
365 
366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
367 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
368 // units regardless of build.
369 
370 
371 // ---------------------------------------------------------------------------
372 // The compiled Java calling convention.  The Java convention always passes
373 // 64-bit values in adjacent aligned locations (either registers or stack),
374 // floats in float registers and doubles in aligned float pairs.  There is
375 // no backing varargs store for values in registers.
376 // In the 32-bit build, longs are passed on the stack (cannot be
377 // passed in I's, because longs in I's get their heads chopped off at
378 // interrupt).
java_calling_convention(const BasicType * sig_bt,VMRegPair * regs,int total_args_passed,int is_outgoing)379 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
380                                            VMRegPair *regs,
381                                            int total_args_passed,
382                                            int is_outgoing) {
383   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
384 
385   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
386   const int flt_reg_max = 8;
387 
388   int int_reg = 0;
389   int flt_reg = 0;
390   int slot = 0;
391 
392   for (int i = 0; i < total_args_passed; i++) {
393     switch (sig_bt[i]) {
394     case T_INT:
395     case T_SHORT:
396     case T_CHAR:
397     case T_BYTE:
398     case T_BOOLEAN:
399 #ifndef _LP64
400     case T_OBJECT:
401     case T_ARRAY:
402     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
403 #endif // _LP64
404       if (int_reg < int_reg_max) {
405         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
406         regs[i].set1(r->as_VMReg());
407       } else {
408         regs[i].set1(VMRegImpl::stack2reg(slot++));
409       }
410       break;
411 
412 #ifdef _LP64
413     case T_LONG:
414       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
415       // fall-through
416     case T_OBJECT:
417     case T_ARRAY:
418     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
419       if (int_reg < int_reg_max) {
420         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
421         regs[i].set2(r->as_VMReg());
422       } else {
423         slot = round_to(slot, 2);  // align
424         regs[i].set2(VMRegImpl::stack2reg(slot));
425         slot += 2;
426       }
427       break;
428 #else
429     case T_LONG:
430       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
431       // On 32-bit SPARC put longs always on the stack to keep the pressure off
432       // integer argument registers.  They should be used for oops.
433       slot = round_to(slot, 2);  // align
434       regs[i].set2(VMRegImpl::stack2reg(slot));
435       slot += 2;
436 #endif
437       break;
438 
439     case T_FLOAT:
440       if (flt_reg < flt_reg_max) {
441         FloatRegister r = as_FloatRegister(flt_reg++);
442         regs[i].set1(r->as_VMReg());
443       } else {
444         regs[i].set1(VMRegImpl::stack2reg(slot++));
445       }
446       break;
447 
448     case T_DOUBLE:
449       assert(sig_bt[i+1] == T_VOID, "expecting half");
450       if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
451         flt_reg = round_to(flt_reg, 2);  // align
452         FloatRegister r = as_FloatRegister(flt_reg);
453         regs[i].set2(r->as_VMReg());
454         flt_reg += 2;
455       } else {
456         slot = round_to(slot, 2);  // align
457         regs[i].set2(VMRegImpl::stack2reg(slot));
458         slot += 2;
459       }
460       break;
461 
462     case T_VOID:
463       regs[i].set_bad();   // Halves of longs & doubles
464       break;
465 
466     default:
467       fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
468       break;
469     }
470   }
471 
472   // retun the amount of stack space these arguments will need.
473   return slot;
474 }
475 
476 // Helper class mostly to avoid passing masm everywhere, and handle
477 // store displacement overflow logic.
478 class AdapterGenerator {
479   MacroAssembler *masm;
480   Register Rdisp;
set_Rdisp(Register r)481   void set_Rdisp(Register r)  { Rdisp = r; }
482 
483   void patch_callers_callsite();
484 
485   // base+st_off points to top of argument
arg_offset(const int st_off)486   int arg_offset(const int st_off) { return st_off; }
next_arg_offset(const int st_off)487   int next_arg_offset(const int st_off) {
488     return st_off - Interpreter::stackElementSize;
489   }
490 
491   // Argument slot values may be loaded first into a register because
492   // they might not fit into displacement.
493   RegisterOrConstant arg_slot(const int st_off);
494   RegisterOrConstant next_arg_slot(const int st_off);
495 
496   // Stores long into offset pointed to by base
497   void store_c2i_long(Register r, Register base,
498                       const int st_off, bool is_stack);
499   void store_c2i_object(Register r, Register base,
500                         const int st_off);
501   void store_c2i_int(Register r, Register base,
502                      const int st_off);
503   void store_c2i_double(VMReg r_2,
504                         VMReg r_1, Register base, const int st_off);
505   void store_c2i_float(FloatRegister f, Register base,
506                        const int st_off);
507 
508  public:
509   void gen_c2i_adapter(int total_args_passed,
510                               // VMReg max_arg,
511                               int comp_args_on_stack, // VMRegStackSlots
512                               const BasicType *sig_bt,
513                               const VMRegPair *regs,
514                               Label& skip_fixup);
515   void gen_i2c_adapter(int total_args_passed,
516                               // VMReg max_arg,
517                               int comp_args_on_stack, // VMRegStackSlots
518                               const BasicType *sig_bt,
519                               const VMRegPair *regs);
520 
AdapterGenerator(MacroAssembler * _masm)521   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
522 };
523 
524 
525 // Patch the callers callsite with entry to compiled code if it exists.
patch_callers_callsite()526 void AdapterGenerator::patch_callers_callsite() {
527   Label L;
528   __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
529   __ br_null(G3_scratch, false, Assembler::pt, L);
530   __ delayed()->nop();
531   // Call into the VM to patch the caller, then jump to compiled callee
532   __ save_frame(4);     // Args in compiled layout; do not blow them
533 
534   // Must save all the live Gregs the list is:
535   // G1: 1st Long arg (32bit build)
536   // G2: global allocated to TLS
537   // G3: used in inline cache check (scratch)
538   // G4: 2nd Long arg (32bit build);
539   // G5: used in inline cache check (Method*)
540 
541   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
542 
543 #ifdef _LP64
544   // mov(s,d)
545   __ mov(G1, L1);
546   __ mov(G4, L4);
547   __ mov(G5_method, L5);
548   __ mov(G5_method, O0);         // VM needs target method
549   __ mov(I7, O1);                // VM needs caller's callsite
550   // Must be a leaf call...
551   // can be very far once the blob has been relocated
552   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
553   __ relocate(relocInfo::runtime_call_type);
554   __ jumpl_to(dest, O7, O7);
555   __ delayed()->mov(G2_thread, L7_thread_cache);
556   __ mov(L7_thread_cache, G2_thread);
557   __ mov(L1, G1);
558   __ mov(L4, G4);
559   __ mov(L5, G5_method);
560 #else
561   __ stx(G1, FP, -8 + STACK_BIAS);
562   __ stx(G4, FP, -16 + STACK_BIAS);
563   __ mov(G5_method, L5);
564   __ mov(G5_method, O0);         // VM needs target method
565   __ mov(I7, O1);                // VM needs caller's callsite
566   // Must be a leaf call...
567   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
568   __ delayed()->mov(G2_thread, L7_thread_cache);
569   __ mov(L7_thread_cache, G2_thread);
570   __ ldx(FP, -8 + STACK_BIAS, G1);
571   __ ldx(FP, -16 + STACK_BIAS, G4);
572   __ mov(L5, G5_method);
573 #endif /* _LP64 */
574 
575   __ restore();      // Restore args
576   __ bind(L);
577 }
578 
579 
arg_slot(const int st_off)580 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
581   RegisterOrConstant roc(arg_offset(st_off));
582   return __ ensure_simm13_or_reg(roc, Rdisp);
583 }
584 
next_arg_slot(const int st_off)585 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
586   RegisterOrConstant roc(next_arg_offset(st_off));
587   return __ ensure_simm13_or_reg(roc, Rdisp);
588 }
589 
590 
591 // Stores long into offset pointed to by base
store_c2i_long(Register r,Register base,const int st_off,bool is_stack)592 void AdapterGenerator::store_c2i_long(Register r, Register base,
593                                       const int st_off, bool is_stack) {
594 #ifdef _LP64
595   // In V9, longs are given 2 64-bit slots in the interpreter, but the
596   // data is passed in only 1 slot.
597   __ stx(r, base, next_arg_slot(st_off));
598 #else
599 #ifdef COMPILER2
600   // Misaligned store of 64-bit data
601   __ stw(r, base, arg_slot(st_off));    // lo bits
602   __ srlx(r, 32, r);
603   __ stw(r, base, next_arg_slot(st_off));  // hi bits
604 #else
605   if (is_stack) {
606     // Misaligned store of 64-bit data
607     __ stw(r, base, arg_slot(st_off));    // lo bits
608     __ srlx(r, 32, r);
609     __ stw(r, base, next_arg_slot(st_off));  // hi bits
610   } else {
611     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
612     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
613   }
614 #endif // COMPILER2
615 #endif // _LP64
616 }
617 
store_c2i_object(Register r,Register base,const int st_off)618 void AdapterGenerator::store_c2i_object(Register r, Register base,
619                       const int st_off) {
620   __ st_ptr (r, base, arg_slot(st_off));
621 }
622 
store_c2i_int(Register r,Register base,const int st_off)623 void AdapterGenerator::store_c2i_int(Register r, Register base,
624                    const int st_off) {
625   __ st (r, base, arg_slot(st_off));
626 }
627 
628 // Stores into offset pointed to by base
store_c2i_double(VMReg r_2,VMReg r_1,Register base,const int st_off)629 void AdapterGenerator::store_c2i_double(VMReg r_2,
630                       VMReg r_1, Register base, const int st_off) {
631 #ifdef _LP64
632   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
633   // data is passed in only 1 slot.
634   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
635 #else
636   // Need to marshal 64-bit value from misaligned Lesp loads
637   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
638   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
639 #endif
640 }
641 
store_c2i_float(FloatRegister f,Register base,const int st_off)642 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
643                                        const int st_off) {
644   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
645 }
646 
gen_c2i_adapter(int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,Label & L_skip_fixup)647 void AdapterGenerator::gen_c2i_adapter(
648                             int total_args_passed,
649                             // VMReg max_arg,
650                             int comp_args_on_stack, // VMRegStackSlots
651                             const BasicType *sig_bt,
652                             const VMRegPair *regs,
653                             Label& L_skip_fixup) {
654 
655   // Before we get into the guts of the C2I adapter, see if we should be here
656   // at all.  We've come from compiled code and are attempting to jump to the
657   // interpreter, which means the caller made a static call to get here
658   // (vcalls always get a compiled target if there is one).  Check for a
659   // compiled target.  If there is one, we need to patch the caller's call.
660   // However we will run interpreted if we come thru here. The next pass
661   // thru the call site will run compiled. If we ran compiled here then
662   // we can (theorectically) do endless i2c->c2i->i2c transitions during
663   // deopt/uncommon trap cycles. If we always go interpreted here then
664   // we can have at most one and don't need to play any tricks to keep
665   // from endlessly growing the stack.
666   //
667   // Actually if we detected that we had an i2c->c2i transition here we
668   // ought to be able to reset the world back to the state of the interpreted
669   // call and not bother building another interpreter arg area. We don't
670   // do that at this point.
671 
672   patch_callers_callsite();
673 
674   __ bind(L_skip_fixup);
675 
676   // Since all args are passed on the stack, total_args_passed*wordSize is the
677   // space we need.  Add in varargs area needed by the interpreter. Round up
678   // to stack alignment.
679   const int arg_size = total_args_passed * Interpreter::stackElementSize;
680   const int varargs_area =
681                  (frame::varargs_offset - frame::register_save_words)*wordSize;
682   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
683 
684   const int bias = STACK_BIAS;
685   const int interp_arg_offset = frame::varargs_offset*wordSize +
686                         (total_args_passed-1)*Interpreter::stackElementSize;
687 
688   const Register base = SP;
689 
690   // Make some extra space on the stack.
691   __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
692   set_Rdisp(G3_scratch);
693 
694   // Write the args into the outgoing interpreter space.
695   for (int i = 0; i < total_args_passed; i++) {
696     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
697     VMReg r_1 = regs[i].first();
698     VMReg r_2 = regs[i].second();
699     if (!r_1->is_valid()) {
700       assert(!r_2->is_valid(), "");
701       continue;
702     }
703     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
704       RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
705       ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
706       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
707       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
708       else                  __ ldx(base, ld_off, G1_scratch);
709     }
710 
711     if (r_1->is_Register()) {
712       Register r = r_1->as_Register()->after_restore();
713       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
714         store_c2i_object(r, base, st_off);
715       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
716         store_c2i_long(r, base, st_off, r_2->is_stack());
717       } else {
718         store_c2i_int(r, base, st_off);
719       }
720     } else {
721       assert(r_1->is_FloatRegister(), "");
722       if (sig_bt[i] == T_FLOAT) {
723         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
724       } else {
725         assert(sig_bt[i] == T_DOUBLE, "wrong type");
726         store_c2i_double(r_2, r_1, base, st_off);
727       }
728     }
729   }
730 
731   // Load the interpreter entry point.
732   __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
733 
734   // Pass O5_savedSP as an argument to the interpreter.
735   // The interpreter will restore SP to this value before returning.
736   __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
737 
738   __ mov((frame::varargs_offset)*wordSize -
739          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
740   // Jump to the interpreter just as if interpreter was doing it.
741   __ jmpl(G3_scratch, 0, G0);
742   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
743   // (really L0) is in use by the compiled frame as a generic temp.  However,
744   // the interpreter does not know where its args are without some kind of
745   // arg pointer being passed in.  Pass it in Gargs.
746   __ delayed()->add(SP, G1, Gargs);
747 }
748 
range_check(MacroAssembler * masm,Register pc_reg,Register temp_reg,Register temp2_reg,address code_start,address code_end,Label & L_ok)749 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
750                         address code_start, address code_end,
751                         Label& L_ok) {
752   Label L_fail;
753   __ set(ExternalAddress(code_start), temp_reg);
754   __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
755   __ cmp(pc_reg, temp_reg);
756   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
757   __ delayed()->add(temp_reg, temp2_reg, temp_reg);
758   __ cmp(pc_reg, temp_reg);
759   __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
760   __ bind(L_fail);
761 }
762 
gen_i2c_adapter(int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs)763 void AdapterGenerator::gen_i2c_adapter(
764                             int total_args_passed,
765                             // VMReg max_arg,
766                             int comp_args_on_stack, // VMRegStackSlots
767                             const BasicType *sig_bt,
768                             const VMRegPair *regs) {
769 
770   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
771   // layout.  Lesp was saved by the calling I-frame and will be restored on
772   // return.  Meanwhile, outgoing arg space is all owned by the callee
773   // C-frame, so we can mangle it at will.  After adjusting the frame size,
774   // hoist register arguments and repack other args according to the compiled
775   // code convention.  Finally, end in a jump to the compiled code.  The entry
776   // point address is the start of the buffer.
777 
778   // We will only enter here from an interpreted frame and never from after
779   // passing thru a c2i. Azul allowed this but we do not. If we lose the
780   // race and use a c2i we will remain interpreted for the race loser(s).
781   // This removes all sorts of headaches on the x86 side and also eliminates
782   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
783 
784   // More detail:
785   // Adapters can be frameless because they do not require the caller
786   // to perform additional cleanup work, such as correcting the stack pointer.
787   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
788   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
789   // even if a callee has modified the stack pointer.
790   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
791   // routinely repairs its caller's stack pointer (from sender_sp, which is set
792   // up via the senderSP register).
793   // In other words, if *either* the caller or callee is interpreted, we can
794   // get the stack pointer repaired after a call.
795   // This is why c2i and i2c adapters cannot be indefinitely composed.
796   // In particular, if a c2i adapter were to somehow call an i2c adapter,
797   // both caller and callee would be compiled methods, and neither would
798   // clean up the stack pointer changes performed by the two adapters.
799   // If this happens, control eventually transfers back to the compiled
800   // caller, but with an uncorrected stack, causing delayed havoc.
801 
802   if (VerifyAdapterCalls &&
803       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
804     // So, let's test for cascading c2i/i2c adapters right now.
805     //  assert(Interpreter::contains($return_addr) ||
806     //         StubRoutines::contains($return_addr),
807     //         "i2c adapter must return to an interpreter frame");
808     __ block_comment("verify_i2c { ");
809     Label L_ok;
810     if (Interpreter::code() != NULL)
811       range_check(masm, O7, O0, O1,
812                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
813                   L_ok);
814     if (StubRoutines::code1() != NULL)
815       range_check(masm, O7, O0, O1,
816                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
817                   L_ok);
818     if (StubRoutines::code2() != NULL)
819       range_check(masm, O7, O0, O1,
820                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
821                   L_ok);
822     const char* msg = "i2c adapter must return to an interpreter frame";
823     __ block_comment(msg);
824     __ stop(msg);
825     __ bind(L_ok);
826     __ block_comment("} verify_i2ce ");
827   }
828 
829   // As you can see from the list of inputs & outputs there are not a lot
830   // of temp registers to work with: mostly G1, G3 & G4.
831 
832   // Inputs:
833   // G2_thread      - TLS
834   // G5_method      - Method oop
835   // G4 (Gargs)     - Pointer to interpreter's args
836   // O0..O4         - free for scratch
837   // O5_savedSP     - Caller's saved SP, to be restored if needed
838   // O6             - Current SP!
839   // O7             - Valid return address
840   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
841 
842   // Outputs:
843   // G2_thread      - TLS
844   // O0-O5          - Outgoing args in compiled layout
845   // O6             - Adjusted or restored SP
846   // O7             - Valid return address
847   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
848   // F0-F7          - more outgoing args
849 
850 
851   // Gargs is the incoming argument base, and also an outgoing argument.
852   __ sub(Gargs, BytesPerWord, Gargs);
853 
854   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
855   // WITH O7 HOLDING A VALID RETURN PC
856   //
857   // |              |
858   // :  java stack  :
859   // |              |
860   // +--------------+ <--- start of outgoing args
861   // |   receiver   |   |
862   // : rest of args :   |---size is java-arg-words
863   // |              |   |
864   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
865   // |              |   |
866   // :    unused    :   |---Space for max Java stack, plus stack alignment
867   // |              |   |
868   // +--------------+ <--- SP + 16*wordsize
869   // |              |
870   // :    window    :
871   // |              |
872   // +--------------+ <--- SP
873 
874   // WE REPACK THE STACK.  We use the common calling convention layout as
875   // discovered by calling SharedRuntime::calling_convention.  We assume it
876   // causes an arbitrary shuffle of memory, which may require some register
877   // temps to do the shuffle.  We hope for (and optimize for) the case where
878   // temps are not needed.  We may have to resize the stack slightly, in case
879   // we need alignment padding (32-bit interpreter can pass longs & doubles
880   // misaligned, but the compilers expect them aligned).
881   //
882   // |              |
883   // :  java stack  :
884   // |              |
885   // +--------------+ <--- start of outgoing args
886   // |  pad, align  |   |
887   // +--------------+   |
888   // | ints, longs, |   |
889   // |    floats,   |   |---Outgoing stack args.
890   // :    doubles   :   |   First few args in registers.
891   // |              |   |
892   // +--------------+ <--- SP' + 16*wordsize
893   // |              |
894   // :    window    :
895   // |              |
896   // +--------------+ <--- SP'
897 
898   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
899   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
900   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
901 
902   // Cut-out for having no stack args.  Since up to 6 args are passed
903   // in registers, we will commonly have no stack args.
904   if (comp_args_on_stack > 0) {
905     // Convert VMReg stack slots to words.
906     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
907     // Round up to miminum stack alignment, in wordSize
908     comp_words_on_stack = round_to(comp_words_on_stack, 2);
909     // Now compute the distance from Lesp to SP.  This calculation does not
910     // include the space for total_args_passed because Lesp has not yet popped
911     // the arguments.
912     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
913   }
914 
915   // Now generate the shuffle code.  Pick up all register args and move the
916   // rest through G1_scratch.
917   for (int i = 0; i < total_args_passed; i++) {
918     if (sig_bt[i] == T_VOID) {
919       // Longs and doubles are passed in native word order, but misaligned
920       // in the 32-bit build.
921       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
922       continue;
923     }
924 
925     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
926     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
927     // ldx/lddf optimizations.
928 
929     // Load in argument order going down.
930     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
931     set_Rdisp(G1_scratch);
932 
933     VMReg r_1 = regs[i].first();
934     VMReg r_2 = regs[i].second();
935     if (!r_1->is_valid()) {
936       assert(!r_2->is_valid(), "");
937       continue;
938     }
939     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
940       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
941       if (r_2->is_valid()) r_2 = r_1->next();
942     }
943     if (r_1->is_Register()) {  // Register argument
944       Register r = r_1->as_Register()->after_restore();
945       if (!r_2->is_valid()) {
946         __ ld(Gargs, arg_slot(ld_off), r);
947       } else {
948 #ifdef _LP64
949         // In V9, longs are given 2 64-bit slots in the interpreter, but the
950         // data is passed in only 1 slot.
951         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
952               next_arg_slot(ld_off) : arg_slot(ld_off);
953         __ ldx(Gargs, slot, r);
954 #else
955         fatal("longs should be on stack");
956 #endif
957       }
958     } else {
959       assert(r_1->is_FloatRegister(), "");
960       if (!r_2->is_valid()) {
961         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_1->as_FloatRegister());
962       } else {
963 #ifdef _LP64
964         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
965         // data is passed in only 1 slot.  This code also handles longs that
966         // are passed on the stack, but need a stack-to-stack move through a
967         // spare float register.
968         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
969               next_arg_slot(ld_off) : arg_slot(ld_off);
970         __ ldf(FloatRegisterImpl::D, Gargs,                  slot, r_1->as_FloatRegister());
971 #else
972         // Need to marshal 64-bit value from misaligned Lesp loads
973         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
974         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_2->as_FloatRegister());
975 #endif
976       }
977     }
978     // Was the argument really intended to be on the stack, but was loaded
979     // into F8/F9?
980     if (regs[i].first()->is_stack()) {
981       assert(r_1->as_FloatRegister() == F8, "fix this code");
982       // Convert stack slot to an SP offset
983       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
984       // Store down the shuffled stack word.  Target address _is_ aligned.
985       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
986       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
987       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
988     }
989   }
990 
991   // Jump to the compiled code just as if compiled code was doing it.
992   __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
993 
994   // 6243940 We might end up in handle_wrong_method if
995   // the callee is deoptimized as we race thru here. If that
996   // happens we don't want to take a safepoint because the
997   // caller frame will look interpreted and arguments are now
998   // "compiled" so it is much better to make this transition
999   // invisible to the stack walking code. Unfortunately if
1000   // we try and find the callee by normal means a safepoint
1001   // is possible. So we stash the desired callee in the thread
1002   // and the vm will find there should this case occur.
1003   Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1004   __ st_ptr(G5_method, callee_target_addr);
1005   __ jmpl(G3, 0, G0);
1006   __ delayed()->nop();
1007 }
1008 
1009 // ---------------------------------------------------------------
generate_i2c2i_adapters(MacroAssembler * masm,int total_args_passed,int comp_args_on_stack,const BasicType * sig_bt,const VMRegPair * regs,AdapterFingerPrint * fingerprint)1010 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1011                                                             int total_args_passed,
1012                                                             // VMReg max_arg,
1013                                                             int comp_args_on_stack, // VMRegStackSlots
1014                                                             const BasicType *sig_bt,
1015                                                             const VMRegPair *regs,
1016                                                             AdapterFingerPrint* fingerprint) {
1017   address i2c_entry = __ pc();
1018 
1019   AdapterGenerator agen(masm);
1020 
1021   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1022 
1023 
1024   // -------------------------------------------------------------------------
1025   // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
1026   // args start out packed in the compiled layout.  They need to be unpacked
1027   // into the interpreter layout.  This will almost always require some stack
1028   // space.  We grow the current (compiled) stack, then repack the args.  We
1029   // finally end in a jump to the generic interpreter entry point.  On exit
1030   // from the interpreter, the interpreter will restore our SP (lest the
1031   // compiled code, which relys solely on SP and not FP, get sick).
1032 
1033   address c2i_unverified_entry = __ pc();
1034   Label L_skip_fixup;
1035   {
1036     Register R_temp = G1;  // another scratch register
1037 
1038     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1039 
1040     __ verify_oop(O0);
1041     __ load_klass(O0, G3_scratch);
1042 
1043     __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
1044     __ cmp(G3_scratch, R_temp);
1045 
1046     Label ok, ok2;
1047     __ brx(Assembler::equal, false, Assembler::pt, ok);
1048     __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_metadata_offset(), G5_method);
1049     __ jump_to(ic_miss, G3_scratch);
1050     __ delayed()->nop();
1051 
1052     __ bind(ok);
1053     // Method might have been compiled since the call site was patched to
1054     // interpreted if that is the case treat it as a miss so we can get
1055     // the call site corrected.
1056     __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
1057     __ bind(ok2);
1058     __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
1059     __ delayed()->nop();
1060     __ jump_to(ic_miss, G3_scratch);
1061     __ delayed()->nop();
1062 
1063   }
1064 
1065   address c2i_entry = __ pc();
1066 
1067   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
1068 
1069   __ flush();
1070   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1071 
1072 }
1073 
1074 // Helper function for native calling conventions
int_stk_helper(int i)1075 static VMReg int_stk_helper( int i ) {
1076   // Bias any stack based VMReg we get by ignoring the window area
1077   // but not the register parameter save area.
1078   //
1079   // This is strange for the following reasons. We'd normally expect
1080   // the calling convention to return an VMReg for a stack slot
1081   // completely ignoring any abi reserved area. C2 thinks of that
1082   // abi area as only out_preserve_stack_slots. This does not include
1083   // the area allocated by the C abi to store down integer arguments
1084   // because the java calling convention does not use it. So
1085   // since c2 assumes that there are only out_preserve_stack_slots
1086   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1087   // location the c calling convention must add in this bias amount
1088   // to make up for the fact that the out_preserve_stack_slots is
1089   // insufficient for C calls. What a mess. I sure hope those 6
1090   // stack words were worth it on every java call!
1091 
1092   // Another way of cleaning this up would be for out_preserve_stack_slots
1093   // to take a parameter to say whether it was C or java calling conventions.
1094   // Then things might look a little better (but not much).
1095 
1096   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1097   if( mem_parm_offset < 0 ) {
1098     return as_oRegister(i)->as_VMReg();
1099   } else {
1100     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1101     // Now return a biased offset that will be correct when out_preserve_slots is added back in
1102     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1103   }
1104 }
1105 
1106 
c_calling_convention(const BasicType * sig_bt,VMRegPair * regs,VMRegPair * regs2,int total_args_passed)1107 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1108                                          VMRegPair *regs,
1109                                          VMRegPair *regs2,
1110                                          int total_args_passed) {
1111     assert(regs2 == NULL, "not needed on sparc");
1112 
1113     // Return the number of VMReg stack_slots needed for the args.
1114     // This value does not include an abi space (like register window
1115     // save area).
1116 
1117     // The native convention is V8 if !LP64
1118     // The LP64 convention is the V9 convention which is slightly more sane.
1119 
1120     // We return the amount of VMReg stack slots we need to reserve for all
1121     // the arguments NOT counting out_preserve_stack_slots. Since we always
1122     // have space for storing at least 6 registers to memory we start with that.
1123     // See int_stk_helper for a further discussion.
1124     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1125 
1126 #ifdef _LP64
1127     // V9 convention: All things "as-if" on double-wide stack slots.
1128     // Hoist any int/ptr/long's in the first 6 to int regs.
1129     // Hoist any flt/dbl's in the first 16 dbl regs.
1130     int j = 0;                  // Count of actual args, not HALVES
1131     VMRegPair param_array_reg;  // location of the argument in the parameter array
1132     for (int i = 0; i < total_args_passed; i++, j++) {
1133       param_array_reg.set_bad();
1134       switch (sig_bt[i]) {
1135       case T_BOOLEAN:
1136       case T_BYTE:
1137       case T_CHAR:
1138       case T_INT:
1139       case T_SHORT:
1140         regs[i].set1(int_stk_helper(j));
1141         break;
1142       case T_LONG:
1143         assert(sig_bt[i+1] == T_VOID, "expecting half");
1144       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1145       case T_ARRAY:
1146       case T_OBJECT:
1147       case T_METADATA:
1148         regs[i].set2(int_stk_helper(j));
1149         break;
1150       case T_FLOAT:
1151         // Per SPARC Compliance Definition 2.4.1, page 3P-12 available here
1152         // http://www.sparc.org/wp-content/uploads/2014/01/SCD.2.4.1.pdf.gz
1153         //
1154         // "When a callee prototype exists, and does not indicate variable arguments,
1155         // floating-point values assigned to locations %sp+BIAS+128 through %sp+BIAS+248
1156         // will be promoted to floating-point registers"
1157         //
1158         // By "promoted" it means that the argument is located in two places, an unused
1159         // spill slot in the "parameter array" (starts at %sp+BIAS+128), and a live
1160         // float register.  In most cases, there are 6 or fewer arguments of any type,
1161         // and the standard parameter array slots (%sp+BIAS+128 to %sp+BIAS+176 exclusive)
1162         // serve as shadow slots.  Per the spec floating point registers %d6 to %d16
1163         // require slots beyond that (up to %sp+BIAS+248).
1164         //
1165         {
1166           // V9ism: floats go in ODD registers and stack slots
1167           int float_index = 1 + (j << 1);
1168           param_array_reg.set1(VMRegImpl::stack2reg(float_index));
1169           if (j < 16) {
1170             regs[i].set1(as_FloatRegister(float_index)->as_VMReg());
1171           } else {
1172             regs[i] = param_array_reg;
1173           }
1174         }
1175         break;
1176       case T_DOUBLE:
1177         {
1178           assert(sig_bt[i + 1] == T_VOID, "expecting half");
1179           // V9ism: doubles go in EVEN/ODD regs and stack slots
1180           int double_index = (j << 1);
1181           param_array_reg.set2(VMRegImpl::stack2reg(double_index));
1182           if (j < 16) {
1183             regs[i].set2(as_FloatRegister(double_index)->as_VMReg());
1184           } else {
1185             // V9ism: doubles go in EVEN/ODD stack slots
1186             regs[i] = param_array_reg;
1187           }
1188         }
1189         break;
1190       case T_VOID:
1191         regs[i].set_bad();
1192         j--;
1193         break; // Do not count HALVES
1194       default:
1195         ShouldNotReachHere();
1196       }
1197       // Keep track of the deepest parameter array slot.
1198       if (!param_array_reg.first()->is_valid()) {
1199         param_array_reg = regs[i];
1200       }
1201       if (param_array_reg.first()->is_stack()) {
1202         int off = param_array_reg.first()->reg2stack();
1203         if (off > max_stack_slots) max_stack_slots = off;
1204       }
1205       if (param_array_reg.second()->is_stack()) {
1206         int off = param_array_reg.second()->reg2stack();
1207         if (off > max_stack_slots) max_stack_slots = off;
1208       }
1209     }
1210 
1211 #else // _LP64
1212     // V8 convention: first 6 things in O-regs, rest on stack.
1213     // Alignment is willy-nilly.
1214     for (int i = 0; i < total_args_passed; i++) {
1215       switch (sig_bt[i]) {
1216       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1217       case T_ARRAY:
1218       case T_BOOLEAN:
1219       case T_BYTE:
1220       case T_CHAR:
1221       case T_FLOAT:
1222       case T_INT:
1223       case T_OBJECT:
1224       case T_METADATA:
1225       case T_SHORT:
1226         regs[i].set1(int_stk_helper(i));
1227         break;
1228       case T_DOUBLE:
1229       case T_LONG:
1230         assert(sig_bt[i + 1] == T_VOID, "expecting half");
1231         regs[i].set_pair(int_stk_helper(i + 1), int_stk_helper(i));
1232         break;
1233       case T_VOID: regs[i].set_bad(); break;
1234       default:
1235         ShouldNotReachHere();
1236       }
1237       if (regs[i].first()->is_stack()) {
1238         int off = regs[i].first()->reg2stack();
1239         if (off > max_stack_slots) max_stack_slots = off;
1240       }
1241       if (regs[i].second()->is_stack()) {
1242         int off = regs[i].second()->reg2stack();
1243         if (off > max_stack_slots) max_stack_slots = off;
1244       }
1245     }
1246 #endif // _LP64
1247 
1248   return round_to(max_stack_slots + 1, 2);
1249 
1250 }
1251 
1252 
1253 // ---------------------------------------------------------------------------
save_native_result(MacroAssembler * masm,BasicType ret_type,int frame_slots)1254 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1255   switch (ret_type) {
1256   case T_FLOAT:
1257     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1258     break;
1259   case T_DOUBLE:
1260     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1261     break;
1262   }
1263 }
1264 
restore_native_result(MacroAssembler * masm,BasicType ret_type,int frame_slots)1265 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1266   switch (ret_type) {
1267   case T_FLOAT:
1268     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1269     break;
1270   case T_DOUBLE:
1271     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1272     break;
1273   }
1274 }
1275 
1276 // Check and forward and pending exception.  Thread is stored in
1277 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1278 // is no exception handler.  We merely pop this frame off and throw the
1279 // exception in the caller's frame.
check_forward_pending_exception(MacroAssembler * masm,Register Rex_oop)1280 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1281   Label L;
1282   __ br_null(Rex_oop, false, Assembler::pt, L);
1283   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1284   // Since this is a native call, we *know* the proper exception handler
1285   // without calling into the VM: it's the empty function.  Just pop this
1286   // frame and then jump to forward_exception_entry; O7 will contain the
1287   // native caller's return PC.
1288  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1289   __ jump_to(exception_entry, G3_scratch);
1290   __ delayed()->restore();      // Pop this frame off.
1291   __ bind(L);
1292 }
1293 
1294 // A simple move of integer like type
simple_move32(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1295 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1296   if (src.first()->is_stack()) {
1297     if (dst.first()->is_stack()) {
1298       // stack to stack
1299       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1300       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1301     } else {
1302       // stack to reg
1303       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1304     }
1305   } else if (dst.first()->is_stack()) {
1306     // reg to stack
1307     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1308   } else {
1309     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1310   }
1311 }
1312 
1313 // On 64 bit we will store integer like items to the stack as
1314 // 64 bits items (sparc abi) even though java would only store
1315 // 32bits for a parameter. On 32bit it will simply be 32 bits
1316 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
move32_64(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1317 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1318   if (src.first()->is_stack()) {
1319     if (dst.first()->is_stack()) {
1320       // stack to stack
1321       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1322       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1323     } else {
1324       // stack to reg
1325       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1326     }
1327   } else if (dst.first()->is_stack()) {
1328     // reg to stack
1329     // Some compilers (gcc) expect a clean 32 bit value on function entry
1330     __ signx(src.first()->as_Register(), L5);
1331     __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1332   } else {
1333     // Some compilers (gcc) expect a clean 32 bit value on function entry
1334     __ signx(src.first()->as_Register(), dst.first()->as_Register());
1335   }
1336 }
1337 
1338 
move_ptr(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1339 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1340   if (src.first()->is_stack()) {
1341     if (dst.first()->is_stack()) {
1342       // stack to stack
1343       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1344       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1345     } else {
1346       // stack to reg
1347       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1348     }
1349   } else if (dst.first()->is_stack()) {
1350     // reg to stack
1351     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1352   } else {
1353     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1354   }
1355 }
1356 
1357 
1358 // An oop arg. Must pass a handle not the oop itself
object_move(MacroAssembler * masm,OopMap * map,int oop_handle_offset,int framesize_in_slots,VMRegPair src,VMRegPair dst,bool is_receiver,int * receiver_offset)1359 static void object_move(MacroAssembler* masm,
1360                         OopMap* map,
1361                         int oop_handle_offset,
1362                         int framesize_in_slots,
1363                         VMRegPair src,
1364                         VMRegPair dst,
1365                         bool is_receiver,
1366                         int* receiver_offset) {
1367 
1368   // must pass a handle. First figure out the location we use as a handle
1369 
1370   if (src.first()->is_stack()) {
1371     // Oop is already on the stack
1372     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1373     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1374     __ ld_ptr(rHandle, 0, L4);
1375 #ifdef _LP64
1376     __ movr( Assembler::rc_z, L4, G0, rHandle );
1377 #else
1378     __ tst( L4 );
1379     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1380 #endif
1381     if (dst.first()->is_stack()) {
1382       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1383     }
1384     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1385     if (is_receiver) {
1386       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1387     }
1388     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1389   } else {
1390     // Oop is in an input register pass we must flush it to the stack
1391     const Register rOop = src.first()->as_Register();
1392     const Register rHandle = L5;
1393     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1394     int offset = oop_slot * VMRegImpl::stack_slot_size;
1395     __ st_ptr(rOop, SP, offset + STACK_BIAS);
1396     if (is_receiver) {
1397        *receiver_offset = offset;
1398     }
1399     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1400     __ add(SP, offset + STACK_BIAS, rHandle);
1401 #ifdef _LP64
1402     __ movr( Assembler::rc_z, rOop, G0, rHandle );
1403 #else
1404     __ tst( rOop );
1405     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1406 #endif
1407 
1408     if (dst.first()->is_stack()) {
1409       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1410     } else {
1411       __ mov(rHandle, dst.first()->as_Register());
1412     }
1413   }
1414 }
1415 
1416 // A float arg may have to do float reg int reg conversion
float_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1417 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1418   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1419 
1420   if (src.first()->is_stack()) {
1421     if (dst.first()->is_stack()) {
1422       // stack to stack the easiest of the bunch
1423       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1424       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1425     } else {
1426       // stack to reg
1427       if (dst.first()->is_Register()) {
1428         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1429       } else {
1430         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1431       }
1432     }
1433   } else if (dst.first()->is_stack()) {
1434     // reg to stack
1435     if (src.first()->is_Register()) {
1436       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1437     } else {
1438       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1439     }
1440   } else {
1441     // reg to reg
1442     if (src.first()->is_Register()) {
1443       if (dst.first()->is_Register()) {
1444         // gpr -> gpr
1445         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1446       } else {
1447         // gpr -> fpr
1448         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1449         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1450       }
1451     } else if (dst.first()->is_Register()) {
1452       // fpr -> gpr
1453       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1454       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1455     } else {
1456       // fpr -> fpr
1457       // In theory these overlap but the ordering is such that this is likely a nop
1458       if ( src.first() != dst.first()) {
1459         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1460       }
1461     }
1462   }
1463 }
1464 
split_long_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1465 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1466   VMRegPair src_lo(src.first());
1467   VMRegPair src_hi(src.second());
1468   VMRegPair dst_lo(dst.first());
1469   VMRegPair dst_hi(dst.second());
1470   simple_move32(masm, src_lo, dst_lo);
1471   simple_move32(masm, src_hi, dst_hi);
1472 }
1473 
1474 // A long move
long_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1475 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1476 
1477   // Do the simple ones here else do two int moves
1478   if (src.is_single_phys_reg() ) {
1479     if (dst.is_single_phys_reg()) {
1480       __ mov(src.first()->as_Register(), dst.first()->as_Register());
1481     } else {
1482       // split src into two separate registers
1483       // Remember hi means hi address or lsw on sparc
1484       // Move msw to lsw
1485       if (dst.second()->is_reg()) {
1486         // MSW -> MSW
1487         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1488         // Now LSW -> LSW
1489         // this will only move lo -> lo and ignore hi
1490         VMRegPair split(dst.second());
1491         simple_move32(masm, src, split);
1492       } else {
1493         VMRegPair split(src.first(), L4->as_VMReg());
1494         // MSW -> MSW (lo ie. first word)
1495         __ srax(src.first()->as_Register(), 32, L4);
1496         split_long_move(masm, split, dst);
1497       }
1498     }
1499   } else if (dst.is_single_phys_reg()) {
1500     if (src.is_adjacent_aligned_on_stack(2)) {
1501       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1502     } else {
1503       // dst is a single reg.
1504       // Remember lo is low address not msb for stack slots
1505       // and lo is the "real" register for registers
1506       // src is
1507 
1508       VMRegPair split;
1509 
1510       if (src.first()->is_reg()) {
1511         // src.lo (msw) is a reg, src.hi is stk/reg
1512         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1513         split.set_pair(dst.first(), src.first());
1514       } else {
1515         // msw is stack move to L5
1516         // lsw is stack move to dst.lo (real reg)
1517         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1518         split.set_pair(dst.first(), L5->as_VMReg());
1519       }
1520 
1521       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1522       // msw   -> src.lo/L5,  lsw -> dst.lo
1523       split_long_move(masm, src, split);
1524 
1525       // So dst now has the low order correct position the
1526       // msw half
1527       __ sllx(split.first()->as_Register(), 32, L5);
1528 
1529       const Register d = dst.first()->as_Register();
1530       __ or3(L5, d, d);
1531     }
1532   } else {
1533     // For LP64 we can probably do better.
1534     split_long_move(masm, src, dst);
1535   }
1536 }
1537 
1538 // A double move
double_move(MacroAssembler * masm,VMRegPair src,VMRegPair dst)1539 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1540 
1541   // The painful thing here is that like long_move a VMRegPair might be
1542   // 1: a single physical register
1543   // 2: two physical registers (v8)
1544   // 3: a physical reg [lo] and a stack slot [hi] (v8)
1545   // 4: two stack slots
1546 
1547   // Since src is always a java calling convention we know that the src pair
1548   // is always either all registers or all stack (and aligned?)
1549 
1550   // in a register [lo] and a stack slot [hi]
1551   if (src.first()->is_stack()) {
1552     if (dst.first()->is_stack()) {
1553       // stack to stack the easiest of the bunch
1554       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1555       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1556       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1557       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1558       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1559     } else {
1560       // stack to reg
1561       if (dst.second()->is_stack()) {
1562         // stack -> reg, stack -> stack
1563         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1564         if (dst.first()->is_Register()) {
1565           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1566         } else {
1567           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1568         }
1569         // This was missing. (very rare case)
1570         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1571       } else {
1572         // stack -> reg
1573         // Eventually optimize for alignment QQQ
1574         if (dst.first()->is_Register()) {
1575           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1576           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1577         } else {
1578           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1579           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1580         }
1581       }
1582     }
1583   } else if (dst.first()->is_stack()) {
1584     // reg to stack
1585     if (src.first()->is_Register()) {
1586       // Eventually optimize for alignment QQQ
1587       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1588       if (src.second()->is_stack()) {
1589         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1590         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1591       } else {
1592         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1593       }
1594     } else {
1595       // fpr to stack
1596       if (src.second()->is_stack()) {
1597         ShouldNotReachHere();
1598       } else {
1599         // Is the stack aligned?
1600         if (reg2offset(dst.first()) & 0x7) {
1601           // No do as pairs
1602           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1603           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1604         } else {
1605           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1606         }
1607       }
1608     }
1609   } else {
1610     // reg to reg
1611     if (src.first()->is_Register()) {
1612       if (dst.first()->is_Register()) {
1613         // gpr -> gpr
1614         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1615         __ mov(src.second()->as_Register(), dst.second()->as_Register());
1616       } else {
1617         // gpr -> fpr
1618         // ought to be able to do a single store
1619         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1620         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1621         // ought to be able to do a single load
1622         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1623         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1624       }
1625     } else if (dst.first()->is_Register()) {
1626       // fpr -> gpr
1627       // ought to be able to do a single store
1628       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1629       // ought to be able to do a single load
1630       // REMEMBER first() is low address not LSB
1631       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1632       if (dst.second()->is_Register()) {
1633         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1634       } else {
1635         __ ld(FP, -4 + STACK_BIAS, L4);
1636         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1637       }
1638     } else {
1639       // fpr -> fpr
1640       // In theory these overlap but the ordering is such that this is likely a nop
1641       if ( src.first() != dst.first()) {
1642         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1643       }
1644     }
1645   }
1646 }
1647 
1648 // Creates an inner frame if one hasn't already been created, and
1649 // saves a copy of the thread in L7_thread_cache
create_inner_frame(MacroAssembler * masm,bool * already_created)1650 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1651   if (!*already_created) {
1652     __ save_frame(0);
1653     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1654     // Don't use save_thread because it smashes G2 and we merely want to save a
1655     // copy
1656     __ mov(G2_thread, L7_thread_cache);
1657     *already_created = true;
1658   }
1659 }
1660 
1661 
save_or_restore_arguments(MacroAssembler * masm,const int stack_slots,const int total_in_args,const int arg_save_area,OopMap * map,VMRegPair * in_regs,BasicType * in_sig_bt)1662 static void save_or_restore_arguments(MacroAssembler* masm,
1663                                       const int stack_slots,
1664                                       const int total_in_args,
1665                                       const int arg_save_area,
1666                                       OopMap* map,
1667                                       VMRegPair* in_regs,
1668                                       BasicType* in_sig_bt) {
1669   // if map is non-NULL then the code should store the values,
1670   // otherwise it should load them.
1671   if (map != NULL) {
1672     // Fill in the map
1673     for (int i = 0; i < total_in_args; i++) {
1674       if (in_sig_bt[i] == T_ARRAY) {
1675         if (in_regs[i].first()->is_stack()) {
1676           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1677           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1678         } else if (in_regs[i].first()->is_Register()) {
1679           map->set_oop(in_regs[i].first());
1680         } else {
1681           ShouldNotReachHere();
1682         }
1683       }
1684     }
1685   }
1686 
1687   // Save or restore double word values
1688   int handle_index = 0;
1689   for (int i = 0; i < total_in_args; i++) {
1690     int slot = handle_index + arg_save_area;
1691     int offset = slot * VMRegImpl::stack_slot_size;
1692     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
1693       const Register reg = in_regs[i].first()->as_Register();
1694       if (reg->is_global()) {
1695         handle_index += 2;
1696         assert(handle_index <= stack_slots, "overflow");
1697         if (map != NULL) {
1698           __ stx(reg, SP, offset + STACK_BIAS);
1699         } else {
1700           __ ldx(SP, offset + STACK_BIAS, reg);
1701         }
1702       }
1703     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
1704       handle_index += 2;
1705       assert(handle_index <= stack_slots, "overflow");
1706       if (map != NULL) {
1707         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1708       } else {
1709         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1710       }
1711     }
1712   }
1713   // Save floats
1714   for (int i = 0; i < total_in_args; i++) {
1715     int slot = handle_index + arg_save_area;
1716     int offset = slot * VMRegImpl::stack_slot_size;
1717     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
1718       handle_index++;
1719       assert(handle_index <= stack_slots, "overflow");
1720       if (map != NULL) {
1721         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1722       } else {
1723         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1724       }
1725     }
1726   }
1727 
1728 }
1729 
1730 
1731 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1732 // keeps a new JNI critical region from starting until a GC has been
1733 // forced.  Save down any oops in registers and describe them in an
1734 // OopMap.
check_needs_gc_for_critical_native(MacroAssembler * masm,const int stack_slots,const int total_in_args,const int arg_save_area,OopMapSet * oop_maps,VMRegPair * in_regs,BasicType * in_sig_bt)1735 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1736                                                const int stack_slots,
1737                                                const int total_in_args,
1738                                                const int arg_save_area,
1739                                                OopMapSet* oop_maps,
1740                                                VMRegPair* in_regs,
1741                                                BasicType* in_sig_bt) {
1742   __ block_comment("check GC_locker::needs_gc");
1743   Label cont;
1744   AddressLiteral sync_state(GC_locker::needs_gc_address());
1745   __ load_bool_contents(sync_state, G3_scratch);
1746   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
1747   __ delayed()->nop();
1748 
1749   // Save down any values that are live in registers and call into the
1750   // runtime to halt for a GC
1751   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1752   save_or_restore_arguments(masm, stack_slots, total_in_args,
1753                             arg_save_area, map, in_regs, in_sig_bt);
1754 
1755   __ mov(G2_thread, L7_thread_cache);
1756 
1757   __ set_last_Java_frame(SP, noreg);
1758 
1759   __ block_comment("block_for_jni_critical");
1760   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
1761   __ delayed()->mov(L7_thread_cache, O0);
1762   oop_maps->add_gc_map( __ offset(), map);
1763 
1764   __ restore_thread(L7_thread_cache); // restore G2_thread
1765   __ reset_last_Java_frame();
1766 
1767   // Reload all the register arguments
1768   save_or_restore_arguments(masm, stack_slots, total_in_args,
1769                             arg_save_area, NULL, in_regs, in_sig_bt);
1770 
1771   __ bind(cont);
1772 #ifdef ASSERT
1773   if (StressCriticalJNINatives) {
1774     // Stress register saving
1775     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1776     save_or_restore_arguments(masm, stack_slots, total_in_args,
1777                               arg_save_area, map, in_regs, in_sig_bt);
1778     // Destroy argument registers
1779     for (int i = 0; i < total_in_args; i++) {
1780       if (in_regs[i].first()->is_Register()) {
1781         const Register reg = in_regs[i].first()->as_Register();
1782         if (reg->is_global()) {
1783           __ mov(G0, reg);
1784         }
1785       } else if (in_regs[i].first()->is_FloatRegister()) {
1786         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
1787       }
1788     }
1789 
1790     save_or_restore_arguments(masm, stack_slots, total_in_args,
1791                               arg_save_area, NULL, in_regs, in_sig_bt);
1792   }
1793 #endif
1794 }
1795 
1796 // Unpack an array argument into a pointer to the body and the length
1797 // if the array is non-null, otherwise pass 0 for both.
unpack_array_argument(MacroAssembler * masm,VMRegPair reg,BasicType in_elem_type,VMRegPair body_arg,VMRegPair length_arg)1798 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1799   // Pass the length, ptr pair
1800   Label is_null, done;
1801   if (reg.first()->is_stack()) {
1802     VMRegPair tmp  = reg64_to_VMRegPair(L2);
1803     // Load the arg up from the stack
1804     move_ptr(masm, reg, tmp);
1805     reg = tmp;
1806   }
1807   __ cmp(reg.first()->as_Register(), G0);
1808   __ brx(Assembler::equal, false, Assembler::pt, is_null);
1809   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
1810   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
1811   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
1812   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
1813   __ ba_short(done);
1814   __ bind(is_null);
1815   // Pass zeros
1816   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
1817   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
1818   __ bind(done);
1819 }
1820 
verify_oop_args(MacroAssembler * masm,methodHandle method,const BasicType * sig_bt,const VMRegPair * regs)1821 static void verify_oop_args(MacroAssembler* masm,
1822                             methodHandle method,
1823                             const BasicType* sig_bt,
1824                             const VMRegPair* regs) {
1825   Register temp_reg = G5_method;  // not part of any compiled calling seq
1826   if (VerifyOops) {
1827     for (int i = 0; i < method->size_of_parameters(); i++) {
1828       if (sig_bt[i] == T_OBJECT ||
1829           sig_bt[i] == T_ARRAY) {
1830         VMReg r = regs[i].first();
1831         assert(r->is_valid(), "bad oop arg");
1832         if (r->is_stack()) {
1833           RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1834           ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
1835           __ ld_ptr(SP, ld_off, temp_reg);
1836           __ verify_oop(temp_reg);
1837         } else {
1838           __ verify_oop(r->as_Register());
1839         }
1840       }
1841     }
1842   }
1843 }
1844 
gen_special_dispatch(MacroAssembler * masm,methodHandle method,const BasicType * sig_bt,const VMRegPair * regs)1845 static void gen_special_dispatch(MacroAssembler* masm,
1846                                  methodHandle method,
1847                                  const BasicType* sig_bt,
1848                                  const VMRegPair* regs) {
1849   verify_oop_args(masm, method, sig_bt, regs);
1850   vmIntrinsics::ID iid = method->intrinsic_id();
1851 
1852   // Now write the args into the outgoing interpreter space
1853   bool     has_receiver   = false;
1854   Register receiver_reg   = noreg;
1855   int      member_arg_pos = -1;
1856   Register member_reg     = noreg;
1857   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1858   if (ref_kind != 0) {
1859     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1860     member_reg = G5_method;  // known to be free at this point
1861     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1862   } else if (iid == vmIntrinsics::_invokeBasic) {
1863     has_receiver = true;
1864   } else {
1865     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1866   }
1867 
1868   if (member_reg != noreg) {
1869     // Load the member_arg into register, if necessary.
1870     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1871     VMReg r = regs[member_arg_pos].first();
1872     if (r->is_stack()) {
1873       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1874       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1875       __ ld_ptr(SP, ld_off, member_reg);
1876     } else {
1877       // no data motion is needed
1878       member_reg = r->as_Register();
1879     }
1880   }
1881 
1882   if (has_receiver) {
1883     // Make sure the receiver is loaded into a register.
1884     assert(method->size_of_parameters() > 0, "oob");
1885     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1886     VMReg r = regs[0].first();
1887     assert(r->is_valid(), "bad receiver arg");
1888     if (r->is_stack()) {
1889       // Porting note:  This assumes that compiled calling conventions always
1890       // pass the receiver oop in a register.  If this is not true on some
1891       // platform, pick a temp and load the receiver from stack.
1892       fatal("receiver always in a register");
1893       receiver_reg = G3_scratch;  // known to be free at this point
1894       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1895       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1896       __ ld_ptr(SP, ld_off, receiver_reg);
1897     } else {
1898       // no data motion is needed
1899       receiver_reg = r->as_Register();
1900     }
1901   }
1902 
1903   // Figure out which address we are really jumping to:
1904   MethodHandles::generate_method_handle_dispatch(masm, iid,
1905                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1906 }
1907 
1908 // ---------------------------------------------------------------------------
1909 // Generate a native wrapper for a given method.  The method takes arguments
1910 // in the Java compiled code convention, marshals them to the native
1911 // convention (handlizes oops, etc), transitions to native, makes the call,
1912 // returns to java state (possibly blocking), unhandlizes any result and
1913 // returns.
1914 //
1915 // Critical native functions are a shorthand for the use of
1916 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1917 // functions.  The wrapper is expected to unpack the arguments before
1918 // passing them to the callee and perform checks before and after the
1919 // native call to ensure that they GC_locker
1920 // lock_critical/unlock_critical semantics are followed.  Some other
1921 // parts of JNI setup are skipped like the tear down of the JNI handle
1922 // block and the check for pending exceptions it's impossible for them
1923 // to be thrown.
1924 //
1925 // They are roughly structured like this:
1926 //    if (GC_locker::needs_gc())
1927 //      SharedRuntime::block_for_jni_critical();
1928 //    tranistion to thread_in_native
1929 //    unpack arrray arguments and call native entry point
1930 //    check for safepoint in progress
1931 //    check if any thread suspend flags are set
1932 //      call into JVM and possible unlock the JNI critical
1933 //      if a GC was suppressed while in the critical native.
1934 //    transition back to thread_in_Java
1935 //    return to caller
1936 //
generate_native_wrapper(MacroAssembler * masm,methodHandle method,int compile_id,BasicType * in_sig_bt,VMRegPair * in_regs,BasicType ret_type)1937 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1938                                                 methodHandle method,
1939                                                 int compile_id,
1940                                                 BasicType* in_sig_bt,
1941                                                 VMRegPair* in_regs,
1942                                                 BasicType ret_type) {
1943   if (method->is_method_handle_intrinsic()) {
1944     vmIntrinsics::ID iid = method->intrinsic_id();
1945     intptr_t start = (intptr_t)__ pc();
1946     int vep_offset = ((intptr_t)__ pc()) - start;
1947     gen_special_dispatch(masm,
1948                          method,
1949                          in_sig_bt,
1950                          in_regs);
1951     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1952     __ flush();
1953     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1954     return nmethod::new_native_nmethod(method,
1955                                        compile_id,
1956                                        masm->code(),
1957                                        vep_offset,
1958                                        frame_complete,
1959                                        stack_slots / VMRegImpl::slots_per_word,
1960                                        in_ByteSize(-1),
1961                                        in_ByteSize(-1),
1962                                        (OopMapSet*)NULL);
1963   }
1964   bool is_critical_native = true;
1965   address native_func = method->critical_native_function();
1966   if (native_func == NULL) {
1967     native_func = method->native_function();
1968     is_critical_native = false;
1969   }
1970   assert(native_func != NULL, "must have function");
1971 
1972   // Native nmethod wrappers never take possesion of the oop arguments.
1973   // So the caller will gc the arguments. The only thing we need an
1974   // oopMap for is if the call is static
1975   //
1976   // An OopMap for lock (and class if static), and one for the VM call itself
1977   OopMapSet *oop_maps = new OopMapSet();
1978   intptr_t start = (intptr_t)__ pc();
1979 
1980   // First thing make an ic check to see if we should even be here
1981   {
1982     Label L;
1983     const Register temp_reg = G3_scratch;
1984     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1985     __ verify_oop(O0);
1986     __ load_klass(O0, temp_reg);
1987     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
1988 
1989     __ jump_to(ic_miss, temp_reg);
1990     __ delayed()->nop();
1991     __ align(CodeEntryAlignment);
1992     __ bind(L);
1993   }
1994 
1995   int vep_offset = ((intptr_t)__ pc()) - start;
1996 
1997 #ifdef COMPILER1
1998   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1999     // Object.hashCode can pull the hashCode from the header word
2000     // instead of doing a full VM transition once it's been computed.
2001     // Since hashCode is usually polymorphic at call sites we can't do
2002     // this optimization at the call site without a lot of work.
2003     Label slowCase;
2004     Register receiver             = O0;
2005     Register result               = O0;
2006     Register header               = G3_scratch;
2007     Register hash                 = G3_scratch; // overwrite header value with hash value
2008     Register mask                 = G1;         // to get hash field from header
2009 
2010     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
2011     // We depend on hash_mask being at most 32 bits and avoid the use of
2012     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
2013     // vm: see markOop.hpp.
2014     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
2015     __ sethi(markOopDesc::hash_mask, mask);
2016     __ btst(markOopDesc::unlocked_value, header);
2017     __ br(Assembler::zero, false, Assembler::pn, slowCase);
2018     if (UseBiasedLocking) {
2019       // Check if biased and fall through to runtime if so
2020       __ delayed()->nop();
2021       __ btst(markOopDesc::biased_lock_bit_in_place, header);
2022       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
2023     }
2024     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
2025 
2026     // Check for a valid (non-zero) hash code and get its value.
2027 #ifdef _LP64
2028     __ srlx(header, markOopDesc::hash_shift, hash);
2029 #else
2030     __ srl(header, markOopDesc::hash_shift, hash);
2031 #endif
2032     __ andcc(hash, mask, hash);
2033     __ br(Assembler::equal, false, Assembler::pn, slowCase);
2034     __ delayed()->nop();
2035 
2036     // leaf return.
2037     __ retl();
2038     __ delayed()->mov(hash, result);
2039     __ bind(slowCase);
2040   }
2041 #endif // COMPILER1
2042 
2043 
2044   // We have received a description of where all the java arg are located
2045   // on entry to the wrapper. We need to convert these args to where
2046   // the jni function will expect them. To figure out where they go
2047   // we convert the java signature to a C signature by inserting
2048   // the hidden arguments as arg[0] and possibly arg[1] (static method)
2049 
2050   const int total_in_args = method->size_of_parameters();
2051   int total_c_args = total_in_args;
2052   int total_save_slots = 6 * VMRegImpl::slots_per_word;
2053   if (!is_critical_native) {
2054     total_c_args += 1;
2055     if (method->is_static()) {
2056       total_c_args++;
2057     }
2058   } else {
2059     for (int i = 0; i < total_in_args; i++) {
2060       if (in_sig_bt[i] == T_ARRAY) {
2061         // These have to be saved and restored across the safepoint
2062         total_c_args++;
2063       }
2064     }
2065   }
2066 
2067   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2068   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2069   BasicType* in_elem_bt = NULL;
2070 
2071   int argc = 0;
2072   if (!is_critical_native) {
2073     out_sig_bt[argc++] = T_ADDRESS;
2074     if (method->is_static()) {
2075       out_sig_bt[argc++] = T_OBJECT;
2076     }
2077 
2078     for (int i = 0; i < total_in_args ; i++ ) {
2079       out_sig_bt[argc++] = in_sig_bt[i];
2080     }
2081   } else {
2082     Thread* THREAD = Thread::current();
2083     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
2084     SignatureStream ss(method->signature());
2085     for (int i = 0; i < total_in_args ; i++ ) {
2086       if (in_sig_bt[i] == T_ARRAY) {
2087         // Arrays are passed as int, elem* pair
2088         out_sig_bt[argc++] = T_INT;
2089         out_sig_bt[argc++] = T_ADDRESS;
2090         Symbol* atype = ss.as_symbol(CHECK_NULL);
2091         const char* at = atype->as_C_string();
2092         if (strlen(at) == 2) {
2093           assert(at[0] == '[', "must be");
2094           switch (at[1]) {
2095             case 'B': in_elem_bt[i]  = T_BYTE; break;
2096             case 'C': in_elem_bt[i]  = T_CHAR; break;
2097             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
2098             case 'F': in_elem_bt[i]  = T_FLOAT; break;
2099             case 'I': in_elem_bt[i]  = T_INT; break;
2100             case 'J': in_elem_bt[i]  = T_LONG; break;
2101             case 'S': in_elem_bt[i]  = T_SHORT; break;
2102             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
2103             default: ShouldNotReachHere();
2104           }
2105         }
2106       } else {
2107         out_sig_bt[argc++] = in_sig_bt[i];
2108         in_elem_bt[i] = T_VOID;
2109       }
2110       if (in_sig_bt[i] != T_VOID) {
2111         assert(in_sig_bt[i] == ss.type(), "must match");
2112         ss.next();
2113       }
2114     }
2115   }
2116 
2117   // Now figure out where the args must be stored and how much stack space
2118   // they require (neglecting out_preserve_stack_slots but space for storing
2119   // the 1st six register arguments). It's weird see int_stk_helper.
2120   //
2121   int out_arg_slots;
2122   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2123 
2124   if (is_critical_native) {
2125     // Critical natives may have to call out so they need a save area
2126     // for register arguments.
2127     int double_slots = 0;
2128     int single_slots = 0;
2129     for ( int i = 0; i < total_in_args; i++) {
2130       if (in_regs[i].first()->is_Register()) {
2131         const Register reg = in_regs[i].first()->as_Register();
2132         switch (in_sig_bt[i]) {
2133           case T_ARRAY:
2134           case T_BOOLEAN:
2135           case T_BYTE:
2136           case T_SHORT:
2137           case T_CHAR:
2138           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
2139           case T_LONG: if (reg->is_global()) double_slots++; break;
2140           default:  ShouldNotReachHere();
2141         }
2142       } else if (in_regs[i].first()->is_FloatRegister()) {
2143         switch (in_sig_bt[i]) {
2144           case T_FLOAT:  single_slots++; break;
2145           case T_DOUBLE: double_slots++; break;
2146           default:  ShouldNotReachHere();
2147         }
2148       }
2149     }
2150     total_save_slots = double_slots * 2 + single_slots;
2151   }
2152 
2153   // Compute framesize for the wrapper.  We need to handlize all oops in
2154   // registers. We must create space for them here that is disjoint from
2155   // the windowed save area because we have no control over when we might
2156   // flush the window again and overwrite values that gc has since modified.
2157   // (The live window race)
2158   //
2159   // We always just allocate 6 word for storing down these object. This allow
2160   // us to simply record the base and use the Ireg number to decide which
2161   // slot to use. (Note that the reg number is the inbound number not the
2162   // outbound number).
2163   // We must shuffle args to match the native convention, and include var-args space.
2164 
2165   // Calculate the total number of stack slots we will need.
2166 
2167   // First count the abi requirement plus all of the outgoing args
2168   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2169 
2170   // Now the space for the inbound oop handle area
2171 
2172   int oop_handle_offset = round_to(stack_slots, 2);
2173   stack_slots += total_save_slots;
2174 
2175   // Now any space we need for handlizing a klass if static method
2176 
2177   int klass_slot_offset = 0;
2178   int klass_offset = -1;
2179   int lock_slot_offset = 0;
2180   bool is_static = false;
2181 
2182   if (method->is_static()) {
2183     klass_slot_offset = stack_slots;
2184     stack_slots += VMRegImpl::slots_per_word;
2185     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2186     is_static = true;
2187   }
2188 
2189   // Plus a lock if needed
2190 
2191   if (method->is_synchronized()) {
2192     lock_slot_offset = stack_slots;
2193     stack_slots += VMRegImpl::slots_per_word;
2194   }
2195 
2196   // Now a place to save return value or as a temporary for any gpr -> fpr moves
2197   stack_slots += 2;
2198 
2199   // Ok The space we have allocated will look like:
2200   //
2201   //
2202   // FP-> |                     |
2203   //      |---------------------|
2204   //      | 2 slots for moves   |
2205   //      |---------------------|
2206   //      | lock box (if sync)  |
2207   //      |---------------------| <- lock_slot_offset
2208   //      | klass (if static)   |
2209   //      |---------------------| <- klass_slot_offset
2210   //      | oopHandle area      |
2211   //      |---------------------| <- oop_handle_offset
2212   //      | outbound memory     |
2213   //      | based arguments     |
2214   //      |                     |
2215   //      |---------------------|
2216   //      | vararg area         |
2217   //      |---------------------|
2218   //      |                     |
2219   // SP-> | out_preserved_slots |
2220   //
2221   //
2222 
2223 
2224   // Now compute actual number of stack words we need rounding to make
2225   // stack properly aligned.
2226   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2227 
2228   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2229 
2230   // Generate stack overflow check before creating frame
2231   __ generate_stack_overflow_check(stack_size);
2232 
2233   // Generate a new frame for the wrapper.
2234   __ save(SP, -stack_size, SP);
2235 
2236   int frame_complete = ((intptr_t)__ pc()) - start;
2237 
2238   __ verify_thread();
2239 
2240   if (is_critical_native) {
2241     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
2242                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2243   }
2244 
2245   //
2246   // We immediately shuffle the arguments so that any vm call we have to
2247   // make from here on out (sync slow path, jvmti, etc.) we will have
2248   // captured the oops from our caller and have a valid oopMap for
2249   // them.
2250 
2251   // -----------------
2252   // The Grand Shuffle
2253   //
2254   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2255   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
2256   // the class mirror instead of a receiver.  This pretty much guarantees that
2257   // register layout will not match.  We ignore these extra arguments during
2258   // the shuffle. The shuffle is described by the two calling convention
2259   // vectors we have in our possession. We simply walk the java vector to
2260   // get the source locations and the c vector to get the destinations.
2261   // Because we have a new window and the argument registers are completely
2262   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
2263   // here.
2264 
2265   // This is a trick. We double the stack slots so we can claim
2266   // the oops in the caller's frame. Since we are sure to have
2267   // more args than the caller doubling is enough to make
2268   // sure we can capture all the incoming oop args from the
2269   // caller.
2270   //
2271   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2272   // Record sp-based slot for receiver on stack for non-static methods
2273   int receiver_offset = -1;
2274 
2275   // We move the arguments backward because the floating point registers
2276   // destination will always be to a register with a greater or equal register
2277   // number or the stack.
2278 
2279 #ifdef ASSERT
2280   bool reg_destroyed[RegisterImpl::number_of_registers];
2281   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2282   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2283     reg_destroyed[r] = false;
2284   }
2285   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2286     freg_destroyed[f] = false;
2287   }
2288 
2289 #endif /* ASSERT */
2290 
2291   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
2292 
2293 #ifdef ASSERT
2294     if (in_regs[i].first()->is_Register()) {
2295       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2296     } else if (in_regs[i].first()->is_FloatRegister()) {
2297       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2298     }
2299     if (out_regs[c_arg].first()->is_Register()) {
2300       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2301     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2302       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2303     }
2304 #endif /* ASSERT */
2305 
2306     switch (in_sig_bt[i]) {
2307       case T_ARRAY:
2308         if (is_critical_native) {
2309           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
2310           c_arg--;
2311           break;
2312         }
2313       case T_OBJECT:
2314         assert(!is_critical_native, "no oop arguments");
2315         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2316                     ((i == 0) && (!is_static)),
2317                     &receiver_offset);
2318         break;
2319       case T_VOID:
2320         break;
2321 
2322       case T_FLOAT:
2323         float_move(masm, in_regs[i], out_regs[c_arg]);
2324         break;
2325 
2326       case T_DOUBLE:
2327         assert( i + 1 < total_in_args &&
2328                 in_sig_bt[i + 1] == T_VOID &&
2329                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2330         double_move(masm, in_regs[i], out_regs[c_arg]);
2331         break;
2332 
2333       case T_LONG :
2334         long_move(masm, in_regs[i], out_regs[c_arg]);
2335         break;
2336 
2337       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2338 
2339       default:
2340         move32_64(masm, in_regs[i], out_regs[c_arg]);
2341     }
2342   }
2343 
2344   // Pre-load a static method's oop into O1.  Used both by locking code and
2345   // the normal JNI call code.
2346   if (method->is_static() && !is_critical_native) {
2347     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
2348 
2349     // Now handlize the static class mirror in O1.  It's known not-null.
2350     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2351     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2352     __ add(SP, klass_offset + STACK_BIAS, O1);
2353   }
2354 
2355 
2356   const Register L6_handle = L6;
2357 
2358   if (method->is_synchronized()) {
2359     assert(!is_critical_native, "unhandled");
2360     __ mov(O1, L6_handle);
2361   }
2362 
2363   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2364   // except O6/O7. So if we must call out we must push a new frame. We immediately
2365   // push a new frame and flush the windows.
2366 #ifdef _LP64
2367   intptr_t thepc = (intptr_t) __ pc();
2368   {
2369     address here = __ pc();
2370     // Call the next instruction
2371     __ call(here + 8, relocInfo::none);
2372     __ delayed()->nop();
2373   }
2374 #else
2375   intptr_t thepc = __ load_pc_address(O7, 0);
2376 #endif /* _LP64 */
2377 
2378   // We use the same pc/oopMap repeatedly when we call out
2379   oop_maps->add_gc_map(thepc - start, map);
2380 
2381   // O7 now has the pc loaded that we will use when we finally call to native.
2382 
2383   // Save thread in L7; it crosses a bunch of VM calls below
2384   // Don't use save_thread because it smashes G2 and we merely
2385   // want to save a copy
2386   __ mov(G2_thread, L7_thread_cache);
2387 
2388 
2389   // If we create an inner frame once is plenty
2390   // when we create it we must also save G2_thread
2391   bool inner_frame_created = false;
2392 
2393   // dtrace method entry support
2394   {
2395     SkipIfEqual skip_if(
2396       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2397     // create inner frame
2398     __ save_frame(0);
2399     __ mov(G2_thread, L7_thread_cache);
2400     __ set_metadata_constant(method(), O1);
2401     __ call_VM_leaf(L7_thread_cache,
2402          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2403          G2_thread, O1);
2404     __ restore();
2405   }
2406 
2407   // RedefineClasses() tracing support for obsolete method entry
2408   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2409     // create inner frame
2410     __ save_frame(0);
2411     __ mov(G2_thread, L7_thread_cache);
2412     __ set_metadata_constant(method(), O1);
2413     __ call_VM_leaf(L7_thread_cache,
2414          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2415          G2_thread, O1);
2416     __ restore();
2417   }
2418 
2419   // We are in the jni frame unless saved_frame is true in which case
2420   // we are in one frame deeper (the "inner" frame). If we are in the
2421   // "inner" frames the args are in the Iregs and if the jni frame then
2422   // they are in the Oregs.
2423   // If we ever need to go to the VM (for locking, jvmti) then
2424   // we will always be in the "inner" frame.
2425 
2426   // Lock a synchronized method
2427   int lock_offset = -1;         // Set if locked
2428   if (method->is_synchronized()) {
2429     Register Roop = O1;
2430     const Register L3_box = L3;
2431 
2432     create_inner_frame(masm, &inner_frame_created);
2433 
2434     __ ld_ptr(I1, 0, O1);
2435     Label done;
2436 
2437     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2438     __ add(FP, lock_offset+STACK_BIAS, L3_box);
2439 #ifdef ASSERT
2440     if (UseBiasedLocking) {
2441       // making the box point to itself will make it clear it went unused
2442       // but also be obviously invalid
2443       __ st_ptr(L3_box, L3_box, 0);
2444     }
2445 #endif // ASSERT
2446     //
2447     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2448     //
2449     __ compiler_lock_object(Roop, L1,    L3_box, L2);
2450     __ br(Assembler::equal, false, Assembler::pt, done);
2451     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2452 
2453 
2454     // None of the above fast optimizations worked so we have to get into the
2455     // slow case of monitor enter.  Inline a special case of call_VM that
2456     // disallows any pending_exception.
2457     __ mov(Roop, O0);            // Need oop in O0
2458     __ mov(L3_box, O1);
2459 
2460     // Record last_Java_sp, in case the VM code releases the JVM lock.
2461 
2462     __ set_last_Java_frame(FP, I7);
2463 
2464     // do the call
2465     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2466     __ delayed()->mov(L7_thread_cache, O2);
2467 
2468     __ restore_thread(L7_thread_cache); // restore G2_thread
2469     __ reset_last_Java_frame();
2470 
2471 #ifdef ASSERT
2472     { Label L;
2473     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2474     __ br_null_short(O0, Assembler::pt, L);
2475     __ stop("no pending exception allowed on exit from IR::monitorenter");
2476     __ bind(L);
2477     }
2478 #endif
2479     __ bind(done);
2480   }
2481 
2482 
2483   // Finally just about ready to make the JNI call
2484 
2485   __ flushw();
2486   if (inner_frame_created) {
2487     __ restore();
2488   } else {
2489     // Store only what we need from this frame
2490     // QQQ I think that non-v9 (like we care) we don't need these saves
2491     // either as the flush traps and the current window goes too.
2492     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2493 #ifdef STACKGHOST
2494     __ set(sg_cookie(), G3_scratch);
2495     __ xor3(G3_scratch, I7, G3_scratch);
2496     __ st_ptr(G3_scratch, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2497 #else
2498     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2499 #endif
2500   }
2501 
2502   // get JNIEnv* which is first argument to native
2503   if (!is_critical_native) {
2504     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2505   }
2506 
2507   // Use that pc we placed in O7 a while back as the current frame anchor
2508   __ set_last_Java_frame(SP, O7);
2509 
2510   // We flushed the windows ages ago now mark them as flushed before transitioning.
2511   __ set(JavaFrameAnchor::flushed, G3_scratch);
2512   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2513 
2514   // Transition from _thread_in_Java to _thread_in_native.
2515   __ set(_thread_in_native, G3_scratch);
2516 
2517 #ifdef _LP64
2518   AddressLiteral dest(native_func);
2519   __ relocate(relocInfo::runtime_call_type);
2520   __ jumpl_to(dest, O7, O7);
2521 #else
2522   __ call(native_func, relocInfo::runtime_call_type);
2523 #endif
2524   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2525 
2526   __ restore_thread(L7_thread_cache); // restore G2_thread
2527 
2528   // Unpack native results.  For int-types, we do any needed sign-extension
2529   // and move things into I0.  The return value there will survive any VM
2530   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2531   // specially in the slow-path code.
2532   switch (ret_type) {
2533   case T_VOID:    break;        // Nothing to do!
2534   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2535   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2536   // In 64 bits build result is in O0, in O0, O1 in 32bit build
2537   case T_LONG:
2538 #ifndef _LP64
2539                   __ mov(O1, I1);
2540 #endif
2541                   // Fall thru
2542   case T_OBJECT:                // Really a handle
2543   case T_ARRAY:
2544   case T_INT:
2545                   __ mov(O0, I0);
2546                   break;
2547   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2548   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2549   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2550   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2551     break;                      // Cannot de-handlize until after reclaiming jvm_lock
2552   default:
2553     ShouldNotReachHere();
2554   }
2555 
2556   Label after_transition;
2557   // must we block?
2558 
2559   // Block, if necessary, before resuming in _thread_in_Java state.
2560   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2561   { Label no_block;
2562     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2563 
2564     // Switch thread to "native transition" state before reading the synchronization state.
2565     // This additional state is necessary because reading and testing the synchronization
2566     // state is not atomic w.r.t. GC, as this scenario demonstrates:
2567     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2568     //     VM thread changes sync state to synchronizing and suspends threads for GC.
2569     //     Thread A is resumed to finish this native method, but doesn't block here since it
2570     //     didn't see any synchronization is progress, and escapes.
2571     __ set(_thread_in_native_trans, G3_scratch);
2572     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2573     if(os::is_MP()) {
2574       if (UseMembar) {
2575         // Force this write out before the read below
2576         __ membar(Assembler::StoreLoad);
2577       } else {
2578         // Write serialization page so VM thread can do a pseudo remote membar.
2579         // We use the current thread pointer to calculate a thread specific
2580         // offset to write to within the page. This minimizes bus traffic
2581         // due to cache line collision.
2582         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2583       }
2584     }
2585     __ load_contents(sync_state, G3_scratch);
2586     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2587 
2588     Label L;
2589     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2590     __ br(Assembler::notEqual, false, Assembler::pn, L);
2591     __ delayed()->ld(suspend_state, G3_scratch);
2592     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
2593     __ bind(L);
2594 
2595     // Block.  Save any potential method result value before the operation and
2596     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2597     // lets us share the oopMap we used when we went native rather the create
2598     // a distinct one for this pc
2599     //
2600     save_native_result(masm, ret_type, stack_slots);
2601     if (!is_critical_native) {
2602       __ call_VM_leaf(L7_thread_cache,
2603                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2604                       G2_thread);
2605     } else {
2606       __ call_VM_leaf(L7_thread_cache,
2607                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
2608                       G2_thread);
2609     }
2610 
2611     // Restore any method result value
2612     restore_native_result(masm, ret_type, stack_slots);
2613 
2614     if (is_critical_native) {
2615       // The call above performed the transition to thread_in_Java so
2616       // skip the transition logic below.
2617       __ ba(after_transition);
2618       __ delayed()->nop();
2619     }
2620 
2621     __ bind(no_block);
2622   }
2623 
2624   // thread state is thread_in_native_trans. Any safepoint blocking has already
2625   // happened so we can now change state to _thread_in_Java.
2626   __ set(_thread_in_Java, G3_scratch);
2627   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2628   __ bind(after_transition);
2629 
2630   Label no_reguard;
2631   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2632   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
2633 
2634     save_native_result(masm, ret_type, stack_slots);
2635   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2636   __ delayed()->nop();
2637 
2638   __ restore_thread(L7_thread_cache); // restore G2_thread
2639     restore_native_result(masm, ret_type, stack_slots);
2640 
2641   __ bind(no_reguard);
2642 
2643   // Handle possible exception (will unlock if necessary)
2644 
2645   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2646 
2647   // Unlock
2648   if (method->is_synchronized()) {
2649     Label done;
2650     Register I2_ex_oop = I2;
2651     const Register L3_box = L3;
2652     // Get locked oop from the handle we passed to jni
2653     __ ld_ptr(L6_handle, 0, L4);
2654     __ add(SP, lock_offset+STACK_BIAS, L3_box);
2655     // Must save pending exception around the slow-path VM call.  Since it's a
2656     // leaf call, the pending exception (if any) can be kept in a register.
2657     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2658     // Now unlock
2659     //                       (Roop, Rmark, Rbox,   Rscratch)
2660     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2661     __ br(Assembler::equal, false, Assembler::pt, done);
2662     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2663 
2664     // save and restore any potential method result value around the unlocking
2665     // operation.  Will save in I0 (or stack for FP returns).
2666     save_native_result(masm, ret_type, stack_slots);
2667 
2668     // Must clear pending-exception before re-entering the VM.  Since this is
2669     // a leaf call, pending-exception-oop can be safely kept in a register.
2670     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2671 
2672     // slow case of monitor enter.  Inline a special case of call_VM that
2673     // disallows any pending_exception.
2674     __ mov(L3_box, O1);
2675 
2676     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2677     __ delayed()->mov(L4, O0);              // Need oop in O0
2678 
2679     __ restore_thread(L7_thread_cache); // restore G2_thread
2680 
2681 #ifdef ASSERT
2682     { Label L;
2683     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2684     __ br_null_short(O0, Assembler::pt, L);
2685     __ stop("no pending exception allowed on exit from IR::monitorexit");
2686     __ bind(L);
2687     }
2688 #endif
2689     restore_native_result(masm, ret_type, stack_slots);
2690     // check_forward_pending_exception jump to forward_exception if any pending
2691     // exception is set.  The forward_exception routine expects to see the
2692     // exception in pending_exception and not in a register.  Kind of clumsy,
2693     // since all folks who branch to forward_exception must have tested
2694     // pending_exception first and hence have it in a register already.
2695     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2696     __ bind(done);
2697   }
2698 
2699   // Tell dtrace about this method exit
2700   {
2701     SkipIfEqual skip_if(
2702       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2703     save_native_result(masm, ret_type, stack_slots);
2704     __ set_metadata_constant(method(), O1);
2705     __ call_VM_leaf(L7_thread_cache,
2706        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2707        G2_thread, O1);
2708     restore_native_result(masm, ret_type, stack_slots);
2709   }
2710 
2711   // Clear "last Java frame" SP and PC.
2712   __ verify_thread(); // G2_thread must be correct
2713   __ reset_last_Java_frame();
2714 
2715   // Unbox oop result, e.g. JNIHandles::resolve value in I0.
2716   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2717     Label done, not_weak;
2718     __ br_null(I0, false, Assembler::pn, done); // Use NULL as-is.
2719     __ delayed()->andcc(I0, JNIHandles::weak_tag_mask, G0); // Test for jweak
2720     __ brx(Assembler::zero, true, Assembler::pt, not_weak);
2721     __ delayed()->ld_ptr(I0, 0, I0); // Maybe resolve (untagged) jobject.
2722     // Resolve jweak.
2723     __ ld_ptr(I0, -JNIHandles::weak_tag_value, I0);
2724 #if INCLUDE_ALL_GCS
2725     if (UseG1GC) {
2726       // Copy to O0 because macro doesn't allow pre_val in input reg.
2727       __ mov(I0, O0);
2728       __ g1_write_barrier_pre(noreg /* obj */,
2729                               noreg /* index */,
2730                               0 /* offset */,
2731                               O0 /* pre_val */,
2732                               G3_scratch /* tmp */,
2733                               true /* preserve_o_regs */);
2734     }
2735 #endif // INCLUDE_ALL_GCS
2736     __ bind(not_weak);
2737     __ verify_oop(I0);
2738     __ bind(done);
2739   }
2740 
2741   if (!is_critical_native) {
2742     // reset handle block
2743     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2744     __ st(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2745 
2746     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2747     check_forward_pending_exception(masm, G3_scratch);
2748   }
2749 
2750 
2751   // Return
2752 
2753 #ifndef _LP64
2754   if (ret_type == T_LONG) {
2755 
2756     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2757     __ sllx(I0, 32, G1);          // Shift bits into high G1
2758     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2759     __ or3 (I1, G1, G1);          // OR 64 bits into G1
2760   }
2761 #endif
2762 
2763   __ ret();
2764   __ delayed()->restore();
2765 
2766   __ flush();
2767 
2768   nmethod *nm = nmethod::new_native_nmethod(method,
2769                                             compile_id,
2770                                             masm->code(),
2771                                             vep_offset,
2772                                             frame_complete,
2773                                             stack_slots / VMRegImpl::slots_per_word,
2774                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2775                                             in_ByteSize(lock_offset),
2776                                             oop_maps);
2777 
2778   if (is_critical_native) {
2779     nm->set_lazy_critical_native(true);
2780   }
2781   return nm;
2782 
2783 }
2784 
2785 #ifdef HAVE_DTRACE_H
2786 // ---------------------------------------------------------------------------
2787 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2788 // in the Java compiled code convention, marshals them to the native
2789 // abi and then leaves nops at the position you would expect to call a native
2790 // function. When the probe is enabled the nops are replaced with a trap
2791 // instruction that dtrace inserts and the trace will cause a notification
2792 // to dtrace.
2793 //
2794 // The probes are only able to take primitive types and java/lang/String as
2795 // arguments.  No other java types are allowed. Strings are converted to utf8
2796 // strings so that from dtrace point of view java strings are converted to C
2797 // strings. There is an arbitrary fixed limit on the total space that a method
2798 // can use for converting the strings. (256 chars per string in the signature).
2799 // So any java string larger then this is truncated.
2800 
2801 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2802 static bool offsets_initialized = false;
2803 
generate_dtrace_nmethod(MacroAssembler * masm,methodHandle method)2804 nmethod *SharedRuntime::generate_dtrace_nmethod(
2805     MacroAssembler *masm, methodHandle method) {
2806 
2807 
2808   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2809   // be single threaded in this method.
2810   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2811 
2812   // Fill in the signature array, for the calling-convention call.
2813   int total_args_passed = method->size_of_parameters();
2814 
2815   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2816   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2817 
2818   // The signature we are going to use for the trap that dtrace will see
2819   // java/lang/String is converted. We drop "this" and any other object
2820   // is converted to NULL.  (A one-slot java/lang/Long object reference
2821   // is converted to a two-slot long, which is why we double the allocation).
2822   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2823   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2824 
2825   int i=0;
2826   int total_strings = 0;
2827   int first_arg_to_pass = 0;
2828   int total_c_args = 0;
2829 
2830   // Skip the receiver as dtrace doesn't want to see it
2831   if( !method->is_static() ) {
2832     in_sig_bt[i++] = T_OBJECT;
2833     first_arg_to_pass = 1;
2834   }
2835 
2836   SignatureStream ss(method->signature());
2837   for ( ; !ss.at_return_type(); ss.next()) {
2838     BasicType bt = ss.type();
2839     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2840     out_sig_bt[total_c_args++] = bt;
2841     if( bt == T_OBJECT) {
2842       Symbol* s = ss.as_symbol_or_null();
2843       if (s == vmSymbols::java_lang_String()) {
2844         total_strings++;
2845         out_sig_bt[total_c_args-1] = T_ADDRESS;
2846       } else if (s == vmSymbols::java_lang_Boolean() ||
2847                  s == vmSymbols::java_lang_Byte()) {
2848         out_sig_bt[total_c_args-1] = T_BYTE;
2849       } else if (s == vmSymbols::java_lang_Character() ||
2850                  s == vmSymbols::java_lang_Short()) {
2851         out_sig_bt[total_c_args-1] = T_SHORT;
2852       } else if (s == vmSymbols::java_lang_Integer() ||
2853                  s == vmSymbols::java_lang_Float()) {
2854         out_sig_bt[total_c_args-1] = T_INT;
2855       } else if (s == vmSymbols::java_lang_Long() ||
2856                  s == vmSymbols::java_lang_Double()) {
2857         out_sig_bt[total_c_args-1] = T_LONG;
2858         out_sig_bt[total_c_args++] = T_VOID;
2859       }
2860     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2861       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2862       // We convert double to long
2863       out_sig_bt[total_c_args-1] = T_LONG;
2864       out_sig_bt[total_c_args++] = T_VOID;
2865     } else if ( bt == T_FLOAT) {
2866       // We convert float to int
2867       out_sig_bt[total_c_args-1] = T_INT;
2868     }
2869   }
2870 
2871   assert(i==total_args_passed, "validly parsed signature");
2872 
2873   // Now get the compiled-Java layout as input arguments
2874   int comp_args_on_stack;
2875   comp_args_on_stack = SharedRuntime::java_calling_convention(
2876       in_sig_bt, in_regs, total_args_passed, false);
2877 
2878   // We have received a description of where all the java arg are located
2879   // on entry to the wrapper. We need to convert these args to where
2880   // the a  native (non-jni) function would expect them. To figure out
2881   // where they go we convert the java signature to a C signature and remove
2882   // T_VOID for any long/double we might have received.
2883 
2884 
2885   // Now figure out where the args must be stored and how much stack space
2886   // they require (neglecting out_preserve_stack_slots but space for storing
2887   // the 1st six register arguments). It's weird see int_stk_helper.
2888   //
2889   int out_arg_slots;
2890   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2891 
2892   // Calculate the total number of stack slots we will need.
2893 
2894   // First count the abi requirement plus all of the outgoing args
2895   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2896 
2897   // Plus a temp for possible converion of float/double/long register args
2898 
2899   int conversion_temp = stack_slots;
2900   stack_slots += 2;
2901 
2902 
2903   // Now space for the string(s) we must convert
2904 
2905   int string_locs = stack_slots;
2906   stack_slots += total_strings *
2907                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
2908 
2909   // Ok The space we have allocated will look like:
2910   //
2911   //
2912   // FP-> |                     |
2913   //      |---------------------|
2914   //      | string[n]           |
2915   //      |---------------------| <- string_locs[n]
2916   //      | string[n-1]         |
2917   //      |---------------------| <- string_locs[n-1]
2918   //      | ...                 |
2919   //      | ...                 |
2920   //      |---------------------| <- string_locs[1]
2921   //      | string[0]           |
2922   //      |---------------------| <- string_locs[0]
2923   //      | temp                |
2924   //      |---------------------| <- conversion_temp
2925   //      | outbound memory     |
2926   //      | based arguments     |
2927   //      |                     |
2928   //      |---------------------|
2929   //      |                     |
2930   // SP-> | out_preserved_slots |
2931   //
2932   //
2933 
2934   // Now compute actual number of stack words we need rounding to make
2935   // stack properly aligned.
2936   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2937 
2938   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2939 
2940   intptr_t start = (intptr_t)__ pc();
2941 
2942   // First thing make an ic check to see if we should even be here
2943 
2944   {
2945     Label L;
2946     const Register temp_reg = G3_scratch;
2947     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2948     __ verify_oop(O0);
2949     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
2950     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
2951 
2952     __ jump_to(ic_miss, temp_reg);
2953     __ delayed()->nop();
2954     __ align(CodeEntryAlignment);
2955     __ bind(L);
2956   }
2957 
2958   int vep_offset = ((intptr_t)__ pc()) - start;
2959 
2960 
2961   // The instruction at the verified entry point must be 5 bytes or longer
2962   // because it can be patched on the fly by make_non_entrant. The stack bang
2963   // instruction fits that requirement.
2964 
2965   // Generate stack overflow check before creating frame
2966   __ generate_stack_overflow_check(stack_size);
2967 
2968   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
2969          "valid size for make_non_entrant");
2970 
2971   // Generate a new frame for the wrapper.
2972   __ save(SP, -stack_size, SP);
2973 
2974   // Frame is now completed as far a size and linkage.
2975 
2976   int frame_complete = ((intptr_t)__ pc()) - start;
2977 
2978 #ifdef ASSERT
2979   bool reg_destroyed[RegisterImpl::number_of_registers];
2980   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2981   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2982     reg_destroyed[r] = false;
2983   }
2984   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2985     freg_destroyed[f] = false;
2986   }
2987 
2988 #endif /* ASSERT */
2989 
2990   VMRegPair zero;
2991   const Register g0 = G0; // without this we get a compiler warning (why??)
2992   zero.set2(g0->as_VMReg());
2993 
2994   int c_arg, j_arg;
2995 
2996   Register conversion_off = noreg;
2997 
2998   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2999        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3000 
3001     VMRegPair src = in_regs[j_arg];
3002     VMRegPair dst = out_regs[c_arg];
3003 
3004 #ifdef ASSERT
3005     if (src.first()->is_Register()) {
3006       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
3007     } else if (src.first()->is_FloatRegister()) {
3008       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
3009                                                FloatRegisterImpl::S)], "ack!");
3010     }
3011     if (dst.first()->is_Register()) {
3012       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
3013     } else if (dst.first()->is_FloatRegister()) {
3014       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
3015                                                  FloatRegisterImpl::S)] = true;
3016     }
3017 #endif /* ASSERT */
3018 
3019     switch (in_sig_bt[j_arg]) {
3020       case T_ARRAY:
3021       case T_OBJECT:
3022         {
3023           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
3024               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
3025             // need to unbox a one-slot value
3026             Register in_reg = L0;
3027             Register tmp = L2;
3028             if ( src.first()->is_reg() ) {
3029               in_reg = src.first()->as_Register();
3030             } else {
3031               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
3032                      "must be");
3033               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
3034             }
3035             // If the final destination is an acceptable register
3036             if ( dst.first()->is_reg() ) {
3037               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
3038                 tmp = dst.first()->as_Register();
3039               }
3040             }
3041 
3042             Label skipUnbox;
3043             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
3044               __ mov(G0, tmp->successor());
3045             }
3046             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
3047             __ delayed()->mov(G0, tmp);
3048 
3049             BasicType bt = out_sig_bt[c_arg];
3050             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
3051             switch (bt) {
3052                 case T_BYTE:
3053                   __ ldub(in_reg, box_offset, tmp); break;
3054                 case T_SHORT:
3055                   __ lduh(in_reg, box_offset, tmp); break;
3056                 case T_INT:
3057                   __ ld(in_reg, box_offset, tmp); break;
3058                 case T_LONG:
3059                   __ ld_long(in_reg, box_offset, tmp); break;
3060                 default: ShouldNotReachHere();
3061             }
3062 
3063             __ bind(skipUnbox);
3064             // If tmp wasn't final destination copy to final destination
3065             if (tmp == L2) {
3066               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
3067               if (out_sig_bt[c_arg] == T_LONG) {
3068                 long_move(masm, tmp_as_VM, dst);
3069               } else {
3070                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
3071               }
3072             }
3073             if (out_sig_bt[c_arg] == T_LONG) {
3074               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3075               ++c_arg; // move over the T_VOID to keep the loop indices in sync
3076             }
3077           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
3078             Register s =
3079                 src.first()->is_reg() ? src.first()->as_Register() : L2;
3080             Register d =
3081                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
3082 
3083             // We store the oop now so that the conversion pass can reach
3084             // while in the inner frame. This will be the only store if
3085             // the oop is NULL.
3086             if (s != L2) {
3087               // src is register
3088               if (d != L2) {
3089                 // dst is register
3090                 __ mov(s, d);
3091               } else {
3092                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
3093                           STACK_BIAS), "must be");
3094                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
3095               }
3096             } else {
3097                 // src not a register
3098                 assert(Assembler::is_simm13(reg2offset(src.first()) +
3099                            STACK_BIAS), "must be");
3100                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
3101                 if (d == L2) {
3102                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
3103                              STACK_BIAS), "must be");
3104                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
3105                 }
3106             }
3107           } else if (out_sig_bt[c_arg] != T_VOID) {
3108             // Convert the arg to NULL
3109             if (dst.first()->is_reg()) {
3110               __ mov(G0, dst.first()->as_Register());
3111             } else {
3112               assert(Assembler::is_simm13(reg2offset(dst.first()) +
3113                          STACK_BIAS), "must be");
3114               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
3115             }
3116           }
3117         }
3118         break;
3119       case T_VOID:
3120         break;
3121 
3122       case T_FLOAT:
3123         if (src.first()->is_stack()) {
3124           // Stack to stack/reg is simple
3125           move32_64(masm, src, dst);
3126         } else {
3127           if (dst.first()->is_reg()) {
3128             // freg -> reg
3129             int off =
3130               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3131             Register d = dst.first()->as_Register();
3132             if (Assembler::is_simm13(off)) {
3133               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3134                      SP, off);
3135               __ ld(SP, off, d);
3136             } else {
3137               if (conversion_off == noreg) {
3138                 __ set(off, L6);
3139                 conversion_off = L6;
3140               }
3141               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3142                      SP, conversion_off);
3143               __ ld(SP, conversion_off , d);
3144             }
3145           } else {
3146             // freg -> mem
3147             int off = STACK_BIAS + reg2offset(dst.first());
3148             if (Assembler::is_simm13(off)) {
3149               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3150                      SP, off);
3151             } else {
3152               if (conversion_off == noreg) {
3153                 __ set(off, L6);
3154                 conversion_off = L6;
3155               }
3156               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3157                      SP, conversion_off);
3158             }
3159           }
3160         }
3161         break;
3162 
3163       case T_DOUBLE:
3164         assert( j_arg + 1 < total_args_passed &&
3165                 in_sig_bt[j_arg + 1] == T_VOID &&
3166                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
3167         if (src.first()->is_stack()) {
3168           // Stack to stack/reg is simple
3169           long_move(masm, src, dst);
3170         } else {
3171           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
3172 
3173           // Destination could be an odd reg on 32bit in which case
3174           // we can't load direct to the destination.
3175 
3176           if (!d->is_even() && wordSize == 4) {
3177             d = L2;
3178           }
3179           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3180           if (Assembler::is_simm13(off)) {
3181             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
3182                    SP, off);
3183             __ ld_long(SP, off, d);
3184           } else {
3185             if (conversion_off == noreg) {
3186               __ set(off, L6);
3187               conversion_off = L6;
3188             }
3189             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
3190                    SP, conversion_off);
3191             __ ld_long(SP, conversion_off, d);
3192           }
3193           if (d == L2) {
3194             long_move(masm, reg64_to_VMRegPair(L2), dst);
3195           }
3196         }
3197         break;
3198 
3199       case T_LONG :
3200         // 32bit can't do a split move of something like g1 -> O0, O1
3201         // so use a memory temp
3202         if (src.is_single_phys_reg() && wordSize == 4) {
3203           Register tmp = L2;
3204           if (dst.first()->is_reg() &&
3205               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
3206             tmp = dst.first()->as_Register();
3207           }
3208 
3209           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3210           if (Assembler::is_simm13(off)) {
3211             __ stx(src.first()->as_Register(), SP, off);
3212             __ ld_long(SP, off, tmp);
3213           } else {
3214             if (conversion_off == noreg) {
3215               __ set(off, L6);
3216               conversion_off = L6;
3217             }
3218             __ stx(src.first()->as_Register(), SP, conversion_off);
3219             __ ld_long(SP, conversion_off, tmp);
3220           }
3221 
3222           if (tmp == L2) {
3223             long_move(masm, reg64_to_VMRegPair(L2), dst);
3224           }
3225         } else {
3226           long_move(masm, src, dst);
3227         }
3228         break;
3229 
3230       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
3231 
3232       default:
3233         move32_64(masm, src, dst);
3234     }
3235   }
3236 
3237 
3238   // If we have any strings we must store any register based arg to the stack
3239   // This includes any still live xmm registers too.
3240 
3241   if (total_strings > 0 ) {
3242 
3243     // protect all the arg registers
3244     __ save_frame(0);
3245     __ mov(G2_thread, L7_thread_cache);
3246     const Register L2_string_off = L2;
3247 
3248     // Get first string offset
3249     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
3250 
3251     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
3252       if (out_sig_bt[c_arg] == T_ADDRESS) {
3253 
3254         VMRegPair dst = out_regs[c_arg];
3255         const Register d = dst.first()->is_reg() ?
3256             dst.first()->as_Register()->after_save() : noreg;
3257 
3258         // It's a string the oop and it was already copied to the out arg
3259         // position
3260         if (d != noreg) {
3261           __ mov(d, O0);
3262         } else {
3263           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3264                  "must be");
3265           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
3266         }
3267         Label skip;
3268 
3269         __ br_null(O0, false, Assembler::pn, skip);
3270         __ delayed()->add(FP, L2_string_off, O1);
3271 
3272         if (d != noreg) {
3273           __ mov(O1, d);
3274         } else {
3275           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3276                  "must be");
3277           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
3278         }
3279 
3280         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
3281                 relocInfo::runtime_call_type);
3282         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
3283 
3284         __ bind(skip);
3285 
3286       }
3287 
3288     }
3289     __ mov(L7_thread_cache, G2_thread);
3290     __ restore();
3291 
3292   }
3293 
3294 
3295   // Ok now we are done. Need to place the nop that dtrace wants in order to
3296   // patch in the trap
3297 
3298   int patch_offset = ((intptr_t)__ pc()) - start;
3299 
3300   __ nop();
3301 
3302 
3303   // Return
3304 
3305   __ ret();
3306   __ delayed()->restore();
3307 
3308   __ flush();
3309 
3310   nmethod *nm = nmethod::new_dtrace_nmethod(
3311       method, masm->code(), vep_offset, patch_offset, frame_complete,
3312       stack_slots / VMRegImpl::slots_per_word);
3313   return nm;
3314 
3315 }
3316 
3317 #endif // HAVE_DTRACE_H
3318 
3319 // this function returns the adjust size (in number of words) to a c2i adapter
3320 // activation for use during deoptimization
last_frame_adjust(int callee_parameters,int callee_locals)3321 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3322   assert(callee_locals >= callee_parameters,
3323           "test and remove; got more parms than locals");
3324   if (callee_locals < callee_parameters)
3325     return 0;                   // No adjustment for negative locals
3326   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3327   return round_to(diff, WordsPerLong);
3328 }
3329 
3330 // "Top of Stack" slots that may be unused by the calling convention but must
3331 // otherwise be preserved.
3332 // On Intel these are not necessary and the value can be zero.
3333 // On Sparc this describes the words reserved for storing a register window
3334 // when an interrupt occurs.
out_preserve_stack_slots()3335 uint SharedRuntime::out_preserve_stack_slots() {
3336   return frame::register_save_words * VMRegImpl::slots_per_word;
3337 }
3338 
gen_new_frame(MacroAssembler * masm,bool deopt)3339 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3340 //
3341 // Common out the new frame generation for deopt and uncommon trap
3342 //
3343   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3344   Register        Oreturn0           = O0;
3345   Register        Oreturn1           = O1;
3346   Register        O2UnrollBlock      = O2;
3347   Register        O3array            = O3;         // Array of frame sizes (input)
3348   Register        O4array_size       = O4;         // number of frames (input)
3349   Register        O7frame_size       = O7;         // number of frames (input)
3350 
3351   __ ld_ptr(O3array, 0, O7frame_size);
3352   __ sub(G0, O7frame_size, O7frame_size);
3353   __ save(SP, O7frame_size, SP);
3354   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3355 
3356   #ifdef ASSERT
3357   // make sure that the frames are aligned properly
3358 #ifndef _LP64
3359   __ btst(wordSize*2-1, SP);
3360   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
3361 #endif
3362   #endif
3363 
3364   // Deopt needs to pass some extra live values from frame to frame
3365 
3366   if (deopt) {
3367     __ mov(Oreturn0->after_save(), Oreturn0);
3368     __ mov(Oreturn1->after_save(), Oreturn1);
3369   }
3370 
3371   __ mov(O4array_size->after_save(), O4array_size);
3372   __ sub(O4array_size, 1, O4array_size);
3373   __ mov(O3array->after_save(), O3array);
3374   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3375   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3376 
3377   #ifdef ASSERT
3378   // trash registers to show a clear pattern in backtraces
3379   __ set(0xDEAD0000, I0);
3380   __ add(I0,  2, I1);
3381   __ add(I0,  4, I2);
3382   __ add(I0,  6, I3);
3383   __ add(I0,  8, I4);
3384   // Don't touch I5 could have valuable savedSP
3385   __ set(0xDEADBEEF, L0);
3386   __ mov(L0, L1);
3387   __ mov(L0, L2);
3388   __ mov(L0, L3);
3389   __ mov(L0, L4);
3390   __ mov(L0, L5);
3391 
3392   // trash the return value as there is nothing to return yet
3393   __ set(0xDEAD0001, O7);
3394   #endif
3395 
3396   __ mov(SP, O5_savedSP);
3397 }
3398 
3399 
make_new_frames(MacroAssembler * masm,bool deopt)3400 static void make_new_frames(MacroAssembler* masm, bool deopt) {
3401   //
3402   // loop through the UnrollBlock info and create new frames
3403   //
3404   Register        G3pcs              = G3_scratch;
3405   Register        Oreturn0           = O0;
3406   Register        Oreturn1           = O1;
3407   Register        O2UnrollBlock      = O2;
3408   Register        O3array            = O3;
3409   Register        O4array_size       = O4;
3410   Label           loop;
3411 
3412 #ifdef ASSERT
3413   // Compilers generate code that bang the stack by as much as the
3414   // interpreter would need. So this stack banging should never
3415   // trigger a fault. Verify that it does not on non product builds.
3416   if (UseStackBanging) {
3417     // Get total frame size for interpreted frames
3418     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
3419     __ bang_stack_size(O4, O3, G3_scratch);
3420   }
3421 #endif
3422 
3423   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
3424   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
3425   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
3426 
3427   // Adjust old interpreter frame to make space for new frame's extra java locals
3428   //
3429   // We capture the original sp for the transition frame only because it is needed in
3430   // order to properly calculate interpreter_sp_adjustment. Even though in real life
3431   // every interpreter frame captures a savedSP it is only needed at the transition
3432   // (fortunately). If we had to have it correct everywhere then we would need to
3433   // be told the sp_adjustment for each frame we create. If the frame size array
3434   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3435   // for each frame we create and keep up the illusion every where.
3436   //
3437 
3438   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
3439   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3440   __ sub(SP, O7, SP);
3441 
3442 #ifdef ASSERT
3443   // make sure that there is at least one entry in the array
3444   __ tst(O4array_size);
3445   __ breakpoint_trap(Assembler::zero, Assembler::icc);
3446 #endif
3447 
3448   // Now push the new interpreter frames
3449   __ bind(loop);
3450 
3451   // allocate a new frame, filling the registers
3452 
3453   gen_new_frame(masm, deopt);        // allocate an interpreter frame
3454 
3455   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
3456   __ delayed()->add(O3array, wordSize, O3array);
3457   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3458 
3459 }
3460 
3461 //------------------------------generate_deopt_blob----------------------------
3462 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3463 // instead.
generate_deopt_blob()3464 void SharedRuntime::generate_deopt_blob() {
3465   // allocate space for the code
3466   ResourceMark rm;
3467   // setup code generation tools
3468   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3469 #ifdef ASSERT
3470   if (UseStackBanging) {
3471     pad += StackShadowPages*16 + 32;
3472   }
3473 #endif
3474 #ifdef _LP64
3475   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3476 #else
3477   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3478   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3479   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3480 #endif /* _LP64 */
3481   MacroAssembler* masm               = new MacroAssembler(&buffer);
3482   FloatRegister   Freturn0           = F0;
3483   Register        Greturn1           = G1;
3484   Register        Oreturn0           = O0;
3485   Register        Oreturn1           = O1;
3486   Register        O2UnrollBlock      = O2;
3487   Register        L0deopt_mode       = L0;
3488   Register        G4deopt_mode       = G4_scratch;
3489   int             frame_size_words;
3490   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
3491 #if !defined(_LP64) && defined(COMPILER2)
3492   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3493 #endif
3494   Label           cont;
3495 
3496   OopMapSet *oop_maps = new OopMapSet();
3497 
3498   //
3499   // This is the entry point for code which is returning to a de-optimized
3500   // frame.
3501   // The steps taken by this frame are as follows:
3502   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3503   //     and all potentially live registers (at a pollpoint many registers can be live).
3504   //
3505   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3506   //     returns information about the number and size of interpreter frames
3507   //     which are equivalent to the frame which is being deoptimized)
3508   //   - deallocate the unpack frame, restoring only results values. Other
3509   //     volatile registers will now be captured in the vframeArray as needed.
3510   //   - deallocate the deoptimization frame
3511   //   - in a loop using the information returned in the previous step
3512   //     push new interpreter frames (take care to propagate the return
3513   //     values through each new frame pushed)
3514   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3515   //   - call the C routine: Deoptimization::unpack_frames (this function
3516   //     lays out values on the interpreter frame which was just created)
3517   //   - deallocate the dummy unpack_frame
3518   //   - ensure that all the return values are correctly set and then do
3519   //     a return to the interpreter entry point
3520   //
3521   // Refer to the following methods for more information:
3522   //   - Deoptimization::fetch_unroll_info
3523   //   - Deoptimization::unpack_frames
3524 
3525   OopMap* map = NULL;
3526 
3527   int start = __ offset();
3528 
3529   // restore G2, the trampoline destroyed it
3530   __ get_thread();
3531 
3532   // On entry we have been called by the deoptimized nmethod with a call that
3533   // replaced the original call (or safepoint polling location) so the deoptimizing
3534   // pc is now in O7. Return values are still in the expected places
3535 
3536   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3537   __ ba(cont);
3538   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
3539 
3540   int exception_offset = __ offset() - start;
3541 
3542   // restore G2, the trampoline destroyed it
3543   __ get_thread();
3544 
3545   // On entry we have been jumped to by the exception handler (or exception_blob
3546   // for server).  O0 contains the exception oop and O7 contains the original
3547   // exception pc.  So if we push a frame here it will look to the
3548   // stack walking code (fetch_unroll_info) just like a normal call so
3549   // state will be extracted normally.
3550 
3551   // save exception oop in JavaThread and fall through into the
3552   // exception_in_tls case since they are handled in same way except
3553   // for where the pending exception is kept.
3554   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3555 
3556   //
3557   // Vanilla deoptimization with an exception pending in exception_oop
3558   //
3559   int exception_in_tls_offset = __ offset() - start;
3560 
3561   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3562   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3563 
3564   // Restore G2_thread
3565   __ get_thread();
3566 
3567 #ifdef ASSERT
3568   {
3569     // verify that there is really an exception oop in exception_oop
3570     Label has_exception;
3571     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3572     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
3573     __ stop("no exception in thread");
3574     __ bind(has_exception);
3575 
3576     // verify that there is no pending exception
3577     Label no_pending_exception;
3578     Address exception_addr(G2_thread, Thread::pending_exception_offset());
3579     __ ld_ptr(exception_addr, Oexception);
3580     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
3581     __ stop("must not have pending exception here");
3582     __ bind(no_pending_exception);
3583   }
3584 #endif
3585 
3586   __ ba(cont);
3587   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3588 
3589   //
3590   // Reexecute entry, similar to c2 uncommon trap
3591   //
3592   int reexecute_offset = __ offset() - start;
3593 
3594   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3595   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3596 
3597   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3598 
3599   __ bind(cont);
3600 
3601   __ set_last_Java_frame(SP, noreg);
3602 
3603   // do the call by hand so we can get the oopmap
3604 
3605   __ mov(G2_thread, L7_thread_cache);
3606   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3607   __ delayed()->mov(G2_thread, O0);
3608 
3609   // Set an oopmap for the call site this describes all our saved volatile registers
3610 
3611   oop_maps->add_gc_map( __ offset()-start, map);
3612 
3613   __ mov(L7_thread_cache, G2_thread);
3614 
3615   __ reset_last_Java_frame();
3616 
3617   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3618   // so this move will survive
3619 
3620   __ mov(L0deopt_mode, G4deopt_mode);
3621 
3622   __ mov(O0, O2UnrollBlock->after_save());
3623 
3624   RegisterSaver::restore_result_registers(masm);
3625 
3626   Label noException;
3627   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
3628 
3629   // Move the pending exception from exception_oop to Oexception so
3630   // the pending exception will be picked up the interpreter.
3631   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3632   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3633   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
3634   __ bind(noException);
3635 
3636   // deallocate the deoptimization frame taking care to preserve the return values
3637   __ mov(Oreturn0,     Oreturn0->after_save());
3638   __ mov(Oreturn1,     Oreturn1->after_save());
3639   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3640   __ restore();
3641 
3642   // Allocate new interpreter frame(s) and possible c2i adapter frame
3643 
3644   make_new_frames(masm, true);
3645 
3646   // push a dummy "unpack_frame" taking care of float return values and
3647   // call Deoptimization::unpack_frames to have the unpacker layout
3648   // information in the interpreter frames just created and then return
3649   // to the interpreter entry point
3650   __ save(SP, -frame_size_words*wordSize, SP);
3651   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3652 #if !defined(_LP64)
3653 #if defined(COMPILER2)
3654   // 32-bit 1-register longs return longs in G1
3655   __ stx(Greturn1, saved_Greturn1_addr);
3656 #endif
3657   __ set_last_Java_frame(SP, noreg);
3658   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3659 #else
3660   // LP64 uses g4 in set_last_Java_frame
3661   __ mov(G4deopt_mode, O1);
3662   __ set_last_Java_frame(SP, G0);
3663   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3664 #endif
3665   __ reset_last_Java_frame();
3666   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3667 
3668 #if !defined(_LP64) && defined(COMPILER2)
3669   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3670   // I0/I1 if the return value is long.
3671   Label not_long;
3672   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
3673   __ ldd(saved_Greturn1_addr,I0);
3674   __ bind(not_long);
3675 #endif
3676   __ ret();
3677   __ delayed()->restore();
3678 
3679   masm->flush();
3680   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3681   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3682 }
3683 
3684 #ifdef COMPILER2
3685 
3686 //------------------------------generate_uncommon_trap_blob--------------------
3687 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3688 // instead.
generate_uncommon_trap_blob()3689 void SharedRuntime::generate_uncommon_trap_blob() {
3690   // allocate space for the code
3691   ResourceMark rm;
3692   // setup code generation tools
3693   int pad = VerifyThread ? 512 : 0;
3694 #ifdef ASSERT
3695   if (UseStackBanging) {
3696     pad += StackShadowPages*16 + 32;
3697   }
3698 #endif
3699 #ifdef _LP64
3700   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3701 #else
3702   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3703   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3704   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3705 #endif
3706   MacroAssembler* masm               = new MacroAssembler(&buffer);
3707   Register        O2UnrollBlock      = O2;
3708   Register        O2klass_index      = O2;
3709 
3710   //
3711   // This is the entry point for all traps the compiler takes when it thinks
3712   // it cannot handle further execution of compilation code. The frame is
3713   // deoptimized in these cases and converted into interpreter frames for
3714   // execution
3715   // The steps taken by this frame are as follows:
3716   //   - push a fake "unpack_frame"
3717   //   - call the C routine Deoptimization::uncommon_trap (this function
3718   //     packs the current compiled frame into vframe arrays and returns
3719   //     information about the number and size of interpreter frames which
3720   //     are equivalent to the frame which is being deoptimized)
3721   //   - deallocate the "unpack_frame"
3722   //   - deallocate the deoptimization frame
3723   //   - in a loop using the information returned in the previous step
3724   //     push interpreter frames;
3725   //   - create a dummy "unpack_frame"
3726   //   - call the C routine: Deoptimization::unpack_frames (this function
3727   //     lays out values on the interpreter frame which was just created)
3728   //   - deallocate the dummy unpack_frame
3729   //   - return to the interpreter entry point
3730   //
3731   //  Refer to the following methods for more information:
3732   //   - Deoptimization::uncommon_trap
3733   //   - Deoptimization::unpack_frame
3734 
3735   // the unloaded class index is in O0 (first parameter to this blob)
3736 
3737   // push a dummy "unpack_frame"
3738   // and call Deoptimization::uncommon_trap to pack the compiled frame into
3739   // vframe array and return the UnrollBlock information
3740   __ save_frame(0);
3741   __ set_last_Java_frame(SP, noreg);
3742   __ mov(I0, O2klass_index);
3743   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3744   __ reset_last_Java_frame();
3745   __ mov(O0, O2UnrollBlock->after_save());
3746   __ restore();
3747 
3748   // deallocate the deoptimized frame taking care to preserve the return values
3749   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3750   __ restore();
3751 
3752   // Allocate new interpreter frame(s) and possible c2i adapter frame
3753 
3754   make_new_frames(masm, false);
3755 
3756   // push a dummy "unpack_frame" taking care of float return values and
3757   // call Deoptimization::unpack_frames to have the unpacker layout
3758   // information in the interpreter frames just created and then return
3759   // to the interpreter entry point
3760   __ save_frame(0);
3761   __ set_last_Java_frame(SP, noreg);
3762   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3763   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3764   __ reset_last_Java_frame();
3765   __ ret();
3766   __ delayed()->restore();
3767 
3768   masm->flush();
3769   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3770 }
3771 
3772 #endif // COMPILER2
3773 
3774 //------------------------------generate_handler_blob-------------------
3775 //
3776 // Generate a special Compile2Runtime blob that saves all registers, and sets
3777 // up an OopMap.
3778 //
3779 // This blob is jumped to (via a breakpoint and the signal handler) from a
3780 // safepoint in compiled code.  On entry to this blob, O7 contains the
3781 // address in the original nmethod at which we should resume normal execution.
3782 // Thus, this blob looks like a subroutine which must preserve lots of
3783 // registers and return normally.  Note that O7 is never register-allocated,
3784 // so it is guaranteed to be free here.
3785 //
3786 
3787 // The hardest part of what this blob must do is to save the 64-bit %o
3788 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3789 // an interrupt will chop off their heads.  Making space in the caller's frame
3790 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
3791 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
3792 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3793 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3794 // Tricky, tricky, tricky...
3795 
generate_handler_blob(address call_ptr,int poll_type)3796 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3797   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3798 
3799   // allocate space for the code
3800   ResourceMark rm;
3801   // setup code generation tools
3802   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3803   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3804   // even larger with TraceJumps
3805   int pad = TraceJumps ? 512 : 0;
3806   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3807   MacroAssembler* masm                = new MacroAssembler(&buffer);
3808   int             frame_size_words;
3809   OopMapSet *oop_maps = new OopMapSet();
3810   OopMap* map = NULL;
3811 
3812   int start = __ offset();
3813 
3814   bool cause_return = (poll_type == POLL_AT_RETURN);
3815   // If this causes a return before the processing, then do a "restore"
3816   if (cause_return) {
3817     __ restore();
3818   } else {
3819     // Make it look like we were called via the poll
3820     // so that frame constructor always sees a valid return address
3821     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3822     __ sub(O7, frame::pc_return_offset, O7);
3823   }
3824 
3825   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3826 
3827   // setup last_Java_sp (blows G4)
3828   __ set_last_Java_frame(SP, noreg);
3829 
3830   // call into the runtime to handle illegal instructions exception
3831   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3832   __ mov(G2_thread, O0);
3833   __ save_thread(L7_thread_cache);
3834   __ call(call_ptr);
3835   __ delayed()->nop();
3836 
3837   // Set an oopmap for the call site.
3838   // We need this not only for callee-saved registers, but also for volatile
3839   // registers that the compiler might be keeping live across a safepoint.
3840 
3841   oop_maps->add_gc_map( __ offset() - start, map);
3842 
3843   __ restore_thread(L7_thread_cache);
3844   // clear last_Java_sp
3845   __ reset_last_Java_frame();
3846 
3847   // Check for exceptions
3848   Label pending;
3849 
3850   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3851   __ br_notnull_short(O1, Assembler::pn, pending);
3852 
3853   RegisterSaver::restore_live_registers(masm);
3854 
3855   // We are back the the original state on entry and ready to go.
3856 
3857   __ retl();
3858   __ delayed()->nop();
3859 
3860   // Pending exception after the safepoint
3861 
3862   __ bind(pending);
3863 
3864   RegisterSaver::restore_live_registers(masm);
3865 
3866   // We are back the the original state on entry.
3867 
3868   // Tail-call forward_exception_entry, with the issuing PC in O7,
3869   // so it looks like the original nmethod called forward_exception_entry.
3870   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3871   __ JMP(O0, 0);
3872   __ delayed()->nop();
3873 
3874   // -------------
3875   // make sure all code is generated
3876   masm->flush();
3877 
3878   // return exception blob
3879   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3880 }
3881 
3882 //
3883 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3884 //
3885 // Generate a stub that calls into vm to find out the proper destination
3886 // of a java call. All the argument registers are live at this point
3887 // but since this is generic code we don't know what they are and the caller
3888 // must do any gc of the args.
3889 //
generate_resolve_blob(address destination,const char * name)3890 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3891   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3892 
3893   // allocate space for the code
3894   ResourceMark rm;
3895   // setup code generation tools
3896   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3897   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3898   // even larger with TraceJumps
3899   int pad = TraceJumps ? 512 : 0;
3900   CodeBuffer buffer(name, 1600 + pad, 512);
3901   MacroAssembler* masm                = new MacroAssembler(&buffer);
3902   int             frame_size_words;
3903   OopMapSet *oop_maps = new OopMapSet();
3904   OopMap* map = NULL;
3905 
3906   int start = __ offset();
3907 
3908   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3909 
3910   int frame_complete = __ offset();
3911 
3912   // setup last_Java_sp (blows G4)
3913   __ set_last_Java_frame(SP, noreg);
3914 
3915   // call into the runtime to handle illegal instructions exception
3916   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3917   __ mov(G2_thread, O0);
3918   __ save_thread(L7_thread_cache);
3919   __ call(destination, relocInfo::runtime_call_type);
3920   __ delayed()->nop();
3921 
3922   // O0 contains the address we are going to jump to assuming no exception got installed
3923 
3924   // Set an oopmap for the call site.
3925   // We need this not only for callee-saved registers, but also for volatile
3926   // registers that the compiler might be keeping live across a safepoint.
3927 
3928   oop_maps->add_gc_map( __ offset() - start, map);
3929 
3930   __ restore_thread(L7_thread_cache);
3931   // clear last_Java_sp
3932   __ reset_last_Java_frame();
3933 
3934   // Check for exceptions
3935   Label pending;
3936 
3937   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3938   __ br_notnull_short(O1, Assembler::pn, pending);
3939 
3940   // get the returned Method*
3941 
3942   __ get_vm_result_2(G5_method);
3943   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3944 
3945   // O0 is where we want to jump, overwrite G3 which is saved and scratch
3946 
3947   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3948 
3949   RegisterSaver::restore_live_registers(masm);
3950 
3951   // We are back the the original state on entry and ready to go.
3952 
3953   __ JMP(G3, 0);
3954   __ delayed()->nop();
3955 
3956   // Pending exception after the safepoint
3957 
3958   __ bind(pending);
3959 
3960   RegisterSaver::restore_live_registers(masm);
3961 
3962   // We are back the the original state on entry.
3963 
3964   // Tail-call forward_exception_entry, with the issuing PC in O7,
3965   // so it looks like the original nmethod called forward_exception_entry.
3966   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3967   __ JMP(O0, 0);
3968   __ delayed()->nop();
3969 
3970   // -------------
3971   // make sure all code is generated
3972   masm->flush();
3973 
3974   // return the  blob
3975   // frame_size_words or bytes??
3976   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3977 }
3978