1 /*
2  * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2012, 2017 SAP AG. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
28 
29 #include "asm/assembler.hpp"
30 
31 // MacroAssembler extends Assembler by a few frequently used macros.
32 
33 class ciTypeArray;
34 
35 class MacroAssembler: public Assembler {
36  public:
MacroAssembler(CodeBuffer * code)37   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
38 
39   //
40   // Optimized instruction emitters
41   //
42 
largeoffset_si16_si16_hi(int si31)43   inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; }
largeoffset_si16_si16_lo(int si31)44   inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); }
45 
46   // load d = *[a+si31]
47   // Emits several instructions if the offset is not encodable in one instruction.
48   void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop);
49   void ld_largeoffset          (Register d, int si31, Register a, int emit_filler_nop);
50   inline static bool is_ld_largeoffset(address a);
51   inline static int get_ld_largeoffset_offset(address a);
52 
53   inline void round_to(Register r, int modulus);
54 
55   // Load/store with type given by parameter.
56   void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed);
57   void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes);
58 
59   // Move register if destination register and target register are different
60   inline void mr_if_needed(Register rd, Register rs);
61   inline void fmr_if_needed(FloatRegister rd, FloatRegister rs);
62   // This is dedicated for emitting scheduled mach nodes. For better
63   // readability of the ad file I put it here.
64   // Endgroups are not needed if
65   //  - the scheduler is off
66   //  - the scheduler found that there is a natural group end, in that
67   //    case it reduced the size of the instruction used in the test
68   //    yielding 'needed'.
69   inline void endgroup_if_needed(bool needed);
70 
71   // Memory barriers.
72   inline void membar(int bits);
73   inline void release();
74   inline void acquire();
75   inline void fence();
76 
77   // nop padding
78   void align(int modulus, int max = 252, int rem = 0);
79 
80   //
81   // Constants, loading constants, TOC support
82   //
83 
84   // Address of the global TOC.
85   inline static address global_toc();
86   // Offset of given address to the global TOC.
87   inline static int offset_to_global_toc(const address addr);
88 
89   // Address of TOC of the current method.
90   inline address method_toc();
91   // Offset of given address to TOC of the current method.
92   inline int offset_to_method_toc(const address addr);
93 
94   // Global TOC.
95   void calculate_address_from_global_toc(Register dst, address addr,
96                                          bool hi16 = true, bool lo16 = true,
97                                          bool add_relocation = true, bool emit_dummy_addr = false);
calculate_address_from_global_toc_hi16only(Register dst,address addr)98   inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) {
99     calculate_address_from_global_toc(dst, addr, true, false);
100   };
calculate_address_from_global_toc_lo16only(Register dst,address addr)101   inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) {
102     calculate_address_from_global_toc(dst, addr, false, true);
103   };
104 
105   inline static bool is_calculate_address_from_global_toc_at(address a, address bound);
106   static int patch_calculate_address_from_global_toc_at(address a, address addr, address bound);
107   static address get_address_of_calculate_address_from_global_toc_at(address a, address addr);
108 
109 #ifdef _LP64
110   // Patch narrow oop constant.
111   inline static bool is_set_narrow_oop(address a, address bound);
112   static int patch_set_narrow_oop(address a, address bound, narrowOop data);
113   static narrowOop get_narrow_oop(address a, address bound);
114 #endif
115 
116   inline static bool is_load_const_at(address a);
117 
118   // Emits an oop const to the constant pool, loads the constant, and
119   // sets a relocation info with address current_pc.
120   void load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc);
load_toc_from_toc(Register dst,AddressLiteral & a,Register toc)121   void load_toc_from_toc(Register dst, AddressLiteral& a, Register toc) {
122     assert(dst == R2_TOC, "base register must be TOC");
123     load_const_from_method_toc(dst, a, toc);
124   }
125 
126   static bool is_load_const_from_method_toc_at(address a);
127   static int get_offset_of_load_const_from_method_toc_at(address a);
128 
129   // Get the 64 bit constant from a `load_const' sequence.
130   static long get_const(address load_const);
131 
132   // Patch the 64 bit constant of a `load_const' sequence. This is a
133   // low level procedure. It neither flushes the instruction cache nor
134   // is it atomic.
135   static void patch_const(address load_const, long x);
136 
137   // Metadata in code that we have to keep track of.
138   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
139   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
140   // Oops used directly in compiled code are stored in the constant pool,
141   // and loaded from there.
142   // Allocate new entry for oop in constant pool. Generate relocation.
143   AddressLiteral allocate_oop_address(jobject obj);
144   // Find oop obj in constant pool. Return relocation with it's index.
145   AddressLiteral constant_oop_address(jobject obj);
146 
147   // Find oop in constant pool and emit instructions to load it.
148   // Uses constant_oop_address.
149   inline void set_oop_constant(jobject obj, Register d);
150   // Same as load_address.
151   inline void set_oop         (AddressLiteral obj_addr, Register d);
152 
153   // Read runtime constant:  Issue load if constant not yet established,
154   // else use real constant.
155   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
156                                                 Register tmp,
157                                                 int offset);
158 
159   //
160   // branch, jump
161   //
162 
163   inline void pd_patch_instruction(address branch, address target);
164   NOT_PRODUCT(static void pd_print_patched_instruction(address branch);)
165 
166   // Conditional far branch for destinations encodable in 24+2 bits.
167   // Same interface as bc, e.g. no inverse boint-field.
168   enum {
169     bc_far_optimize_not         = 0,
170     bc_far_optimize_on_relocate = 1
171   };
172   // optimize: flag for telling the conditional far branch to optimize
173   //           itself when relocated.
174   void bc_far(int boint, int biint, Label& dest, int optimize);
175   // Relocation of conditional far branches.
176   static bool    is_bc_far_at(address instruction_addr);
177   static address get_dest_of_bc_far_at(address instruction_addr);
178   static void    set_dest_of_bc_far_at(address instruction_addr, address dest);
179  private:
180   static bool inline is_bc_far_variant1_at(address instruction_addr);
181   static bool inline is_bc_far_variant2_at(address instruction_addr);
182   static bool inline is_bc_far_variant3_at(address instruction_addr);
183  public:
184 
185   // Convenience bc_far versions.
186   inline void blt_far(ConditionRegister crx, Label& L, int optimize);
187   inline void bgt_far(ConditionRegister crx, Label& L, int optimize);
188   inline void beq_far(ConditionRegister crx, Label& L, int optimize);
189   inline void bso_far(ConditionRegister crx, Label& L, int optimize);
190   inline void bge_far(ConditionRegister crx, Label& L, int optimize);
191   inline void ble_far(ConditionRegister crx, Label& L, int optimize);
192   inline void bne_far(ConditionRegister crx, Label& L, int optimize);
193   inline void bns_far(ConditionRegister crx, Label& L, int optimize);
194 
195   // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump.
196  private:
197   enum {
198     bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/),
199     bxx64_patchable_size              = bxx64_patchable_instruction_count * BytesPerInstWord,
200     bxx64_patchable_ret_addr_offset   = bxx64_patchable_size
201   };
202   void bxx64_patchable(address target, relocInfo::relocType rt, bool link);
203   static bool is_bxx64_patchable_at(            address instruction_addr, bool link);
204   // Does the instruction use a pc-relative encoding of the destination?
205   static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link);
206   static bool is_bxx64_patchable_variant1_at(   address instruction_addr, bool link);
207   // Load destination relative to global toc.
208   static bool is_bxx64_patchable_variant1b_at(  address instruction_addr, bool link);
209   static bool is_bxx64_patchable_variant2_at(   address instruction_addr, bool link);
210   static void set_dest_of_bxx64_patchable_at(   address instruction_addr, address target, bool link);
211   static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link);
212 
213  public:
214   // call
215   enum {
216     bl64_patchable_instruction_count = bxx64_patchable_instruction_count,
217     bl64_patchable_size              = bxx64_patchable_size,
218     bl64_patchable_ret_addr_offset   = bxx64_patchable_ret_addr_offset
219   };
bl64_patchable(address target,relocInfo::relocType rt)220   inline void bl64_patchable(address target, relocInfo::relocType rt) {
221     bxx64_patchable(target, rt, /*link=*/true);
222   }
is_bl64_patchable_at(address instruction_addr)223   inline static bool is_bl64_patchable_at(address instruction_addr) {
224     return is_bxx64_patchable_at(instruction_addr, /*link=*/true);
225   }
is_bl64_patchable_pcrelative_at(address instruction_addr)226   inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) {
227     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true);
228   }
set_dest_of_bl64_patchable_at(address instruction_addr,address target)229   inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) {
230     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true);
231   }
get_dest_of_bl64_patchable_at(address instruction_addr)232   inline static address get_dest_of_bl64_patchable_at(address instruction_addr) {
233     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true);
234   }
235   // jump
236   enum {
237     b64_patchable_instruction_count = bxx64_patchable_instruction_count,
238     b64_patchable_size              = bxx64_patchable_size,
239   };
b64_patchable(address target,relocInfo::relocType rt)240   inline void b64_patchable(address target, relocInfo::relocType rt) {
241     bxx64_patchable(target, rt, /*link=*/false);
242   }
is_b64_patchable_at(address instruction_addr)243   inline static bool is_b64_patchable_at(address instruction_addr) {
244     return is_bxx64_patchable_at(instruction_addr, /*link=*/false);
245   }
is_b64_patchable_pcrelative_at(address instruction_addr)246   inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) {
247     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false);
248   }
set_dest_of_b64_patchable_at(address instruction_addr,address target)249   inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) {
250     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false);
251   }
get_dest_of_b64_patchable_at(address instruction_addr)252   inline static address get_dest_of_b64_patchable_at(address instruction_addr) {
253     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false);
254   }
255 
256   //
257   // Support for frame handling
258   //
259 
260   // some ABI-related functions
261   void save_nonvolatile_gprs(   Register dst_base, int offset);
262   void restore_nonvolatile_gprs(Register src_base, int offset);
263   void save_volatile_gprs(   Register dst_base, int offset);
264   void restore_volatile_gprs(Register src_base, int offset);
265   void save_LR_CR(   Register tmp);     // tmp contains LR on return.
266   void restore_LR_CR(Register tmp);
267 
268   // Get current PC using bl-next-instruction trick.
269   address get_PC_trash_LR(Register result);
270 
271   // Resize current frame either relatively wrt to current SP or absolute.
272   void resize_frame(Register offset, Register tmp);
273   void resize_frame(int      offset, Register tmp);
274   void resize_frame_absolute(Register addr, Register tmp1, Register tmp2);
275 
276   // Push a frame of size bytes.
277   void push_frame(Register bytes, Register tmp);
278 
279   // Push a frame of size `bytes'. No abi space provided.
280   void push_frame(unsigned int bytes, Register tmp);
281 
282   // Push a frame of size `bytes' plus abi_reg_args on top.
283   void push_frame_reg_args(unsigned int bytes, Register tmp);
284 
285   // Setup up a new C frame with a spill area for non-volatile GPRs and additional
286   // space for local variables
287   void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp);
288 
289   // pop current C frame
290   void pop_frame();
291 
292   //
293   // Calls
294   //
295 
296  private:
297   address _last_calls_return_pc;
298 
299 #if defined(ABI_ELFv2)
300   // Generic version of a call to C function.
301   // Updates and returns _last_calls_return_pc.
302   address branch_to(Register function_entry, bool and_link);
303 #else
304   // Generic version of a call to C function via a function descriptor
305   // with variable support for C calling conventions (TOC, ENV, etc.).
306   // updates and returns _last_calls_return_pc.
307   address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
308                     bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee);
309 #endif
310 
311  public:
312 
313   // Get the pc where the last call will return to. returns _last_calls_return_pc.
314   inline address last_calls_return_pc();
315 
316 #if defined(ABI_ELFv2)
317   // Call a C function via a function descriptor and use full C
318   // calling conventions. Updates and returns _last_calls_return_pc.
319   address call_c(Register function_entry);
320   // For tail calls: only branch, don't link, so callee returns to caller of this function.
321   address call_c_and_return_to_caller(Register function_entry);
322   address call_c(address function_entry, relocInfo::relocType rt);
323 #else
324   // Call a C function via a function descriptor and use full C
325   // calling conventions. Updates and returns _last_calls_return_pc.
326   address call_c(Register function_descriptor);
327   // For tail calls: only branch, don't link, so callee returns to caller of this function.
328   address call_c_and_return_to_caller(Register function_descriptor);
329   address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt);
330   address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt,
331                            Register toc);
332 #endif
333 
334  protected:
335 
336   // It is imperative that all calls into the VM are handled via the
337   // call_VM macros. They make sure that the stack linkage is setup
338   // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
339   // while call_VM_leaf's correspond to LEAF entry points.
340   //
341   // This is the base routine called by the different versions of
342   // call_VM. The interpreter may customize this version by overriding
343   // it for its purposes (e.g., to save/restore additional registers
344   // when doing a VM call).
345   //
346   // If no last_java_sp is specified (noreg) then SP will be used instead.
347   virtual void call_VM_base(
348      // where an oop-result ends up if any; use noreg otherwise
349     Register        oop_result,
350     // to set up last_Java_frame in stubs; use noreg otherwise
351     Register        last_java_sp,
352     // the entry point
353     address         entry_point,
354     // flag which indicates if exception should be checked
355     bool            check_exception = true
356   );
357 
358   // Support for VM calls. This is the base routine called by the
359   // different versions of call_VM_leaf. The interpreter may customize
360   // this version by overriding it for its purposes (e.g., to
361   // save/restore additional registers when doing a VM call).
362   void call_VM_leaf_base(address entry_point);
363 
364  public:
365   // Call into the VM.
366   // Passes the thread pointer (in R3_ARG1) as a prepended argument.
367   // Makes sure oop return values are visible to the GC.
368   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
369   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
370   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
371   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true);
372   void call_VM_leaf(address entry_point);
373   void call_VM_leaf(address entry_point, Register arg_1);
374   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
375   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
376 
377   // Call a stub function via a function descriptor, but don't save
378   // TOC before call, don't setup TOC and ENV for call, and don't
379   // restore TOC after call. Updates and returns _last_calls_return_pc.
380   inline address call_stub(Register function_entry);
381   inline void call_stub_and_return_to(Register function_entry, Register return_pc);
382 
383   //
384   // Java utilities
385   //
386 
387   // Read from the polling page, its address is already in a register.
388   inline void load_from_polling_page(Register polling_page_address, int offset = 0);
389   // Check whether instruction is a read access to the polling page
390   // which was emitted by load_from_polling_page(..).
391   static bool is_load_from_polling_page(int instruction, void* ucontext/*may be NULL*/,
392                                         address* polling_address_ptr = NULL);
393 
394   // Check whether instruction is a write access to the memory
395   // serialization page realized by one of the instructions stw, stwu,
396   // stwx, or stwux.
397   static bool is_memory_serialization(int instruction, JavaThread* thread, void* ucontext);
398 
399   // Support for NULL-checks
400   //
401   // Generates code that causes a NULL OS exception if the content of reg is NULL.
402   // If the accessed location is M[reg + offset] and the offset is known, provide the
403   // offset. No explicit code generation is needed if the offset is within a certain
404   // range (0 <= offset <= page_size).
405 
406   // Stack overflow checking
407   void bang_stack_with_offset(int offset);
408 
409   // If instruction is a stack bang of the form ld, stdu, or
410   // stdux, return the banged address. Otherwise, return 0.
411   static address get_stack_bang_address(int instruction, void* ucontext);
412 
413   // Atomics
414   // CmpxchgX sets condition register to cmpX(current, compare).
415   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
416   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
cmpxchgx_hint_acquire_lock()417   static inline bool cmpxchgx_hint_acquire_lock()  { return true; }
418   // The stxcx will probably not be succeeded by a releasing store.
cmpxchgx_hint_release_lock()419   static inline bool cmpxchgx_hint_release_lock()  { return false; }
cmpxchgx_hint_atomic_update()420   static inline bool cmpxchgx_hint_atomic_update() { return false; }
421 
422   // Cmpxchg semantics
423   enum {
424     MemBarNone = 0,
425     MemBarRel  = 1,
426     MemBarAcq  = 2,
427     MemBarFenceAfter = 4 // use powers of 2
428   };
429   void cmpxchgw(ConditionRegister flag,
430                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
431                 int semantics, bool cmpxchgx_hint = false,
432                 Register int_flag_success = noreg, bool contention_hint = false);
433   void cmpxchgd(ConditionRegister flag,
434                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
435                 int semantics, bool cmpxchgx_hint = false,
436                 Register int_flag_success = noreg, Label* failed = NULL, bool contention_hint = false);
437 
438   // interface method calling
439   void lookup_interface_method(Register recv_klass,
440                                Register intf_klass,
441                                RegisterOrConstant itable_index,
442                                Register method_result,
443                                Register temp_reg, Register temp2_reg,
444                                Label& no_such_interface,
445                                bool return_method = true);
446 
447   // virtual method calling
448   void lookup_virtual_method(Register recv_klass,
449                              RegisterOrConstant vtable_index,
450                              Register method_result);
451 
452   // Test sub_klass against super_klass, with fast and slow paths.
453 
454   // The fast path produces a tri-state answer: yes / no / maybe-slow.
455   // One of the three labels can be NULL, meaning take the fall-through.
456   // If super_check_offset is -1, the value is loaded up from super_klass.
457   // No registers are killed, except temp_reg and temp2_reg.
458   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
459   void check_klass_subtype_fast_path(Register sub_klass,
460                                      Register super_klass,
461                                      Register temp1_reg,
462                                      Register temp2_reg,
463                                      Label& L_success,
464                                      Label& L_failure);
465 
466   // The rest of the type check; must be wired to a corresponding fast path.
467   // It does not repeat the fast path logic, so don't use it standalone.
468   // The temp_reg can be noreg, if no temps are available.
469   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
470   // Updates the sub's secondary super cache as necessary.
471   void check_klass_subtype_slow_path(Register sub_klass,
472                                      Register super_klass,
473                                      Register temp1_reg,
474                                      Register temp2_reg,
475                                      Label* L_success = NULL,
476                                      Register result_reg = noreg);
477 
478   // Simplified, combined version, good for typical uses.
479   // Falls through on failure.
480   void check_klass_subtype(Register sub_klass,
481                            Register super_klass,
482                            Register temp1_reg,
483                            Register temp2_reg,
484                            Label& L_success);
485 
486   // Method handle support (JSR 292).
487   void check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type);
488 
489   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0);
490 
491   // Biased locking support
492   // Upon entry,obj_reg must contain the target object, and mark_reg
493   // must contain the target object's header.
494   // Destroys mark_reg if an attempt is made to bias an anonymously
495   // biased lock. In this case a failure will go either to the slow
496   // case or fall through with the notEqual condition code set with
497   // the expectation that the slow case in the runtime will be called.
498   // In the fall-through case where the CAS-based lock is done,
499   // mark_reg is not destroyed.
500   void biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg,
501                             Register temp2_reg, Label& done, Label* slow_case = NULL);
502   // Upon entry, the base register of mark_addr must contain the oop.
503   // Destroys temp_reg.
504   // If allow_delay_slot_filling is set to true, the next instruction
505   // emitted after this one will go in an annulled delay slot if the
506   // biased locking exit case failed.
507   void biased_locking_exit(ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done);
508 
509   void compiler_fast_lock_object(  ConditionRegister flag, Register oop, Register box, Register tmp1, Register tmp2, Register tmp3);
510   void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box, Register tmp1, Register tmp2, Register tmp3);
511 
512   // Support for serializing memory accesses between threads
513   void serialize_memory(Register thread, Register tmp1, Register tmp2);
514 
515   // GC barrier support.
516   void card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp);
517   void card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj);
518 
519   void resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame);
520 
521 #if INCLUDE_ALL_GCS
522   // General G1 pre-barrier generator.
523   void g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
524                             Register Rtmp1, Register Rtmp2, bool needs_frame = false);
525   // General G1 post-barrier generator
526   void g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1,
527                              Register Rtmp2, Register Rtmp3, Label *filtered_ext = NULL);
528 #endif
529 
530   // Support for managing the JavaThread pointer (i.e.; the reference to
531   // thread-local information).
532 
533   // Support for last Java frame (but use call_VM instead where possible):
534   // access R16_thread->last_Java_sp.
535   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
536   void reset_last_Java_frame(void);
537   void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1);
538 
539   // Read vm result from thread: oop_result = R16_thread->result;
540   void get_vm_result  (Register oop_result);
541   void get_vm_result_2(Register metadata_result);
542 
543   static bool needs_explicit_null_check(intptr_t offset);
544 
545   // Trap-instruction-based checks.
546   // Range checks can be distinguished from zero checks as they check 32 bit,
547   // zero checks all 64 bits (tw, td).
548   inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual);
is_trap_null_check(int x)549   static bool is_trap_null_check(int x) {
550     return is_tdi(x, traptoEqual,               -1/*any reg*/, 0) ||
551            is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0);
552   }
553 
554   inline void trap_zombie_not_entrant();
is_trap_zombie_not_entrant(int x)555   static bool is_trap_zombie_not_entrant(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 1); }
556 
557   inline void trap_should_not_reach_here();
is_trap_should_not_reach_here(int x)558   static bool is_trap_should_not_reach_here(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 2); }
559 
560   inline void trap_ic_miss_check(Register a, Register b);
is_trap_ic_miss_check(int x)561   static bool is_trap_ic_miss_check(int x) {
562     return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/);
563   }
564 
565   // Implicit or explicit null check, jumps to static address exception_entry.
566   inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry);
567 
568   // Check accessed object for null. Use SIGTRAP-based null checks on AIX.
569   inline void load_with_trap_null_check(Register d, int si16, Register s1);
570 
571   // Load heap oop and decompress. Loaded oop may not be null.
572   inline void load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1 = noreg);
573   inline void store_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1,
574                                       /*specify if d must stay uncompressed*/ Register tmp = noreg);
575 
576   // Null allowed.
577   inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1 = noreg);
578 
579   // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong.
580   inline Register encode_heap_oop_not_null(Register d, Register src = noreg);
581   inline void decode_heap_oop_not_null(Register d);
582 
583   // Null allowed.
584   inline void decode_heap_oop(Register d);
585 
586   // Load/Store klass oop from klass field. Compress.
587   void load_klass(Register dst, Register src);
588   void load_klass_with_trap_null_check(Register dst, Register src);
589   void store_klass(Register dst_oop, Register klass, Register tmp = R0);
590   void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified.
591   static int instr_size_for_decode_klass_not_null();
592   void decode_klass_not_null(Register dst, Register src = noreg);
593   void encode_klass_not_null(Register dst, Register src = noreg);
594 
595   // Load common heap base into register.
596   void reinit_heapbase(Register d, Register tmp = noreg);
597 
598   // SIGTRAP-based range checks for arrays.
599   inline void trap_range_check_l(Register a, Register b);
600   inline void trap_range_check_l(Register a, int si16);
is_trap_range_check_l(int x)601   static bool is_trap_range_check_l(int x) {
602     return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
603             is_twi(x, traptoLessThanUnsigned, -1/*any reg*/)                  );
604   }
605   inline void trap_range_check_le(Register a, int si16);
is_trap_range_check_le(int x)606   static bool is_trap_range_check_le(int x) {
607     return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/);
608   }
609   inline void trap_range_check_g(Register a, int si16);
is_trap_range_check_g(int x)610   static bool is_trap_range_check_g(int x) {
611     return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/);
612   }
613   inline void trap_range_check_ge(Register a, Register b);
614   inline void trap_range_check_ge(Register a, int si16);
is_trap_range_check_ge(int x)615   static bool is_trap_range_check_ge(int x) {
616     return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
617             is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/)                  );
618   }
is_trap_range_check(int x)619   static bool is_trap_range_check(int x) {
620     return is_trap_range_check_l(x) || is_trap_range_check_le(x) ||
621            is_trap_range_check_g(x) || is_trap_range_check_ge(x);
622   }
623 
624   void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0);
625 
626   // Needle of length 1.
627   void string_indexof_1(Register result, Register haystack, Register haycnt,
628                         Register needle, jchar needleChar,
629                         Register tmp1, Register tmp2);
630   // General indexof, eventually with constant needle length.
631   void string_indexof(Register result, Register haystack, Register haycnt,
632                       Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
633                       Register tmp1, Register tmp2, Register tmp3, Register tmp4);
634   void string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg,
635                       Register result_reg, Register tmp_reg);
636   void char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg,
637                           Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg,
638                           Register tmp5_reg);
639   void char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg,
640                              Register tmp1_reg, Register tmp2_reg);
641 
642   // CRC32 Intrinsics.
643   void load_reverse_32(Register dst, Register src);
644   int  crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3);
645   void fold_byte_crc32(Register crc, Register val, Register table, Register tmp);
646   void fold_8bit_crc32(Register crc, Register table, Register tmp);
647   void update_byte_crc32(Register crc, Register val, Register table);
648   void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
649                              Register data, bool loopAlignment, bool invertCRC);
650   void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
651                           Register t0,  Register t1,  Register t2,  Register t3,
652                           Register tc0, Register tc1, Register tc2, Register tc3);
653   void kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
654                           Register t0,  Register t1,  Register t2,  Register t3,
655                           Register tc0, Register tc1, Register tc2, Register tc3);
656   void kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
657                           Register t0,  Register t1,  Register t2,  Register t3,
658                           Register tc0, Register tc1, Register tc2, Register tc3);
659   void kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
660                           Register t0,  Register t1,  Register t2,  Register t3);
661   void kernel_crc32_1word_vpmsumd(Register crc, Register buf, Register len, Register table,
662                           Register constants, Register barretConstants,
663                           Register t0,  Register t1, Register t2, Register t3, Register t4);
664   void kernel_crc32_1word_aligned(Register crc, Register buf, Register len,
665                           Register constants, Register barretConstants,
666                           Register t0, Register t1, Register t2);
667 
668   void kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp);
669 
670   // SHA-2 auxiliary functions and public interfaces
671  private:
672   void sha256_deque(const VectorRegister src,
673       const VectorRegister dst1, const VectorRegister dst2, const VectorRegister dst3);
674   void sha256_load_h_vec(const VectorRegister a, const VectorRegister e, const Register hptr);
675   void sha256_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw);
676   void sha256_load_w_plus_k_vec(const Register buf_in, const VectorRegister* ws,
677       const int total_ws, const Register k, const VectorRegister* kpws,
678       const int total_kpws);
679   void sha256_calc_4w(const VectorRegister w0, const VectorRegister w1,
680       const VectorRegister w2, const VectorRegister w3, const VectorRegister kpw0,
681       const VectorRegister kpw1, const VectorRegister kpw2, const VectorRegister kpw3,
682       const Register j, const Register k);
683   void sha256_update_sha_state(const VectorRegister a, const VectorRegister b,
684       const VectorRegister c, const VectorRegister d, const VectorRegister e,
685       const VectorRegister f, const VectorRegister g, const VectorRegister h,
686       const Register hptr);
687 
688   void sha512_load_w_vec(const Register buf_in, const VectorRegister* ws, const int total_ws);
689   void sha512_update_sha_state(const Register state, const VectorRegister* hs, const int total_hs);
690   void sha512_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw);
691   void sha512_load_h_vec(const Register state, const VectorRegister* hs, const int total_hs);
692   void sha512_calc_2w(const VectorRegister w0, const VectorRegister w1,
693       const VectorRegister w2, const VectorRegister w3,
694       const VectorRegister w4, const VectorRegister w5,
695       const VectorRegister w6, const VectorRegister w7,
696       const VectorRegister kpw0, const VectorRegister kpw1, const Register j,
697       const VectorRegister vRb, const Register k);
698 
699  public:
700   void sha256(bool multi_block);
701   void sha512(bool multi_block);
702 
703 
704   //
705   // Debugging
706   //
707 
708   // assert on cr0
709   void asm_assert(bool check_equal, const char* msg, int id);
asm_assert_eq(const char * msg,int id)710   void asm_assert_eq(const char* msg, int id) { asm_assert(true, msg, id); }
asm_assert_ne(const char * msg,int id)711   void asm_assert_ne(const char* msg, int id) { asm_assert(false, msg, id); }
712 
713  private:
714   void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base,
715                             const char* msg, int id);
716 
717  public:
718 
asm_assert_mem8_is_zero(int mem_offset,Register mem_base,const char * msg,int id)719   void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg, int id) {
720     asm_assert_mems_zero(true,  8, mem_offset, mem_base, msg, id);
721   }
asm_assert_mem8_isnot_zero(int mem_offset,Register mem_base,const char * msg,int id)722   void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg, int id) {
723     asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg, id);
724   }
725 
726   // Verify R16_thread contents.
727   void verify_thread();
728 
729   // Emit code to verify that reg contains a valid oop if +VerifyOops is set.
730   void verify_oop(Register reg, const char* s = "broken oop");
731 
732   // TODO: verify method and klass metadata (compare against vptr?)
_verify_method_ptr(Register reg,const char * msg,const char * file,int line)733   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
_verify_klass_ptr(Register reg,const char * msg,const char * file,int line)734   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
735 
736   // Convenience method returning function entry. For the ELFv1 case
737   // creates function descriptor at the current address and returs
738   // the pointer to it. For the ELFv2 case returns the current address.
739   inline address function_entry();
740 
741 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
742 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
743 
744  private:
745 
746   enum {
747     stop_stop                = 0,
748     stop_untested            = 1,
749     stop_unimplemented       = 2,
750     stop_shouldnotreachhere  = 3,
751     stop_end                 = 4
752   };
753   void stop(int type, const char* msg, int id);
754 
755  public:
756   // Prints msg, dumps registers and stops execution.
stop(const char * msg="",int id=0)757   void stop         (const char* msg = "", int id = 0) { stop(stop_stop,               msg, id); }
untested(const char * msg="",int id=0)758   void untested     (const char* msg = "", int id = 0) { stop(stop_untested,           msg, id); }
unimplemented(const char * msg="",int id=0)759   void unimplemented(const char* msg = "", int id = 0) { stop(stop_unimplemented,      msg, id); }
should_not_reach_here()760   void should_not_reach_here()                         { stop(stop_shouldnotreachhere,  "", -1); }
761 
762   void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN;
763 };
764 
765 // class SkipIfEqualZero:
766 //
767 // Instantiating this class will result in assembly code being output that will
768 // jump around any code emitted between the creation of the instance and it's
769 // automatic destruction at the end of a scope block, depending on the value of
770 // the flag passed to the constructor, which will be checked at run-time.
771 class SkipIfEqualZero : public StackObj {
772  private:
773   MacroAssembler* _masm;
774   Label _label;
775 
776  public:
777    // 'Temp' is a temp register that this object can use (and trash).
778    explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr);
779    ~SkipIfEqualZero();
780 };
781 
782 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
783