1 /*
2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
3  * Use is subject to license terms.
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public License
16  * along with this library; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  */
23 
24 /* *********************************************************************
25  *
26  * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
27  *
28  * The Initial Developer of the Original Code is
29  * Michael J. Fromberger.
30  * Portions created by the Initial Developer are Copyright (C) 1998
31  * the Initial Developer. All Rights Reserved.
32  *
33  * Contributor(s):
34  *   Netscape Communications Corporation
35  *
36  *********************************************************************** */
37 
38 /*  Arbitrary precision integer arithmetic library
39  *
40  *  NOTE WELL: the content of this header file is NOT part of the "public"
41  *  API for the MPI library, and may change at any time.
42  *  Application programs that use libmpi should NOT include this header file.
43  */
44 
45 #ifndef _MPI_PRIV_H
46 #define _MPI_PRIV_H
47 
48 /* $Id: mpi-priv.h,v 1.20 2005/11/22 07:16:43 relyea%netscape.com Exp $ */
49 
50 #include "mpi.h"
51 #ifndef _KERNEL
52 #include <stdlib.h>
53 #include <string.h>
54 #include <ctype.h>
55 #endif /* _KERNEL */
56 
57 #if MP_DEBUG
58 #include <stdio.h>
59 
60 #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
61 #else
62 #define DIAG(T,V)
63 #endif
64 
65 /* If we aren't using a wired-in logarithm table, we need to include
66    the math library to get the log() function
67  */
68 
69 /* {{{ s_logv_2[] - log table for 2 in various bases */
70 
71 #if MP_LOGTAB
72 /*
73   A table of the logs of 2 for various bases (the 0 and 1 entries of
74   this table are meaningless and should not be referenced).
75 
76   This table is used to compute output lengths for the mp_toradix()
77   function.  Since a number n in radix r takes up about log_r(n)
78   digits, we estimate the output size by taking the least integer
79   greater than log_r(n), where:
80 
81   log_r(n) = log_2(n) * log_r(2)
82 
83   This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
84   which are the output bases supported.
85  */
86 
87 extern const float s_logv_2[];
88 #define LOG_V_2(R)  s_logv_2[(R)]
89 
90 #else
91 
92 /*
93    If MP_LOGTAB is not defined, use the math library to compute the
94    logarithms on the fly.  Otherwise, use the table.
95    Pick which works best for your system.
96  */
97 
98 #include <math.h>
99 #define LOG_V_2(R)  (log(2.0)/log(R))
100 
101 #endif /* if MP_LOGTAB */
102 
103 /* }}} */
104 
105 /* {{{ Digit arithmetic macros */
106 
107 /*
108   When adding and multiplying digits, the results can be larger than
109   can be contained in an mp_digit.  Thus, an mp_word is used.  These
110   macros mask off the upper and lower digits of the mp_word (the
111   mp_word may be more than 2 mp_digits wide, but we only concern
112   ourselves with the low-order 2 mp_digits)
113  */
114 
115 #define  CARRYOUT(W)  (mp_digit)((W)>>DIGIT_BIT)
116 #define  ACCUM(W)     (mp_digit)(W)
117 
118 #define MP_MIN(a,b)   (((a) < (b)) ? (a) : (b))
119 #define MP_MAX(a,b)   (((a) > (b)) ? (a) : (b))
120 #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
121 #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
122 
123 /* }}} */
124 
125 /* {{{ Comparison constants */
126 
127 #define  MP_LT       -1
128 #define  MP_EQ        0
129 #define  MP_GT        1
130 
131 /* }}} */
132 
133 /* {{{ private function declarations */
134 
135 /*
136    If MP_MACRO is false, these will be defined as actual functions;
137    otherwise, suitable macro definitions will be used.  This works
138    around the fact that ANSI C89 doesn't support an 'inline' keyword
139    (although I hear C9x will ... about bloody time).  At present, the
140    macro definitions are identical to the function bodies, but they'll
141    expand in place, instead of generating a function call.
142 
143    I chose these particular functions to be made into macros because
144    some profiling showed they are called a lot on a typical workload,
145    and yet they are primarily housekeeping.
146  */
147 #if MP_MACRO == 0
148  void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */
149  void     s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
150  void    *s_mp_alloc(size_t nb, size_t ni, int flag); /* general allocator    */
151  void     s_mp_free(void *ptr, mp_size);          /* general free function */
152 extern unsigned long mp_allocs;
153 extern unsigned long mp_frees;
154 extern unsigned long mp_copies;
155 #else
156 
157  /* Even if these are defined as macros, we need to respect the settings
158     of the MP_MEMSET and MP_MEMCPY configuration options...
159   */
160  #if MP_MEMSET == 0
161   #define  s_mp_setz(dp, count) \
162        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
163  #else
164   #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
165  #endif /* MP_MEMSET */
166 
167  #if MP_MEMCPY == 0
168   #define  s_mp_copy(sp, dp, count) \
169        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
170  #else
171   #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
172  #endif /* MP_MEMCPY */
173 
174  #define  s_mp_alloc(nb, ni)  calloc(nb, ni)
175  #define  s_mp_free(ptr) {if(ptr) free(ptr);}
176 #endif /* MP_MACRO */
177 
178 mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */
179 mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */
180 
181 #if MP_MACRO == 0
182  void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */
183 #else
184  #define  s_mp_clamp(mp)\
185   { mp_size used = MP_USED(mp); \
186     while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
187     MP_USED(mp) = used; \
188   }
189 #endif /* MP_MACRO */
190 
191 void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */
192 
193 mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */
194 void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */
195 mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place */
196 void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */
197 void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */
198 void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */
199 mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */
200 mp_err   s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
201                                                /* normalize for division  */
202 mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */
203 mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */
204 mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */
205 mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
206                                                /* unsigned digit divide   */
207 mp_err   s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
208                                                /* Barrett reduction       */
209 mp_err   s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition      */
210 mp_err   s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
211 mp_err   s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract      */
212 mp_err   s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
213 mp_err   s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
214                                                /* a += b * RADIX^offset   */
215 mp_err   s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply      */
216 #if MP_SQUARE
217 mp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */
218 #else
219 #define  s_mp_sqr(a) s_mp_mul(a, a)
220 #endif
221 mp_err   s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
222 mp_err   s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
223 mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */
224 int      s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
225 int      s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
226 int      s_mp_ispow2(const mp_int *v);         /* is v a power of 2?      */
227 int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */
228 
229 int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */
230 char     s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
231 int      s_mp_outlen(int bits, int r);          /* output length in bytes */
232 mp_digit s_mp_invmod_radix(mp_digit P);   /* returns (P ** -1) mod RADIX */
233 mp_err   s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
234 mp_err   s_mp_invmod_2d(    const mp_int *a, mp_size k,       mp_int *c);
235 mp_err   s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
236 
237 #ifdef NSS_USE_COMBA
238 
239 #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
240 
241 void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
242 void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
243 void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
244 void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
245 
246 void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
247 void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
248 void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
249 void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
250 
251 #endif /* end NSS_USE_COMBA */
252 
253 /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
254 #if defined (__OS2__) && defined (__IBMC__)
255 #define MPI_ASM_DECL __cdecl
256 #else
257 #define MPI_ASM_DECL
258 #endif
259 
260 #ifdef MPI_AMD64
261 
262 mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit);
263 mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit);
264 
265 /* c = a * b */
266 #define s_mpv_mul_d(a, a_len, b, c) \
267         ((unsigned long*)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
268 
269 /* c += a * b */
270 #define s_mpv_mul_d_add(a, a_len, b, c) \
271         ((unsigned long*)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
272 
273 #else
274 
275 void     MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
276                                         mp_digit b, mp_digit *c);
277 void     MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
278                                             mp_digit b, mp_digit *c);
279 
280 #endif
281 
282 void     MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
283                                                 mp_size a_len, mp_digit b,
284                                                 mp_digit *c);
285 void     MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
286                                                 mp_size a_len,
287                                                 mp_digit *sqrs);
288 
289 mp_err   MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
290                             mp_digit divisor, mp_digit *quot, mp_digit *rem);
291 
292 /* c += a * b * (MP_RADIX ** offset);  */
293 #define s_mp_mul_d_add_offset(a, b, c, off) \
294 (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
295 
296 typedef struct {
297   mp_int       N;       /* modulus N */
298   mp_digit     n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
299   mp_size      b;       /* R == 2 ** b,  also b = # significant bits in N */
300 } mp_mont_modulus;
301 
302 mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
303                        mp_mont_modulus *mmm);
304 mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
305 
306 /*
307  * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
308  * if a cache exists, or zero if there is no cache. If more than one
309  * cache line exists, it should return the smallest line size (which is
310  * usually the L1 cache).
311  *
312  * mp_modexp uses this information to make sure that private key information
313  * isn't being leaked through the cache.
314  *
315  * see mpcpucache.c for the implementation.
316  */
317 unsigned long s_mpi_getProcessorLineSize();
318 
319 /* }}} */
320 #endif /* _MPI_PRIV_H */
321