1 /*
2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package com.sun.tools.javac.comp;
27 
28 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
29 import com.sun.tools.javac.api.Formattable.LocalizedString;
30 import com.sun.tools.javac.code.*;
31 import com.sun.tools.javac.code.Symbol.*;
32 import com.sun.tools.javac.code.Type.*;
33 import com.sun.tools.javac.comp.Attr.ResultInfo;
34 import com.sun.tools.javac.comp.Check.CheckContext;
35 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
36 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
37 import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
38 import com.sun.tools.javac.comp.Infer.InferenceContext;
39 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
40 import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
41 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.DiagnosticRewriter;
42 import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
43 import com.sun.tools.javac.jvm.*;
44 import com.sun.tools.javac.main.Option;
45 import com.sun.tools.javac.tree.*;
46 import com.sun.tools.javac.tree.JCTree.*;
47 import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
48 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
49 import com.sun.tools.javac.util.*;
50 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
52 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
53 
54 import java.util.Arrays;
55 import java.util.Collection;
56 import java.util.EnumMap;
57 import java.util.EnumSet;
58 import java.util.Iterator;
59 import java.util.LinkedHashMap;
60 import java.util.LinkedHashSet;
61 import java.util.Map;
62 
63 import javax.lang.model.element.ElementVisitor;
64 
65 import static com.sun.tools.javac.code.Flags.*;
66 import static com.sun.tools.javac.code.Flags.BLOCK;
67 import static com.sun.tools.javac.code.Kinds.*;
68 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
69 import static com.sun.tools.javac.code.TypeTag.*;
70 import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
71 import static com.sun.tools.javac.tree.JCTree.Tag.*;
72 
73 /** Helper class for name resolution, used mostly by the attribution phase.
74  *
75  *  <p><b>This is NOT part of any supported API.
76  *  If you write code that depends on this, you do so at your own risk.
77  *  This code and its internal interfaces are subject to change or
78  *  deletion without notice.</b>
79  */
80 public class Resolve {
81     protected static final Context.Key<Resolve> resolveKey =
82         new Context.Key<Resolve>();
83 
84     Names names;
85     Log log;
86     Symtab syms;
87     Attr attr;
88     DeferredAttr deferredAttr;
89     Check chk;
90     Infer infer;
91     ClassReader reader;
92     TreeInfo treeinfo;
93     Types types;
94     JCDiagnostic.Factory diags;
95     public final boolean boxingEnabled;
96     public final boolean varargsEnabled;
97     public final boolean allowMethodHandles;
98     public final boolean allowFunctionalInterfaceMostSpecific;
99     public final boolean checkVarargsAccessAfterResolution;
100     private final boolean debugResolve;
101     private final boolean compactMethodDiags;
102     final EnumSet<VerboseResolutionMode> verboseResolutionMode;
103 
104     Scope polymorphicSignatureScope;
105 
Resolve(Context context)106     protected Resolve(Context context) {
107         context.put(resolveKey, this);
108         syms = Symtab.instance(context);
109 
110         varNotFound = new
111             SymbolNotFoundError(ABSENT_VAR);
112         methodNotFound = new
113             SymbolNotFoundError(ABSENT_MTH);
114         methodWithCorrectStaticnessNotFound = new
115             SymbolNotFoundError(WRONG_STATICNESS,
116                 "method found has incorrect staticness");
117         typeNotFound = new
118             SymbolNotFoundError(ABSENT_TYP);
119 
120         names = Names.instance(context);
121         log = Log.instance(context);
122         attr = Attr.instance(context);
123         deferredAttr = DeferredAttr.instance(context);
124         chk = Check.instance(context);
125         infer = Infer.instance(context);
126         reader = ClassReader.instance(context);
127         treeinfo = TreeInfo.instance(context);
128         types = Types.instance(context);
129         diags = JCDiagnostic.Factory.instance(context);
130         Source source = Source.instance(context);
131         boxingEnabled = source.allowBoxing();
132         varargsEnabled = source.allowVarargs();
133         Options options = Options.instance(context);
134         debugResolve = options.isSet("debugresolve");
135         compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
136                 options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
137         verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
138         Target target = Target.instance(context);
139         allowMethodHandles = target.hasMethodHandles();
140         allowFunctionalInterfaceMostSpecific = source.allowFunctionalInterfaceMostSpecific();
141         checkVarargsAccessAfterResolution =
142                 source.allowPostApplicabilityVarargsAccessCheck();
143         polymorphicSignatureScope = new Scope(syms.noSymbol);
144 
145         inapplicableMethodException = new InapplicableMethodException(diags);
146     }
147 
148     /** error symbols, which are returned when resolution fails
149      */
150     private final SymbolNotFoundError varNotFound;
151     private final SymbolNotFoundError methodNotFound;
152     private final SymbolNotFoundError methodWithCorrectStaticnessNotFound;
153     private final SymbolNotFoundError typeNotFound;
154 
instance(Context context)155     public static Resolve instance(Context context) {
156         Resolve instance = context.get(resolveKey);
157         if (instance == null)
158             instance = new Resolve(context);
159         return instance;
160     }
161 
162     // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
163     enum VerboseResolutionMode {
164         SUCCESS("success"),
165         FAILURE("failure"),
166         APPLICABLE("applicable"),
167         INAPPLICABLE("inapplicable"),
168         DEFERRED_INST("deferred-inference"),
169         PREDEF("predef"),
170         OBJECT_INIT("object-init"),
171         INTERNAL("internal");
172 
173         final String opt;
174 
VerboseResolutionMode(String opt)175         private VerboseResolutionMode(String opt) {
176             this.opt = opt;
177         }
178 
getVerboseResolutionMode(Options opts)179         static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
180             String s = opts.get("verboseResolution");
181             EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
182             if (s == null) return res;
183             if (s.contains("all")) {
184                 res = EnumSet.allOf(VerboseResolutionMode.class);
185             }
186             Collection<String> args = Arrays.asList(s.split(","));
187             for (VerboseResolutionMode mode : values()) {
188                 if (args.contains(mode.opt)) {
189                     res.add(mode);
190                 } else if (args.contains("-" + mode.opt)) {
191                     res.remove(mode);
192                 }
193             }
194             return res;
195         }
196     }
197 
reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar)198     void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
199             List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
200         boolean success = bestSoFar.kind < ERRONEOUS;
201 
202         if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
203             return;
204         } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
205             return;
206         }
207 
208         if (bestSoFar.name == names.init &&
209                 bestSoFar.owner == syms.objectType.tsym &&
210                 !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
211             return; //skip diags for Object constructor resolution
212         } else if (site == syms.predefClass.type &&
213                 !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
214             return; //skip spurious diags for predef symbols (i.e. operators)
215         } else if (currentResolutionContext.internalResolution &&
216                 !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
217             return;
218         }
219 
220         int pos = 0;
221         int mostSpecificPos = -1;
222         ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
223         for (Candidate c : currentResolutionContext.candidates) {
224             if (currentResolutionContext.step != c.step ||
225                     (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
226                     (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
227                 continue;
228             } else {
229                 subDiags.append(c.isApplicable() ?
230                         getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
231                         getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
232                 if (c.sym == bestSoFar)
233                     mostSpecificPos = pos;
234                 pos++;
235             }
236         }
237         String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
238         List<Type> argtypes2 = Type.map(argtypes,
239                     deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
240         JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
241                 site.tsym, mostSpecificPos, currentResolutionContext.step,
242                 methodArguments(argtypes2),
243                 methodArguments(typeargtypes));
244         JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
245         log.report(d);
246     }
247 
248     JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
249         JCDiagnostic subDiag = null;
250         if (sym.type.hasTag(FORALL)) {
251             subDiag = diags.fragment("partial.inst.sig", inst);
252         }
253 
254         String key = subDiag == null ?
255                 "applicable.method.found" :
256                 "applicable.method.found.1";
257 
258         return diags.fragment(key, pos, sym, subDiag);
259     }
260 
261     JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
262         return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
263     }
264     // </editor-fold>
265 
266 /* ************************************************************************
267  * Identifier resolution
268  *************************************************************************/
269 
270     /** An environment is "static" if its static level is greater than
271      *  the one of its outer environment
272      */
273     protected static boolean isStatic(Env<AttrContext> env) {
274         return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
275     }
276 
277     /** An environment is an "initializer" if it is a constructor or
278      *  an instance initializer.
279      */
isInitializer(Env<AttrContext> env)280     static boolean isInitializer(Env<AttrContext> env) {
281         Symbol owner = env.info.scope.owner;
282         return owner.isConstructor() ||
283             owner.owner.kind == TYP &&
284             (owner.kind == VAR ||
285              owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
286             (owner.flags() & STATIC) == 0;
287     }
288 
289     /** Is class accessible in given evironment?
290      *  @param env    The current environment.
291      *  @param c      The class whose accessibility is checked.
292      */
isAccessible(Env<AttrContext> env, TypeSymbol c)293     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
294         return isAccessible(env, c, false);
295     }
296 
isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner)297     public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
298         boolean isAccessible = false;
299         switch ((short)(c.flags() & AccessFlags)) {
300             case PRIVATE:
301                 isAccessible =
302                     env.enclClass.sym.outermostClass() ==
303                     c.owner.outermostClass();
304                 break;
305             case 0:
306                 isAccessible =
307                     env.toplevel.packge == c.owner // fast special case
308                     ||
309                     env.toplevel.packge == c.packge()
310                     ||
311                     // Hack: this case is added since synthesized default constructors
312                     // of anonymous classes should be allowed to access
313                     // classes which would be inaccessible otherwise.
314                     env.enclMethod != null &&
315                     (env.enclMethod.mods.flags & ANONCONSTR) != 0;
316                 break;
317             default: // error recovery
318             case PUBLIC:
319                 isAccessible = true;
320                 break;
321             case PROTECTED:
322                 isAccessible =
323                     env.toplevel.packge == c.owner // fast special case
324                     ||
325                     env.toplevel.packge == c.packge()
326                     ||
327                     isInnerSubClass(env.enclClass.sym, c.owner);
328                 break;
329         }
330         return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
331             isAccessible :
332             isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
333     }
334     //where
335         /** Is given class a subclass of given base class, or an inner class
336          *  of a subclass?
337          *  Return null if no such class exists.
338          *  @param c     The class which is the subclass or is contained in it.
339          *  @param base  The base class
340          */
isInnerSubClass(ClassSymbol c, Symbol base)341         private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
342             while (c != null && !c.isSubClass(base, types)) {
343                 c = c.owner.enclClass();
344             }
345             return c != null;
346         }
347 
isAccessible(Env<AttrContext> env, Type t)348     boolean isAccessible(Env<AttrContext> env, Type t) {
349         return isAccessible(env, t, false);
350     }
351 
isAccessible(Env<AttrContext> env, Type t, boolean checkInner)352     boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
353         return (t.hasTag(ARRAY))
354             ? isAccessible(env, types.cvarUpperBound(types.elemtype(t)))
355             : isAccessible(env, t.tsym, checkInner);
356     }
357 
358     /** Is symbol accessible as a member of given type in given environment?
359      *  @param env    The current environment.
360      *  @param site   The type of which the tested symbol is regarded
361      *                as a member.
362      *  @param sym    The symbol.
363      */
isAccessible(Env<AttrContext> env, Type site, Symbol sym)364     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
365         return isAccessible(env, site, sym, false);
366     }
isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner)367     public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
368         if (sym.name == names.init && sym.owner != site.tsym) return false;
369         switch ((short)(sym.flags() & AccessFlags)) {
370         case PRIVATE:
371             return
372                 (env.enclClass.sym == sym.owner // fast special case
373                  ||
374                  env.enclClass.sym.outermostClass() ==
375                  sym.owner.outermostClass())
376                 &&
377                 sym.isInheritedIn(site.tsym, types);
378         case 0:
379             return
380                 (env.toplevel.packge == sym.owner.owner // fast special case
381                  ||
382                  env.toplevel.packge == sym.packge())
383                 &&
384                 isAccessible(env, site, checkInner)
385                 &&
386                 sym.isInheritedIn(site.tsym, types)
387                 &&
388                 notOverriddenIn(site, sym);
389         case PROTECTED:
390             return
391                 (env.toplevel.packge == sym.owner.owner // fast special case
392                  ||
393                  env.toplevel.packge == sym.packge()
394                  ||
395                  isProtectedAccessible(sym, env.enclClass.sym, site)
396                  ||
397                  // OK to select instance method or field from 'super' or type name
398                  // (but type names should be disallowed elsewhere!)
399                  env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
400                 &&
401                 isAccessible(env, site, checkInner)
402                 &&
403                 notOverriddenIn(site, sym);
404         default: // this case includes erroneous combinations as well
405             return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
406         }
407     }
408     //where
409     /* `sym' is accessible only if not overridden by
410      * another symbol which is a member of `site'
411      * (because, if it is overridden, `sym' is not strictly
412      * speaking a member of `site'). A polymorphic signature method
413      * cannot be overridden (e.g. MH.invokeExact(Object[])).
414      */
notOverriddenIn(Type site, Symbol sym)415     private boolean notOverriddenIn(Type site, Symbol sym) {
416         if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
417             return true;
418         else {
419             Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
420             return (s2 == null || s2 == sym || sym.owner == s2.owner ||
421                     !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
422         }
423     }
424     //where
425         /** Is given protected symbol accessible if it is selected from given site
426          *  and the selection takes place in given class?
427          *  @param sym     The symbol with protected access
428          *  @param c       The class where the access takes place
429          *  @site          The type of the qualifier
430          */
431         private
isProtectedAccessible(Symbol sym, ClassSymbol c, Type site)432         boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
433             Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
434             while (c != null &&
435                    !(c.isSubClass(sym.owner, types) &&
436                      (c.flags() & INTERFACE) == 0 &&
437                      // In JLS 2e 6.6.2.1, the subclass restriction applies
438                      // only to instance fields and methods -- types are excluded
439                      // regardless of whether they are declared 'static' or not.
440                      ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
441                 c = c.owner.enclClass();
442             return c != null;
443         }
444 
445     /**
446      * Performs a recursive scan of a type looking for accessibility problems
447      * from current attribution environment
448      */
checkAccessibleType(Env<AttrContext> env, Type t)449     void checkAccessibleType(Env<AttrContext> env, Type t) {
450         accessibilityChecker.visit(t, env);
451     }
452 
453     /**
454      * Accessibility type-visitor
455      */
456     Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
457             new Types.SimpleVisitor<Void, Env<AttrContext>>() {
458 
459         void visit(List<Type> ts, Env<AttrContext> env) {
460             for (Type t : ts) {
461                 visit(t, env);
462             }
463         }
464 
465         public Void visitType(Type t, Env<AttrContext> env) {
466             return null;
467         }
468 
469         @Override
470         public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
471             visit(t.elemtype, env);
472             return null;
473         }
474 
475         @Override
476         public Void visitClassType(ClassType t, Env<AttrContext> env) {
477             visit(t.getTypeArguments(), env);
478             if (!isAccessible(env, t, true)) {
479                 accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
480             }
481             return null;
482         }
483 
484         @Override
485         public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
486             visit(t.type, env);
487             return null;
488         }
489 
490         @Override
491         public Void visitMethodType(MethodType t, Env<AttrContext> env) {
492             visit(t.getParameterTypes(), env);
493             visit(t.getReturnType(), env);
494             visit(t.getThrownTypes(), env);
495             return null;
496         }
497     };
498 
499     /** Try to instantiate the type of a method so that it fits
500      *  given type arguments and argument types. If successful, return
501      *  the method's instantiated type, else return null.
502      *  The instantiation will take into account an additional leading
503      *  formal parameter if the method is an instance method seen as a member
504      *  of an under determined site. In this case, we treat site as an additional
505      *  parameter and the parameters of the class containing the method as
506      *  additional type variables that get instantiated.
507      *
508      *  @param env         The current environment
509      *  @param site        The type of which the method is a member.
510      *  @param m           The method symbol.
511      *  @param argtypes    The invocation's given value arguments.
512      *  @param typeargtypes    The invocation's given type arguments.
513      *  @param allowBoxing Allow boxing conversions of arguments.
514      *  @param useVarargs Box trailing arguments into an array for varargs.
515      */
rawInstantiate(Env<AttrContext> env, Type site, Symbol m, ResultInfo resultInfo, List<Type> argtypes, List<Type> typeargtypes, boolean allowBoxing, boolean useVarargs, Warner warn)516     Type rawInstantiate(Env<AttrContext> env,
517                         Type site,
518                         Symbol m,
519                         ResultInfo resultInfo,
520                         List<Type> argtypes,
521                         List<Type> typeargtypes,
522                         boolean allowBoxing,
523                         boolean useVarargs,
524                         Warner warn) throws Infer.InferenceException {
525 
526         Type mt = types.memberType(site, m);
527         // tvars is the list of formal type variables for which type arguments
528         // need to inferred.
529         List<Type> tvars = List.nil();
530         if (typeargtypes == null) typeargtypes = List.nil();
531         if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
532             // This is not a polymorphic method, but typeargs are supplied
533             // which is fine, see JLS 15.12.2.1
534         } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
535             ForAll pmt = (ForAll) mt;
536             if (typeargtypes.length() != pmt.tvars.length())
537                 throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
538             // Check type arguments are within bounds
539             List<Type> formals = pmt.tvars;
540             List<Type> actuals = typeargtypes;
541             while (formals.nonEmpty() && actuals.nonEmpty()) {
542                 List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
543                                                 pmt.tvars, typeargtypes);
544                 for (; bounds.nonEmpty(); bounds = bounds.tail)
545                     if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
546                         throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
547                 formals = formals.tail;
548                 actuals = actuals.tail;
549             }
550             mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
551         } else if (mt.hasTag(FORALL)) {
552             ForAll pmt = (ForAll) mt;
553             List<Type> tvars1 = types.newInstances(pmt.tvars);
554             tvars = tvars.appendList(tvars1);
555             mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
556         }
557 
558         // find out whether we need to go the slow route via infer
559         boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
560         for (List<Type> l = argtypes;
561              l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
562              l = l.tail) {
563             if (l.head.hasTag(FORALL)) instNeeded = true;
564         }
565 
566         if (instNeeded)
567             return infer.instantiateMethod(env,
568                                     tvars,
569                                     (MethodType)mt,
570                                     resultInfo,
571                                     (MethodSymbol)m,
572                                     argtypes,
573                                     allowBoxing,
574                                     useVarargs,
575                                     currentResolutionContext,
576                                     warn);
577 
578         DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
579         currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
580                                 argtypes, mt.getParameterTypes(), warn);
581         dc.complete();
582         return mt;
583     }
584 
checkMethod(Env<AttrContext> env, Type site, Symbol m, ResultInfo resultInfo, List<Type> argtypes, List<Type> typeargtypes, Warner warn)585     Type checkMethod(Env<AttrContext> env,
586                      Type site,
587                      Symbol m,
588                      ResultInfo resultInfo,
589                      List<Type> argtypes,
590                      List<Type> typeargtypes,
591                      Warner warn) {
592         MethodResolutionContext prevContext = currentResolutionContext;
593         try {
594             currentResolutionContext = new MethodResolutionContext();
595             currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
596             if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
597                 //method/constructor references need special check class
598                 //to handle inference variables in 'argtypes' (might happen
599                 //during an unsticking round)
600                 currentResolutionContext.methodCheck =
601                         new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
602             }
603             MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
604             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
605                     step.isBoxingRequired(), step.isVarargsRequired(), warn);
606         }
607         finally {
608             currentResolutionContext = prevContext;
609         }
610     }
611 
612     /** Same but returns null instead throwing a NoInstanceException
613      */
instantiate(Env<AttrContext> env, Type site, Symbol m, ResultInfo resultInfo, List<Type> argtypes, List<Type> typeargtypes, boolean allowBoxing, boolean useVarargs, Warner warn)614     Type instantiate(Env<AttrContext> env,
615                      Type site,
616                      Symbol m,
617                      ResultInfo resultInfo,
618                      List<Type> argtypes,
619                      List<Type> typeargtypes,
620                      boolean allowBoxing,
621                      boolean useVarargs,
622                      Warner warn) {
623         try {
624             return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
625                                   allowBoxing, useVarargs, warn);
626         } catch (InapplicableMethodException ex) {
627             return null;
628         }
629     }
630 
631     /**
632      * This interface defines an entry point that should be used to perform a
633      * method check. A method check usually consist in determining as to whether
634      * a set of types (actuals) is compatible with another set of types (formals).
635      * Since the notion of compatibility can vary depending on the circumstances,
636      * this interfaces allows to easily add new pluggable method check routines.
637      */
638     interface MethodCheck {
639         /**
640          * Main method check routine. A method check usually consist in determining
641          * as to whether a set of types (actuals) is compatible with another set of
642          * types (formals). If an incompatibility is found, an unchecked exception
643          * is assumed to be thrown.
644          */
argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn)645         void argumentsAcceptable(Env<AttrContext> env,
646                                 DeferredAttrContext deferredAttrContext,
647                                 List<Type> argtypes,
648                                 List<Type> formals,
649                                 Warner warn);
650 
651         /**
652          * Retrieve the method check object that will be used during a
653          * most specific check.
654          */
mostSpecificCheck(List<Type> actuals, boolean strict)655         MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict);
656     }
657 
658     /**
659      * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
660      */
661     enum MethodCheckDiag {
662         /**
663          * Actuals and formals differs in length.
664          */
665         ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
666         /**
667          * An actual is incompatible with a formal.
668          */
669         ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
670         /**
671          * An actual is incompatible with the varargs element type.
672          */
673         VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
674         /**
675          * The varargs element type is inaccessible.
676          */
677         INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
678 
679         final String basicKey;
680         final String inferKey;
681 
MethodCheckDiag(String basicKey, String inferKey)682         MethodCheckDiag(String basicKey, String inferKey) {
683             this.basicKey = basicKey;
684             this.inferKey = inferKey;
685         }
686 
regex()687         String regex() {
688             return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
689         }
690     }
691 
692     /**
693      * Dummy method check object. All methods are deemed applicable, regardless
694      * of their formal parameter types.
695      */
696     MethodCheck nilMethodCheck = new MethodCheck() {
697         public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
698             //do nothing - method always applicable regardless of actuals
699         }
700 
701         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
702             return this;
703         }
704     };
705 
706     /**
707      * Base class for 'real' method checks. The class defines the logic for
708      * iterating through formals and actuals and provides and entry point
709      * that can be used by subclasses in order to define the actual check logic.
710      */
711     abstract class AbstractMethodCheck implements MethodCheck {
712         @Override
argumentsAcceptable(final Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn)713         public void argumentsAcceptable(final Env<AttrContext> env,
714                                     DeferredAttrContext deferredAttrContext,
715                                     List<Type> argtypes,
716                                     List<Type> formals,
717                                     Warner warn) {
718             //should we expand formals?
719             boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
720             JCTree callTree = treeForDiagnostics(env);
721             List<JCExpression> trees = TreeInfo.args(callTree);
722 
723             //inference context used during this method check
724             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
725 
726             Type varargsFormal = useVarargs ? formals.last() : null;
727 
728             if (varargsFormal == null &&
729                     argtypes.size() != formals.size()) {
730                 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
731             }
732 
733             while (argtypes.nonEmpty() && formals.head != varargsFormal) {
734                 DiagnosticPosition pos = trees != null ? trees.head : null;
735                 checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
736                 argtypes = argtypes.tail;
737                 formals = formals.tail;
738                 trees = trees != null ? trees.tail : trees;
739             }
740 
741             if (formals.head != varargsFormal) {
742                 reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
743             }
744 
745             if (useVarargs) {
746                 //note: if applicability check is triggered by most specific test,
747                 //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
748                 final Type elt = types.elemtype(varargsFormal);
749                 while (argtypes.nonEmpty()) {
750                     DiagnosticPosition pos = trees != null ? trees.head : null;
751                     checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
752                     argtypes = argtypes.tail;
753                     trees = trees != null ? trees.tail : trees;
754                 }
755             }
756         }
757 
758             // where
treeForDiagnostics(Env<AttrContext> env)759             private JCTree treeForDiagnostics(Env<AttrContext> env) {
760                 return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree;
761             }
762 
763         /**
764          * Does the actual argument conforms to the corresponding formal?
765          */
checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn)766         abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
767 
reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args)768         protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
769             boolean inferDiag = inferenceContext != infer.emptyContext;
770             InapplicableMethodException ex = inferDiag ?
771                     infer.inferenceException : inapplicableMethodException;
772             if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
773                 Object[] args2 = new Object[args.length + 1];
774                 System.arraycopy(args, 0, args2, 1, args.length);
775                 args2[0] = inferenceContext.inferenceVars();
776                 args = args2;
777             }
778             String key = inferDiag ? diag.inferKey : diag.basicKey;
779             throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
780         }
781 
mostSpecificCheck(List<Type> actuals, boolean strict)782         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
783             return nilMethodCheck;
784         }
785 
786     }
787 
788     /**
789      * Arity-based method check. A method is applicable if the number of actuals
790      * supplied conforms to the method signature.
791      */
792     MethodCheck arityMethodCheck = new AbstractMethodCheck() {
793         @Override
794         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
795             //do nothing - actual always compatible to formals
796         }
797 
798         @Override
799         public String toString() {
800             return "arityMethodCheck";
801         }
802     };
803 
dummyArgs(int length)804     List<Type> dummyArgs(int length) {
805         ListBuffer<Type> buf = new ListBuffer<>();
806         for (int i = 0 ; i < length ; i++) {
807             buf.append(Type.noType);
808         }
809         return buf.toList();
810     }
811 
812     /**
813      * Main method applicability routine. Given a list of actual types A,
814      * a list of formal types F, determines whether the types in A are
815      * compatible (by method invocation conversion) with the types in F.
816      *
817      * Since this routine is shared between overload resolution and method
818      * type-inference, a (possibly empty) inference context is used to convert
819      * formal types to the corresponding 'undet' form ahead of a compatibility
820      * check so that constraints can be propagated and collected.
821      *
822      * Moreover, if one or more types in A is a deferred type, this routine uses
823      * DeferredAttr in order to perform deferred attribution. If one or more actual
824      * deferred types are stuck, they are placed in a queue and revisited later
825      * after the remainder of the arguments have been seen. If this is not sufficient
826      * to 'unstuck' the argument, a cyclic inference error is called out.
827      *
828      * A method check handler (see above) is used in order to report errors.
829      */
830     MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
831 
832         @Override
833         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
834             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
835             mresult.check(pos, actual);
836         }
837 
838         @Override
839         public void argumentsAcceptable(final Env<AttrContext> env,
840                                     DeferredAttrContext deferredAttrContext,
841                                     List<Type> argtypes,
842                                     List<Type> formals,
843                                     Warner warn) {
844             super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
845             // should we check varargs element type accessibility?
846             if (deferredAttrContext.phase.isVarargsRequired()) {
847                 if (deferredAttrContext.mode == AttrMode.CHECK || !checkVarargsAccessAfterResolution) {
848                     varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext);
849                 }
850             }
851         }
852 
853         /**
854          * Test that the runtime array element type corresponding to 't' is accessible.  't' should be the
855          * varargs element type of either the method invocation type signature (after inference completes)
856          * or the method declaration signature (before inference completes).
857          */
858         private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
859             if (inferenceContext.free(t)) {
860                 inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
861                     @Override
862                     public void typesInferred(InferenceContext inferenceContext) {
863                         varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
864                     }
865                 });
866             } else {
867                 if (!isAccessible(env, types.erasure(t))) {
868                     Symbol location = env.enclClass.sym;
869                     reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
870                 }
871             }
872         }
873 
874         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
875                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
876             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
877                 MethodCheckDiag methodDiag = varargsCheck ?
878                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
879 
880                 @Override
881                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
882                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
883                 }
884             };
885             return new MethodResultInfo(to, checkContext);
886         }
887 
888         @Override
889         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
890             return new MostSpecificCheck(strict, actuals);
891         }
892 
893         @Override
894         public String toString() {
895             return "resolveMethodCheck";
896         }
897     };
898 
899     /**
900      * This class handles method reference applicability checks; since during
901      * these checks it's sometime possible to have inference variables on
902      * the actual argument types list, the method applicability check must be
903      * extended so that inference variables are 'opened' as needed.
904      */
905     class MethodReferenceCheck extends AbstractMethodCheck {
906 
907         InferenceContext pendingInferenceContext;
908 
MethodReferenceCheck(InferenceContext pendingInferenceContext)909         MethodReferenceCheck(InferenceContext pendingInferenceContext) {
910             this.pendingInferenceContext = pendingInferenceContext;
911         }
912 
913         @Override
checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn)914         void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
915             ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
916             mresult.check(pos, actual);
917         }
918 
methodCheckResult(final boolean varargsCheck, Type to, final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner)919         private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
920                 final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
921             CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
922                 MethodCheckDiag methodDiag = varargsCheck ?
923                                  MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
924 
925                 @Override
926                 public boolean compatible(Type found, Type req, Warner warn) {
927                     found = pendingInferenceContext.asUndetVar(found);
928                     if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
929                         req = types.boxedClass(req).type;
930                     }
931                     return super.compatible(found, req, warn);
932                 }
933 
934                 @Override
935                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
936                     reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
937                 }
938             };
939             return new MethodResultInfo(to, checkContext);
940         }
941 
942         @Override
mostSpecificCheck(List<Type> actuals, boolean strict)943         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
944             return new MostSpecificCheck(strict, actuals);
945         }
946     };
947 
948     /**
949      * Check context to be used during method applicability checks. A method check
950      * context might contain inference variables.
951      */
952     abstract class MethodCheckContext implements CheckContext {
953 
954         boolean strict;
955         DeferredAttrContext deferredAttrContext;
956         Warner rsWarner;
957 
MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner)958         public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
959            this.strict = strict;
960            this.deferredAttrContext = deferredAttrContext;
961            this.rsWarner = rsWarner;
962         }
963 
compatible(Type found, Type req, Warner warn)964         public boolean compatible(Type found, Type req, Warner warn) {
965             InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
966             return strict ?
967                     types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
968                     types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
969         }
970 
report(DiagnosticPosition pos, JCDiagnostic details)971         public void report(DiagnosticPosition pos, JCDiagnostic details) {
972             throw inapplicableMethodException.setMessage(details);
973         }
974 
checkWarner(DiagnosticPosition pos, Type found, Type req)975         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
976             return rsWarner;
977         }
978 
inferenceContext()979         public InferenceContext inferenceContext() {
980             return deferredAttrContext.inferenceContext;
981         }
982 
deferredAttrContext()983         public DeferredAttrContext deferredAttrContext() {
984             return deferredAttrContext;
985         }
986 
987         @Override
toString()988         public String toString() {
989             return "MethodReferenceCheck";
990         }
991 
992     }
993 
994     /**
995      * ResultInfo class to be used during method applicability checks. Check
996      * for deferred types goes through special path.
997      */
998     class MethodResultInfo extends ResultInfo {
999 
MethodResultInfo(Type pt, CheckContext checkContext)1000         public MethodResultInfo(Type pt, CheckContext checkContext) {
1001             attr.super(VAL, pt, checkContext);
1002         }
1003 
1004         @Override
check(DiagnosticPosition pos, Type found)1005         protected Type check(DiagnosticPosition pos, Type found) {
1006             if (found.hasTag(DEFERRED)) {
1007                 DeferredType dt = (DeferredType)found;
1008                 return dt.check(this);
1009             } else {
1010                 Type uResult = U(found);
1011                 Type capturedType = pos == null || pos.getTree() == null ?
1012                         types.capture(uResult) :
1013                         checkContext.inferenceContext()
1014                             .cachedCapture(pos.getTree(), uResult, true);
1015                 return super.check(pos, chk.checkNonVoid(pos, capturedType));
1016             }
1017         }
1018 
1019         /**
1020          * javac has a long-standing 'simplification' (see 6391995):
1021          * given an actual argument type, the method check is performed
1022          * on its upper bound. This leads to inconsistencies when an
1023          * argument type is checked against itself. For example, given
1024          * a type-variable T, it is not true that {@code U(T) <: T},
1025          * so we need to guard against that.
1026          */
U(Type found)1027         private Type U(Type found) {
1028             return found == pt ?
1029                     found : types.cvarUpperBound(found);
1030         }
1031 
1032         @Override
dup(Type newPt)1033         protected MethodResultInfo dup(Type newPt) {
1034             return new MethodResultInfo(newPt, checkContext);
1035         }
1036 
1037         @Override
dup(CheckContext newContext)1038         protected ResultInfo dup(CheckContext newContext) {
1039             return new MethodResultInfo(pt, newContext);
1040         }
1041     }
1042 
1043     /**
1044      * Most specific method applicability routine. Given a list of actual types A,
1045      * a list of formal types F1, and a list of formal types F2, the routine determines
1046      * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
1047      * argument types A.
1048      */
1049     class MostSpecificCheck implements MethodCheck {
1050 
1051         boolean strict;
1052         List<Type> actuals;
1053 
MostSpecificCheck(boolean strict, List<Type> actuals)1054         MostSpecificCheck(boolean strict, List<Type> actuals) {
1055             this.strict = strict;
1056             this.actuals = actuals;
1057         }
1058 
1059         @Override
argumentsAcceptable(final Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> formals1, List<Type> formals2, Warner warn)1060         public void argumentsAcceptable(final Env<AttrContext> env,
1061                                     DeferredAttrContext deferredAttrContext,
1062                                     List<Type> formals1,
1063                                     List<Type> formals2,
1064                                     Warner warn) {
1065             formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
1066             while (formals2.nonEmpty()) {
1067                 ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
1068                 mresult.check(null, formals1.head);
1069                 formals1 = formals1.tail;
1070                 formals2 = formals2.tail;
1071                 actuals = actuals.isEmpty() ? actuals : actuals.tail;
1072             }
1073         }
1074 
1075        /**
1076         * Create a method check context to be used during the most specific applicability check
1077         */
methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual)1078         ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
1079                Warner rsWarner, Type actual) {
1080            return attr.new ResultInfo(Kinds.VAL, to,
1081                    new MostSpecificCheckContext(strict, deferredAttrContext, rsWarner, actual));
1082         }
1083 
1084         /**
1085          * Subclass of method check context class that implements most specific
1086          * method conversion. If the actual type under analysis is a deferred type
1087          * a full blown structural analysis is carried out.
1088          */
1089         class MostSpecificCheckContext extends MethodCheckContext {
1090 
1091             Type actual;
1092 
MostSpecificCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual)1093             public MostSpecificCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
1094                 super(strict, deferredAttrContext, rsWarner);
1095                 this.actual = actual;
1096             }
1097 
compatible(Type found, Type req, Warner warn)1098             public boolean compatible(Type found, Type req, Warner warn) {
1099                 if (allowFunctionalInterfaceMostSpecific &&
1100                         unrelatedFunctionalInterfaces(found, req) &&
1101                         (actual != null && actual.getTag() == DEFERRED)) {
1102                     DeferredType dt = (DeferredType) actual;
1103                     DeferredType.SpeculativeCache.Entry e =
1104                             dt.speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
1105                     if (e != null && e.speculativeTree != deferredAttr.stuckTree) {
1106                         return functionalInterfaceMostSpecific(found, req, e.speculativeTree, warn);
1107                     }
1108                 }
1109                 return super.compatible(found, req, warn);
1110             }
1111 
1112             /** Whether {@code t} and {@code s} are unrelated functional interface types. */
unrelatedFunctionalInterfaces(Type t, Type s)1113             private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
1114                 return types.isFunctionalInterface(t.tsym) &&
1115                        types.isFunctionalInterface(s.tsym) &&
1116                        types.asSuper(t, s.tsym) == null &&
1117                        types.asSuper(s, t.tsym) == null;
1118             }
1119 
1120             /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
functionalInterfaceMostSpecific(Type t, Type s, JCTree tree, Warner warn)1121             private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree, Warner warn) {
1122                 FunctionalInterfaceMostSpecificChecker msc = new FunctionalInterfaceMostSpecificChecker(t, s, warn);
1123                 msc.scan(tree);
1124                 return msc.result;
1125             }
1126 
1127             /**
1128              * Tests whether one functional interface type can be considered more specific
1129              * than another unrelated functional interface type for the scanned expression.
1130              */
1131             class FunctionalInterfaceMostSpecificChecker extends DeferredAttr.PolyScanner {
1132 
1133                 final Type t;
1134                 final Type s;
1135                 final Warner warn;
1136                 boolean result;
1137 
1138                 /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
FunctionalInterfaceMostSpecificChecker(Type t, Type s, Warner warn)1139                 FunctionalInterfaceMostSpecificChecker(Type t, Type s, Warner warn) {
1140                     this.t = t;
1141                     this.s = s;
1142                     this.warn = warn;
1143                     result = true;
1144                 }
1145 
1146                 @Override
skip(JCTree tree)1147                 void skip(JCTree tree) {
1148                     result &= false;
1149                 }
1150 
1151                 @Override
visitConditional(JCConditional tree)1152                 public void visitConditional(JCConditional tree) {
1153                     scan(tree.truepart);
1154                     scan(tree.falsepart);
1155                 }
1156 
1157                 @Override
visitReference(JCMemberReference tree)1158                 public void visitReference(JCMemberReference tree) {
1159                     Type desc_t = types.findDescriptorType(t);
1160                     Type desc_s = types.findDescriptorType(s);
1161                     // use inference variables here for more-specific inference (18.5.4)
1162                     if (!types.isSameTypes(desc_t.getParameterTypes(),
1163                             inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
1164                         result &= false;
1165                     } else {
1166                         // compare return types
1167                         Type ret_t = desc_t.getReturnType();
1168                         Type ret_s = desc_s.getReturnType();
1169                         if (ret_s.hasTag(VOID)) {
1170                             result &= true;
1171                         } else if (ret_t.hasTag(VOID)) {
1172                             result &= false;
1173                         } else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
1174                             boolean retValIsPrimitive =
1175                                     tree.refPolyKind == PolyKind.STANDALONE &&
1176                                     tree.sym.type.getReturnType().isPrimitive();
1177                             result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
1178                                       (retValIsPrimitive != ret_s.isPrimitive());
1179                         } else {
1180                             result &= MostSpecificCheckContext.super.compatible(ret_t, ret_s, warn);
1181                         }
1182                     }
1183                 }
1184 
1185                 @Override
visitLambda(JCLambda tree)1186                 public void visitLambda(JCLambda tree) {
1187                     Type desc_t = types.findDescriptorType(t);
1188                     Type desc_s = types.findDescriptorType(s);
1189                     // use inference variables here for more-specific inference (18.5.4)
1190                     if (!types.isSameTypes(desc_t.getParameterTypes(),
1191                             inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
1192                         result &= false;
1193                     } else {
1194                         // compare return types
1195                         Type ret_t = desc_t.getReturnType();
1196                         Type ret_s = desc_s.getReturnType();
1197                         if (ret_s.hasTag(VOID)) {
1198                             result &= true;
1199                         } else if (ret_t.hasTag(VOID)) {
1200                             result &= false;
1201                         } else if (unrelatedFunctionalInterfaces(ret_t, ret_s)) {
1202                             for (JCExpression expr : lambdaResults(tree)) {
1203                                 result &= functionalInterfaceMostSpecific(ret_t, ret_s, expr, warn);
1204                             }
1205                         } else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
1206                             for (JCExpression expr : lambdaResults(tree)) {
1207                                 boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
1208                                 result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
1209                                           (retValIsPrimitive != ret_s.isPrimitive());
1210                             }
1211                         } else {
1212                             result &= MostSpecificCheckContext.super.compatible(ret_t, ret_s, warn);
1213                         }
1214                     }
1215                 }
1216                 //where
1217 
lambdaResults(JCLambda lambda)1218                 private List<JCExpression> lambdaResults(JCLambda lambda) {
1219                     if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
1220                         return List.of((JCExpression) lambda.body);
1221                     } else {
1222                         final ListBuffer<JCExpression> buffer = new ListBuffer<>();
1223                         DeferredAttr.LambdaReturnScanner lambdaScanner =
1224                                 new DeferredAttr.LambdaReturnScanner() {
1225                                     @Override
1226                                     public void visitReturn(JCReturn tree) {
1227                                         if (tree.expr != null) {
1228                                             buffer.append(tree.expr);
1229                                         }
1230                                     }
1231                                 };
1232                         lambdaScanner.scan(lambda.body);
1233                         return buffer.toList();
1234                     }
1235                 }
1236             }
1237 
1238         }
1239 
mostSpecificCheck(List<Type> actuals, boolean strict)1240         public MethodCheck mostSpecificCheck(List<Type> actuals, boolean strict) {
1241             Assert.error("Cannot get here!");
1242             return null;
1243         }
1244     }
1245 
1246     public static class InapplicableMethodException extends RuntimeException {
1247         private static final long serialVersionUID = 0;
1248 
1249         JCDiagnostic diagnostic;
1250         JCDiagnostic.Factory diags;
1251 
InapplicableMethodException(JCDiagnostic.Factory diags)1252         InapplicableMethodException(JCDiagnostic.Factory diags) {
1253             this.diagnostic = null;
1254             this.diags = diags;
1255         }
setMessage()1256         InapplicableMethodException setMessage() {
1257             return setMessage((JCDiagnostic)null);
1258         }
setMessage(String key)1259         InapplicableMethodException setMessage(String key) {
1260             return setMessage(key != null ? diags.fragment(key) : null);
1261         }
setMessage(String key, Object... args)1262         InapplicableMethodException setMessage(String key, Object... args) {
1263             return setMessage(key != null ? diags.fragment(key, args) : null);
1264         }
setMessage(JCDiagnostic diag)1265         InapplicableMethodException setMessage(JCDiagnostic diag) {
1266             this.diagnostic = diag;
1267             return this;
1268         }
1269 
getDiagnostic()1270         public JCDiagnostic getDiagnostic() {
1271             return diagnostic;
1272         }
1273     }
1274     private final InapplicableMethodException inapplicableMethodException;
1275 
1276 /* ***************************************************************************
1277  *  Symbol lookup
1278  *  the following naming conventions for arguments are used
1279  *
1280  *       env      is the environment where the symbol was mentioned
1281  *       site     is the type of which the symbol is a member
1282  *       name     is the symbol's name
1283  *                if no arguments are given
1284  *       argtypes are the value arguments, if we search for a method
1285  *
1286  *  If no symbol was found, a ResolveError detailing the problem is returned.
1287  ****************************************************************************/
1288 
1289     /** Find field. Synthetic fields are always skipped.
1290      *  @param env     The current environment.
1291      *  @param site    The original type from where the selection takes place.
1292      *  @param name    The name of the field.
1293      *  @param c       The class to search for the field. This is always
1294      *                 a superclass or implemented interface of site's class.
1295      */
findField(Env<AttrContext> env, Type site, Name name, TypeSymbol c)1296     Symbol findField(Env<AttrContext> env,
1297                      Type site,
1298                      Name name,
1299                      TypeSymbol c) {
1300         while (c.type.hasTag(TYPEVAR))
1301             c = c.type.getUpperBound().tsym;
1302         Symbol bestSoFar = varNotFound;
1303         Symbol sym;
1304         Scope.Entry e = c.members().lookup(name);
1305         while (e.scope != null) {
1306             if (e.sym.kind == VAR && (e.sym.flags_field & SYNTHETIC) == 0) {
1307                 return isAccessible(env, site, e.sym)
1308                     ? e.sym : new AccessError(env, site, e.sym);
1309             }
1310             e = e.next();
1311         }
1312         Type st = types.supertype(c.type);
1313         if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
1314             sym = findField(env, site, name, st.tsym);
1315             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
1316         }
1317         for (List<Type> l = types.interfaces(c.type);
1318              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1319              l = l.tail) {
1320             sym = findField(env, site, name, l.head.tsym);
1321             if (bestSoFar.exists() && sym.exists() &&
1322                 sym.owner != bestSoFar.owner)
1323                 bestSoFar = new AmbiguityError(bestSoFar, sym);
1324             else if (sym.kind < bestSoFar.kind)
1325                 bestSoFar = sym;
1326         }
1327         return bestSoFar;
1328     }
1329 
1330     /** Resolve a field identifier, throw a fatal error if not found.
1331      *  @param pos       The position to use for error reporting.
1332      *  @param env       The environment current at the method invocation.
1333      *  @param site      The type of the qualifying expression, in which
1334      *                   identifier is searched.
1335      *  @param name      The identifier's name.
1336      */
resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env, Type site, Name name)1337     public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
1338                                           Type site, Name name) {
1339         Symbol sym = findField(env, site, name, site.tsym);
1340         if (sym.kind == VAR) return (VarSymbol)sym;
1341         else throw new FatalError(
1342                  diags.fragment("fatal.err.cant.locate.field",
1343                                 name));
1344     }
1345 
1346     /** Find unqualified variable or field with given name.
1347      *  Synthetic fields always skipped.
1348      *  @param env     The current environment.
1349      *  @param name    The name of the variable or field.
1350      */
findVar(Env<AttrContext> env, Name name)1351     Symbol findVar(Env<AttrContext> env, Name name) {
1352         Symbol bestSoFar = varNotFound;
1353         Symbol sym;
1354         Env<AttrContext> env1 = env;
1355         boolean staticOnly = false;
1356         while (env1.outer != null) {
1357             if (isStatic(env1)) staticOnly = true;
1358             Scope.Entry e = env1.info.scope.lookup(name);
1359             while (e.scope != null &&
1360                    (e.sym.kind != VAR ||
1361                     (e.sym.flags_field & SYNTHETIC) != 0))
1362                 e = e.next();
1363             sym = (e.scope != null)
1364                 ? e.sym
1365                 : findField(
1366                     env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
1367             if (sym.exists()) {
1368                 if (staticOnly &&
1369                     sym.kind == VAR &&
1370                     sym.owner.kind == TYP &&
1371                     (sym.flags() & STATIC) == 0)
1372                     return new StaticError(sym);
1373                 else
1374                     return sym;
1375             } else if (sym.kind < bestSoFar.kind) {
1376                 bestSoFar = sym;
1377             }
1378 
1379             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1380             env1 = env1.outer;
1381         }
1382 
1383         sym = findField(env, syms.predefClass.type, name, syms.predefClass);
1384         if (sym.exists())
1385             return sym;
1386         if (bestSoFar.exists())
1387             return bestSoFar;
1388 
1389         Symbol origin = null;
1390         for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
1391             Scope.Entry e = sc.lookup(name);
1392             for (; e.scope != null; e = e.next()) {
1393                 sym = e.sym;
1394                 if (sym.kind != VAR)
1395                     continue;
1396                 // invariant: sym.kind == VAR
1397                 if (bestSoFar.kind < AMBIGUOUS && sym.owner != bestSoFar.owner)
1398                     return new AmbiguityError(bestSoFar, sym);
1399                 else if (bestSoFar.kind >= VAR) {
1400                     origin = e.getOrigin().owner;
1401                     bestSoFar = isAccessible(env, origin.type, sym)
1402                         ? sym : new AccessError(env, origin.type, sym);
1403                 }
1404             }
1405             if (bestSoFar.exists()) break;
1406         }
1407         if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
1408             return bestSoFar.clone(origin);
1409         else
1410             return bestSoFar;
1411     }
1412 
1413     Warner noteWarner = new Warner();
1414 
1415     /** Select the best method for a call site among two choices.
1416      *  @param env              The current environment.
1417      *  @param site             The original type from where the
1418      *                          selection takes place.
1419      *  @param argtypes         The invocation's value arguments,
1420      *  @param typeargtypes     The invocation's type arguments,
1421      *  @param sym              Proposed new best match.
1422      *  @param bestSoFar        Previously found best match.
1423      *  @param allowBoxing Allow boxing conversions of arguments.
1424      *  @param useVarargs Box trailing arguments into an array for varargs.
1425      */
1426     @SuppressWarnings("fallthrough")
selectBest(Env<AttrContext> env, Type site, List<Type> argtypes, List<Type> typeargtypes, Symbol sym, Symbol bestSoFar, boolean allowBoxing, boolean useVarargs, boolean operator)1427     Symbol selectBest(Env<AttrContext> env,
1428                       Type site,
1429                       List<Type> argtypes,
1430                       List<Type> typeargtypes,
1431                       Symbol sym,
1432                       Symbol bestSoFar,
1433                       boolean allowBoxing,
1434                       boolean useVarargs,
1435                       boolean operator) {
1436         if (sym.kind == ERR ||
1437                 !sym.isInheritedIn(site.tsym, types)) {
1438             return bestSoFar;
1439         } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
1440             return bestSoFar.kind >= ERRONEOUS ?
1441                     new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
1442                     bestSoFar;
1443         }
1444         Assert.check(sym.kind < AMBIGUOUS);
1445         try {
1446             Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
1447                                allowBoxing, useVarargs, types.noWarnings);
1448             if (!operator || verboseResolutionMode.contains(VerboseResolutionMode.PREDEF))
1449                 currentResolutionContext.addApplicableCandidate(sym, mt);
1450         } catch (InapplicableMethodException ex) {
1451             if (!operator)
1452                 currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
1453             switch (bestSoFar.kind) {
1454                 case ABSENT_MTH:
1455                     return new InapplicableSymbolError(currentResolutionContext);
1456                 case WRONG_MTH:
1457                     if (operator) return bestSoFar;
1458                     bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1459                 default:
1460                     return bestSoFar;
1461             }
1462         }
1463         if (!isAccessible(env, site, sym)) {
1464             return (bestSoFar.kind == ABSENT_MTH)
1465                 ? new AccessError(env, site, sym)
1466                 : bestSoFar;
1467         }
1468         return (bestSoFar.kind > AMBIGUOUS)
1469             ? sym
1470             : mostSpecific(argtypes, sym, bestSoFar, env, site,
1471                            allowBoxing && operator, useVarargs);
1472     }
1473 
1474     /* Return the most specific of the two methods for a call,
1475      *  given that both are accessible and applicable.
1476      *  @param m1               A new candidate for most specific.
1477      *  @param m2               The previous most specific candidate.
1478      *  @param env              The current environment.
1479      *  @param site             The original type from where the selection
1480      *                          takes place.
1481      *  @param allowBoxing Allow boxing conversions of arguments.
1482      *  @param useVarargs Box trailing arguments into an array for varargs.
1483      */
mostSpecific(List<Type> argtypes, Symbol m1, Symbol m2, Env<AttrContext> env, final Type site, boolean allowBoxing, boolean useVarargs)1484     Symbol mostSpecific(List<Type> argtypes, Symbol m1,
1485                         Symbol m2,
1486                         Env<AttrContext> env,
1487                         final Type site,
1488                         boolean allowBoxing,
1489                         boolean useVarargs) {
1490         switch (m2.kind) {
1491         case MTH:
1492             if (m1 == m2) return m1;
1493             boolean m1SignatureMoreSpecific =
1494                     signatureMoreSpecific(argtypes, env, site, m1, m2, allowBoxing, useVarargs);
1495             boolean m2SignatureMoreSpecific =
1496                     signatureMoreSpecific(argtypes, env, site, m2, m1, allowBoxing, useVarargs);
1497             if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
1498                 Type mt1 = types.memberType(site, m1);
1499                 Type mt2 = types.memberType(site, m2);
1500                 if (!types.overrideEquivalent(mt1, mt2))
1501                     return ambiguityError(m1, m2);
1502 
1503                 // same signature; select (a) the non-bridge method, or
1504                 // (b) the one that overrides the other, or (c) the concrete
1505                 // one, or (d) merge both abstract signatures
1506                 if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
1507                     return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
1508 
1509                 // if one overrides or hides the other, use it
1510                 TypeSymbol m1Owner = (TypeSymbol)m1.owner;
1511                 TypeSymbol m2Owner = (TypeSymbol)m2.owner;
1512                 if (types.asSuper(m1Owner.type, m2Owner) != null &&
1513                     ((m1.owner.flags_field & INTERFACE) == 0 ||
1514                      (m2.owner.flags_field & INTERFACE) != 0) &&
1515                     m1.overrides(m2, m1Owner, types, false))
1516                     return m1;
1517                 if (types.asSuper(m2Owner.type, m1Owner) != null &&
1518                     ((m2.owner.flags_field & INTERFACE) == 0 ||
1519                      (m1.owner.flags_field & INTERFACE) != 0) &&
1520                     m2.overrides(m1, m2Owner, types, false))
1521                     return m2;
1522                 boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
1523                 boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
1524                 if (m1Abstract && !m2Abstract) return m2;
1525                 if (m2Abstract && !m1Abstract) return m1;
1526                 // both abstract or both concrete
1527                 return ambiguityError(m1, m2);
1528             }
1529             if (m1SignatureMoreSpecific) return m1;
1530             if (m2SignatureMoreSpecific) return m2;
1531             return ambiguityError(m1, m2);
1532         case AMBIGUOUS:
1533             //compare m1 to ambiguous methods in m2
1534             AmbiguityError e = (AmbiguityError)m2.baseSymbol();
1535             boolean m1MoreSpecificThanAnyAmbiguous = true;
1536             boolean allAmbiguousMoreSpecificThanM1 = true;
1537             for (Symbol s : e.ambiguousSyms) {
1538                 Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, allowBoxing, useVarargs);
1539                 m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
1540                 allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
1541             }
1542             if (m1MoreSpecificThanAnyAmbiguous)
1543                 return m1;
1544             //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
1545             //more specific than m1, add it as a new ambiguous method:
1546             if (!allAmbiguousMoreSpecificThanM1)
1547                 e.addAmbiguousSymbol(m1);
1548             return e;
1549         default:
1550             throw new AssertionError();
1551         }
1552     }
1553     //where
signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs)1554     private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean allowBoxing, boolean useVarargs) {
1555         noteWarner.clear();
1556         int maxLength = Math.max(
1557                             Math.max(m1.type.getParameterTypes().length(), actuals.length()),
1558                             m2.type.getParameterTypes().length());
1559         MethodResolutionContext prevResolutionContext = currentResolutionContext;
1560         try {
1561             currentResolutionContext = new MethodResolutionContext();
1562             currentResolutionContext.step = prevResolutionContext.step;
1563             currentResolutionContext.methodCheck =
1564                     prevResolutionContext.methodCheck.mostSpecificCheck(actuals, !allowBoxing);
1565             Type mst = instantiate(env, site, m2, null,
1566                     adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
1567                     allowBoxing, useVarargs, noteWarner);
1568             return mst != null &&
1569                     !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
1570         } finally {
1571             currentResolutionContext = prevResolutionContext;
1572         }
1573     }
1574 
adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs)1575     List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
1576         if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
1577             Type varargsElem = types.elemtype(args.last());
1578             if (varargsElem == null) {
1579                 Assert.error("Bad varargs = " + args.last() + " " + msym);
1580             }
1581             List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
1582             while (newArgs.length() < length) {
1583                 newArgs = newArgs.append(newArgs.last());
1584             }
1585             return newArgs;
1586         } else {
1587             return args;
1588         }
1589     }
1590     //where
mostSpecificReturnType(Type mt1, Type mt2)1591     Type mostSpecificReturnType(Type mt1, Type mt2) {
1592         Type rt1 = mt1.getReturnType();
1593         Type rt2 = mt2.getReturnType();
1594 
1595         if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
1596             //if both are generic methods, adjust return type ahead of subtyping check
1597             rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
1598         }
1599         //first use subtyping, then return type substitutability
1600         if (types.isSubtype(rt1, rt2)) {
1601             return mt1;
1602         } else if (types.isSubtype(rt2, rt1)) {
1603             return mt2;
1604         } else if (types.returnTypeSubstitutable(mt1, mt2)) {
1605             return mt1;
1606         } else if (types.returnTypeSubstitutable(mt2, mt1)) {
1607             return mt2;
1608         } else {
1609             return null;
1610         }
1611     }
1612     //where
ambiguityError(Symbol m1, Symbol m2)1613     Symbol ambiguityError(Symbol m1, Symbol m2) {
1614         if (((m1.flags() | m2.flags()) & CLASH) != 0) {
1615             return (m1.flags() & CLASH) == 0 ? m1 : m2;
1616         } else {
1617             return new AmbiguityError(m1, m2);
1618         }
1619     }
1620 
findMethodInScope(Env<AttrContext> env, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes, Scope sc, Symbol bestSoFar, boolean allowBoxing, boolean useVarargs, boolean operator, boolean abstractok)1621     Symbol findMethodInScope(Env<AttrContext> env,
1622             Type site,
1623             Name name,
1624             List<Type> argtypes,
1625             List<Type> typeargtypes,
1626             Scope sc,
1627             Symbol bestSoFar,
1628             boolean allowBoxing,
1629             boolean useVarargs,
1630             boolean operator,
1631             boolean abstractok) {
1632         for (Symbol s : sc.getElementsByName(name, new LookupFilter(abstractok))) {
1633             bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
1634                     bestSoFar, allowBoxing, useVarargs, operator);
1635         }
1636         return bestSoFar;
1637     }
1638     //where
1639         class LookupFilter implements Filter<Symbol> {
1640 
1641             boolean abstractOk;
1642 
LookupFilter(boolean abstractOk)1643             LookupFilter(boolean abstractOk) {
1644                 this.abstractOk = abstractOk;
1645             }
1646 
accepts(Symbol s)1647             public boolean accepts(Symbol s) {
1648                 long flags = s.flags();
1649                 return s.kind == MTH &&
1650                         (flags & SYNTHETIC) == 0 &&
1651                         (abstractOk ||
1652                         (flags & DEFAULT) != 0 ||
1653                         (flags & ABSTRACT) == 0);
1654             }
1655         };
1656 
1657     /** Find best qualified method matching given name, type and value
1658      *  arguments.
1659      *  @param env       The current environment.
1660      *  @param site      The original type from where the selection
1661      *                   takes place.
1662      *  @param name      The method's name.
1663      *  @param argtypes  The method's value arguments.
1664      *  @param typeargtypes The method's type arguments
1665      *  @param allowBoxing Allow boxing conversions of arguments.
1666      *  @param useVarargs Box trailing arguments into an array for varargs.
1667      */
findMethod(Env<AttrContext> env, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes, boolean allowBoxing, boolean useVarargs, boolean operator)1668     Symbol findMethod(Env<AttrContext> env,
1669                       Type site,
1670                       Name name,
1671                       List<Type> argtypes,
1672                       List<Type> typeargtypes,
1673                       boolean allowBoxing,
1674                       boolean useVarargs,
1675                       boolean operator) {
1676         Symbol bestSoFar = methodNotFound;
1677         bestSoFar = findMethod(env,
1678                           site,
1679                           name,
1680                           argtypes,
1681                           typeargtypes,
1682                           site.tsym.type,
1683                           bestSoFar,
1684                           allowBoxing,
1685                           useVarargs,
1686                           operator);
1687         return bestSoFar;
1688     }
1689     // where
findMethod(Env<AttrContext> env, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes, Type intype, Symbol bestSoFar, boolean allowBoxing, boolean useVarargs, boolean operator)1690     private Symbol findMethod(Env<AttrContext> env,
1691                               Type site,
1692                               Name name,
1693                               List<Type> argtypes,
1694                               List<Type> typeargtypes,
1695                               Type intype,
1696                               Symbol bestSoFar,
1697                               boolean allowBoxing,
1698                               boolean useVarargs,
1699                               boolean operator) {
1700         @SuppressWarnings({"unchecked","rawtypes"})
1701         List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
1702         InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
1703         for (TypeSymbol s : superclasses(intype)) {
1704             bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1705                     s.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
1706             if (name == names.init) return bestSoFar;
1707             iphase = (iphase == null) ? null : iphase.update(s, this);
1708             if (iphase != null) {
1709                 for (Type itype : types.interfaces(s.type)) {
1710                     itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
1711                 }
1712             }
1713         }
1714 
1715         Symbol concrete = bestSoFar.kind < ERR &&
1716                 (bestSoFar.flags() & ABSTRACT) == 0 ?
1717                 bestSoFar : methodNotFound;
1718 
1719         for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
1720             //keep searching for abstract methods
1721             for (Type itype : itypes[iphase2.ordinal()]) {
1722                 if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
1723                 if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
1724                         (itype.tsym.flags() & DEFAULT) == 0) continue;
1725                 bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1726                         itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, operator, true);
1727                 if (concrete != bestSoFar &&
1728                         concrete.kind < ERR  && bestSoFar.kind < ERR &&
1729                         types.isSubSignature(concrete.type, bestSoFar.type)) {
1730                     //this is an hack - as javac does not do full membership checks
1731                     //most specific ends up comparing abstract methods that might have
1732                     //been implemented by some concrete method in a subclass and,
1733                     //because of raw override, it is possible for an abstract method
1734                     //to be more specific than the concrete method - so we need
1735                     //to explicitly call that out (see CR 6178365)
1736                     bestSoFar = concrete;
1737                 }
1738             }
1739         }
1740         return bestSoFar;
1741     }
1742 
1743     enum InterfaceLookupPhase {
1744         ABSTRACT_OK() {
1745             @Override
1746             InterfaceLookupPhase update(Symbol s, Resolve rs) {
1747                 //We should not look for abstract methods if receiver is a concrete class
1748                 //(as concrete classes are expected to implement all abstracts coming
1749                 //from superinterfaces)
1750                 if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
1751                     return this;
1752                 } else {
1753                     return DEFAULT_OK;
1754                 }
1755             }
1756         },
1757         DEFAULT_OK() {
1758             @Override
1759             InterfaceLookupPhase update(Symbol s, Resolve rs) {
1760                 return this;
1761             }
1762         };
1763 
1764         abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
1765     }
1766 
1767     /**
1768      * Return an Iterable object to scan the superclasses of a given type.
1769      * It's crucial that the scan is done lazily, as we don't want to accidentally
1770      * access more supertypes than strictly needed (as this could trigger completion
1771      * errors if some of the not-needed supertypes are missing/ill-formed).
1772      */
1773     Iterable<TypeSymbol> superclasses(final Type intype) {
1774         return new Iterable<TypeSymbol>() {
1775             public Iterator<TypeSymbol> iterator() {
1776                 return new Iterator<TypeSymbol>() {
1777 
1778                     List<TypeSymbol> seen = List.nil();
1779                     TypeSymbol currentSym = symbolFor(intype);
1780                     TypeSymbol prevSym = null;
1781 
1782                     public boolean hasNext() {
1783                         if (currentSym == syms.noSymbol) {
1784                             currentSym = symbolFor(types.supertype(prevSym.type));
1785                         }
1786                         return currentSym != null;
1787                     }
1788 
1789                     public TypeSymbol next() {
1790                         prevSym = currentSym;
1791                         currentSym = syms.noSymbol;
1792                         Assert.check(prevSym != null || prevSym != syms.noSymbol);
1793                         return prevSym;
1794                     }
1795 
1796                     public void remove() {
1797                         throw new UnsupportedOperationException();
1798                     }
1799 
1800                     TypeSymbol symbolFor(Type t) {
1801                         if (!t.hasTag(CLASS) &&
1802                                 !t.hasTag(TYPEVAR)) {
1803                             return null;
1804                         }
1805                         while (t.hasTag(TYPEVAR))
1806                             t = t.getUpperBound();
1807                         if (seen.contains(t.tsym)) {
1808                             //degenerate case in which we have a circular
1809                             //class hierarchy - because of ill-formed classfiles
1810                             return null;
1811                         }
1812                         seen = seen.prepend(t.tsym);
1813                         return t.tsym;
1814                     }
1815                 };
1816             }
1817         };
1818     }
1819 
1820     /** Find unqualified method matching given name, type and value arguments.
1821      *  @param env       The current environment.
1822      *  @param name      The method's name.
1823      *  @param argtypes  The method's value arguments.
1824      *  @param typeargtypes  The method's type arguments.
1825      *  @param allowBoxing Allow boxing conversions of arguments.
1826      *  @param useVarargs Box trailing arguments into an array for varargs.
1827      */
1828     Symbol findFun(Env<AttrContext> env, Name name,
1829                    List<Type> argtypes, List<Type> typeargtypes,
1830                    boolean allowBoxing, boolean useVarargs) {
1831         Symbol bestSoFar = methodNotFound;
1832         Symbol sym;
1833         Env<AttrContext> env1 = env;
1834         boolean staticOnly = false;
1835         while (env1.outer != null) {
1836             if (isStatic(env1)) staticOnly = true;
1837             Assert.check(env1.info.preferredTreeForDiagnostics == null);
1838             env1.info.preferredTreeForDiagnostics = env.tree;
1839             try {
1840                 sym = findMethod(
1841                     env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
1842                     allowBoxing, useVarargs, false);
1843                 if (sym.exists()) {
1844                     if (staticOnly &&
1845                         sym.kind == MTH &&
1846                         sym.owner.kind == TYP &&
1847                         (sym.flags() & STATIC) == 0) return new StaticError(sym);
1848                     else return sym;
1849                 } else if (sym.kind < bestSoFar.kind) {
1850                     bestSoFar = sym;
1851                 }
1852             } finally {
1853                 env1.info.preferredTreeForDiagnostics = null;
1854             }
1855             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1856             env1 = env1.outer;
1857         }
1858 
1859         sym = findMethod(env, syms.predefClass.type, name, argtypes,
1860                          typeargtypes, allowBoxing, useVarargs, false);
1861         if (sym.exists())
1862             return sym;
1863 
1864         Scope.Entry e = env.toplevel.namedImportScope.lookup(name);
1865         for (; e.scope != null; e = e.next()) {
1866             sym = e.sym;
1867             Type origin = e.getOrigin().owner.type;
1868             if (sym.kind == MTH) {
1869                 if (e.sym.owner.type != origin)
1870                     sym = sym.clone(e.getOrigin().owner);
1871                 if (!isAccessible(env, origin, sym))
1872                     sym = new AccessError(env, origin, sym);
1873                 bestSoFar = selectBest(env, origin,
1874                                        argtypes, typeargtypes,
1875                                        sym, bestSoFar,
1876                                        allowBoxing, useVarargs, false);
1877             }
1878         }
1879         if (bestSoFar.exists())
1880             return bestSoFar;
1881 
1882         e = env.toplevel.starImportScope.lookup(name);
1883         for (; e.scope != null; e = e.next()) {
1884             sym = e.sym;
1885             Type origin = e.getOrigin().owner.type;
1886             if (sym.kind == MTH) {
1887                 if (e.sym.owner.type != origin)
1888                     sym = sym.clone(e.getOrigin().owner);
1889                 if (!isAccessible(env, origin, sym))
1890                     sym = new AccessError(env, origin, sym);
1891                 bestSoFar = selectBest(env, origin,
1892                                        argtypes, typeargtypes,
1893                                        sym, bestSoFar,
1894                                        allowBoxing, useVarargs, false);
1895             }
1896         }
1897         return bestSoFar;
1898     }
1899 
1900     /** Load toplevel or member class with given fully qualified name and
1901      *  verify that it is accessible.
1902      *  @param env       The current environment.
1903      *  @param name      The fully qualified name of the class to be loaded.
1904      */
1905     Symbol loadClass(Env<AttrContext> env, Name name) {
1906         try {
1907             ClassSymbol c = reader.loadClass(name);
1908             return isAccessible(env, c) ? c : new AccessError(c);
1909         } catch (ClassReader.BadClassFile err) {
1910             throw err;
1911         } catch (CompletionFailure ex) {
1912             return typeNotFound;
1913         }
1914     }
1915 
1916 
1917     /**
1918      * Find a type declared in a scope (not inherited).  Return null
1919      * if none is found.
1920      *  @param env       The current environment.
1921      *  @param site      The original type from where the selection takes
1922      *                   place.
1923      *  @param name      The type's name.
1924      *  @param c         The class to search for the member type. This is
1925      *                   always a superclass or implemented interface of
1926      *                   site's class.
1927      */
1928     Symbol findImmediateMemberType(Env<AttrContext> env,
1929                                    Type site,
1930                                    Name name,
1931                                    TypeSymbol c) {
1932         Scope.Entry e = c.members().lookup(name);
1933         while (e.scope != null) {
1934             if (e.sym.kind == TYP) {
1935                 return isAccessible(env, site, e.sym)
1936                     ? e.sym
1937                     : new AccessError(env, site, e.sym);
1938             }
1939             e = e.next();
1940         }
1941         return typeNotFound;
1942     }
1943 
1944     /** Find a member type inherited from a superclass or interface.
1945      *  @param env       The current environment.
1946      *  @param site      The original type from where the selection takes
1947      *                   place.
1948      *  @param name      The type's name.
1949      *  @param c         The class to search for the member type. This is
1950      *                   always a superclass or implemented interface of
1951      *                   site's class.
1952      */
1953     Symbol findInheritedMemberType(Env<AttrContext> env,
1954                                    Type site,
1955                                    Name name,
1956                                    TypeSymbol c) {
1957         Symbol bestSoFar = typeNotFound;
1958         Symbol sym;
1959         Type st = types.supertype(c.type);
1960         if (st != null && st.hasTag(CLASS)) {
1961             sym = findMemberType(env, site, name, st.tsym);
1962             if (sym.kind < bestSoFar.kind) bestSoFar = sym;
1963         }
1964         for (List<Type> l = types.interfaces(c.type);
1965              bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1966              l = l.tail) {
1967             sym = findMemberType(env, site, name, l.head.tsym);
1968             if (bestSoFar.kind < AMBIGUOUS && sym.kind < AMBIGUOUS &&
1969                 sym.owner != bestSoFar.owner)
1970                 bestSoFar = new AmbiguityError(bestSoFar, sym);
1971             else if (sym.kind < bestSoFar.kind)
1972                 bestSoFar = sym;
1973         }
1974         return bestSoFar;
1975     }
1976 
1977     /** Find qualified member type.
1978      *  @param env       The current environment.
1979      *  @param site      The original type from where the selection takes
1980      *                   place.
1981      *  @param name      The type's name.
1982      *  @param c         The class to search for the member type. This is
1983      *                   always a superclass or implemented interface of
1984      *                   site's class.
1985      */
1986     Symbol findMemberType(Env<AttrContext> env,
1987                           Type site,
1988                           Name name,
1989                           TypeSymbol c) {
1990         Symbol sym = findImmediateMemberType(env, site, name, c);
1991 
1992         if (sym != typeNotFound)
1993             return sym;
1994 
1995         return findInheritedMemberType(env, site, name, c);
1996 
1997     }
1998 
1999     /** Find a global type in given scope and load corresponding class.
2000      *  @param env       The current environment.
2001      *  @param scope     The scope in which to look for the type.
2002      *  @param name      The type's name.
2003      */
2004     Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
2005         Symbol bestSoFar = typeNotFound;
2006         for (Scope.Entry e = scope.lookup(name); e.scope != null; e = e.next()) {
2007             Symbol sym = loadClass(env, e.sym.flatName());
2008             if (bestSoFar.kind == TYP && sym.kind == TYP &&
2009                 bestSoFar != sym)
2010                 return new AmbiguityError(bestSoFar, sym);
2011             else if (sym.kind < bestSoFar.kind)
2012                 bestSoFar = sym;
2013         }
2014         return bestSoFar;
2015     }
2016 
2017     Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
2018         for (Scope.Entry e = env.info.scope.lookup(name);
2019              e.scope != null;
2020              e = e.next()) {
2021             if (e.sym.kind == TYP) {
2022                 if (staticOnly &&
2023                     e.sym.type.hasTag(TYPEVAR) &&
2024                     e.sym.owner.kind == TYP)
2025                     return new StaticError(e.sym);
2026                 return e.sym;
2027             }
2028         }
2029         return typeNotFound;
2030     }
2031 
2032     /** Find an unqualified type symbol.
2033      *  @param env       The current environment.
2034      *  @param name      The type's name.
2035      */
2036     Symbol findType(Env<AttrContext> env, Name name) {
2037         Symbol bestSoFar = typeNotFound;
2038         Symbol sym;
2039         boolean staticOnly = false;
2040         for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
2041             if (isStatic(env1)) staticOnly = true;
2042             // First, look for a type variable and the first member type
2043             final Symbol tyvar = findTypeVar(env1, name, staticOnly);
2044             sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
2045                                           name, env1.enclClass.sym);
2046 
2047             // Return the type variable if we have it, and have no
2048             // immediate member, OR the type variable is for a method.
2049             if (tyvar != typeNotFound) {
2050                 if (sym == typeNotFound ||
2051                     (tyvar.kind == TYP && tyvar.exists() &&
2052                      tyvar.owner.kind == MTH))
2053                     return tyvar;
2054             }
2055 
2056             // If the environment is a class def, finish up,
2057             // otherwise, do the entire findMemberType
2058             if (sym == typeNotFound)
2059                 sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
2060                                               name, env1.enclClass.sym);
2061 
2062             if (staticOnly && sym.kind == TYP &&
2063                 sym.type.hasTag(CLASS) &&
2064                 sym.type.getEnclosingType().hasTag(CLASS) &&
2065                 env1.enclClass.sym.type.isParameterized() &&
2066                 sym.type.getEnclosingType().isParameterized())
2067                 return new StaticError(sym);
2068             else if (sym.exists()) return sym;
2069             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
2070 
2071             JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
2072             if ((encl.sym.flags() & STATIC) != 0)
2073                 staticOnly = true;
2074         }
2075 
2076         if (!env.tree.hasTag(IMPORT)) {
2077             sym = findGlobalType(env, env.toplevel.namedImportScope, name);
2078             if (sym.exists()) return sym;
2079             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
2080 
2081             sym = findGlobalType(env, env.toplevel.packge.members(), name);
2082             if (sym.exists()) return sym;
2083             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
2084 
2085             sym = findGlobalType(env, env.toplevel.starImportScope, name);
2086             if (sym.exists()) return sym;
2087             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
2088         }
2089 
2090         return bestSoFar;
2091     }
2092 
2093     /** Find an unqualified identifier which matches a specified kind set.
2094      *  @param env       The current environment.
2095      *  @param name      The identifier's name.
2096      *  @param kind      Indicates the possible symbol kinds
2097      *                   (a subset of VAL, TYP, PCK).
2098      */
2099     Symbol findIdent(Env<AttrContext> env, Name name, int kind) {
2100         Symbol bestSoFar = typeNotFound;
2101         Symbol sym;
2102 
2103         if ((kind & VAR) != 0) {
2104             sym = findVar(env, name);
2105             if (sym.exists()) return sym;
2106             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
2107         }
2108 
2109         if ((kind & TYP) != 0) {
2110             sym = findType(env, name);
2111             if (sym.kind==TYP) {
2112                  reportDependence(env.enclClass.sym, sym);
2113             }
2114             if (sym.exists()) return sym;
2115             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
2116         }
2117 
2118         if ((kind & PCK) != 0) return reader.enterPackage(name);
2119         else return bestSoFar;
2120     }
2121 
2122     /** Report dependencies.
2123      * @param from The enclosing class sym
2124      * @param to   The found identifier that the class depends on.
2125      */
2126     public void reportDependence(Symbol from, Symbol to) {
2127         // Override if you want to collect the reported dependencies.
2128     }
2129 
2130     /** Find an identifier in a package which matches a specified kind set.
2131      *  @param env       The current environment.
2132      *  @param name      The identifier's name.
2133      *  @param kind      Indicates the possible symbol kinds
2134      *                   (a nonempty subset of TYP, PCK).
2135      */
2136     Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
2137                               Name name, int kind) {
2138         Name fullname = TypeSymbol.formFullName(name, pck);
2139         Symbol bestSoFar = typeNotFound;
2140         PackageSymbol pack = null;
2141         if ((kind & PCK) != 0) {
2142             pack = reader.enterPackage(fullname);
2143             if (pack.exists()) return pack;
2144         }
2145         if ((kind & TYP) != 0) {
2146             Symbol sym = loadClass(env, fullname);
2147             if (sym.exists()) {
2148                 // don't allow programs to use flatnames
2149                 if (name == sym.name) return sym;
2150             }
2151             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
2152         }
2153         return (pack != null) ? pack : bestSoFar;
2154     }
2155 
2156     /** Find an identifier among the members of a given type `site'.
2157      *  @param env       The current environment.
2158      *  @param site      The type containing the symbol to be found.
2159      *  @param name      The identifier's name.
2160      *  @param kind      Indicates the possible symbol kinds
2161      *                   (a subset of VAL, TYP).
2162      */
2163     Symbol findIdentInType(Env<AttrContext> env, Type site,
2164                            Name name, int kind) {
2165         Symbol bestSoFar = typeNotFound;
2166         Symbol sym;
2167         if ((kind & VAR) != 0) {
2168             sym = findField(env, site, name, site.tsym);
2169             if (sym.exists()) return sym;
2170             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
2171         }
2172 
2173         if ((kind & TYP) != 0) {
2174             sym = findMemberType(env, site, name, site.tsym);
2175             if (sym.exists()) return sym;
2176             else if (sym.kind < bestSoFar.kind) bestSoFar = sym;
2177         }
2178         return bestSoFar;
2179     }
2180 
2181 /* ***************************************************************************
2182  *  Access checking
2183  *  The following methods convert ResolveErrors to ErrorSymbols, issuing
2184  *  an error message in the process
2185  ****************************************************************************/
2186 
2187     /** If `sym' is a bad symbol: report error and return errSymbol
2188      *  else pass through unchanged,
2189      *  additional arguments duplicate what has been used in trying to find the
2190      *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
2191      *  expect misses to happen frequently.
2192      *
2193      *  @param sym       The symbol that was found, or a ResolveError.
2194      *  @param pos       The position to use for error reporting.
2195      *  @param location  The symbol the served as a context for this lookup
2196      *  @param site      The original type from where the selection took place.
2197      *  @param name      The symbol's name.
2198      *  @param qualified Did we get here through a qualified expression resolution?
2199      *  @param argtypes  The invocation's value arguments,
2200      *                   if we looked for a method.
2201      *  @param typeargtypes  The invocation's type arguments,
2202      *                   if we looked for a method.
2203      *  @param logResolveHelper helper class used to log resolve errors
2204      */
2205     Symbol accessInternal(Symbol sym,
2206                   DiagnosticPosition pos,
2207                   Symbol location,
2208                   Type site,
2209                   Name name,
2210                   boolean qualified,
2211                   List<Type> argtypes,
2212                   List<Type> typeargtypes,
2213                   LogResolveHelper logResolveHelper) {
2214         if (sym.kind >= AMBIGUOUS) {
2215             ResolveError errSym = (ResolveError)sym.baseSymbol();
2216             sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
2217             argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
2218             if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
2219                 logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
2220             }
2221         }
2222         return sym;
2223     }
2224 
2225     /**
2226      * Variant of the generalized access routine, to be used for generating method
2227      * resolution diagnostics
2228      */
2229     Symbol accessMethod(Symbol sym,
2230                   DiagnosticPosition pos,
2231                   Symbol location,
2232                   Type site,
2233                   Name name,
2234                   boolean qualified,
2235                   List<Type> argtypes,
2236                   List<Type> typeargtypes) {
2237         return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
2238     }
2239 
2240     /** Same as original accessMethod(), but without location.
2241      */
2242     Symbol accessMethod(Symbol sym,
2243                   DiagnosticPosition pos,
2244                   Type site,
2245                   Name name,
2246                   boolean qualified,
2247                   List<Type> argtypes,
2248                   List<Type> typeargtypes) {
2249         return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
2250     }
2251 
2252     /**
2253      * Variant of the generalized access routine, to be used for generating variable,
2254      * type resolution diagnostics
2255      */
2256     Symbol accessBase(Symbol sym,
2257                   DiagnosticPosition pos,
2258                   Symbol location,
2259                   Type site,
2260                   Name name,
2261                   boolean qualified) {
2262         return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
2263     }
2264 
2265     /** Same as original accessBase(), but without location.
2266      */
2267     Symbol accessBase(Symbol sym,
2268                   DiagnosticPosition pos,
2269                   Type site,
2270                   Name name,
2271                   boolean qualified) {
2272         return accessBase(sym, pos, site.tsym, site, name, qualified);
2273     }
2274 
2275     interface LogResolveHelper {
2276         boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
2277         List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
2278     }
2279 
2280     LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
2281         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2282             return !site.isErroneous();
2283         }
2284         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2285             return argtypes;
2286         }
2287     };
2288 
2289     LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
2290         public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2291             return !site.isErroneous() &&
2292                         !Type.isErroneous(argtypes) &&
2293                         (typeargtypes == null || !Type.isErroneous(typeargtypes));
2294         }
2295         public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2296             return (syms.operatorNames.contains(name)) ?
2297                     argtypes :
2298                     Type.map(argtypes, new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
2299         }
2300     };
2301 
2302     class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
2303 
2304         public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
2305             deferredAttr.super(mode, msym, step);
2306         }
2307 
2308         @Override
2309         protected Type typeOf(DeferredType dt) {
2310             Type res = super.typeOf(dt);
2311             if (!res.isErroneous()) {
2312                 switch (TreeInfo.skipParens(dt.tree).getTag()) {
2313                     case LAMBDA:
2314                     case REFERENCE:
2315                         return dt;
2316                     case CONDEXPR:
2317                         return res == Type.recoveryType ?
2318                                 dt : res;
2319                 }
2320             }
2321             return res;
2322         }
2323     }
2324 
2325     /** Check that sym is not an abstract method.
2326      */
2327     void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
2328         if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
2329             log.error(pos, "abstract.cant.be.accessed.directly",
2330                       kindName(sym), sym, sym.location());
2331     }
2332 
2333 /* ***************************************************************************
2334  *  Debugging
2335  ****************************************************************************/
2336 
2337     /** print all scopes starting with scope s and proceeding outwards.
2338      *  used for debugging.
2339      */
2340     public void printscopes(Scope s) {
2341         while (s != null) {
2342             if (s.owner != null)
2343                 System.err.print(s.owner + ": ");
2344             for (Scope.Entry e = s.elems; e != null; e = e.sibling) {
2345                 if ((e.sym.flags() & ABSTRACT) != 0)
2346                     System.err.print("abstract ");
2347                 System.err.print(e.sym + " ");
2348             }
2349             System.err.println();
2350             s = s.next;
2351         }
2352     }
2353 
2354     void printscopes(Env<AttrContext> env) {
2355         while (env.outer != null) {
2356             System.err.println("------------------------------");
2357             printscopes(env.info.scope);
2358             env = env.outer;
2359         }
2360     }
2361 
2362     public void printscopes(Type t) {
2363         while (t.hasTag(CLASS)) {
2364             printscopes(t.tsym.members());
2365             t = types.supertype(t);
2366         }
2367     }
2368 
2369 /* ***************************************************************************
2370  *  Name resolution
2371  *  Naming conventions are as for symbol lookup
2372  *  Unlike the find... methods these methods will report access errors
2373  ****************************************************************************/
2374 
2375     /** Resolve an unqualified (non-method) identifier.
2376      *  @param pos       The position to use for error reporting.
2377      *  @param env       The environment current at the identifier use.
2378      *  @param name      The identifier's name.
2379      *  @param kind      The set of admissible symbol kinds for the identifier.
2380      */
2381     Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
2382                         Name name, int kind) {
2383         return accessBase(
2384             findIdent(env, name, kind),
2385             pos, env.enclClass.sym.type, name, false);
2386     }
2387 
2388     /** Resolve an unqualified method identifier.
2389      *  @param pos       The position to use for error reporting.
2390      *  @param env       The environment current at the method invocation.
2391      *  @param name      The identifier's name.
2392      *  @param argtypes  The types of the invocation's value arguments.
2393      *  @param typeargtypes  The types of the invocation's type arguments.
2394      */
2395     Symbol resolveMethod(DiagnosticPosition pos,
2396                          Env<AttrContext> env,
2397                          Name name,
2398                          List<Type> argtypes,
2399                          List<Type> typeargtypes) {
2400         return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
2401                 new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
2402                     @Override
2403                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2404                         return findFun(env, name, argtypes, typeargtypes,
2405                                 phase.isBoxingRequired(),
2406                                 phase.isVarargsRequired());
2407                     }});
2408     }
2409 
2410     /** Resolve a qualified method identifier
2411      *  @param pos       The position to use for error reporting.
2412      *  @param env       The environment current at the method invocation.
2413      *  @param site      The type of the qualifying expression, in which
2414      *                   identifier is searched.
2415      *  @param name      The identifier's name.
2416      *  @param argtypes  The types of the invocation's value arguments.
2417      *  @param typeargtypes  The types of the invocation's type arguments.
2418      */
2419     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2420                                   Type site, Name name, List<Type> argtypes,
2421                                   List<Type> typeargtypes) {
2422         return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
2423     }
2424     Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2425                                   Symbol location, Type site, Name name, List<Type> argtypes,
2426                                   List<Type> typeargtypes) {
2427         return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
2428     }
2429     private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
2430                                   DiagnosticPosition pos, Env<AttrContext> env,
2431                                   Symbol location, Type site, Name name, List<Type> argtypes,
2432                                   List<Type> typeargtypes) {
2433         return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
2434             @Override
2435             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2436                 return findMethod(env, site, name, argtypes, typeargtypes,
2437                         phase.isBoxingRequired(),
2438                         phase.isVarargsRequired(), false);
2439             }
2440             @Override
2441             Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2442                 if (sym.kind >= AMBIGUOUS) {
2443                     sym = super.access(env, pos, location, sym);
2444                 } else if (allowMethodHandles) {
2445                     MethodSymbol msym = (MethodSymbol)sym;
2446                     if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
2447                         return findPolymorphicSignatureInstance(env, sym, argtypes);
2448                     }
2449                 }
2450                 return sym;
2451             }
2452         });
2453     }
2454 
2455     /** Find or create an implicit method of exactly the given type (after erasure).
2456      *  Searches in a side table, not the main scope of the site.
2457      *  This emulates the lookup process required by JSR 292 in JVM.
2458      *  @param env       Attribution environment
2459      *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
2460      *  @param argtypes  The required argument types
2461      */
2462     Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
2463                                             final Symbol spMethod,
2464                                             List<Type> argtypes) {
2465         Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
2466                 (MethodSymbol)spMethod, currentResolutionContext, argtypes);
2467         for (Symbol sym : polymorphicSignatureScope.getElementsByName(spMethod.name)) {
2468             if (types.isSameType(mtype, sym.type)) {
2469                return sym;
2470             }
2471         }
2472 
2473         // create the desired method
2474         long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
2475         Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
2476             @Override
2477             public Symbol baseSymbol() {
2478                 return spMethod;
2479             }
2480         };
2481         if (!mtype.isErroneous()) { // Cache only if kosher.
2482             polymorphicSignatureScope.enter(msym);
2483         }
2484         return msym;
2485     }
2486 
2487     /** Resolve a qualified method identifier, throw a fatal error if not
2488      *  found.
2489      *  @param pos       The position to use for error reporting.
2490      *  @param env       The environment current at the method invocation.
2491      *  @param site      The type of the qualifying expression, in which
2492      *                   identifier is searched.
2493      *  @param name      The identifier's name.
2494      *  @param argtypes  The types of the invocation's value arguments.
2495      *  @param typeargtypes  The types of the invocation's type arguments.
2496      */
2497     public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
2498                                         Type site, Name name,
2499                                         List<Type> argtypes,
2500                                         List<Type> typeargtypes) {
2501         MethodResolutionContext resolveContext = new MethodResolutionContext();
2502         resolveContext.internalResolution = true;
2503         Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
2504                 site, name, argtypes, typeargtypes);
2505         if (sym.kind == MTH) return (MethodSymbol)sym;
2506         else throw new FatalError(
2507                  diags.fragment("fatal.err.cant.locate.meth",
2508                                 name));
2509     }
2510 
2511     /** Resolve constructor.
2512      *  @param pos       The position to use for error reporting.
2513      *  @param env       The environment current at the constructor invocation.
2514      *  @param site      The type of class for which a constructor is searched.
2515      *  @param argtypes  The types of the constructor invocation's value
2516      *                   arguments.
2517      *  @param typeargtypes  The types of the constructor invocation's type
2518      *                   arguments.
2519      */
2520     Symbol resolveConstructor(DiagnosticPosition pos,
2521                               Env<AttrContext> env,
2522                               Type site,
2523                               List<Type> argtypes,
2524                               List<Type> typeargtypes) {
2525         return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
2526     }
2527 
2528     private Symbol resolveConstructor(MethodResolutionContext resolveContext,
2529                               final DiagnosticPosition pos,
2530                               Env<AttrContext> env,
2531                               Type site,
2532                               List<Type> argtypes,
2533                               List<Type> typeargtypes) {
2534         return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2535             @Override
2536             Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2537                 return findConstructor(pos, env, site, argtypes, typeargtypes,
2538                         phase.isBoxingRequired(),
2539                         phase.isVarargsRequired());
2540             }
2541         });
2542     }
2543 
2544     /** Resolve a constructor, throw a fatal error if not found.
2545      *  @param pos       The position to use for error reporting.
2546      *  @param env       The environment current at the method invocation.
2547      *  @param site      The type to be constructed.
2548      *  @param argtypes  The types of the invocation's value arguments.
2549      *  @param typeargtypes  The types of the invocation's type arguments.
2550      */
2551     public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2552                                         Type site,
2553                                         List<Type> argtypes,
2554                                         List<Type> typeargtypes) {
2555         MethodResolutionContext resolveContext = new MethodResolutionContext();
2556         resolveContext.internalResolution = true;
2557         Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
2558         if (sym.kind == MTH) return (MethodSymbol)sym;
2559         else throw new FatalError(
2560                  diags.fragment("fatal.err.cant.locate.ctor", site));
2561     }
2562 
2563     Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2564                               Type site, List<Type> argtypes,
2565                               List<Type> typeargtypes,
2566                               boolean allowBoxing,
2567                               boolean useVarargs) {
2568         Symbol sym = findMethod(env, site,
2569                                     names.init, argtypes,
2570                                     typeargtypes, allowBoxing,
2571                                     useVarargs, false);
2572         chk.checkDeprecated(pos, env.info.scope.owner, sym);
2573         return sym;
2574     }
2575 
2576     /** Resolve constructor using diamond inference.
2577      *  @param pos       The position to use for error reporting.
2578      *  @param env       The environment current at the constructor invocation.
2579      *  @param site      The type of class for which a constructor is searched.
2580      *                   The scope of this class has been touched in attribution.
2581      *  @param argtypes  The types of the constructor invocation's value
2582      *                   arguments.
2583      *  @param typeargtypes  The types of the constructor invocation's type
2584      *                   arguments.
2585      */
2586     Symbol resolveDiamond(DiagnosticPosition pos,
2587                               Env<AttrContext> env,
2588                               Type site,
2589                               List<Type> argtypes,
2590                               List<Type> typeargtypes) {
2591         return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
2592                 new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2593                     @Override
2594                     Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2595                         return findDiamond(env, site, argtypes, typeargtypes,
2596                                 phase.isBoxingRequired(),
2597                                 phase.isVarargsRequired());
2598                     }
2599                     @Override
2600                     Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2601                         if (sym.kind >= AMBIGUOUS) {
2602                             if (sym.kind != WRONG_MTH && sym.kind != WRONG_MTHS) {
2603                                 sym = super.access(env, pos, location, sym);
2604                             } else {
2605                                 final JCDiagnostic details = sym.kind == WRONG_MTH ?
2606                                                 ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
2607                                                 null;
2608                                 sym = new InapplicableSymbolError(sym.kind, "diamondError", currentResolutionContext) {
2609                                     @Override
2610                                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
2611                                             Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
2612                                         String key = details == null ?
2613                                             "cant.apply.diamond" :
2614                                             "cant.apply.diamond.1";
2615                                         return diags.create(dkind, log.currentSource(), pos, key,
2616                                                 diags.fragment("diamond", site.tsym), details);
2617                                     }
2618                                 };
2619                                 sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
2620                                 env.info.pendingResolutionPhase = currentResolutionContext.step;
2621                             }
2622                         }
2623                         return sym;
2624                     }});
2625     }
2626 
2627     /** This method scans all the constructor symbol in a given class scope -
2628      *  assuming that the original scope contains a constructor of the kind:
2629      *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
2630      *  a method check is executed against the modified constructor type:
2631      *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
2632      *  inference. The inferred return type of the synthetic constructor IS
2633      *  the inferred type for the diamond operator.
2634      */
2635     private Symbol findDiamond(Env<AttrContext> env,
2636                               Type site,
2637                               List<Type> argtypes,
2638                               List<Type> typeargtypes,
2639                               boolean allowBoxing,
2640                               boolean useVarargs) {
2641         Symbol bestSoFar = methodNotFound;
2642         for (Scope.Entry e = site.tsym.members().lookup(names.init);
2643              e.scope != null;
2644              e = e.next()) {
2645             final Symbol sym = e.sym;
2646             //- System.out.println(" e " + e.sym);
2647             if (sym.kind == MTH &&
2648                 (sym.flags_field & SYNTHETIC) == 0) {
2649                     List<Type> oldParams = e.sym.type.hasTag(FORALL) ?
2650                             ((ForAll)sym.type).tvars :
2651                             List.<Type>nil();
2652                     Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
2653                             types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
2654                     MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
2655                         @Override
2656                         public Symbol baseSymbol() {
2657                             return sym;
2658                         }
2659                     };
2660                     bestSoFar = selectBest(env, site, argtypes, typeargtypes,
2661                             newConstr,
2662                             bestSoFar,
2663                             allowBoxing,
2664                             useVarargs,
2665                             false);
2666             }
2667         }
2668         return bestSoFar;
2669     }
2670 
2671 
2672 
2673     /** Resolve operator.
2674      *  @param pos       The position to use for error reporting.
2675      *  @param optag     The tag of the operation tree.
2676      *  @param env       The environment current at the operation.
2677      *  @param argtypes  The types of the operands.
2678      */
2679     Symbol resolveOperator(DiagnosticPosition pos, JCTree.Tag optag,
2680                            Env<AttrContext> env, List<Type> argtypes) {
2681         MethodResolutionContext prevResolutionContext = currentResolutionContext;
2682         try {
2683             currentResolutionContext = new MethodResolutionContext();
2684             Name name = treeinfo.operatorName(optag);
2685             return lookupMethod(env, pos, syms.predefClass, currentResolutionContext,
2686                     new BasicLookupHelper(name, syms.predefClass.type, argtypes, null, BOX) {
2687                 @Override
2688                 Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2689                     return findMethod(env, site, name, argtypes, typeargtypes,
2690                             phase.isBoxingRequired(),
2691                             phase.isVarargsRequired(), true);
2692                 }
2693                 @Override
2694                 Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2695                     return accessMethod(sym, pos, env.enclClass.sym.type, name,
2696                           false, argtypes, null);
2697                 }
2698             });
2699         } finally {
2700             currentResolutionContext = prevResolutionContext;
2701         }
2702     }
2703 
2704     /** Resolve operator.
2705      *  @param pos       The position to use for error reporting.
2706      *  @param optag     The tag of the operation tree.
2707      *  @param env       The environment current at the operation.
2708      *  @param arg       The type of the operand.
2709      */
2710     Symbol resolveUnaryOperator(DiagnosticPosition pos, JCTree.Tag optag, Env<AttrContext> env, Type arg) {
2711         return resolveOperator(pos, optag, env, List.of(arg));
2712     }
2713 
2714     /** Resolve binary operator.
2715      *  @param pos       The position to use for error reporting.
2716      *  @param optag     The tag of the operation tree.
2717      *  @param env       The environment current at the operation.
2718      *  @param left      The types of the left operand.
2719      *  @param right     The types of the right operand.
2720      */
2721     Symbol resolveBinaryOperator(DiagnosticPosition pos,
2722                                  JCTree.Tag optag,
2723                                  Env<AttrContext> env,
2724                                  Type left,
2725                                  Type right) {
2726         return resolveOperator(pos, optag, env, List.of(left, right));
2727     }
2728 
2729     Symbol getMemberReference(DiagnosticPosition pos,
2730             Env<AttrContext> env,
2731             JCMemberReference referenceTree,
2732             Type site,
2733             Name name) {
2734 
2735         site = types.capture(site);
2736 
2737         ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
2738                 referenceTree, site, name, List.<Type>nil(), null, VARARITY);
2739 
2740         Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
2741         Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
2742                 nilMethodCheck, lookupHelper);
2743 
2744         env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
2745 
2746         return sym;
2747     }
2748 
2749     ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
2750                                   Type site,
2751                                   Name name,
2752                                   List<Type> argtypes,
2753                                   List<Type> typeargtypes,
2754                                   MethodResolutionPhase maxPhase) {
2755         ReferenceLookupHelper result;
2756         if (!name.equals(names.init)) {
2757             //method reference
2758             result =
2759                     new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
2760         } else {
2761             if (site.hasTag(ARRAY)) {
2762                 //array constructor reference
2763                 result =
2764                         new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2765             } else {
2766                 //class constructor reference
2767                 result =
2768                         new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2769             }
2770         }
2771         return result;
2772     }
2773 
2774     Symbol resolveMemberReferenceByArity(Env<AttrContext> env,
2775                                   JCMemberReference referenceTree,
2776                                   Type site,
2777                                   Name name,
2778                                   List<Type> argtypes,
2779                                   InferenceContext inferenceContext) {
2780 
2781         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
2782         site = types.capture(site);
2783 
2784         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
2785                 referenceTree, site, name, argtypes, null, VARARITY);
2786         //step 1 - bound lookup
2787         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
2788         Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(), site.tsym,
2789                 arityMethodCheck, boundLookupHelper);
2790         if (isStaticSelector &&
2791             !name.equals(names.init) &&
2792             !boundSym.isStatic() &&
2793             boundSym.kind < ERRONEOUS) {
2794             boundSym = methodNotFound;
2795         }
2796 
2797         //step 2 - unbound lookup
2798         Symbol unboundSym = methodNotFound;
2799         ReferenceLookupHelper unboundLookupHelper = null;
2800         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
2801         if (isStaticSelector) {
2802             unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
2803             unboundSym = lookupMethod(unboundEnv, env.tree.pos(), site.tsym,
2804                     arityMethodCheck, unboundLookupHelper);
2805             if (unboundSym.isStatic() &&
2806                 unboundSym.kind < ERRONEOUS) {
2807                 unboundSym = methodNotFound;
2808             }
2809         }
2810 
2811         //merge results
2812         Symbol bestSym = choose(boundSym, unboundSym);
2813         env.info.pendingResolutionPhase = bestSym == unboundSym ?
2814                 unboundEnv.info.pendingResolutionPhase :
2815                 boundEnv.info.pendingResolutionPhase;
2816 
2817         return bestSym;
2818     }
2819 
2820     /**
2821      * Resolution of member references is typically done as a single
2822      * overload resolution step, where the argument types A are inferred from
2823      * the target functional descriptor.
2824      *
2825      * If the member reference is a method reference with a type qualifier,
2826      * a two-step lookup process is performed. The first step uses the
2827      * expected argument list A, while the second step discards the first
2828      * type from A (which is treated as a receiver type).
2829      *
2830      * There are two cases in which inference is performed: (i) if the member
2831      * reference is a constructor reference and the qualifier type is raw - in
2832      * which case diamond inference is used to infer a parameterization for the
2833      * type qualifier; (ii) if the member reference is an unbound reference
2834      * where the type qualifier is raw - in that case, during the unbound lookup
2835      * the receiver argument type is used to infer an instantiation for the raw
2836      * qualifier type.
2837      *
2838      * When a multi-step resolution process is exploited, it is an error
2839      * if two candidates are found (ambiguity).
2840      *
2841      * This routine returns a pair (T,S), where S is the member reference symbol,
2842      * and T is the type of the class in which S is defined. This is necessary as
2843      * the type T might be dynamically inferred (i.e. if constructor reference
2844      * has a raw qualifier).
2845      */
2846     Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
2847                                   JCMemberReference referenceTree,
2848                                   Type site,
2849                                   Name name,
2850                                   List<Type> argtypes,
2851                                   List<Type> typeargtypes,
2852                                   MethodCheck methodCheck,
2853                                   InferenceContext inferenceContext,
2854                                   AttrMode mode) {
2855 
2856         site = types.capture(site);
2857         ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
2858                 referenceTree, site, name, argtypes, typeargtypes, VARARITY);
2859 
2860         //step 1 - bound lookup
2861         Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
2862         Symbol origBoundSym;
2863         boolean staticErrorForBound = false;
2864         MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
2865         boundSearchResolveContext.methodCheck = methodCheck;
2866         Symbol boundSym = origBoundSym = lookupMethod(boundEnv, env.tree.pos(),
2867                 site.tsym, boundSearchResolveContext, boundLookupHelper);
2868         SearchResultKind boundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
2869         boolean isStaticSelector = TreeInfo.isStaticSelector(referenceTree.expr, names);
2870         boolean shouldCheckForStaticness = isStaticSelector &&
2871                 referenceTree.getMode() == ReferenceMode.INVOKE;
2872         if (boundSym.kind != WRONG_MTHS && boundSym.kind != WRONG_MTH) {
2873             if (shouldCheckForStaticness) {
2874                 if (!boundSym.isStatic()) {
2875                     staticErrorForBound = true;
2876                     if (hasAnotherApplicableMethod(
2877                             boundSearchResolveContext, boundSym, true)) {
2878                         boundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
2879                     } else {
2880                         boundSearchResultKind = SearchResultKind.BAD_MATCH;
2881                         if (boundSym.kind < ERRONEOUS) {
2882                             boundSym = methodWithCorrectStaticnessNotFound;
2883                         }
2884                     }
2885                 } else if (boundSym.kind < ERRONEOUS) {
2886                     boundSearchResultKind = SearchResultKind.GOOD_MATCH;
2887                 }
2888             }
2889         }
2890 
2891         //step 2 - unbound lookup
2892         Symbol origUnboundSym = null;
2893         Symbol unboundSym = methodNotFound;
2894         ReferenceLookupHelper unboundLookupHelper = null;
2895         Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
2896         SearchResultKind unboundSearchResultKind = SearchResultKind.NOT_APPLICABLE_MATCH;
2897         boolean staticErrorForUnbound = false;
2898         if (isStaticSelector) {
2899             unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
2900             MethodResolutionContext unboundSearchResolveContext =
2901                     new MethodResolutionContext();
2902             unboundSearchResolveContext.methodCheck = methodCheck;
2903             unboundSym = origUnboundSym = lookupMethod(unboundEnv, env.tree.pos(),
2904                     site.tsym, unboundSearchResolveContext, unboundLookupHelper);
2905 
2906             if (unboundSym.kind != WRONG_MTH && unboundSym.kind != WRONG_MTHS) {
2907                 if (shouldCheckForStaticness) {
2908                     if (unboundSym.isStatic()) {
2909                         staticErrorForUnbound = true;
2910                         if (hasAnotherApplicableMethod(
2911                                 unboundSearchResolveContext, unboundSym, false)) {
2912                             unboundSearchResultKind = SearchResultKind.BAD_MATCH_MORE_SPECIFIC;
2913                         } else {
2914                             unboundSearchResultKind = SearchResultKind.BAD_MATCH;
2915                             if (unboundSym.kind < ERRONEOUS) {
2916                                 unboundSym = methodWithCorrectStaticnessNotFound;
2917                             }
2918                         }
2919                     } else if (unboundSym.kind < ERRONEOUS) {
2920                         unboundSearchResultKind = SearchResultKind.GOOD_MATCH;
2921                     }
2922                 }
2923             }
2924         }
2925 
2926         //merge results
2927         Pair<Symbol, ReferenceLookupHelper> res;
2928         Symbol bestSym = choose(boundSym, unboundSym);
2929         if (bestSym.kind < ERRONEOUS && (staticErrorForBound || staticErrorForUnbound)) {
2930             if (staticErrorForBound) {
2931                 boundSym = methodWithCorrectStaticnessNotFound;
2932             }
2933             if (staticErrorForUnbound) {
2934                 unboundSym = methodWithCorrectStaticnessNotFound;
2935             }
2936             bestSym = choose(boundSym, unboundSym);
2937         }
2938         if (bestSym == methodWithCorrectStaticnessNotFound && mode == AttrMode.CHECK) {
2939             Symbol symToPrint = origBoundSym;
2940             String errorFragmentToPrint = "non-static.cant.be.ref";
2941             if (staticErrorForBound && staticErrorForUnbound) {
2942                 if (unboundSearchResultKind == SearchResultKind.BAD_MATCH_MORE_SPECIFIC) {
2943                     symToPrint = origUnboundSym;
2944                     errorFragmentToPrint = "static.method.in.unbound.lookup";
2945                 }
2946             } else {
2947                 if (!staticErrorForBound) {
2948                     symToPrint = origUnboundSym;
2949                     errorFragmentToPrint = "static.method.in.unbound.lookup";
2950                 }
2951             }
2952             log.error(referenceTree.expr.pos(), "invalid.mref",
2953                 Kinds.kindName(referenceTree.getMode()),
2954                 diags.fragment(errorFragmentToPrint,
2955                 Kinds.kindName(symToPrint), symToPrint));
2956         }
2957         res = new Pair<>(bestSym,
2958                 bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
2959         env.info.pendingResolutionPhase = bestSym == unboundSym ?
2960                 unboundEnv.info.pendingResolutionPhase :
2961                 boundEnv.info.pendingResolutionPhase;
2962 
2963         return res;
2964     }
2965 
2966     enum SearchResultKind {
2967         GOOD_MATCH,                 //type I
2968         BAD_MATCH_MORE_SPECIFIC,    //type II
2969         BAD_MATCH,                  //type III
2970         NOT_APPLICABLE_MATCH        //type IV
2971     }
2972 
2973     boolean hasAnotherApplicableMethod(MethodResolutionContext resolutionContext,
2974             Symbol bestSoFar, boolean staticMth) {
2975         for (Candidate c : resolutionContext.candidates) {
2976             if (resolutionContext.step != c.step ||
2977                 !c.isApplicable() ||
2978                 c.sym == bestSoFar) {
2979                 continue;
2980             } else {
2981                 if (c.sym.isStatic() == staticMth) {
2982                     return true;
2983                 }
2984             }
2985         }
2986         return false;
2987     }
2988 
2989     //where
2990         private Symbol choose(Symbol boundSym, Symbol unboundSym) {
2991             if (lookupSuccess(boundSym) && lookupSuccess(unboundSym)) {
2992                 return ambiguityError(boundSym, unboundSym);
2993             } else if (lookupSuccess(boundSym) ||
2994                     (canIgnore(unboundSym) && !canIgnore(boundSym))) {
2995                 return boundSym;
2996             } else if (lookupSuccess(unboundSym) ||
2997                     (canIgnore(boundSym) && !canIgnore(unboundSym))) {
2998                 return unboundSym;
2999             } else {
3000                 return boundSym;
3001             }
3002         }
3003 
3004         private boolean lookupSuccess(Symbol s) {
3005             return s.kind == MTH || s.kind == AMBIGUOUS;
3006         }
3007 
3008         private boolean canIgnore(Symbol s) {
3009             switch (s.kind) {
3010                 case ABSENT_MTH:
3011                     return true;
3012                 case WRONG_MTH:
3013                     InapplicableSymbolError errSym =
3014                             (InapplicableSymbolError)s.baseSymbol();
3015                     return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
3016                             .matches(errSym.errCandidate().snd);
3017                 case WRONG_MTHS:
3018                     InapplicableSymbolsError errSyms =
3019                             (InapplicableSymbolsError)s.baseSymbol();
3020                     return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
3021                 case WRONG_STATICNESS:
3022                     return false;
3023                 default:
3024                     return false;
3025             }
3026         }
3027 
3028     /**
3029      * Helper for defining custom method-like lookup logic; a lookup helper
3030      * provides hooks for (i) the actual lookup logic and (ii) accessing the
3031      * lookup result (this step might result in compiler diagnostics to be generated)
3032      */
3033     abstract class LookupHelper {
3034 
3035         /** name of the symbol to lookup */
3036         Name name;
3037 
3038         /** location in which the lookup takes place */
3039         Type site;
3040 
3041         /** actual types used during the lookup */
3042         List<Type> argtypes;
3043 
3044         /** type arguments used during the lookup */
3045         List<Type> typeargtypes;
3046 
3047         /** Max overload resolution phase handled by this helper */
3048         MethodResolutionPhase maxPhase;
3049 
3050         LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3051             this.name = name;
3052             this.site = site;
3053             this.argtypes = argtypes;
3054             this.typeargtypes = typeargtypes;
3055             this.maxPhase = maxPhase;
3056         }
3057 
3058         /**
3059          * Should lookup stop at given phase with given result
3060          */
3061         final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
3062             return phase.ordinal() > maxPhase.ordinal() ||
3063                     sym.kind < ERRONEOUS || sym.kind == AMBIGUOUS;
3064         }
3065 
3066         /**
3067          * Search for a symbol under a given overload resolution phase - this method
3068          * is usually called several times, once per each overload resolution phase
3069          */
3070         abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
3071 
3072         /**
3073          * Dump overload resolution info
3074          */
3075         void debug(DiagnosticPosition pos, Symbol sym) {
3076             //do nothing
3077         }
3078 
3079         /**
3080          * Validate the result of the lookup
3081          */
3082         abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
3083     }
3084 
3085     abstract class BasicLookupHelper extends LookupHelper {
3086 
3087         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
3088             this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
3089         }
3090 
3091         BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3092             super(name, site, argtypes, typeargtypes, maxPhase);
3093         }
3094 
3095         @Override
3096         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3097             Symbol sym = doLookup(env, phase);
3098             if (sym.kind == AMBIGUOUS) {
3099                 AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3100                 sym = a_err.mergeAbstracts(site);
3101             }
3102             return sym;
3103         }
3104 
3105         abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
3106 
3107         @Override
3108         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3109             if (sym.kind >= AMBIGUOUS) {
3110                 //if nothing is found return the 'first' error
3111                 sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
3112             }
3113             return sym;
3114         }
3115 
3116         @Override
3117         void debug(DiagnosticPosition pos, Symbol sym) {
3118             reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
3119         }
3120     }
3121 
3122     /**
3123      * Helper class for member reference lookup. A reference lookup helper
3124      * defines the basic logic for member reference lookup; a method gives
3125      * access to an 'unbound' helper used to perform an unbound member
3126      * reference lookup.
3127      */
3128     abstract class ReferenceLookupHelper extends LookupHelper {
3129 
3130         /** The member reference tree */
3131         JCMemberReference referenceTree;
3132 
3133         ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3134                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3135             super(name, site, argtypes, typeargtypes, maxPhase);
3136             this.referenceTree = referenceTree;
3137         }
3138 
3139         /**
3140          * Returns an unbound version of this lookup helper. By default, this
3141          * method returns an dummy lookup helper.
3142          */
3143         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3144             //dummy loopkup helper that always return 'methodNotFound'
3145             return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
3146                 @Override
3147                 ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3148                     return this;
3149                 }
3150                 @Override
3151                 Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3152                     return methodNotFound;
3153                 }
3154                 @Override
3155                 ReferenceKind referenceKind(Symbol sym) {
3156                     Assert.error();
3157                     return null;
3158                 }
3159             };
3160         }
3161 
3162         /**
3163          * Get the kind of the member reference
3164          */
3165         abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
3166 
3167         Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3168             if (sym.kind == AMBIGUOUS) {
3169                 AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3170                 sym = a_err.mergeAbstracts(site);
3171             }
3172             //skip error reporting
3173             return sym;
3174         }
3175     }
3176 
3177     /**
3178      * Helper class for method reference lookup. The lookup logic is based
3179      * upon Resolve.findMethod; in certain cases, this helper class has a
3180      * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
3181      * In such cases, non-static lookup results are thrown away.
3182      */
3183     class MethodReferenceLookupHelper extends ReferenceLookupHelper {
3184 
3185         MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3186                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3187             super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
3188         }
3189 
3190         @Override
3191         final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3192             return findMethod(env, site, name, argtypes, typeargtypes,
3193                     phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
3194         }
3195 
3196         @Override
3197         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3198             if (TreeInfo.isStaticSelector(referenceTree.expr, names) &&
3199                     argtypes.nonEmpty() &&
3200                     (argtypes.head.hasTag(NONE) ||
3201                     types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), site))) {
3202                 return new UnboundMethodReferenceLookupHelper(referenceTree, name,
3203                         site, argtypes, typeargtypes, maxPhase);
3204             } else {
3205                 return super.unboundLookup(inferenceContext);
3206             }
3207         }
3208 
3209         @Override
3210         ReferenceKind referenceKind(Symbol sym) {
3211             if (sym.isStatic()) {
3212                 return ReferenceKind.STATIC;
3213             } else {
3214                 Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
3215                 return selName != null && selName == names._super ?
3216                         ReferenceKind.SUPER :
3217                         ReferenceKind.BOUND;
3218             }
3219         }
3220     }
3221 
3222     /**
3223      * Helper class for unbound method reference lookup. Essentially the same
3224      * as the basic method reference lookup helper; main difference is that static
3225      * lookup results are thrown away. If qualifier type is raw, an attempt to
3226      * infer a parameterized type is made using the first actual argument (that
3227      * would otherwise be ignored during the lookup).
3228      */
3229     class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
3230 
3231         UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3232                 List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3233             super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
3234             if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
3235                 Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
3236                 this.site = types.capture(asSuperSite);
3237             }
3238         }
3239 
3240         @Override
3241         ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3242             return this;
3243         }
3244 
3245         @Override
3246         ReferenceKind referenceKind(Symbol sym) {
3247             return ReferenceKind.UNBOUND;
3248         }
3249     }
3250 
3251     /**
3252      * Helper class for array constructor lookup; an array constructor lookup
3253      * is simulated by looking up a method that returns the array type specified
3254      * as qualifier, and that accepts a single int parameter (size of the array).
3255      */
3256     class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3257 
3258         ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3259                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3260             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3261         }
3262 
3263         @Override
3264         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3265             Scope sc = new Scope(syms.arrayClass);
3266             MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
3267             arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
3268             sc.enter(arrayConstr);
3269             return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false, false);
3270         }
3271 
3272         @Override
3273         ReferenceKind referenceKind(Symbol sym) {
3274             return ReferenceKind.ARRAY_CTOR;
3275         }
3276     }
3277 
3278     /**
3279      * Helper class for constructor reference lookup. The lookup logic is based
3280      * upon either Resolve.findMethod or Resolve.findDiamond - depending on
3281      * whether the constructor reference needs diamond inference (this is the case
3282      * if the qualifier type is raw). A special erroneous symbol is returned
3283      * if the lookup returns the constructor of an inner class and there's no
3284      * enclosing instance in scope.
3285      */
3286     class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3287 
3288         boolean needsInference;
3289 
3290         ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3291                 List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3292             super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3293             if (site.isRaw()) {
3294                 this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym);
3295                 needsInference = true;
3296             }
3297         }
3298 
3299         @Override
3300         protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3301             Symbol sym = needsInference ?
3302                 findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
3303                 findMethod(env, site, name, argtypes, typeargtypes,
3304                         phase.isBoxingRequired(), phase.isVarargsRequired(), syms.operatorNames.contains(name));
3305             return sym.kind != MTH ||
3306                           site.getEnclosingType().hasTag(NONE) ||
3307                           hasEnclosingInstance(env, site) ?
3308                           sym : new InvalidSymbolError(Kinds.MISSING_ENCL, sym, null) {
3309                     @Override
3310                     JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
3311                        return diags.create(dkind, log.currentSource(), pos,
3312                             "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
3313                     }
3314                 };
3315         }
3316 
3317         @Override
3318         ReferenceKind referenceKind(Symbol sym) {
3319             return site.getEnclosingType().hasTag(NONE) ?
3320                     ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
3321         }
3322     }
3323 
3324     /**
3325      * Main overload resolution routine. On each overload resolution step, a
3326      * lookup helper class is used to perform the method/constructor lookup;
3327      * at the end of the lookup, the helper is used to validate the results
3328      * (this last step might trigger overload resolution diagnostics).
3329      */
3330     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
3331         MethodResolutionContext resolveContext = new MethodResolutionContext();
3332         resolveContext.methodCheck = methodCheck;
3333         return lookupMethod(env, pos, location, resolveContext, lookupHelper);
3334     }
3335 
3336     Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
3337             MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
3338         MethodResolutionContext prevResolutionContext = currentResolutionContext;
3339         try {
3340             Symbol bestSoFar = methodNotFound;
3341             currentResolutionContext = resolveContext;
3342             for (MethodResolutionPhase phase : methodResolutionSteps) {
3343                 if (!phase.isApplicable(boxingEnabled, varargsEnabled) ||
3344                         lookupHelper.shouldStop(bestSoFar, phase)) break;
3345                 MethodResolutionPhase prevPhase = currentResolutionContext.step;
3346                 Symbol prevBest = bestSoFar;
3347                 currentResolutionContext.step = phase;
3348                 Symbol sym = lookupHelper.lookup(env, phase);
3349                 lookupHelper.debug(pos, sym);
3350                 bestSoFar = phase.mergeResults(bestSoFar, sym);
3351                 env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
3352             }
3353             return lookupHelper.access(env, pos, location, bestSoFar);
3354         } finally {
3355             currentResolutionContext = prevResolutionContext;
3356         }
3357     }
3358 
3359     /**
3360      * Resolve `c.name' where name == this or name == super.
3361      * @param pos           The position to use for error reporting.
3362      * @param env           The environment current at the expression.
3363      * @param c             The qualifier.
3364      * @param name          The identifier's name.
3365      */
3366     Symbol resolveSelf(DiagnosticPosition pos,
3367                        Env<AttrContext> env,
3368                        TypeSymbol c,
3369                        Name name) {
3370         Env<AttrContext> env1 = env;
3371         boolean staticOnly = false;
3372         while (env1.outer != null) {
3373             if (isStatic(env1)) staticOnly = true;
3374             if (env1.enclClass.sym == c) {
3375                 Symbol sym = env1.info.scope.lookup(name).sym;
3376                 if (sym != null) {
3377                     if (staticOnly) sym = new StaticError(sym);
3378                     return accessBase(sym, pos, env.enclClass.sym.type,
3379                                   name, true);
3380                 }
3381             }
3382             if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
3383             env1 = env1.outer;
3384         }
3385         if (c.isInterface() &&
3386             name == names._super && !isStatic(env) &&
3387             types.isDirectSuperInterface(c, env.enclClass.sym)) {
3388             //this might be a default super call if one of the superinterfaces is 'c'
3389             for (Type t : pruneInterfaces(env.enclClass.type)) {
3390                 if (t.tsym == c) {
3391                     env.info.defaultSuperCallSite = t;
3392                     return new VarSymbol(0, names._super,
3393                             types.asSuper(env.enclClass.type, c), env.enclClass.sym);
3394                 }
3395             }
3396             //find a direct superinterface that is a subtype of 'c'
3397             for (Type i : types.interfaces(env.enclClass.type)) {
3398                 if (i.tsym.isSubClass(c, types) && i.tsym != c) {
3399                     log.error(pos, "illegal.default.super.call", c,
3400                             diags.fragment("redundant.supertype", c, i));
3401                     return syms.errSymbol;
3402                 }
3403             }
3404             Assert.error();
3405         }
3406         log.error(pos, "not.encl.class", c);
3407         return syms.errSymbol;
3408     }
3409     //where
3410     private List<Type> pruneInterfaces(Type t) {
3411         ListBuffer<Type> result = new ListBuffer<>();
3412         for (Type t1 : types.interfaces(t)) {
3413             boolean shouldAdd = true;
3414             for (Type t2 : types.interfaces(t)) {
3415                 if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
3416                     shouldAdd = false;
3417                 }
3418             }
3419             if (shouldAdd) {
3420                 result.append(t1);
3421             }
3422         }
3423         return result.toList();
3424     }
3425 
3426 
3427     /**
3428      * Resolve `c.this' for an enclosing class c that contains the
3429      * named member.
3430      * @param pos           The position to use for error reporting.
3431      * @param env           The environment current at the expression.
3432      * @param member        The member that must be contained in the result.
3433      */
3434     Symbol resolveSelfContaining(DiagnosticPosition pos,
3435                                  Env<AttrContext> env,
3436                                  Symbol member,
3437                                  boolean isSuperCall) {
3438         Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
3439         if (sym == null) {
3440             log.error(pos, "encl.class.required", member);
3441             return syms.errSymbol;
3442         } else {
3443             return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
3444         }
3445     }
3446 
3447     boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
3448         Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
3449         return encl != null && encl.kind < ERRONEOUS;
3450     }
3451 
3452     private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
3453                                  Symbol member,
3454                                  boolean isSuperCall) {
3455         Name name = names._this;
3456         Env<AttrContext> env1 = isSuperCall ? env.outer : env;
3457         boolean staticOnly = false;
3458         if (env1 != null) {
3459             while (env1 != null && env1.outer != null) {
3460                 if (isStatic(env1)) staticOnly = true;
3461                 if (env1.enclClass.sym.isSubClass(member.owner, types)) {
3462                     Symbol sym = env1.info.scope.lookup(name).sym;
3463                     if (sym != null) {
3464                         if (staticOnly) sym = new StaticError(sym);
3465                         return sym;
3466                     }
3467                 }
3468                 if ((env1.enclClass.sym.flags() & STATIC) != 0)
3469                     staticOnly = true;
3470                 env1 = env1.outer;
3471             }
3472         }
3473         return null;
3474     }
3475 
3476     /**
3477      * Resolve an appropriate implicit this instance for t's container.
3478      * JLS 8.8.5.1 and 15.9.2
3479      */
3480     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
3481         return resolveImplicitThis(pos, env, t, false);
3482     }
3483 
3484     Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
3485         Type thisType = (((t.tsym.owner.kind & (MTH|VAR)) != 0)
3486                          ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
3487                          : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
3488         if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
3489             log.error(pos, "cant.ref.before.ctor.called", "this");
3490         return thisType;
3491     }
3492 
3493 /* ***************************************************************************
3494  *  ResolveError classes, indicating error situations when accessing symbols
3495  ****************************************************************************/
3496 
3497     //used by TransTypes when checking target type of synthetic cast
3498     public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
3499         AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
3500         logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
3501     }
3502     //where
3503     private void logResolveError(ResolveError error,
3504             DiagnosticPosition pos,
3505             Symbol location,
3506             Type site,
3507             Name name,
3508             List<Type> argtypes,
3509             List<Type> typeargtypes) {
3510         JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3511                 pos, location, site, name, argtypes, typeargtypes);
3512         if (d != null) {
3513             d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
3514             log.report(d);
3515         }
3516     }
3517 
3518     private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
3519 
3520     public Object methodArguments(List<Type> argtypes) {
3521         if (argtypes == null || argtypes.isEmpty()) {
3522             return noArgs;
3523         } else {
3524             ListBuffer<Object> diagArgs = new ListBuffer<>();
3525             for (Type t : argtypes) {
3526                 if (t.hasTag(DEFERRED)) {
3527                     diagArgs.append(((DeferredAttr.DeferredType)t).tree);
3528                 } else {
3529                     diagArgs.append(t);
3530                 }
3531             }
3532             return diagArgs;
3533         }
3534     }
3535 
3536     /**
3537      * Root class for resolution errors. Subclass of ResolveError
3538      * represent a different kinds of resolution error - as such they must
3539      * specify how they map into concrete compiler diagnostics.
3540      */
3541     abstract class ResolveError extends Symbol {
3542 
3543         /** The name of the kind of error, for debugging only. */
3544         final String debugName;
3545 
3546         ResolveError(int kind, String debugName) {
3547             super(kind, 0, null, null, null);
3548             this.debugName = debugName;
3549         }
3550 
3551         @Override
3552         public <R, P> R accept(ElementVisitor<R, P> v, P p) {
3553             throw new AssertionError();
3554         }
3555 
3556         @Override
3557         public String toString() {
3558             return debugName;
3559         }
3560 
3561         @Override
3562         public boolean exists() {
3563             return false;
3564         }
3565 
3566         @Override
3567         public boolean isStatic() {
3568             return false;
3569         }
3570 
3571         /**
3572          * Create an external representation for this erroneous symbol to be
3573          * used during attribution - by default this returns the symbol of a
3574          * brand new error type which stores the original type found
3575          * during resolution.
3576          *
3577          * @param name     the name used during resolution
3578          * @param location the location from which the symbol is accessed
3579          */
3580         protected Symbol access(Name name, TypeSymbol location) {
3581             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3582         }
3583 
3584         /**
3585          * Create a diagnostic representing this resolution error.
3586          *
3587          * @param dkind     The kind of the diagnostic to be created (e.g error).
3588          * @param pos       The position to be used for error reporting.
3589          * @param site      The original type from where the selection took place.
3590          * @param name      The name of the symbol to be resolved.
3591          * @param argtypes  The invocation's value arguments,
3592          *                  if we looked for a method.
3593          * @param typeargtypes  The invocation's type arguments,
3594          *                      if we looked for a method.
3595          */
3596         abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3597                 DiagnosticPosition pos,
3598                 Symbol location,
3599                 Type site,
3600                 Name name,
3601                 List<Type> argtypes,
3602                 List<Type> typeargtypes);
3603     }
3604 
3605     /**
3606      * This class is the root class of all resolution errors caused by
3607      * an invalid symbol being found during resolution.
3608      */
3609     abstract class InvalidSymbolError extends ResolveError {
3610 
3611         /** The invalid symbol found during resolution */
3612         Symbol sym;
3613 
3614         InvalidSymbolError(int kind, Symbol sym, String debugName) {
3615             super(kind, debugName);
3616             this.sym = sym;
3617         }
3618 
3619         @Override
3620         public boolean exists() {
3621             return true;
3622         }
3623 
3624         @Override
3625         public String toString() {
3626              return super.toString() + " wrongSym=" + sym;
3627         }
3628 
3629         @Override
3630         public Symbol access(Name name, TypeSymbol location) {
3631             if ((sym.kind & ERRONEOUS) == 0 && (sym.kind & TYP) != 0)
3632                 return types.createErrorType(name, location, sym.type).tsym;
3633             else
3634                 return sym;
3635         }
3636     }
3637 
3638     /**
3639      * InvalidSymbolError error class indicating that a symbol matching a
3640      * given name does not exists in a given site.
3641      */
3642     class SymbolNotFoundError extends ResolveError {
3643 
3644         SymbolNotFoundError(int kind) {
3645             this(kind, "symbol not found error");
3646         }
3647 
3648         SymbolNotFoundError(int kind, String debugName) {
3649             super(kind, debugName);
3650         }
3651 
3652         @Override
3653         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3654                 DiagnosticPosition pos,
3655                 Symbol location,
3656                 Type site,
3657                 Name name,
3658                 List<Type> argtypes,
3659                 List<Type> typeargtypes) {
3660             argtypes = argtypes == null ? List.<Type>nil() : argtypes;
3661             typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
3662             if (name == names.error)
3663                 return null;
3664 
3665             if (syms.operatorNames.contains(name)) {
3666                 boolean isUnaryOp = argtypes.size() == 1;
3667                 String key = argtypes.size() == 1 ?
3668                     "operator.cant.be.applied" :
3669                     "operator.cant.be.applied.1";
3670                 Type first = argtypes.head;
3671                 Type second = !isUnaryOp ? argtypes.tail.head : null;
3672                 return diags.create(dkind, log.currentSource(), pos,
3673                         key, name, first, second);
3674             }
3675             boolean hasLocation = false;
3676             if (location == null) {
3677                 location = site.tsym;
3678             }
3679             if (!location.name.isEmpty()) {
3680                 if (location.kind == PCK && !site.tsym.exists()) {
3681                     return diags.create(dkind, log.currentSource(), pos,
3682                         "doesnt.exist", location);
3683                 }
3684                 hasLocation = !location.name.equals(names._this) &&
3685                         !location.name.equals(names._super);
3686             }
3687             boolean isConstructor = (kind == ABSENT_MTH || kind == WRONG_STATICNESS) &&
3688                     name == names.init;
3689             KindName kindname = isConstructor ? KindName.CONSTRUCTOR : absentKind(kind);
3690             Name idname = isConstructor ? site.tsym.name : name;
3691             String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
3692             if (hasLocation) {
3693                 return diags.create(dkind, log.currentSource(), pos,
3694                         errKey, kindname, idname, //symbol kindname, name
3695                         typeargtypes, args(argtypes), //type parameters and arguments (if any)
3696                         getLocationDiag(location, site)); //location kindname, type
3697             }
3698             else {
3699                 return diags.create(dkind, log.currentSource(), pos,
3700                         errKey, kindname, idname, //symbol kindname, name
3701                         typeargtypes, args(argtypes)); //type parameters and arguments (if any)
3702             }
3703         }
3704         //where
3705         private Object args(List<Type> args) {
3706             return args.isEmpty() ? args : methodArguments(args);
3707         }
3708 
3709         private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
3710             String key = "cant.resolve";
3711             String suffix = hasLocation ? ".location" : "";
3712             switch (kindname) {
3713                 case METHOD:
3714                 case CONSTRUCTOR: {
3715                     suffix += ".args";
3716                     suffix += hasTypeArgs ? ".params" : "";
3717                 }
3718             }
3719             return key + suffix;
3720         }
3721         private JCDiagnostic getLocationDiag(Symbol location, Type site) {
3722             if (location.kind == VAR) {
3723                 return diags.fragment("location.1",
3724                     kindName(location),
3725                     location,
3726                     location.type);
3727             } else {
3728                 return diags.fragment("location",
3729                     typeKindName(site),
3730                     site,
3731                     null);
3732             }
3733         }
3734     }
3735 
3736     /**
3737      * InvalidSymbolError error class indicating that a given symbol
3738      * (either a method, a constructor or an operand) is not applicable
3739      * given an actual arguments/type argument list.
3740      */
3741     class InapplicableSymbolError extends ResolveError {
3742 
3743         protected MethodResolutionContext resolveContext;
3744 
3745         InapplicableSymbolError(MethodResolutionContext context) {
3746             this(WRONG_MTH, "inapplicable symbol error", context);
3747         }
3748 
3749         protected InapplicableSymbolError(int kind, String debugName, MethodResolutionContext context) {
3750             super(kind, debugName);
3751             this.resolveContext = context;
3752         }
3753 
3754         @Override
3755         public String toString() {
3756             return super.toString();
3757         }
3758 
3759         @Override
3760         public boolean exists() {
3761             return true;
3762         }
3763 
3764         @Override
3765         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3766                 DiagnosticPosition pos,
3767                 Symbol location,
3768                 Type site,
3769                 Name name,
3770                 List<Type> argtypes,
3771                 List<Type> typeargtypes) {
3772             if (name == names.error)
3773                 return null;
3774 
3775             if (syms.operatorNames.contains(name)) {
3776                 boolean isUnaryOp = argtypes.size() == 1;
3777                 String key = argtypes.size() == 1 ?
3778                     "operator.cant.be.applied" :
3779                     "operator.cant.be.applied.1";
3780                 Type first = argtypes.head;
3781                 Type second = !isUnaryOp ? argtypes.tail.head : null;
3782                 return diags.create(dkind, log.currentSource(), pos,
3783                         key, name, first, second);
3784             }
3785             else {
3786                 Pair<Symbol, JCDiagnostic> c = errCandidate();
3787                 if (compactMethodDiags) {
3788                     for (Map.Entry<Template, DiagnosticRewriter> _entry :
3789                             MethodResolutionDiagHelper.rewriters.entrySet()) {
3790                         if (_entry.getKey().matches(c.snd)) {
3791                             JCDiagnostic simpleDiag =
3792                                     _entry.getValue().rewriteDiagnostic(diags, pos,
3793                                         log.currentSource(), dkind, c.snd);
3794                             simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
3795                             return simpleDiag;
3796                         }
3797                     }
3798                 }
3799                 Symbol ws = c.fst.asMemberOf(site, types);
3800                 return diags.create(dkind, log.currentSource(), pos,
3801                           "cant.apply.symbol",
3802                           kindName(ws),
3803                           ws.name == names.init ? ws.owner.name : ws.name,
3804                           methodArguments(ws.type.getParameterTypes()),
3805                           methodArguments(argtypes),
3806                           kindName(ws.owner),
3807                           ws.owner.type,
3808                           c.snd);
3809             }
3810         }
3811 
3812         @Override
3813         public Symbol access(Name name, TypeSymbol location) {
3814             return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3815         }
3816 
3817         protected Pair<Symbol, JCDiagnostic> errCandidate() {
3818             Candidate bestSoFar = null;
3819             for (Candidate c : resolveContext.candidates) {
3820                 if (c.isApplicable()) continue;
3821                 bestSoFar = c;
3822             }
3823             Assert.checkNonNull(bestSoFar);
3824             return new Pair<Symbol, JCDiagnostic>(bestSoFar.sym, bestSoFar.details);
3825         }
3826     }
3827 
3828     /**
3829      * ResolveError error class indicating that a set of symbols
3830      * (either methods, constructors or operands) is not applicable
3831      * given an actual arguments/type argument list.
3832      */
3833     class InapplicableSymbolsError extends InapplicableSymbolError {
3834 
3835         InapplicableSymbolsError(MethodResolutionContext context) {
3836             super(WRONG_MTHS, "inapplicable symbols", context);
3837         }
3838 
3839         @Override
3840         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3841                 DiagnosticPosition pos,
3842                 Symbol location,
3843                 Type site,
3844                 Name name,
3845                 List<Type> argtypes,
3846                 List<Type> typeargtypes) {
3847             Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
3848             Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
3849                     filterCandidates(candidatesMap) :
3850                     mapCandidates();
3851             if (filteredCandidates.isEmpty()) {
3852                 filteredCandidates = candidatesMap;
3853             }
3854             boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
3855             if (filteredCandidates.size() > 1) {
3856                 JCDiagnostic err = diags.create(dkind,
3857                         null,
3858                         truncatedDiag ?
3859                             EnumSet.of(DiagnosticFlag.COMPRESSED) :
3860                             EnumSet.noneOf(DiagnosticFlag.class),
3861                         log.currentSource(),
3862                         pos,
3863                         "cant.apply.symbols",
3864                         name == names.init ? KindName.CONSTRUCTOR : absentKind(kind),
3865                         name == names.init ? site.tsym.name : name,
3866                         methodArguments(argtypes));
3867                 return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
3868             } else if (filteredCandidates.size() == 1) {
3869                 Map.Entry<Symbol, JCDiagnostic> _e =
3870                                 filteredCandidates.entrySet().iterator().next();
3871                 final Pair<Symbol, JCDiagnostic> p = new Pair<Symbol, JCDiagnostic>(_e.getKey(), _e.getValue());
3872                 JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
3873                     @Override
3874                     protected Pair<Symbol, JCDiagnostic> errCandidate() {
3875                         return p;
3876                     }
3877                 }.getDiagnostic(dkind, pos,
3878                     location, site, name, argtypes, typeargtypes);
3879                 if (truncatedDiag) {
3880                     d.setFlag(DiagnosticFlag.COMPRESSED);
3881                 }
3882                 return d;
3883             } else {
3884                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
3885                     location, site, name, argtypes, typeargtypes);
3886             }
3887         }
3888         //where
3889             private Map<Symbol, JCDiagnostic> mapCandidates() {
3890                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
3891                 for (Candidate c : resolveContext.candidates) {
3892                     if (c.isApplicable()) continue;
3893                     candidates.put(c.sym, c.details);
3894                 }
3895                 return candidates;
3896             }
3897 
3898             Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
3899                 Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<Symbol, JCDiagnostic>();
3900                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3901                     JCDiagnostic d = _entry.getValue();
3902                     if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
3903                         candidates.put(_entry.getKey(), d);
3904                     }
3905                 }
3906                 return candidates;
3907             }
3908 
3909             private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
3910                 List<JCDiagnostic> details = List.nil();
3911                 for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3912                     Symbol sym = _entry.getKey();
3913                     JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
3914                             Kinds.kindName(sym),
3915                             sym.location(site, types),
3916                             sym.asMemberOf(site, types),
3917                             _entry.getValue());
3918                     details = details.prepend(detailDiag);
3919                 }
3920                 //typically members are visited in reverse order (see Scope)
3921                 //so we need to reverse the candidate list so that candidates
3922                 //conform to source order
3923                 return details;
3924             }
3925     }
3926 
3927     /**
3928      * An InvalidSymbolError error class indicating that a symbol is not
3929      * accessible from a given site
3930      */
3931     class AccessError extends InvalidSymbolError {
3932 
3933         private Env<AttrContext> env;
3934         private Type site;
3935 
3936         AccessError(Symbol sym) {
3937             this(null, null, sym);
3938         }
3939 
3940         AccessError(Env<AttrContext> env, Type site, Symbol sym) {
3941             super(HIDDEN, sym, "access error");
3942             this.env = env;
3943             this.site = site;
3944             if (debugResolve)
3945                 log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
3946         }
3947 
3948         @Override
3949         public boolean exists() {
3950             return false;
3951         }
3952 
3953         @Override
3954         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3955                 DiagnosticPosition pos,
3956                 Symbol location,
3957                 Type site,
3958                 Name name,
3959                 List<Type> argtypes,
3960                 List<Type> typeargtypes) {
3961             if (sym.owner.type.hasTag(ERROR))
3962                 return null;
3963 
3964             if (sym.name == names.init && sym.owner != site.tsym) {
3965                 return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
3966                         pos, location, site, name, argtypes, typeargtypes);
3967             }
3968             else if ((sym.flags() & PUBLIC) != 0
3969                 || (env != null && this.site != null
3970                     && !isAccessible(env, this.site))) {
3971                 return diags.create(dkind, log.currentSource(),
3972                         pos, "not.def.access.class.intf.cant.access",
3973                     sym, sym.location());
3974             }
3975             else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
3976                 return diags.create(dkind, log.currentSource(),
3977                         pos, "report.access", sym,
3978                         asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
3979                         sym.location());
3980             }
3981             else {
3982                 return diags.create(dkind, log.currentSource(),
3983                         pos, "not.def.public.cant.access", sym, sym.location());
3984             }
3985         }
3986     }
3987 
3988     /**
3989      * InvalidSymbolError error class indicating that an instance member
3990      * has erroneously been accessed from a static context.
3991      */
3992     class StaticError extends InvalidSymbolError {
3993 
3994         StaticError(Symbol sym) {
3995             super(STATICERR, sym, "static error");
3996         }
3997 
3998         @Override
3999         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4000                 DiagnosticPosition pos,
4001                 Symbol location,
4002                 Type site,
4003                 Name name,
4004                 List<Type> argtypes,
4005                 List<Type> typeargtypes) {
4006             Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
4007                 ? types.erasure(sym.type).tsym
4008                 : sym);
4009             return diags.create(dkind, log.currentSource(), pos,
4010                     "non-static.cant.be.ref", kindName(sym), errSym);
4011         }
4012     }
4013 
4014     /**
4015      * InvalidSymbolError error class indicating that a pair of symbols
4016      * (either methods, constructors or operands) are ambiguous
4017      * given an actual arguments/type argument list.
4018      */
4019     class AmbiguityError extends ResolveError {
4020 
4021         /** The other maximally specific symbol */
4022         List<Symbol> ambiguousSyms = List.nil();
4023 
4024         @Override
4025         public boolean exists() {
4026             return true;
4027         }
4028 
4029         AmbiguityError(Symbol sym1, Symbol sym2) {
4030             super(AMBIGUOUS, "ambiguity error");
4031             ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
4032         }
4033 
4034         private List<Symbol> flatten(Symbol sym) {
4035             if (sym.kind == AMBIGUOUS) {
4036                 return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
4037             } else {
4038                 return List.of(sym);
4039             }
4040         }
4041 
4042         AmbiguityError addAmbiguousSymbol(Symbol s) {
4043             ambiguousSyms = ambiguousSyms.prepend(s);
4044             return this;
4045         }
4046 
4047         @Override
4048         JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4049                 DiagnosticPosition pos,
4050                 Symbol location,
4051                 Type site,
4052                 Name name,
4053                 List<Type> argtypes,
4054                 List<Type> typeargtypes) {
4055             List<Symbol> diagSyms = ambiguousSyms.reverse();
4056             Symbol s1 = diagSyms.head;
4057             Symbol s2 = diagSyms.tail.head;
4058             Name sname = s1.name;
4059             if (sname == names.init) sname = s1.owner.name;
4060             return diags.create(dkind, log.currentSource(),
4061                       pos, "ref.ambiguous", sname,
4062                       kindName(s1),
4063                       s1,
4064                       s1.location(site, types),
4065                       kindName(s2),
4066                       s2,
4067                       s2.location(site, types));
4068         }
4069 
4070         /**
4071          * If multiple applicable methods are found during overload and none of them
4072          * is more specific than the others, attempt to merge their signatures.
4073          */
4074         Symbol mergeAbstracts(Type site) {
4075             List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
4076             for (Symbol s : ambiguousInOrder) {
4077                 Type mt = types.memberType(site, s);
4078                 boolean found = true;
4079                 List<Type> allThrown = mt.getThrownTypes();
4080                 for (Symbol s2 : ambiguousInOrder) {
4081                     Type mt2 = types.memberType(site, s2);
4082                     if ((s2.flags() & ABSTRACT) == 0 ||
4083                         !types.overrideEquivalent(mt, mt2) ||
4084                         !types.isSameTypes(s.erasure(types).getParameterTypes(),
4085                                        s2.erasure(types).getParameterTypes())) {
4086                         //ambiguity cannot be resolved
4087                         return this;
4088                     }
4089                     Type mst = mostSpecificReturnType(mt, mt2);
4090                     if (mst == null || mst != mt) {
4091                         found = false;
4092                         break;
4093                     }
4094                     allThrown = chk.intersect(allThrown, mt2.getThrownTypes());
4095                 }
4096                 if (found) {
4097                     //all ambiguous methods were abstract and one method had
4098                     //most specific return type then others
4099                     return (allThrown == mt.getThrownTypes()) ?
4100                             s : new MethodSymbol(
4101                                 s.flags(),
4102                                 s.name,
4103                                 types.createMethodTypeWithThrown(s.type, allThrown),
4104                                 s.owner);
4105                 }
4106             }
4107             return this;
4108         }
4109 
4110         @Override
4111         protected Symbol access(Name name, TypeSymbol location) {
4112             Symbol firstAmbiguity = ambiguousSyms.last();
4113             return firstAmbiguity.kind == TYP ?
4114                     types.createErrorType(name, location, firstAmbiguity.type).tsym :
4115                     firstAmbiguity;
4116         }
4117     }
4118 
4119     class BadVarargsMethod extends ResolveError {
4120 
4121         ResolveError delegatedError;
4122 
4123         BadVarargsMethod(ResolveError delegatedError) {
4124             super(delegatedError.kind, "badVarargs");
4125             this.delegatedError = delegatedError;
4126         }
4127 
4128         @Override
4129         public Symbol baseSymbol() {
4130             return delegatedError.baseSymbol();
4131         }
4132 
4133         @Override
4134         protected Symbol access(Name name, TypeSymbol location) {
4135             return delegatedError.access(name, location);
4136         }
4137 
4138         @Override
4139         public boolean exists() {
4140             return true;
4141         }
4142 
4143         @Override
4144         JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4145             return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
4146         }
4147     }
4148 
4149     /**
4150      * Helper class for method resolution diagnostic simplification.
4151      * Certain resolution diagnostic are rewritten as simpler diagnostic
4152      * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
4153      * is stripped away, as it doesn't carry additional info. The logic
4154      * for matching a given diagnostic is given in terms of a template
4155      * hierarchy: a diagnostic template can be specified programmatically,
4156      * so that only certain diagnostics are matched. Each templete is then
4157      * associated with a rewriter object that carries out the task of rewtiting
4158      * the diagnostic to a simpler one.
4159      */
4160     static class MethodResolutionDiagHelper {
4161 
4162         /**
4163          * A diagnostic rewriter transforms a method resolution diagnostic
4164          * into a simpler one
4165          */
4166         interface DiagnosticRewriter {
4167             JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4168                     DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4169                     DiagnosticType preferredKind, JCDiagnostic d);
4170         }
4171 
4172         /**
4173          * A diagnostic template is made up of two ingredients: (i) a regular
4174          * expression for matching a diagnostic key and (ii) a list of sub-templates
4175          * for matching diagnostic arguments.
4176          */
4177         static class Template {
4178 
4179             /** regex used to match diag key */
4180             String regex;
4181 
4182             /** templates used to match diagnostic args */
4183             Template[] subTemplates;
4184 
4185             Template(String key, Template... subTemplates) {
4186                 this.regex = key;
4187                 this.subTemplates = subTemplates;
4188             }
4189 
4190             /**
4191              * Returns true if the regex matches the diagnostic key and if
4192              * all diagnostic arguments are matches by corresponding sub-templates.
4193              */
4194             boolean matches(Object o) {
4195                 JCDiagnostic d = (JCDiagnostic)o;
4196                 Object[] args = d.getArgs();
4197                 if (!d.getCode().matches(regex) ||
4198                         subTemplates.length != d.getArgs().length) {
4199                     return false;
4200                 }
4201                 for (int i = 0; i < args.length ; i++) {
4202                     if (!subTemplates[i].matches(args[i])) {
4203                         return false;
4204                     }
4205                 }
4206                 return true;
4207             }
4208         }
4209 
4210         /** a dummy template that match any diagnostic argument */
4211         static final Template skip = new Template("") {
4212             @Override
4213             boolean matches(Object d) {
4214                 return true;
4215             }
4216         };
4217 
4218         /** rewriter map used for method resolution simplification */
4219         static final Map<Template, DiagnosticRewriter> rewriters =
4220                 new LinkedHashMap<Template, DiagnosticRewriter>();
4221 
4222         static {
4223             String argMismatchRegex = MethodCheckDiag.ARG_MISMATCH.regex();
4224             rewriters.put(new Template(argMismatchRegex, skip),
4225                     new DiagnosticRewriter() {
4226                 @Override
4227                 public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4228                         DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4229                         DiagnosticType preferredKind, JCDiagnostic d) {
4230                     JCDiagnostic cause = (JCDiagnostic)d.getArgs()[0];
4231                     DiagnosticPosition pos = d.getDiagnosticPosition();
4232                     if (pos == null) {
4233                         pos = preferedPos;
4234                     }
4235                     return diags.create(preferredKind, preferredSource, pos,
4236                             "prob.found.req", cause);
4237                 }
4238             });
4239         }
4240     }
4241 
4242     enum MethodResolutionPhase {
4243         BASIC(false, false),
4244         BOX(true, false),
4245         VARARITY(true, true) {
4246             @Override
4247             public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
4248                 //Check invariants (see {@code LookupHelper.shouldStop})
4249                 Assert.check(bestSoFar.kind >= ERRONEOUS && bestSoFar.kind != AMBIGUOUS);
4250                 if (sym.kind < ERRONEOUS) {
4251                     //varargs resolution successful
4252                     return sym;
4253                 } else {
4254                     //pick best error
4255                     switch (bestSoFar.kind) {
4256                         case WRONG_MTH:
4257                         case WRONG_MTHS:
4258                             //Override previous errors if they were caused by argument mismatch.
4259                             //This generally means preferring current symbols - but we need to pay
4260                             //attention to the fact that the varargs lookup returns 'less' candidates
4261                             //than the previous rounds, and adjust that accordingly.
4262                             switch (sym.kind) {
4263                                 case WRONG_MTH:
4264                                     //if the previous round matched more than one method, return that
4265                                     //result instead
4266                                     return bestSoFar.kind == WRONG_MTHS ?
4267                                             bestSoFar : sym;
4268                                 case ABSENT_MTH:
4269                                     //do not override erroneous symbol if the arity lookup did not
4270                                     //match any method
4271                                     return bestSoFar;
4272                                 case WRONG_MTHS:
4273                                 default:
4274                                     //safe to override
4275                                     return sym;
4276                             }
4277                         default:
4278                             //otherwise, return first error
4279                             return bestSoFar;
4280                     }
4281                 }
4282             }
4283         };
4284 
4285         final boolean isBoxingRequired;
4286         final boolean isVarargsRequired;
4287 
4288         MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
4289            this.isBoxingRequired = isBoxingRequired;
4290            this.isVarargsRequired = isVarargsRequired;
4291         }
4292 
4293         public boolean isBoxingRequired() {
4294             return isBoxingRequired;
4295         }
4296 
4297         public boolean isVarargsRequired() {
4298             return isVarargsRequired;
4299         }
4300 
4301         public boolean isApplicable(boolean boxingEnabled, boolean varargsEnabled) {
4302             return (varargsEnabled || !isVarargsRequired) &&
4303                    (boxingEnabled || !isBoxingRequired);
4304         }
4305 
4306         public Symbol mergeResults(Symbol prev, Symbol sym) {
4307             return sym;
4308         }
4309     }
4310 
4311     final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
4312 
4313     /**
4314      * A resolution context is used to keep track of intermediate results of
4315      * overload resolution, such as list of method that are not applicable
4316      * (used to generate more precise diagnostics) and so on. Resolution contexts
4317      * can be nested - this means that when each overload resolution routine should
4318      * work within the resolution context it created.
4319      */
4320     class MethodResolutionContext {
4321 
4322         private List<Candidate> candidates = List.nil();
4323 
4324         MethodResolutionPhase step = null;
4325 
4326         MethodCheck methodCheck = resolveMethodCheck;
4327 
4328         private boolean internalResolution = false;
4329         private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
4330 
4331         void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
4332             Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
4333             candidates = candidates.append(c);
4334         }
4335 
4336         void addApplicableCandidate(Symbol sym, Type mtype) {
4337             Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
4338             candidates = candidates.append(c);
4339         }
4340 
4341         DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
4342             DeferredAttrContext parent = (pendingResult == null)
4343                 ? deferredAttr.emptyDeferredAttrContext
4344                 : pendingResult.checkContext.deferredAttrContext();
4345             return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
4346                     inferenceContext, parent, warn);
4347         }
4348 
4349         /**
4350          * This class represents an overload resolution candidate. There are two
4351          * kinds of candidates: applicable methods and inapplicable methods;
4352          * applicable methods have a pointer to the instantiated method type,
4353          * while inapplicable candidates contain further details about the
4354          * reason why the method has been considered inapplicable.
4355          */
4356         @SuppressWarnings("overrides")
4357         class Candidate {
4358 
4359             final MethodResolutionPhase step;
4360             final Symbol sym;
4361             final JCDiagnostic details;
4362             final Type mtype;
4363 
4364             private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
4365                 this.step = step;
4366                 this.sym = sym;
4367                 this.details = details;
4368                 this.mtype = mtype;
4369             }
4370 
4371             @Override
4372             public boolean equals(Object o) {
4373                 if (o instanceof Candidate) {
4374                     Symbol s1 = this.sym;
4375                     Symbol s2 = ((Candidate)o).sym;
4376                     if  ((s1 != s2 &&
4377                             (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
4378                             (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
4379                             ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
4380                         return true;
4381                 }
4382                 return false;
4383             }
4384 
4385             boolean isApplicable() {
4386                 return mtype != null;
4387             }
4388         }
4389 
4390         DeferredAttr.AttrMode attrMode() {
4391             return attrMode;
4392         }
4393 
4394         boolean internal() {
4395             return internalResolution;
4396         }
4397     }
4398 
4399     MethodResolutionContext currentResolutionContext = null;
4400 }
4401