1 /*
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.  Oracle designates this
7  * particular file as subject to the "Classpath" exception as provided
8  * by Oracle in the LICENSE file that accompanied this code.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  */
24 
25 /*
26  * This file is available under and governed by the GNU General Public
27  * License version 2 only, as published by the Free Software Foundation.
28  * However, the following notice accompanied the original version of this
29  * file:
30  *
31  * Written by Doug Lea with assistance from members of JCP JSR-166
32  * Expert Group and released to the public domain, as explained at
33  * http://creativecommons.org/publicdomain/zero/1.0/
34  */
35 
36 package java.util.concurrent;
37 
38 import java.util.concurrent.TimeUnit;
39 import java.util.concurrent.TimeoutException;
40 import java.util.concurrent.atomic.AtomicReference;
41 import java.util.concurrent.locks.LockSupport;
42 
43 /**
44  * A reusable synchronization barrier, similar in functionality to
45  * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
46  * {@link java.util.concurrent.CountDownLatch CountDownLatch}
47  * but supporting more flexible usage.
48  *
49  * <p><b>Registration.</b> Unlike the case for other barriers, the
50  * number of parties <em>registered</em> to synchronize on a phaser
51  * may vary over time.  Tasks may be registered at any time (using
52  * methods {@link #register}, {@link #bulkRegister}, or forms of
53  * constructors establishing initial numbers of parties), and
54  * optionally deregistered upon any arrival (using {@link
55  * #arriveAndDeregister}).  As is the case with most basic
56  * synchronization constructs, registration and deregistration affect
57  * only internal counts; they do not establish any further internal
58  * bookkeeping, so tasks cannot query whether they are registered.
59  * (However, you can introduce such bookkeeping by subclassing this
60  * class.)
61  *
62  * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
63  * Phaser} may be repeatedly awaited.  Method {@link
64  * #arriveAndAwaitAdvance} has effect analogous to {@link
65  * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
66  * generation of a phaser has an associated phase number. The phase
67  * number starts at zero, and advances when all parties arrive at the
68  * phaser, wrapping around to zero after reaching {@code
69  * Integer.MAX_VALUE}. The use of phase numbers enables independent
70  * control of actions upon arrival at a phaser and upon awaiting
71  * others, via two kinds of methods that may be invoked by any
72  * registered party:
73  *
74  * <ul>
75  *
76  *   <li> <b>Arrival.</b> Methods {@link #arrive} and
77  *       {@link #arriveAndDeregister} record arrival.  These methods
78  *       do not block, but return an associated <em>arrival phase
79  *       number</em>; that is, the phase number of the phaser to which
80  *       the arrival applied. When the final party for a given phase
81  *       arrives, an optional action is performed and the phase
82  *       advances.  These actions are performed by the party
83  *       triggering a phase advance, and are arranged by overriding
84  *       method {@link #onAdvance(int, int)}, which also controls
85  *       termination. Overriding this method is similar to, but more
86  *       flexible than, providing a barrier action to a {@code
87  *       CyclicBarrier}.
88  *
89  *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
90  *       argument indicating an arrival phase number, and returns when
91  *       the phaser advances to (or is already at) a different phase.
92  *       Unlike similar constructions using {@code CyclicBarrier},
93  *       method {@code awaitAdvance} continues to wait even if the
94  *       waiting thread is interrupted. Interruptible and timeout
95  *       versions are also available, but exceptions encountered while
96  *       tasks wait interruptibly or with timeout do not change the
97  *       state of the phaser. If necessary, you can perform any
98  *       associated recovery within handlers of those exceptions,
99  *       often after invoking {@code forceTermination}.  Phasers may
100  *       also be used by tasks executing in a {@link ForkJoinPool},
101  *       which will ensure sufficient parallelism to execute tasks
102  *       when others are blocked waiting for a phase to advance.
103  *
104  * </ul>
105  *
106  * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
107  * state, that may be checked using method {@link #isTerminated}. Upon
108  * termination, all synchronization methods immediately return without
109  * waiting for advance, as indicated by a negative return value.
110  * Similarly, attempts to register upon termination have no effect.
111  * Termination is triggered when an invocation of {@code onAdvance}
112  * returns {@code true}. The default implementation returns {@code
113  * true} if a deregistration has caused the number of registered
114  * parties to become zero.  As illustrated below, when phasers control
115  * actions with a fixed number of iterations, it is often convenient
116  * to override this method to cause termination when the current phase
117  * number reaches a threshold. Method {@link #forceTermination} is
118  * also available to abruptly release waiting threads and allow them
119  * to terminate.
120  *
121  * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
122  * constructed in tree structures) to reduce contention. Phasers with
123  * large numbers of parties that would otherwise experience heavy
124  * synchronization contention costs may instead be set up so that
125  * groups of sub-phasers share a common parent.  This may greatly
126  * increase throughput even though it incurs greater per-operation
127  * overhead.
128  *
129  * <p>In a tree of tiered phasers, registration and deregistration of
130  * child phasers with their parent are managed automatically.
131  * Whenever the number of registered parties of a child phaser becomes
132  * non-zero (as established in the {@link #Phaser(Phaser,int)}
133  * constructor, {@link #register}, or {@link #bulkRegister}), the
134  * child phaser is registered with its parent.  Whenever the number of
135  * registered parties becomes zero as the result of an invocation of
136  * {@link #arriveAndDeregister}, the child phaser is deregistered
137  * from its parent.
138  *
139  * <p><b>Monitoring.</b> While synchronization methods may be invoked
140  * only by registered parties, the current state of a phaser may be
141  * monitored by any caller.  At any given moment there are {@link
142  * #getRegisteredParties} parties in total, of which {@link
143  * #getArrivedParties} have arrived at the current phase ({@link
144  * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
145  * parties arrive, the phase advances.  The values returned by these
146  * methods may reflect transient states and so are not in general
147  * useful for synchronization control.  Method {@link #toString}
148  * returns snapshots of these state queries in a form convenient for
149  * informal monitoring.
150  *
151  * <p><b>Sample usages:</b>
152  *
153  * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
154  * to control a one-shot action serving a variable number of parties.
155  * The typical idiom is for the method setting this up to first
156  * register, then start the actions, then deregister, as in:
157  *
158  *  <pre> {@code
159  * void runTasks(List<Runnable> tasks) {
160  *   final Phaser phaser = new Phaser(1); // "1" to register self
161  *   // create and start threads
162  *   for (final Runnable task : tasks) {
163  *     phaser.register();
164  *     new Thread() {
165  *       public void run() {
166  *         phaser.arriveAndAwaitAdvance(); // await all creation
167  *         task.run();
168  *       }
169  *     }.start();
170  *   }
171  *
172  *   // allow threads to start and deregister self
173  *   phaser.arriveAndDeregister();
174  * }}</pre>
175  *
176  * <p>One way to cause a set of threads to repeatedly perform actions
177  * for a given number of iterations is to override {@code onAdvance}:
178  *
179  *  <pre> {@code
180  * void startTasks(List<Runnable> tasks, final int iterations) {
181  *   final Phaser phaser = new Phaser() {
182  *     protected boolean onAdvance(int phase, int registeredParties) {
183  *       return phase >= iterations || registeredParties == 0;
184  *     }
185  *   };
186  *   phaser.register();
187  *   for (final Runnable task : tasks) {
188  *     phaser.register();
189  *     new Thread() {
190  *       public void run() {
191  *         do {
192  *           task.run();
193  *           phaser.arriveAndAwaitAdvance();
194  *         } while (!phaser.isTerminated());
195  *       }
196  *     }.start();
197  *   }
198  *   phaser.arriveAndDeregister(); // deregister self, don't wait
199  * }}</pre>
200  *
201  * If the main task must later await termination, it
202  * may re-register and then execute a similar loop:
203  *  <pre> {@code
204  *   // ...
205  *   phaser.register();
206  *   while (!phaser.isTerminated())
207  *     phaser.arriveAndAwaitAdvance();}</pre>
208  *
209  * <p>Related constructions may be used to await particular phase numbers
210  * in contexts where you are sure that the phase will never wrap around
211  * {@code Integer.MAX_VALUE}. For example:
212  *
213  *  <pre> {@code
214  * void awaitPhase(Phaser phaser, int phase) {
215  *   int p = phaser.register(); // assumes caller not already registered
216  *   while (p < phase) {
217  *     if (phaser.isTerminated())
218  *       // ... deal with unexpected termination
219  *     else
220  *       p = phaser.arriveAndAwaitAdvance();
221  *   }
222  *   phaser.arriveAndDeregister();
223  * }}</pre>
224  *
225  *
226  * <p>To create a set of {@code n} tasks using a tree of phasers, you
227  * could use code of the following form, assuming a Task class with a
228  * constructor accepting a {@code Phaser} that it registers with upon
229  * construction. After invocation of {@code build(new Task[n], 0, n,
230  * new Phaser())}, these tasks could then be started, for example by
231  * submitting to a pool:
232  *
233  *  <pre> {@code
234  * void build(Task[] tasks, int lo, int hi, Phaser ph) {
235  *   if (hi - lo > TASKS_PER_PHASER) {
236  *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
237  *       int j = Math.min(i + TASKS_PER_PHASER, hi);
238  *       build(tasks, i, j, new Phaser(ph));
239  *     }
240  *   } else {
241  *     for (int i = lo; i < hi; ++i)
242  *       tasks[i] = new Task(ph);
243  *       // assumes new Task(ph) performs ph.register()
244  *   }
245  * }}</pre>
246  *
247  * The best value of {@code TASKS_PER_PHASER} depends mainly on
248  * expected synchronization rates. A value as low as four may
249  * be appropriate for extremely small per-phase task bodies (thus
250  * high rates), or up to hundreds for extremely large ones.
251  *
252  * <p><b>Implementation notes</b>: This implementation restricts the
253  * maximum number of parties to 65535. Attempts to register additional
254  * parties result in {@code IllegalStateException}. However, you can and
255  * should create tiered phasers to accommodate arbitrarily large sets
256  * of participants.
257  *
258  * @since 1.7
259  * @author Doug Lea
260  */
261 public class Phaser {
262     /*
263      * This class implements an extension of X10 "clocks".  Thanks to
264      * Vijay Saraswat for the idea, and to Vivek Sarkar for
265      * enhancements to extend functionality.
266      */
267 
268     /**
269      * Primary state representation, holding four bit-fields:
270      *
271      * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
272      * parties    -- the number of parties to wait            (bits 16-31)
273      * phase      -- the generation of the barrier            (bits 32-62)
274      * terminated -- set if barrier is terminated             (bit  63 / sign)
275      *
276      * Except that a phaser with no registered parties is
277      * distinguished by the otherwise illegal state of having zero
278      * parties and one unarrived parties (encoded as EMPTY below).
279      *
280      * To efficiently maintain atomicity, these values are packed into
281      * a single (atomic) long. Good performance relies on keeping
282      * state decoding and encoding simple, and keeping race windows
283      * short.
284      *
285      * All state updates are performed via CAS except initial
286      * registration of a sub-phaser (i.e., one with a non-null
287      * parent).  In this (relatively rare) case, we use built-in
288      * synchronization to lock while first registering with its
289      * parent.
290      *
291      * The phase of a subphaser is allowed to lag that of its
292      * ancestors until it is actually accessed -- see method
293      * reconcileState.
294      */
295     private volatile long state;
296 
297     private static final int  MAX_PARTIES     = 0xffff;
298     private static final int  MAX_PHASE       = Integer.MAX_VALUE;
299     private static final int  PARTIES_SHIFT   = 16;
300     private static final int  PHASE_SHIFT     = 32;
301     private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
302     private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
303     private static final long COUNTS_MASK     = 0xffffffffL;
304     private static final long TERMINATION_BIT = 1L << 63;
305 
306     // some special values
307     private static final int  ONE_ARRIVAL     = 1;
308     private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
309     private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
310     private static final int  EMPTY           = 1;
311 
312     // The following unpacking methods are usually manually inlined
313 
unarrivedOf(long s)314     private static int unarrivedOf(long s) {
315         int counts = (int)s;
316         return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
317     }
318 
partiesOf(long s)319     private static int partiesOf(long s) {
320         return (int)s >>> PARTIES_SHIFT;
321     }
322 
phaseOf(long s)323     private static int phaseOf(long s) {
324         return (int)(s >>> PHASE_SHIFT);
325     }
326 
arrivedOf(long s)327     private static int arrivedOf(long s) {
328         int counts = (int)s;
329         return (counts == EMPTY) ? 0 :
330             (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
331     }
332 
333     /**
334      * The parent of this phaser, or null if none
335      */
336     private final Phaser parent;
337 
338     /**
339      * The root of phaser tree. Equals this if not in a tree.
340      */
341     private final Phaser root;
342 
343     /**
344      * Heads of Treiber stacks for waiting threads. To eliminate
345      * contention when releasing some threads while adding others, we
346      * use two of them, alternating across even and odd phases.
347      * Subphasers share queues with root to speed up releases.
348      */
349     private final AtomicReference<QNode> evenQ;
350     private final AtomicReference<QNode> oddQ;
351 
queueFor(int phase)352     private AtomicReference<QNode> queueFor(int phase) {
353         return ((phase & 1) == 0) ? evenQ : oddQ;
354     }
355 
356     /**
357      * Returns message string for bounds exceptions on arrival.
358      */
badArrive(long s)359     private String badArrive(long s) {
360         return "Attempted arrival of unregistered party for " +
361             stateToString(s);
362     }
363 
364     /**
365      * Returns message string for bounds exceptions on registration.
366      */
badRegister(long s)367     private String badRegister(long s) {
368         return "Attempt to register more than " +
369             MAX_PARTIES + " parties for " + stateToString(s);
370     }
371 
372     /**
373      * Main implementation for methods arrive and arriveAndDeregister.
374      * Manually tuned to speed up and minimize race windows for the
375      * common case of just decrementing unarrived field.
376      *
377      * @param adjust value to subtract from state;
378      *               ONE_ARRIVAL for arrive,
379      *               ONE_DEREGISTER for arriveAndDeregister
380      */
doArrive(int adjust)381     private int doArrive(int adjust) {
382         final Phaser root = this.root;
383         for (;;) {
384             long s = (root == this) ? state : reconcileState();
385             int phase = (int)(s >>> PHASE_SHIFT);
386             if (phase < 0)
387                 return phase;
388             int counts = (int)s;
389             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
390             if (unarrived <= 0)
391                 throw new IllegalStateException(badArrive(s));
392             if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
393                 if (unarrived == 1) {
394                     long n = s & PARTIES_MASK;  // base of next state
395                     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
396                     if (root == this) {
397                         if (onAdvance(phase, nextUnarrived))
398                             n |= TERMINATION_BIT;
399                         else if (nextUnarrived == 0)
400                             n |= EMPTY;
401                         else
402                             n |= nextUnarrived;
403                         int nextPhase = (phase + 1) & MAX_PHASE;
404                         n |= (long)nextPhase << PHASE_SHIFT;
405                         UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
406                         releaseWaiters(phase);
407                     }
408                     else if (nextUnarrived == 0) { // propagate deregistration
409                         phase = parent.doArrive(ONE_DEREGISTER);
410                         UNSAFE.compareAndSwapLong(this, stateOffset,
411                                                   s, s | EMPTY);
412                     }
413                     else
414                         phase = parent.doArrive(ONE_ARRIVAL);
415                 }
416                 return phase;
417             }
418         }
419     }
420 
421     /**
422      * Implementation of register, bulkRegister
423      *
424      * @param registrations number to add to both parties and
425      * unarrived fields. Must be greater than zero.
426      */
doRegister(int registrations)427     private int doRegister(int registrations) {
428         // adjustment to state
429         long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
430         final Phaser parent = this.parent;
431         int phase;
432         for (;;) {
433             long s = (parent == null) ? state : reconcileState();
434             int counts = (int)s;
435             int parties = counts >>> PARTIES_SHIFT;
436             int unarrived = counts & UNARRIVED_MASK;
437             if (registrations > MAX_PARTIES - parties)
438                 throw new IllegalStateException(badRegister(s));
439             phase = (int)(s >>> PHASE_SHIFT);
440             if (phase < 0)
441                 break;
442             if (counts != EMPTY) {                  // not 1st registration
443                 if (parent == null || reconcileState() == s) {
444                     if (unarrived == 0)             // wait out advance
445                         root.internalAwaitAdvance(phase, null);
446                     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
447                                                        s, s + adjust))
448                         break;
449                 }
450             }
451             else if (parent == null) {              // 1st root registration
452                 long next = ((long)phase << PHASE_SHIFT) | adjust;
453                 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
454                     break;
455             }
456             else {
457                 synchronized (this) {               // 1st sub registration
458                     if (state == s) {               // recheck under lock
459                         phase = parent.doRegister(1);
460                         if (phase < 0)
461                             break;
462                         // finish registration whenever parent registration
463                         // succeeded, even when racing with termination,
464                         // since these are part of the same "transaction".
465                         while (!UNSAFE.compareAndSwapLong
466                                (this, stateOffset, s,
467                                 ((long)phase << PHASE_SHIFT) | adjust)) {
468                             s = state;
469                             phase = (int)(root.state >>> PHASE_SHIFT);
470                             // assert (int)s == EMPTY;
471                         }
472                         break;
473                     }
474                 }
475             }
476         }
477         return phase;
478     }
479 
480     /**
481      * Resolves lagged phase propagation from root if necessary.
482      * Reconciliation normally occurs when root has advanced but
483      * subphasers have not yet done so, in which case they must finish
484      * their own advance by setting unarrived to parties (or if
485      * parties is zero, resetting to unregistered EMPTY state).
486      *
487      * @return reconciled state
488      */
reconcileState()489     private long reconcileState() {
490         final Phaser root = this.root;
491         long s = state;
492         if (root != this) {
493             int phase, p;
494             // CAS to root phase with current parties, tripping unarrived
495             while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
496                    (int)(s >>> PHASE_SHIFT) &&
497                    !UNSAFE.compareAndSwapLong
498                    (this, stateOffset, s,
499                     s = (((long)phase << PHASE_SHIFT) |
500                          ((phase < 0) ? (s & COUNTS_MASK) :
501                           (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
502                            ((s & PARTIES_MASK) | p))))))
503                 s = state;
504         }
505         return s;
506     }
507 
508     /**
509      * Creates a new phaser with no initially registered parties, no
510      * parent, and initial phase number 0. Any thread using this
511      * phaser will need to first register for it.
512      */
Phaser()513     public Phaser() {
514         this(null, 0);
515     }
516 
517     /**
518      * Creates a new phaser with the given number of registered
519      * unarrived parties, no parent, and initial phase number 0.
520      *
521      * @param parties the number of parties required to advance to the
522      * next phase
523      * @throws IllegalArgumentException if parties less than zero
524      * or greater than the maximum number of parties supported
525      */
Phaser(int parties)526     public Phaser(int parties) {
527         this(null, parties);
528     }
529 
530     /**
531      * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
532      *
533      * @param parent the parent phaser
534      */
Phaser(Phaser parent)535     public Phaser(Phaser parent) {
536         this(parent, 0);
537     }
538 
539     /**
540      * Creates a new phaser with the given parent and number of
541      * registered unarrived parties.  When the given parent is non-null
542      * and the given number of parties is greater than zero, this
543      * child phaser is registered with its parent.
544      *
545      * @param parent the parent phaser
546      * @param parties the number of parties required to advance to the
547      * next phase
548      * @throws IllegalArgumentException if parties less than zero
549      * or greater than the maximum number of parties supported
550      */
Phaser(Phaser parent, int parties)551     public Phaser(Phaser parent, int parties) {
552         if (parties >>> PARTIES_SHIFT != 0)
553             throw new IllegalArgumentException("Illegal number of parties");
554         int phase = 0;
555         this.parent = parent;
556         if (parent != null) {
557             final Phaser root = parent.root;
558             this.root = root;
559             this.evenQ = root.evenQ;
560             this.oddQ = root.oddQ;
561             if (parties != 0)
562                 phase = parent.doRegister(1);
563         }
564         else {
565             this.root = this;
566             this.evenQ = new AtomicReference<QNode>();
567             this.oddQ = new AtomicReference<QNode>();
568         }
569         this.state = (parties == 0) ? (long)EMPTY :
570             ((long)phase << PHASE_SHIFT) |
571             ((long)parties << PARTIES_SHIFT) |
572             ((long)parties);
573     }
574 
575     /**
576      * Adds a new unarrived party to this phaser.  If an ongoing
577      * invocation of {@link #onAdvance} is in progress, this method
578      * may await its completion before returning.  If this phaser has
579      * a parent, and this phaser previously had no registered parties,
580      * this child phaser is also registered with its parent. If
581      * this phaser is terminated, the attempt to register has
582      * no effect, and a negative value is returned.
583      *
584      * @return the arrival phase number to which this registration
585      * applied.  If this value is negative, then this phaser has
586      * terminated, in which case registration has no effect.
587      * @throws IllegalStateException if attempting to register more
588      * than the maximum supported number of parties
589      */
register()590     public int register() {
591         return doRegister(1);
592     }
593 
594     /**
595      * Adds the given number of new unarrived parties to this phaser.
596      * If an ongoing invocation of {@link #onAdvance} is in progress,
597      * this method may await its completion before returning.  If this
598      * phaser has a parent, and the given number of parties is greater
599      * than zero, and this phaser previously had no registered
600      * parties, this child phaser is also registered with its parent.
601      * If this phaser is terminated, the attempt to register has no
602      * effect, and a negative value is returned.
603      *
604      * @param parties the number of additional parties required to
605      * advance to the next phase
606      * @return the arrival phase number to which this registration
607      * applied.  If this value is negative, then this phaser has
608      * terminated, in which case registration has no effect.
609      * @throws IllegalStateException if attempting to register more
610      * than the maximum supported number of parties
611      * @throws IllegalArgumentException if {@code parties < 0}
612      */
bulkRegister(int parties)613     public int bulkRegister(int parties) {
614         if (parties < 0)
615             throw new IllegalArgumentException();
616         if (parties == 0)
617             return getPhase();
618         return doRegister(parties);
619     }
620 
621     /**
622      * Arrives at this phaser, without waiting for others to arrive.
623      *
624      * <p>It is a usage error for an unregistered party to invoke this
625      * method.  However, this error may result in an {@code
626      * IllegalStateException} only upon some subsequent operation on
627      * this phaser, if ever.
628      *
629      * @return the arrival phase number, or a negative value if terminated
630      * @throws IllegalStateException if not terminated and the number
631      * of unarrived parties would become negative
632      */
arrive()633     public int arrive() {
634         return doArrive(ONE_ARRIVAL);
635     }
636 
637     /**
638      * Arrives at this phaser and deregisters from it without waiting
639      * for others to arrive. Deregistration reduces the number of
640      * parties required to advance in future phases.  If this phaser
641      * has a parent, and deregistration causes this phaser to have
642      * zero parties, this phaser is also deregistered from its parent.
643      *
644      * <p>It is a usage error for an unregistered party to invoke this
645      * method.  However, this error may result in an {@code
646      * IllegalStateException} only upon some subsequent operation on
647      * this phaser, if ever.
648      *
649      * @return the arrival phase number, or a negative value if terminated
650      * @throws IllegalStateException if not terminated and the number
651      * of registered or unarrived parties would become negative
652      */
arriveAndDeregister()653     public int arriveAndDeregister() {
654         return doArrive(ONE_DEREGISTER);
655     }
656 
657     /**
658      * Arrives at this phaser and awaits others. Equivalent in effect
659      * to {@code awaitAdvance(arrive())}.  If you need to await with
660      * interruption or timeout, you can arrange this with an analogous
661      * construction using one of the other forms of the {@code
662      * awaitAdvance} method.  If instead you need to deregister upon
663      * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
664      *
665      * <p>It is a usage error for an unregistered party to invoke this
666      * method.  However, this error may result in an {@code
667      * IllegalStateException} only upon some subsequent operation on
668      * this phaser, if ever.
669      *
670      * @return the arrival phase number, or the (negative)
671      * {@linkplain #getPhase() current phase} if terminated
672      * @throws IllegalStateException if not terminated and the number
673      * of unarrived parties would become negative
674      */
arriveAndAwaitAdvance()675     public int arriveAndAwaitAdvance() {
676         // Specialization of doArrive+awaitAdvance eliminating some reads/paths
677         final Phaser root = this.root;
678         for (;;) {
679             long s = (root == this) ? state : reconcileState();
680             int phase = (int)(s >>> PHASE_SHIFT);
681             if (phase < 0)
682                 return phase;
683             int counts = (int)s;
684             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
685             if (unarrived <= 0)
686                 throw new IllegalStateException(badArrive(s));
687             if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
688                                           s -= ONE_ARRIVAL)) {
689                 if (unarrived > 1)
690                     return root.internalAwaitAdvance(phase, null);
691                 if (root != this)
692                     return parent.arriveAndAwaitAdvance();
693                 long n = s & PARTIES_MASK;  // base of next state
694                 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
695                 if (onAdvance(phase, nextUnarrived))
696                     n |= TERMINATION_BIT;
697                 else if (nextUnarrived == 0)
698                     n |= EMPTY;
699                 else
700                     n |= nextUnarrived;
701                 int nextPhase = (phase + 1) & MAX_PHASE;
702                 n |= (long)nextPhase << PHASE_SHIFT;
703                 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
704                     return (int)(state >>> PHASE_SHIFT); // terminated
705                 releaseWaiters(phase);
706                 return nextPhase;
707             }
708         }
709     }
710 
711     /**
712      * Awaits the phase of this phaser to advance from the given phase
713      * value, returning immediately if the current phase is not equal
714      * to the given phase value or this phaser is terminated.
715      *
716      * @param phase an arrival phase number, or negative value if
717      * terminated; this argument is normally the value returned by a
718      * previous call to {@code arrive} or {@code arriveAndDeregister}.
719      * @return the next arrival phase number, or the argument if it is
720      * negative, or the (negative) {@linkplain #getPhase() current phase}
721      * if terminated
722      */
awaitAdvance(int phase)723     public int awaitAdvance(int phase) {
724         final Phaser root = this.root;
725         long s = (root == this) ? state : reconcileState();
726         int p = (int)(s >>> PHASE_SHIFT);
727         if (phase < 0)
728             return phase;
729         if (p == phase)
730             return root.internalAwaitAdvance(phase, null);
731         return p;
732     }
733 
734     /**
735      * Awaits the phase of this phaser to advance from the given phase
736      * value, throwing {@code InterruptedException} if interrupted
737      * while waiting, or returning immediately if the current phase is
738      * not equal to the given phase value or this phaser is
739      * terminated.
740      *
741      * @param phase an arrival phase number, or negative value if
742      * terminated; this argument is normally the value returned by a
743      * previous call to {@code arrive} or {@code arriveAndDeregister}.
744      * @return the next arrival phase number, or the argument if it is
745      * negative, or the (negative) {@linkplain #getPhase() current phase}
746      * if terminated
747      * @throws InterruptedException if thread interrupted while waiting
748      */
awaitAdvanceInterruptibly(int phase)749     public int awaitAdvanceInterruptibly(int phase)
750         throws InterruptedException {
751         final Phaser root = this.root;
752         long s = (root == this) ? state : reconcileState();
753         int p = (int)(s >>> PHASE_SHIFT);
754         if (phase < 0)
755             return phase;
756         if (p == phase) {
757             QNode node = new QNode(this, phase, true, false, 0L);
758             p = root.internalAwaitAdvance(phase, node);
759             if (node.wasInterrupted)
760                 throw new InterruptedException();
761         }
762         return p;
763     }
764 
765     /**
766      * Awaits the phase of this phaser to advance from the given phase
767      * value or the given timeout to elapse, throwing {@code
768      * InterruptedException} if interrupted while waiting, or
769      * returning immediately if the current phase is not equal to the
770      * given phase value or this phaser is terminated.
771      *
772      * @param phase an arrival phase number, or negative value if
773      * terminated; this argument is normally the value returned by a
774      * previous call to {@code arrive} or {@code arriveAndDeregister}.
775      * @param timeout how long to wait before giving up, in units of
776      *        {@code unit}
777      * @param unit a {@code TimeUnit} determining how to interpret the
778      *        {@code timeout} parameter
779      * @return the next arrival phase number, or the argument if it is
780      * negative, or the (negative) {@linkplain #getPhase() current phase}
781      * if terminated
782      * @throws InterruptedException if thread interrupted while waiting
783      * @throws TimeoutException if timed out while waiting
784      */
awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)785     public int awaitAdvanceInterruptibly(int phase,
786                                          long timeout, TimeUnit unit)
787         throws InterruptedException, TimeoutException {
788         long nanos = unit.toNanos(timeout);
789         final Phaser root = this.root;
790         long s = (root == this) ? state : reconcileState();
791         int p = (int)(s >>> PHASE_SHIFT);
792         if (phase < 0)
793             return phase;
794         if (p == phase) {
795             QNode node = new QNode(this, phase, true, true, nanos);
796             p = root.internalAwaitAdvance(phase, node);
797             if (node.wasInterrupted)
798                 throw new InterruptedException();
799             else if (p == phase)
800                 throw new TimeoutException();
801         }
802         return p;
803     }
804 
805     /**
806      * Forces this phaser to enter termination state.  Counts of
807      * registered parties are unaffected.  If this phaser is a member
808      * of a tiered set of phasers, then all of the phasers in the set
809      * are terminated.  If this phaser is already terminated, this
810      * method has no effect.  This method may be useful for
811      * coordinating recovery after one or more tasks encounter
812      * unexpected exceptions.
813      */
forceTermination()814     public void forceTermination() {
815         // Only need to change root state
816         final Phaser root = this.root;
817         long s;
818         while ((s = root.state) >= 0) {
819             if (UNSAFE.compareAndSwapLong(root, stateOffset,
820                                           s, s | TERMINATION_BIT)) {
821                 // signal all threads
822                 releaseWaiters(0); // Waiters on evenQ
823                 releaseWaiters(1); // Waiters on oddQ
824                 return;
825             }
826         }
827     }
828 
829     /**
830      * Returns the current phase number. The maximum phase number is
831      * {@code Integer.MAX_VALUE}, after which it restarts at
832      * zero. Upon termination, the phase number is negative,
833      * in which case the prevailing phase prior to termination
834      * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
835      *
836      * @return the phase number, or a negative value if terminated
837      */
getPhase()838     public final int getPhase() {
839         return (int)(root.state >>> PHASE_SHIFT);
840     }
841 
842     /**
843      * Returns the number of parties registered at this phaser.
844      *
845      * @return the number of parties
846      */
getRegisteredParties()847     public int getRegisteredParties() {
848         return partiesOf(state);
849     }
850 
851     /**
852      * Returns the number of registered parties that have arrived at
853      * the current phase of this phaser. If this phaser has terminated,
854      * the returned value is meaningless and arbitrary.
855      *
856      * @return the number of arrived parties
857      */
getArrivedParties()858     public int getArrivedParties() {
859         return arrivedOf(reconcileState());
860     }
861 
862     /**
863      * Returns the number of registered parties that have not yet
864      * arrived at the current phase of this phaser. If this phaser has
865      * terminated, the returned value is meaningless and arbitrary.
866      *
867      * @return the number of unarrived parties
868      */
getUnarrivedParties()869     public int getUnarrivedParties() {
870         return unarrivedOf(reconcileState());
871     }
872 
873     /**
874      * Returns the parent of this phaser, or {@code null} if none.
875      *
876      * @return the parent of this phaser, or {@code null} if none
877      */
getParent()878     public Phaser getParent() {
879         return parent;
880     }
881 
882     /**
883      * Returns the root ancestor of this phaser, which is the same as
884      * this phaser if it has no parent.
885      *
886      * @return the root ancestor of this phaser
887      */
getRoot()888     public Phaser getRoot() {
889         return root;
890     }
891 
892     /**
893      * Returns {@code true} if this phaser has been terminated.
894      *
895      * @return {@code true} if this phaser has been terminated
896      */
isTerminated()897     public boolean isTerminated() {
898         return root.state < 0L;
899     }
900 
901     /**
902      * Overridable method to perform an action upon impending phase
903      * advance, and to control termination. This method is invoked
904      * upon arrival of the party advancing this phaser (when all other
905      * waiting parties are dormant).  If this method returns {@code
906      * true}, this phaser will be set to a final termination state
907      * upon advance, and subsequent calls to {@link #isTerminated}
908      * will return true. Any (unchecked) Exception or Error thrown by
909      * an invocation of this method is propagated to the party
910      * attempting to advance this phaser, in which case no advance
911      * occurs.
912      *
913      * <p>The arguments to this method provide the state of the phaser
914      * prevailing for the current transition.  The effects of invoking
915      * arrival, registration, and waiting methods on this phaser from
916      * within {@code onAdvance} are unspecified and should not be
917      * relied on.
918      *
919      * <p>If this phaser is a member of a tiered set of phasers, then
920      * {@code onAdvance} is invoked only for its root phaser on each
921      * advance.
922      *
923      * <p>To support the most common use cases, the default
924      * implementation of this method returns {@code true} when the
925      * number of registered parties has become zero as the result of a
926      * party invoking {@code arriveAndDeregister}.  You can disable
927      * this behavior, thus enabling continuation upon future
928      * registrations, by overriding this method to always return
929      * {@code false}:
930      *
931      * <pre> {@code
932      * Phaser phaser = new Phaser() {
933      *   protected boolean onAdvance(int phase, int parties) { return false; }
934      * }}</pre>
935      *
936      * @param phase the current phase number on entry to this method,
937      * before this phaser is advanced
938      * @param registeredParties the current number of registered parties
939      * @return {@code true} if this phaser should terminate
940      */
onAdvance(int phase, int registeredParties)941     protected boolean onAdvance(int phase, int registeredParties) {
942         return registeredParties == 0;
943     }
944 
945     /**
946      * Returns a string identifying this phaser, as well as its
947      * state.  The state, in brackets, includes the String {@code
948      * "phase = "} followed by the phase number, {@code "parties = "}
949      * followed by the number of registered parties, and {@code
950      * "arrived = "} followed by the number of arrived parties.
951      *
952      * @return a string identifying this phaser, as well as its state
953      */
toString()954     public String toString() {
955         return stateToString(reconcileState());
956     }
957 
958     /**
959      * Implementation of toString and string-based error messages
960      */
stateToString(long s)961     private String stateToString(long s) {
962         return super.toString() +
963             "[phase = " + phaseOf(s) +
964             " parties = " + partiesOf(s) +
965             " arrived = " + arrivedOf(s) + "]";
966     }
967 
968     // Waiting mechanics
969 
970     /**
971      * Removes and signals threads from queue for phase.
972      */
releaseWaiters(int phase)973     private void releaseWaiters(int phase) {
974         QNode q;   // first element of queue
975         Thread t;  // its thread
976         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
977         while ((q = head.get()) != null &&
978                q.phase != (int)(root.state >>> PHASE_SHIFT)) {
979             if (head.compareAndSet(q, q.next) &&
980                 (t = q.thread) != null) {
981                 q.thread = null;
982                 LockSupport.unpark(t);
983             }
984         }
985     }
986 
987     /**
988      * Variant of releaseWaiters that additionally tries to remove any
989      * nodes no longer waiting for advance due to timeout or
990      * interrupt. Currently, nodes are removed only if they are at
991      * head of queue, which suffices to reduce memory footprint in
992      * most usages.
993      *
994      * @return current phase on exit
995      */
abortWait(int phase)996     private int abortWait(int phase) {
997         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
998         for (;;) {
999             Thread t;
1000             QNode q = head.get();
1001             int p = (int)(root.state >>> PHASE_SHIFT);
1002             if (q == null || ((t = q.thread) != null && q.phase == p))
1003                 return p;
1004             if (head.compareAndSet(q, q.next) && t != null) {
1005                 q.thread = null;
1006                 LockSupport.unpark(t);
1007             }
1008         }
1009     }
1010 
1011     /** The number of CPUs, for spin control */
1012     private static final int NCPU = Runtime.getRuntime().availableProcessors();
1013 
1014     /**
1015      * The number of times to spin before blocking while waiting for
1016      * advance, per arrival while waiting. On multiprocessors, fully
1017      * blocking and waking up a large number of threads all at once is
1018      * usually a very slow process, so we use rechargeable spins to
1019      * avoid it when threads regularly arrive: When a thread in
1020      * internalAwaitAdvance notices another arrival before blocking,
1021      * and there appear to be enough CPUs available, it spins
1022      * SPINS_PER_ARRIVAL more times before blocking. The value trades
1023      * off good-citizenship vs big unnecessary slowdowns.
1024      */
1025     static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
1026 
1027     /**
1028      * Possibly blocks and waits for phase to advance unless aborted.
1029      * Call only on root phaser.
1030      *
1031      * @param phase current phase
1032      * @param node if non-null, the wait node to track interrupt and timeout;
1033      * if null, denotes noninterruptible wait
1034      * @return current phase
1035      */
internalAwaitAdvance(int phase, QNode node)1036     private int internalAwaitAdvance(int phase, QNode node) {
1037         // assert root == this;
1038         releaseWaiters(phase-1);          // ensure old queue clean
1039         boolean queued = false;           // true when node is enqueued
1040         int lastUnarrived = 0;            // to increase spins upon change
1041         int spins = SPINS_PER_ARRIVAL;
1042         long s;
1043         int p;
1044         while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1045             if (node == null) {           // spinning in noninterruptible mode
1046                 int unarrived = (int)s & UNARRIVED_MASK;
1047                 if (unarrived != lastUnarrived &&
1048                     (lastUnarrived = unarrived) < NCPU)
1049                     spins += SPINS_PER_ARRIVAL;
1050                 boolean interrupted = Thread.interrupted();
1051                 if (interrupted || --spins < 0) { // need node to record intr
1052                     node = new QNode(this, phase, false, false, 0L);
1053                     node.wasInterrupted = interrupted;
1054                 }
1055             }
1056             else if (node.isReleasable()) // done or aborted
1057                 break;
1058             else if (!queued) {           // push onto queue
1059                 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1060                 QNode q = node.next = head.get();
1061                 if ((q == null || q.phase == phase) &&
1062                     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1063                     queued = head.compareAndSet(q, node);
1064             }
1065             else {
1066                 try {
1067                     ForkJoinPool.managedBlock(node);
1068                 } catch (InterruptedException ie) {
1069                     node.wasInterrupted = true;
1070                 }
1071             }
1072         }
1073 
1074         if (node != null) {
1075             if (node.thread != null)
1076                 node.thread = null;       // avoid need for unpark()
1077             if (node.wasInterrupted && !node.interruptible)
1078                 Thread.currentThread().interrupt();
1079             if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1080                 return abortWait(phase); // possibly clean up on abort
1081         }
1082         releaseWaiters(phase);
1083         return p;
1084     }
1085 
1086     /**
1087      * Wait nodes for Treiber stack representing wait queue
1088      */
1089     static final class QNode implements ForkJoinPool.ManagedBlocker {
1090         final Phaser phaser;
1091         final int phase;
1092         final boolean interruptible;
1093         final boolean timed;
1094         boolean wasInterrupted;
1095         long nanos;
1096         final long deadline;
1097         volatile Thread thread; // nulled to cancel wait
1098         QNode next;
1099 
QNode(Phaser phaser, int phase, boolean interruptible, boolean timed, long nanos)1100         QNode(Phaser phaser, int phase, boolean interruptible,
1101               boolean timed, long nanos) {
1102             this.phaser = phaser;
1103             this.phase = phase;
1104             this.interruptible = interruptible;
1105             this.nanos = nanos;
1106             this.timed = timed;
1107             this.deadline = timed ? System.nanoTime() + nanos : 0L;
1108             thread = Thread.currentThread();
1109         }
1110 
isReleasable()1111         public boolean isReleasable() {
1112             if (thread == null)
1113                 return true;
1114             if (phaser.getPhase() != phase) {
1115                 thread = null;
1116                 return true;
1117             }
1118             if (Thread.interrupted())
1119                 wasInterrupted = true;
1120             if (wasInterrupted && interruptible) {
1121                 thread = null;
1122                 return true;
1123             }
1124             if (timed) {
1125                 if (nanos > 0L) {
1126                     nanos = deadline - System.nanoTime();
1127                 }
1128                 if (nanos <= 0L) {
1129                     thread = null;
1130                     return true;
1131                 }
1132             }
1133             return false;
1134         }
1135 
block()1136         public boolean block() {
1137             if (isReleasable())
1138                 return true;
1139             else if (!timed)
1140                 LockSupport.park(this);
1141             else if (nanos > 0L)
1142                 LockSupport.parkNanos(this, nanos);
1143             return isReleasable();
1144         }
1145     }
1146 
1147     // Unsafe mechanics
1148 
1149     private static final sun.misc.Unsafe UNSAFE;
1150     private static final long stateOffset;
1151     static {
1152         try {
1153             UNSAFE = sun.misc.Unsafe.getUnsafe();
1154             Class<?> k = Phaser.class;
1155             stateOffset = UNSAFE.objectFieldOffset
1156                 (k.getDeclaredField("state"));
1157         } catch (Exception e) {
1158             throw new Error(e);
1159         }
1160     }
1161 }
1162