1 /*
2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/assembler.inline.hpp"
27 #include "compiler/disassembler.hpp"
28 #include "gc_interface/collectedHeap.inline.hpp"
29 #include "interpreter/interpreter.hpp"
30 #include "memory/cardTableModRefBS.hpp"
31 #include "memory/resourceArea.hpp"
32 #include "memory/universe.hpp"
33 #include "prims/methodHandles.hpp"
34 #include "runtime/biasedLocking.hpp"
35 #include "runtime/interfaceSupport.hpp"
36 #include "runtime/objectMonitor.hpp"
37 #include "runtime/os.hpp"
38 #include "runtime/sharedRuntime.hpp"
39 #include "runtime/stubRoutines.hpp"
40 #include "utilities/macros.hpp"
41 #if INCLUDE_ALL_GCS
42 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
43 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
44 #include "gc_implementation/g1/heapRegion.hpp"
45 #endif // INCLUDE_ALL_GCS
46 
47 #ifdef PRODUCT
48 #define BLOCK_COMMENT(str) /* nothing */
49 #define STOP(error) stop(error)
50 #else
51 #define BLOCK_COMMENT(str) block_comment(str)
52 #define STOP(error) block_comment(error); stop(error)
53 #endif
54 
55 // Convert the raw encoding form into the form expected by the
56 // constructor for Address.
make_raw(int base,int index,int scale,int disp,relocInfo::relocType disp_reloc)57 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
58   assert(scale == 0, "not supported");
59   RelocationHolder rspec;
60   if (disp_reloc != relocInfo::none) {
61     rspec = Relocation::spec_simple(disp_reloc);
62   }
63 
64   Register rindex = as_Register(index);
65   if (rindex != G0) {
66     Address madr(as_Register(base), rindex);
67     madr._rspec = rspec;
68     return madr;
69   } else {
70     Address madr(as_Register(base), disp);
71     madr._rspec = rspec;
72     return madr;
73   }
74 }
75 
address_in_frame() const76 Address Argument::address_in_frame() const {
77   // Warning: In LP64 mode disp will occupy more than 10 bits, but
78   //          op codes such as ld or ldx, only access disp() to get
79   //          their simm13 argument.
80   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
81   if (is_in())
82     return Address(FP, disp); // In argument.
83   else
84     return Address(SP, disp); // Out argument.
85 }
86 
87 static const char* argumentNames[][2] = {
88   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
89   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
90   {"A(n>9)","P(n>9)"}
91 };
92 
name() const93 const char* Argument::name() const {
94   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
95   int num = number();
96   if (num >= nofArgs)  num = nofArgs - 1;
97   return argumentNames[num][is_in() ? 1 : 0];
98 }
99 
100 #ifdef ASSERT
101 // On RISC, there's no benefit to verifying instruction boundaries.
pd_check_instruction_mark()102 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
103 #endif
104 
105 // Patch instruction inst at offset inst_pos to refer to dest_pos
106 // and return the resulting instruction.
107 // We should have pcs, not offsets, but since all is relative, it will work out
108 // OK.
patched_branch(int dest_pos,int inst,int inst_pos)109 int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
110   int m; // mask for displacement field
111   int v; // new value for displacement field
112   const int word_aligned_ones = -4;
113   switch (inv_op(inst)) {
114   default: ShouldNotReachHere();
115   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
116   case branch_op:
117     switch (inv_op2(inst)) {
118       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
119       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
120       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
121       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
122       case bpr_op2: {
123         if (is_cbcond(inst)) {
124           m = wdisp10(word_aligned_ones, 0);
125           v = wdisp10(dest_pos, inst_pos);
126         } else {
127           m = wdisp16(word_aligned_ones, 0);
128           v = wdisp16(dest_pos, inst_pos);
129         }
130         break;
131       }
132       default: ShouldNotReachHere();
133     }
134   }
135   return  inst & ~m  |  v;
136 }
137 
138 // Return the offset of the branch destionation of instruction inst
139 // at offset pos.
140 // Should have pcs, but since all is relative, it works out.
branch_destination(int inst,int pos)141 int MacroAssembler::branch_destination(int inst, int pos) {
142   int r;
143   switch (inv_op(inst)) {
144   default: ShouldNotReachHere();
145   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
146   case branch_op:
147     switch (inv_op2(inst)) {
148       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
149       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
150       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
151       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
152       case bpr_op2: {
153         if (is_cbcond(inst)) {
154           r = inv_wdisp10(inst, pos);
155         } else {
156           r = inv_wdisp16(inst, pos);
157         }
158         break;
159       }
160       default: ShouldNotReachHere();
161     }
162   }
163   return r;
164 }
165 
null_check(Register reg,int offset)166 void MacroAssembler::null_check(Register reg, int offset) {
167   if (needs_explicit_null_check((intptr_t)offset)) {
168     // provoke OS NULL exception if reg = NULL by
169     // accessing M[reg] w/o changing any registers
170     ld_ptr(reg, 0, G0);
171   }
172   else {
173     // nothing to do, (later) access of M[reg + offset]
174     // will provoke OS NULL exception if reg = NULL
175   }
176 }
177 
178 // Ring buffer jumps
179 
180 #ifndef PRODUCT
ret(bool trace)181 void MacroAssembler::ret(  bool trace )   { if (trace) {
182                                                     mov(I7, O7); // traceable register
183                                                     JMP(O7, 2 * BytesPerInstWord);
184                                                   } else {
185                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
186                                                   }
187                                                 }
188 
retl(bool trace)189 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
190                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
191 #endif /* PRODUCT */
192 
193 
jmp2(Register r1,Register r2,const char * file,int line)194 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
195   assert_not_delayed();
196   // This can only be traceable if r1 & r2 are visible after a window save
197   if (TraceJumps) {
198 #ifndef PRODUCT
199     save_frame(0);
200     verify_thread();
201     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
202     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
203     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
204     add(O2, O1, O1);
205 
206     add(r1->after_save(), r2->after_save(), O2);
207     set((intptr_t)file, O3);
208     set(line, O4);
209     Label L;
210     // get nearby pc, store jmp target
211     call(L, relocInfo::none);  // No relocation for call to pc+0x8
212     delayed()->st(O2, O1, 0);
213     bind(L);
214 
215     // store nearby pc
216     st(O7, O1, sizeof(intptr_t));
217     // store file
218     st(O3, O1, 2*sizeof(intptr_t));
219     // store line
220     st(O4, O1, 3*sizeof(intptr_t));
221     add(O0, 1, O0);
222     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
223     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
224     restore();
225 #endif /* PRODUCT */
226   }
227   jmpl(r1, r2, G0);
228 }
jmp(Register r1,int offset,const char * file,int line)229 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
230   assert_not_delayed();
231   // This can only be traceable if r1 is visible after a window save
232   if (TraceJumps) {
233 #ifndef PRODUCT
234     save_frame(0);
235     verify_thread();
236     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
237     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
238     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
239     add(O2, O1, O1);
240 
241     add(r1->after_save(), offset, O2);
242     set((intptr_t)file, O3);
243     set(line, O4);
244     Label L;
245     // get nearby pc, store jmp target
246     call(L, relocInfo::none);  // No relocation for call to pc+0x8
247     delayed()->st(O2, O1, 0);
248     bind(L);
249 
250     // store nearby pc
251     st(O7, O1, sizeof(intptr_t));
252     // store file
253     st(O3, O1, 2*sizeof(intptr_t));
254     // store line
255     st(O4, O1, 3*sizeof(intptr_t));
256     add(O0, 1, O0);
257     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
258     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
259     restore();
260 #endif /* PRODUCT */
261   }
262   jmp(r1, offset);
263 }
264 
265 // This code sequence is relocatable to any address, even on LP64.
jumpl(const AddressLiteral & addrlit,Register temp,Register d,int offset,const char * file,int line)266 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
267   assert_not_delayed();
268   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
269   // variable length instruction streams.
270   patchable_sethi(addrlit, temp);
271   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
272   if (TraceJumps) {
273 #ifndef PRODUCT
274     // Must do the add here so relocation can find the remainder of the
275     // value to be relocated.
276     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
277     save_frame(0);
278     verify_thread();
279     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
280     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
281     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
282     add(O2, O1, O1);
283 
284     set((intptr_t)file, O3);
285     set(line, O4);
286     Label L;
287 
288     // get nearby pc, store jmp target
289     call(L, relocInfo::none);  // No relocation for call to pc+0x8
290     delayed()->st(a.base()->after_save(), O1, 0);
291     bind(L);
292 
293     // store nearby pc
294     st(O7, O1, sizeof(intptr_t));
295     // store file
296     st(O3, O1, 2*sizeof(intptr_t));
297     // store line
298     st(O4, O1, 3*sizeof(intptr_t));
299     add(O0, 1, O0);
300     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
301     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
302     restore();
303     jmpl(a.base(), G0, d);
304 #else
305     jmpl(a.base(), a.disp(), d);
306 #endif /* PRODUCT */
307   } else {
308     jmpl(a.base(), a.disp(), d);
309   }
310 }
311 
jump(const AddressLiteral & addrlit,Register temp,int offset,const char * file,int line)312 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
313   jumpl(addrlit, temp, G0, offset, file, line);
314 }
315 
316 
317 // Conditional breakpoint (for assertion checks in assembly code)
breakpoint_trap(Condition c,CC cc)318 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
319   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
320 }
321 
322 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
breakpoint_trap()323 void MacroAssembler::breakpoint_trap() {
324   trap(ST_RESERVED_FOR_USER_0);
325 }
326 
327 // Write serialization page so VM thread can do a pseudo remote membar
328 // We use the current thread pointer to calculate a thread specific
329 // offset to write to within the page. This minimizes bus traffic
330 // due to cache line collision.
serialize_memory(Register thread,Register tmp1,Register tmp2)331 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
332   srl(thread, os::get_serialize_page_shift_count(), tmp2);
333   if (Assembler::is_simm13(os::vm_page_size())) {
334     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
335   }
336   else {
337     set((os::vm_page_size() - sizeof(int)), tmp1);
338     and3(tmp2, tmp1, tmp2);
339   }
340   set(os::get_memory_serialize_page(), tmp1);
341   st(G0, tmp1, tmp2);
342 }
343 
344 
345 
enter()346 void MacroAssembler::enter() {
347   Unimplemented();
348 }
349 
leave()350 void MacroAssembler::leave() {
351   Unimplemented();
352 }
353 
354 // Calls to C land
355 
356 #ifdef ASSERT
357 // a hook for debugging
reinitialize_thread()358 static Thread* reinitialize_thread() {
359   return ThreadLocalStorage::thread();
360 }
361 #else
362 #define reinitialize_thread ThreadLocalStorage::thread
363 #endif
364 
365 #ifdef ASSERT
366 address last_get_thread = NULL;
367 #endif
368 
369 // call this when G2_thread is not known to be valid
get_thread()370 void MacroAssembler::get_thread() {
371   save_frame(0);                // to avoid clobbering O0
372   mov(G1, L0);                  // avoid clobbering G1
373   mov(G5_method, L1);           // avoid clobbering G5
374   mov(G3, L2);                  // avoid clobbering G3 also
375   mov(G4, L5);                  // avoid clobbering G4
376 #ifdef ASSERT
377   AddressLiteral last_get_thread_addrlit(&last_get_thread);
378   set(last_get_thread_addrlit, L3);
379   rdpc(L4);
380   inc(L4, 3 * BytesPerInstWord); // skip rdpc + inc + st_ptr to point L4 at call  st_ptr(L4, L3, 0);
381 #endif
382   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
383   delayed()->nop();
384   mov(L0, G1);
385   mov(L1, G5_method);
386   mov(L2, G3);
387   mov(L5, G4);
388   restore(O0, 0, G2_thread);
389 }
390 
verify_thread_subroutine(Thread * gthread_value)391 static Thread* verify_thread_subroutine(Thread* gthread_value) {
392   Thread* correct_value = ThreadLocalStorage::thread();
393   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
394   return correct_value;
395 }
396 
verify_thread()397 void MacroAssembler::verify_thread() {
398   if (VerifyThread) {
399     // NOTE: this chops off the heads of the 64-bit O registers.
400 #ifdef CC_INTERP
401     save_frame(0);
402 #else
403     // make sure G2_thread contains the right value
404     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
405     mov(G1, L1);                // avoid clobbering G1
406     // G2 saved below
407     mov(G3, L3);                // avoid clobbering G3
408     mov(G4, L4);                // avoid clobbering G4
409     mov(G5_method, L5);         // avoid clobbering G5_method
410 #endif /* CC_INTERP */
411 #if defined(COMPILER2) && !defined(_LP64)
412     // Save & restore possible 64-bit Long arguments in G-regs
413     srlx(G1,32,L0);
414     srlx(G4,32,L6);
415 #endif
416     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
417     delayed()->mov(G2_thread, O0);
418 
419     mov(L1, G1);                // Restore G1
420     // G2 restored below
421     mov(L3, G3);                // restore G3
422     mov(L4, G4);                // restore G4
423     mov(L5, G5_method);         // restore G5_method
424 #if defined(COMPILER2) && !defined(_LP64)
425     // Save & restore possible 64-bit Long arguments in G-regs
426     sllx(L0,32,G2);             // Move old high G1 bits high in G2
427     srl(G1, 0,G1);              // Clear current high G1 bits
428     or3 (G1,G2,G1);             // Recover 64-bit G1
429     sllx(L6,32,G2);             // Move old high G4 bits high in G2
430     srl(G4, 0,G4);              // Clear current high G4 bits
431     or3 (G4,G2,G4);             // Recover 64-bit G4
432 #endif
433     restore(O0, 0, G2_thread);
434   }
435 }
436 
437 
save_thread(const Register thread_cache)438 void MacroAssembler::save_thread(const Register thread_cache) {
439   verify_thread();
440   if (thread_cache->is_valid()) {
441     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
442     mov(G2_thread, thread_cache);
443   }
444   if (VerifyThread) {
445     // smash G2_thread, as if the VM were about to anyway
446     set(0x67676767, G2_thread);
447   }
448 }
449 
450 
restore_thread(const Register thread_cache)451 void MacroAssembler::restore_thread(const Register thread_cache) {
452   if (thread_cache->is_valid()) {
453     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
454     mov(thread_cache, G2_thread);
455     verify_thread();
456   } else {
457     // do it the slow way
458     get_thread();
459   }
460 }
461 
462 
463 // %%% maybe get rid of [re]set_last_Java_frame
set_last_Java_frame(Register last_java_sp,Register last_Java_pc)464 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
465   assert_not_delayed();
466   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
467                            JavaFrameAnchor::flags_offset());
468   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
469 
470   // Always set last_Java_pc and flags first because once last_Java_sp is visible
471   // has_last_Java_frame is true and users will look at the rest of the fields.
472   // (Note: flags should always be zero before we get here so doesn't need to be set.)
473 
474 #ifdef ASSERT
475   // Verify that flags was zeroed on return to Java
476   Label PcOk;
477   save_frame(0);                // to avoid clobbering O0
478   ld_ptr(pc_addr, L0);
479   br_null_short(L0, Assembler::pt, PcOk);
480   STOP("last_Java_pc not zeroed before leaving Java");
481   bind(PcOk);
482 
483   // Verify that flags was zeroed on return to Java
484   Label FlagsOk;
485   ld(flags, L0);
486   tst(L0);
487   br(Assembler::zero, false, Assembler::pt, FlagsOk);
488   delayed() -> restore();
489   STOP("flags not zeroed before leaving Java");
490   bind(FlagsOk);
491 #endif /* ASSERT */
492   //
493   // When returning from calling out from Java mode the frame anchor's last_Java_pc
494   // will always be set to NULL. It is set here so that if we are doing a call to
495   // native (not VM) that we capture the known pc and don't have to rely on the
496   // native call having a standard frame linkage where we can find the pc.
497 
498   if (last_Java_pc->is_valid()) {
499     st_ptr(last_Java_pc, pc_addr);
500   }
501 
502 #ifdef _LP64
503 #ifdef ASSERT
504   // Make sure that we have an odd stack
505   Label StackOk;
506   andcc(last_java_sp, 0x01, G0);
507   br(Assembler::notZero, false, Assembler::pt, StackOk);
508   delayed()->nop();
509   STOP("Stack Not Biased in set_last_Java_frame");
510   bind(StackOk);
511 #endif // ASSERT
512   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
513   add( last_java_sp, STACK_BIAS, G4_scratch );
514   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
515 #else
516   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
517 #endif // _LP64
518 }
519 
reset_last_Java_frame(void)520 void MacroAssembler::reset_last_Java_frame(void) {
521   assert_not_delayed();
522 
523   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
524   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
525   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
526 
527 #ifdef ASSERT
528   // check that it WAS previously set
529 #ifdef CC_INTERP
530     save_frame(0);
531 #else
532     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
533 #endif /* CC_INTERP */
534     ld_ptr(sp_addr, L0);
535     tst(L0);
536     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
537     restore();
538 #endif // ASSERT
539 
540   st_ptr(G0, sp_addr);
541   // Always return last_Java_pc to zero
542   st_ptr(G0, pc_addr);
543   // Always null flags after return to Java
544   st(G0, flags);
545 }
546 
547 
call_VM_base(Register oop_result,Register thread_cache,Register last_java_sp,address entry_point,int number_of_arguments,bool check_exceptions)548 void MacroAssembler::call_VM_base(
549   Register        oop_result,
550   Register        thread_cache,
551   Register        last_java_sp,
552   address         entry_point,
553   int             number_of_arguments,
554   bool            check_exceptions)
555 {
556   assert_not_delayed();
557 
558   // determine last_java_sp register
559   if (!last_java_sp->is_valid()) {
560     last_java_sp = SP;
561   }
562   // debugging support
563   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
564 
565   // 64-bit last_java_sp is biased!
566   set_last_Java_frame(last_java_sp, noreg);
567   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
568   save_thread(thread_cache);
569   // do the call
570   call(entry_point, relocInfo::runtime_call_type);
571   if (!VerifyThread)
572     delayed()->mov(G2_thread, O0);  // pass thread as first argument
573   else
574     delayed()->nop();             // (thread already passed)
575   restore_thread(thread_cache);
576   reset_last_Java_frame();
577 
578   // check for pending exceptions. use Gtemp as scratch register.
579   if (check_exceptions) {
580     check_and_forward_exception(Gtemp);
581   }
582 
583 #ifdef ASSERT
584   set(badHeapWordVal, G3);
585   set(badHeapWordVal, G4);
586   set(badHeapWordVal, G5);
587 #endif
588 
589   // get oop result if there is one and reset the value in the thread
590   if (oop_result->is_valid()) {
591     get_vm_result(oop_result);
592   }
593 }
594 
check_and_forward_exception(Register scratch_reg)595 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
596 {
597   Label L;
598 
599   check_and_handle_popframe(scratch_reg);
600   check_and_handle_earlyret(scratch_reg);
601 
602   Address exception_addr(G2_thread, Thread::pending_exception_offset());
603   ld_ptr(exception_addr, scratch_reg);
604   br_null_short(scratch_reg, pt, L);
605   // we use O7 linkage so that forward_exception_entry has the issuing PC
606   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
607   delayed()->nop();
608   bind(L);
609 }
610 
611 
check_and_handle_popframe(Register scratch_reg)612 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
613 }
614 
615 
check_and_handle_earlyret(Register scratch_reg)616 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
617 }
618 
619 
call_VM(Register oop_result,address entry_point,int number_of_arguments,bool check_exceptions)620 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
621   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
622 }
623 
624 
call_VM(Register oop_result,address entry_point,Register arg_1,bool check_exceptions)625 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
626   // O0 is reserved for the thread
627   mov(arg_1, O1);
628   call_VM(oop_result, entry_point, 1, check_exceptions);
629 }
630 
631 
call_VM(Register oop_result,address entry_point,Register arg_1,Register arg_2,bool check_exceptions)632 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
633   // O0 is reserved for the thread
634   mov(arg_1, O1);
635   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
636   call_VM(oop_result, entry_point, 2, check_exceptions);
637 }
638 
639 
call_VM(Register oop_result,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)640 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
641   // O0 is reserved for the thread
642   mov(arg_1, O1);
643   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
644   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
645   call_VM(oop_result, entry_point, 3, check_exceptions);
646 }
647 
648 
649 
650 // Note: The following call_VM overloadings are useful when a "save"
651 // has already been performed by a stub, and the last Java frame is
652 // the previous one.  In that case, last_java_sp must be passed as FP
653 // instead of SP.
654 
655 
call_VM(Register oop_result,Register last_java_sp,address entry_point,int number_of_arguments,bool check_exceptions)656 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
657   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
658 }
659 
660 
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,bool check_exceptions)661 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
662   // O0 is reserved for the thread
663   mov(arg_1, O1);
664   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
665 }
666 
667 
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,bool check_exceptions)668 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
669   // O0 is reserved for the thread
670   mov(arg_1, O1);
671   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
672   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
673 }
674 
675 
call_VM(Register oop_result,Register last_java_sp,address entry_point,Register arg_1,Register arg_2,Register arg_3,bool check_exceptions)676 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
677   // O0 is reserved for the thread
678   mov(arg_1, O1);
679   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
680   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
681   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
682 }
683 
684 
685 
call_VM_leaf_base(Register thread_cache,address entry_point,int number_of_arguments)686 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
687   assert_not_delayed();
688   save_thread(thread_cache);
689   // do the call
690   call(entry_point, relocInfo::runtime_call_type);
691   delayed()->nop();
692   restore_thread(thread_cache);
693 #ifdef ASSERT
694   set(badHeapWordVal, G3);
695   set(badHeapWordVal, G4);
696   set(badHeapWordVal, G5);
697 #endif
698 }
699 
700 
call_VM_leaf(Register thread_cache,address entry_point,int number_of_arguments)701 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
702   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
703 }
704 
705 
call_VM_leaf(Register thread_cache,address entry_point,Register arg_1)706 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
707   mov(arg_1, O0);
708   call_VM_leaf(thread_cache, entry_point, 1);
709 }
710 
711 
call_VM_leaf(Register thread_cache,address entry_point,Register arg_1,Register arg_2)712 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
713   mov(arg_1, O0);
714   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
715   call_VM_leaf(thread_cache, entry_point, 2);
716 }
717 
718 
call_VM_leaf(Register thread_cache,address entry_point,Register arg_1,Register arg_2,Register arg_3)719 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
720   mov(arg_1, O0);
721   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
722   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
723   call_VM_leaf(thread_cache, entry_point, 3);
724 }
725 
726 
get_vm_result(Register oop_result)727 void MacroAssembler::get_vm_result(Register oop_result) {
728   verify_thread();
729   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
730   ld_ptr(    vm_result_addr, oop_result);
731   st_ptr(G0, vm_result_addr);
732   verify_oop(oop_result);
733 }
734 
735 
get_vm_result_2(Register metadata_result)736 void MacroAssembler::get_vm_result_2(Register metadata_result) {
737   verify_thread();
738   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
739   ld_ptr(vm_result_addr_2, metadata_result);
740   st_ptr(G0, vm_result_addr_2);
741 }
742 
743 
744 // We require that C code which does not return a value in vm_result will
745 // leave it undisturbed.
set_vm_result(Register oop_result)746 void MacroAssembler::set_vm_result(Register oop_result) {
747   verify_thread();
748   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
749   verify_oop(oop_result);
750 
751 # ifdef ASSERT
752     // Check that we are not overwriting any other oop.
753 #ifdef CC_INTERP
754     save_frame(0);
755 #else
756     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
757 #endif /* CC_INTERP */
758     ld_ptr(vm_result_addr, L0);
759     tst(L0);
760     restore();
761     breakpoint_trap(notZero, Assembler::ptr_cc);
762     // }
763 # endif
764 
765   st_ptr(oop_result, vm_result_addr);
766 }
767 
768 
ic_call(address entry,bool emit_delay)769 void MacroAssembler::ic_call(address entry, bool emit_delay) {
770   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
771   patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
772   relocate(rspec);
773   call(entry, relocInfo::none);
774   if (emit_delay) {
775     delayed()->nop();
776   }
777 }
778 
779 
card_table_write(jbyte * byte_map_base,Register tmp,Register obj)780 void MacroAssembler::card_table_write(jbyte* byte_map_base,
781                                       Register tmp, Register obj) {
782 #ifdef _LP64
783   srlx(obj, CardTableModRefBS::card_shift, obj);
784 #else
785   srl(obj, CardTableModRefBS::card_shift, obj);
786 #endif
787   assert(tmp != obj, "need separate temp reg");
788   set((address) byte_map_base, tmp);
789   stb(G0, tmp, obj);
790 }
791 
792 
internal_sethi(const AddressLiteral & addrlit,Register d,bool ForceRelocatable)793 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
794   address save_pc;
795   int shiftcnt;
796 #ifdef _LP64
797 # ifdef CHECK_DELAY
798   assert_not_delayed((char*) "cannot put two instructions in delay slot");
799 # endif
800   v9_dep();
801   save_pc = pc();
802 
803   int msb32 = (int) (addrlit.value() >> 32);
804   int lsb32 = (int) (addrlit.value());
805 
806   if (msb32 == 0 && lsb32 >= 0) {
807     Assembler::sethi(lsb32, d, addrlit.rspec());
808   }
809   else if (msb32 == -1) {
810     Assembler::sethi(~lsb32, d, addrlit.rspec());
811     xor3(d, ~low10(~0), d);
812   }
813   else {
814     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
815     if (msb32 & 0x3ff)                            // Any bits?
816       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
817     if (lsb32 & 0xFFFFFC00) {                     // done?
818       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
819         sllx(d, 12, d);                           // Make room for next 12 bits
820         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
821         shiftcnt = 0;                             // We already shifted
822       }
823       else
824         shiftcnt = 12;
825       if ((lsb32 >> 10) & 0x3ff) {
826         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
827         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
828         shiftcnt = 0;
829       }
830       else
831         shiftcnt = 10;
832       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
833     }
834     else
835       sllx(d, 32, d);
836   }
837   // Pad out the instruction sequence so it can be patched later.
838   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
839                            addrlit.rtype() != relocInfo::runtime_call_type)) {
840     while (pc() < (save_pc + (7 * BytesPerInstWord)))
841       nop();
842   }
843 #else
844   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
845 #endif
846 }
847 
848 
sethi(const AddressLiteral & addrlit,Register d)849 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
850   internal_sethi(addrlit, d, false);
851 }
852 
853 
patchable_sethi(const AddressLiteral & addrlit,Register d)854 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
855   internal_sethi(addrlit, d, true);
856 }
857 
858 
insts_for_sethi(address a,bool worst_case)859 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
860 #ifdef _LP64
861   if (worst_case)  return 7;
862   intptr_t iaddr = (intptr_t) a;
863   int msb32 = (int) (iaddr >> 32);
864   int lsb32 = (int) (iaddr);
865   int count;
866   if (msb32 == 0 && lsb32 >= 0)
867     count = 1;
868   else if (msb32 == -1)
869     count = 2;
870   else {
871     count = 2;
872     if (msb32 & 0x3ff)
873       count++;
874     if (lsb32 & 0xFFFFFC00 ) {
875       if ((lsb32 >> 20) & 0xfff)  count += 2;
876       if ((lsb32 >> 10) & 0x3ff)  count += 2;
877     }
878   }
879   return count;
880 #else
881   return 1;
882 #endif
883 }
884 
worst_case_insts_for_set()885 int MacroAssembler::worst_case_insts_for_set() {
886   return insts_for_sethi(NULL, true) + 1;
887 }
888 
889 
890 // Keep in sync with MacroAssembler::insts_for_internal_set
internal_set(const AddressLiteral & addrlit,Register d,bool ForceRelocatable)891 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
892   intptr_t value = addrlit.value();
893 
894   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
895     // can optimize
896     if (-4096 <= value && value <= 4095) {
897       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
898       return;
899     }
900     if (inv_hi22(hi22(value)) == value) {
901       sethi(addrlit, d);
902       return;
903     }
904   }
905   assert_not_delayed((char*) "cannot put two instructions in delay slot");
906   internal_sethi(addrlit, d, ForceRelocatable);
907   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
908     add(d, addrlit.low10(), d, addrlit.rspec());
909   }
910 }
911 
912 // Keep in sync with MacroAssembler::internal_set
insts_for_internal_set(intptr_t value)913 int MacroAssembler::insts_for_internal_set(intptr_t value) {
914   // can optimize
915   if (-4096 <= value && value <= 4095) {
916     return 1;
917   }
918   if (inv_hi22(hi22(value)) == value) {
919     return insts_for_sethi((address) value);
920   }
921   int count = insts_for_sethi((address) value);
922   AddressLiteral al(value);
923   if (al.low10() != 0) {
924     count++;
925   }
926   return count;
927 }
928 
set(const AddressLiteral & al,Register d)929 void MacroAssembler::set(const AddressLiteral& al, Register d) {
930   internal_set(al, d, false);
931 }
932 
set(intptr_t value,Register d)933 void MacroAssembler::set(intptr_t value, Register d) {
934   AddressLiteral al(value);
935   internal_set(al, d, false);
936 }
937 
set(address addr,Register d,RelocationHolder const & rspec)938 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
939   AddressLiteral al(addr, rspec);
940   internal_set(al, d, false);
941 }
942 
patchable_set(const AddressLiteral & al,Register d)943 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
944   internal_set(al, d, true);
945 }
946 
patchable_set(intptr_t value,Register d)947 void MacroAssembler::patchable_set(intptr_t value, Register d) {
948   AddressLiteral al(value);
949   internal_set(al, d, true);
950 }
951 
952 
set64(jlong value,Register d,Register tmp)953 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
954   assert_not_delayed();
955   v9_dep();
956 
957   int hi = (int)(value >> 32);
958   int lo = (int)(value & ~0);
959   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
960   if (Assembler::is_simm13(lo) && value == lo) {
961     or3(G0, lo, d);
962   } else if (hi == 0) {
963     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
964     if (low10(lo) != 0)
965       or3(d, low10(lo), d);
966   }
967   else if (hi == -1) {
968     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
969     xor3(d, low10(lo) ^ ~low10(~0), d);
970   }
971   else if (lo == 0) {
972     if (Assembler::is_simm13(hi)) {
973       or3(G0, hi, d);
974     } else {
975       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
976       if (low10(hi) != 0)
977         or3(d, low10(hi), d);
978     }
979     sllx(d, 32, d);
980   }
981   else {
982     Assembler::sethi(hi, tmp);
983     Assembler::sethi(lo,   d); // macro assembler version sign-extends
984     if (low10(hi) != 0)
985       or3 (tmp, low10(hi), tmp);
986     if (low10(lo) != 0)
987       or3 (  d, low10(lo),   d);
988     sllx(tmp, 32, tmp);
989     or3 (d, tmp, d);
990   }
991 }
992 
insts_for_set64(jlong value)993 int MacroAssembler::insts_for_set64(jlong value) {
994   v9_dep();
995 
996   int hi = (int) (value >> 32);
997   int lo = (int) (value & ~0);
998   int count = 0;
999 
1000   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1001   if (Assembler::is_simm13(lo) && value == lo) {
1002     count++;
1003   } else if (hi == 0) {
1004     count++;
1005     if (low10(lo) != 0)
1006       count++;
1007   }
1008   else if (hi == -1) {
1009     count += 2;
1010   }
1011   else if (lo == 0) {
1012     if (Assembler::is_simm13(hi)) {
1013       count++;
1014     } else {
1015       count++;
1016       if (low10(hi) != 0)
1017         count++;
1018     }
1019     count++;
1020   }
1021   else {
1022     count += 2;
1023     if (low10(hi) != 0)
1024       count++;
1025     if (low10(lo) != 0)
1026       count++;
1027     count += 2;
1028   }
1029   return count;
1030 }
1031 
1032 // compute size in bytes of sparc frame, given
1033 // number of extraWords
total_frame_size_in_bytes(int extraWords)1034 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1035 
1036   int nWords = frame::memory_parameter_word_sp_offset;
1037 
1038   nWords += extraWords;
1039 
1040   if (nWords & 1) ++nWords; // round up to double-word
1041 
1042   return nWords * BytesPerWord;
1043 }
1044 
1045 
1046 // save_frame: given number of "extra" words in frame,
1047 // issue approp. save instruction (p 200, v8 manual)
1048 
save_frame(int extraWords)1049 void MacroAssembler::save_frame(int extraWords) {
1050   int delta = -total_frame_size_in_bytes(extraWords);
1051   if (is_simm13(delta)) {
1052     save(SP, delta, SP);
1053   } else {
1054     set(delta, G3_scratch);
1055     save(SP, G3_scratch, SP);
1056   }
1057 }
1058 
1059 
save_frame_c1(int size_in_bytes)1060 void MacroAssembler::save_frame_c1(int size_in_bytes) {
1061   if (is_simm13(-size_in_bytes)) {
1062     save(SP, -size_in_bytes, SP);
1063   } else {
1064     set(-size_in_bytes, G3_scratch);
1065     save(SP, G3_scratch, SP);
1066   }
1067 }
1068 
1069 
save_frame_and_mov(int extraWords,Register s1,Register d1,Register s2,Register d2)1070 void MacroAssembler::save_frame_and_mov(int extraWords,
1071                                         Register s1, Register d1,
1072                                         Register s2, Register d2) {
1073   assert_not_delayed();
1074 
1075   // The trick here is to use precisely the same memory word
1076   // that trap handlers also use to save the register.
1077   // This word cannot be used for any other purpose, but
1078   // it works fine to save the register's value, whether or not
1079   // an interrupt flushes register windows at any given moment!
1080   Address s1_addr;
1081   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1082     s1_addr = s1->address_in_saved_window();
1083     st_ptr(s1, s1_addr);
1084   }
1085 
1086   Address s2_addr;
1087   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1088     s2_addr = s2->address_in_saved_window();
1089     st_ptr(s2, s2_addr);
1090   }
1091 
1092   save_frame(extraWords);
1093 
1094   if (s1_addr.base() == SP) {
1095     ld_ptr(s1_addr.after_save(), d1);
1096   } else if (s1->is_valid()) {
1097     mov(s1->after_save(), d1);
1098   }
1099 
1100   if (s2_addr.base() == SP) {
1101     ld_ptr(s2_addr.after_save(), d2);
1102   } else if (s2->is_valid()) {
1103     mov(s2->after_save(), d2);
1104   }
1105 }
1106 
1107 
allocate_metadata_address(Metadata * obj)1108 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1109   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1110   int index = oop_recorder()->allocate_metadata_index(obj);
1111   RelocationHolder rspec = metadata_Relocation::spec(index);
1112   return AddressLiteral((address)obj, rspec);
1113 }
1114 
constant_metadata_address(Metadata * obj)1115 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1116   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
1117   int index = oop_recorder()->find_index(obj);
1118   RelocationHolder rspec = metadata_Relocation::spec(index);
1119   return AddressLiteral((address)obj, rspec);
1120 }
1121 
1122 
constant_oop_address(jobject obj)1123 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1124   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1125   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
1126   int oop_index = oop_recorder()->find_index(obj);
1127   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1128 }
1129 
set_narrow_oop(jobject obj,Register d)1130 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1131   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1132   int oop_index = oop_recorder()->find_index(obj);
1133   RelocationHolder rspec = oop_Relocation::spec(oop_index);
1134 
1135   assert_not_delayed();
1136   // Relocation with special format (see relocInfo_sparc.hpp).
1137   relocate(rspec, 1);
1138   // Assembler::sethi(0x3fffff, d);
1139   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1140   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1141   add(d, 0x3ff, d);
1142 
1143 }
1144 
set_narrow_klass(Klass * k,Register d)1145 void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
1146   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1147   int klass_index = oop_recorder()->find_index(k);
1148   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
1149   narrowOop encoded_k = Klass::encode_klass(k);
1150 
1151   assert_not_delayed();
1152   // Relocation with special format (see relocInfo_sparc.hpp).
1153   relocate(rspec, 1);
1154   // Assembler::sethi(encoded_k, d);
1155   emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
1156   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1157   add(d, low10(encoded_k), d);
1158 
1159 }
1160 
align(int modulus)1161 void MacroAssembler::align(int modulus) {
1162   while (offset() % modulus != 0) nop();
1163 }
1164 
print(outputStream * s)1165 void RegistersForDebugging::print(outputStream* s) {
1166   FlagSetting fs(Debugging, true);
1167   int j;
1168   for (j = 0; j < 8; ++j) {
1169     if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
1170     else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
1171   }
1172   s->cr();
1173 
1174   for (j = 0;  j < 8;  ++j) {
1175     s->print("l%d = ", j); os::print_location(s, l[j]);
1176   }
1177   s->cr();
1178 
1179   for (j = 0; j < 8; ++j) {
1180     if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
1181     else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
1182   }
1183   s->cr();
1184 
1185   for (j = 0; j < 8; ++j) {
1186     s->print("g%d = ", j); os::print_location(s, g[j]);
1187   }
1188   s->cr();
1189 
1190   // print out floats with compression
1191   for (j = 0; j < 32; ) {
1192     jfloat val = f[j];
1193     int last = j;
1194     for ( ;  last+1 < 32;  ++last ) {
1195       char b1[1024], b2[1024];
1196       sprintf(b1, "%f", val);
1197       sprintf(b2, "%f", f[last+1]);
1198       if (strcmp(b1, b2))
1199         break;
1200     }
1201     s->print("f%d", j);
1202     if ( j != last )  s->print(" - f%d", last);
1203     s->print(" = %f", val);
1204     s->fill_to(25);
1205     s->print_cr(" (0x%x)", val);
1206     j = last + 1;
1207   }
1208   s->cr();
1209 
1210   // and doubles (evens only)
1211   for (j = 0; j < 32; ) {
1212     jdouble val = d[j];
1213     int last = j;
1214     for ( ;  last+1 < 32;  ++last ) {
1215       char b1[1024], b2[1024];
1216       sprintf(b1, "%f", val);
1217       sprintf(b2, "%f", d[last+1]);
1218       if (strcmp(b1, b2))
1219         break;
1220     }
1221     s->print("d%d", 2 * j);
1222     if ( j != last )  s->print(" - d%d", last);
1223     s->print(" = %f", val);
1224     s->fill_to(30);
1225     s->print("(0x%x)", *(int*)&val);
1226     s->fill_to(42);
1227     s->print_cr("(0x%x)", *(1 + (int*)&val));
1228     j = last + 1;
1229   }
1230   s->cr();
1231 }
1232 
save_registers(MacroAssembler * a)1233 void RegistersForDebugging::save_registers(MacroAssembler* a) {
1234   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1235   a->flushw();
1236   int i;
1237   for (i = 0; i < 8; ++i) {
1238     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1239     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1240     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1241     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1242   }
1243   for (i = 0;  i < 32; ++i) {
1244     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1245   }
1246   for (i = 0; i < 64; i += 2) {
1247     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1248   }
1249 }
1250 
restore_registers(MacroAssembler * a,Register r)1251 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1252   for (int i = 1; i < 8;  ++i) {
1253     a->ld_ptr(r, g_offset(i), as_gRegister(i));
1254   }
1255   for (int j = 0; j < 32; ++j) {
1256     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1257   }
1258   for (int k = 0; k < 64; k += 2) {
1259     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1260   }
1261 }
1262 
1263 
1264 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
push_fTOS()1265 void MacroAssembler::push_fTOS() {
1266   // %%%%%% need to implement this
1267 }
1268 
1269 // pops double TOS element from CPU stack and pushes on FPU stack
pop_fTOS()1270 void MacroAssembler::pop_fTOS() {
1271   // %%%%%% need to implement this
1272 }
1273 
empty_FPU_stack()1274 void MacroAssembler::empty_FPU_stack() {
1275   // %%%%%% need to implement this
1276 }
1277 
_verify_oop(Register reg,const char * msg,const char * file,int line)1278 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1279   // plausibility check for oops
1280   if (!VerifyOops) return;
1281 
1282   if (reg == G0)  return;       // always NULL, which is always an oop
1283 
1284   BLOCK_COMMENT("verify_oop {");
1285   char buffer[64];
1286 #ifdef COMPILER1
1287   if (CommentedAssembly) {
1288     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1289     block_comment(buffer);
1290   }
1291 #endif
1292 
1293   const char* real_msg = NULL;
1294   {
1295     ResourceMark rm;
1296     stringStream ss;
1297     ss.print("%s at offset %d (%s:%d)", msg, offset(), file, line);
1298     real_msg = code_string(ss.as_string());
1299   }
1300 
1301   // Call indirectly to solve generation ordering problem
1302   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1303 
1304   // Make some space on stack above the current register window.
1305   // Enough to hold 8 64-bit registers.
1306   add(SP,-8*8,SP);
1307 
1308   // Save some 64-bit registers; a normal 'save' chops the heads off
1309   // of 64-bit longs in the 32-bit build.
1310   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1311   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1312   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1313   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1314 
1315   // Size of set() should stay the same
1316   patchable_set((intptr_t)real_msg, O1);
1317   // Load address to call to into O7
1318   load_ptr_contents(a, O7);
1319   // Register call to verify_oop_subroutine
1320   callr(O7, G0);
1321   delayed()->nop();
1322   // recover frame size
1323   add(SP, 8*8,SP);
1324   BLOCK_COMMENT("} verify_oop");
1325 }
1326 
_verify_oop_addr(Address addr,const char * msg,const char * file,int line)1327 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1328   // plausibility check for oops
1329   if (!VerifyOops) return;
1330 
1331   const char* real_msg = NULL;
1332   {
1333     ResourceMark rm;
1334     stringStream ss;
1335     ss.print("%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1336     real_msg = code_string(ss.as_string());
1337   }
1338 
1339   // Call indirectly to solve generation ordering problem
1340   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1341 
1342   // Make some space on stack above the current register window.
1343   // Enough to hold 8 64-bit registers.
1344   add(SP,-8*8,SP);
1345 
1346   // Save some 64-bit registers; a normal 'save' chops the heads off
1347   // of 64-bit longs in the 32-bit build.
1348   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1349   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1350   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1351   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1352 
1353   // Size of set() should stay the same
1354   patchable_set((intptr_t)real_msg, O1);
1355   // Load address to call to into O7
1356   load_ptr_contents(a, O7);
1357   // Register call to verify_oop_subroutine
1358   callr(O7, G0);
1359   delayed()->nop();
1360   // recover frame size
1361   add(SP, 8*8,SP);
1362 }
1363 
1364 // side-door communication with signalHandler in os_solaris.cpp
1365 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1366 
1367 // This macro is expanded just once; it creates shared code.  Contract:
1368 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1369 // registers, including flags.  May not use a register 'save', as this blows
1370 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1371 // call.
verify_oop_subroutine()1372 void MacroAssembler::verify_oop_subroutine() {
1373   // Leaf call; no frame.
1374   Label succeed, fail, null_or_fail;
1375 
1376   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1377   // O0 is now the oop to be checked.  O7 is the return address.
1378   Register O0_obj = O0;
1379 
1380   // Save some more registers for temps.
1381   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1382   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1383   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1384   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1385 
1386   // Save flags
1387   Register O5_save_flags = O5;
1388   rdccr( O5_save_flags );
1389 
1390   { // count number of verifies
1391     Register O2_adr   = O2;
1392     Register O3_accum = O3;
1393     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1394   }
1395 
1396   Register O2_mask = O2;
1397   Register O3_bits = O3;
1398   Register O4_temp = O4;
1399 
1400   // mark lower end of faulting range
1401   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1402   _verify_oop_implicit_branch[0] = pc();
1403 
1404   // We can't check the mark oop because it could be in the process of
1405   // locking or unlocking while this is running.
1406   set(Universe::verify_oop_mask (), O2_mask);
1407   set(Universe::verify_oop_bits (), O3_bits);
1408 
1409   // assert((obj & oop_mask) == oop_bits);
1410   and3(O0_obj, O2_mask, O4_temp);
1411   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
1412 
1413   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1414     // the null_or_fail case is useless; must test for null separately
1415     br_null_short(O0_obj, pn, succeed);
1416   }
1417 
1418   // Check the Klass* of this object for being in the right area of memory.
1419   // Cannot do the load in the delay above slot in case O0 is null
1420   load_klass(O0_obj, O0_obj);
1421   // assert((klass != NULL)
1422   br_null_short(O0_obj, pn, fail);
1423 
1424   wrccr( O5_save_flags ); // Restore CCR's
1425 
1426   // mark upper end of faulting range
1427   _verify_oop_implicit_branch[1] = pc();
1428 
1429   //-----------------------
1430   // all tests pass
1431   bind(succeed);
1432 
1433   // Restore prior 64-bit registers
1434   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1435   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1436   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1437   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1438   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1439   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1440 
1441   retl();                       // Leaf return; restore prior O7 in delay slot
1442   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1443 
1444   //-----------------------
1445   bind(null_or_fail);           // nulls are less common but OK
1446   br_null(O0_obj, false, pt, succeed);
1447   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1448 
1449   //-----------------------
1450   // report failure:
1451   bind(fail);
1452   _verify_oop_implicit_branch[2] = pc();
1453 
1454   wrccr( O5_save_flags ); // Restore CCR's
1455 
1456   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1457 
1458   // stop_subroutine expects message pointer in I1.
1459   mov(I1, O1);
1460 
1461   // Restore prior 64-bit registers
1462   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1463   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1464   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1465   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1466   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1467   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1468 
1469   // factor long stop-sequence into subroutine to save space
1470   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1471 
1472   // call indirectly to solve generation ordering problem
1473   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1474   load_ptr_contents(al, O5);
1475   jmpl(O5, 0, O7);
1476   delayed()->nop();
1477 }
1478 
1479 
stop(const char * msg)1480 void MacroAssembler::stop(const char* msg) {
1481   // save frame first to get O7 for return address
1482   // add one word to size in case struct is odd number of words long
1483   // It must be doubleword-aligned for storing doubles into it.
1484 
1485     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1486 
1487     // stop_subroutine expects message pointer in I1.
1488     // Size of set() should stay the same
1489     patchable_set((intptr_t)msg, O1);
1490 
1491     // factor long stop-sequence into subroutine to save space
1492     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1493 
1494     // call indirectly to solve generation ordering problem
1495     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1496     load_ptr_contents(a, O5);
1497     jmpl(O5, 0, O7);
1498     delayed()->nop();
1499 
1500     breakpoint_trap();   // make stop actually stop rather than writing
1501                          // unnoticeable results in the output files.
1502 
1503     // restore(); done in callee to save space!
1504 }
1505 
1506 
warn(const char * msg)1507 void MacroAssembler::warn(const char* msg) {
1508   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1509   RegistersForDebugging::save_registers(this);
1510   mov(O0, L0);
1511   // Size of set() should stay the same
1512   patchable_set((intptr_t)msg, O0);
1513   call( CAST_FROM_FN_PTR(address, warning) );
1514   delayed()->nop();
1515 //  ret();
1516 //  delayed()->restore();
1517   RegistersForDebugging::restore_registers(this, L0);
1518   restore();
1519 }
1520 
1521 
untested(const char * what)1522 void MacroAssembler::untested(const char* what) {
1523   // We must be able to turn interactive prompting off
1524   // in order to run automated test scripts on the VM
1525   // Use the flag ShowMessageBoxOnError
1526 
1527   const char* b = NULL;
1528   {
1529     ResourceMark rm;
1530     stringStream ss;
1531     ss.print("untested: %s", what);
1532     b = code_string(ss.as_string());
1533   }
1534   if (ShowMessageBoxOnError) { STOP(b); }
1535   else                       { warn(b); }
1536 }
1537 
1538 
stop_subroutine()1539 void MacroAssembler::stop_subroutine() {
1540   RegistersForDebugging::save_registers(this);
1541 
1542   // for the sake of the debugger, stick a PC on the current frame
1543   // (this assumes that the caller has performed an extra "save")
1544   mov(I7, L7);
1545   add(O7, -7 * BytesPerInt, I7);
1546 
1547   save_frame(); // one more save to free up another O7 register
1548   mov(I0, O1); // addr of reg save area
1549 
1550   // We expect pointer to message in I1. Caller must set it up in O1
1551   mov(I1, O0); // get msg
1552   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1553   delayed()->nop();
1554 
1555   restore();
1556 
1557   RegistersForDebugging::restore_registers(this, O0);
1558 
1559   save_frame(0);
1560   call(CAST_FROM_FN_PTR(address,breakpoint));
1561   delayed()->nop();
1562   restore();
1563 
1564   mov(L7, I7);
1565   retl();
1566   delayed()->restore(); // see stop above
1567 }
1568 
1569 
debug(char * msg,RegistersForDebugging * regs)1570 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1571   if ( ShowMessageBoxOnError ) {
1572     JavaThread* thread = JavaThread::current();
1573     JavaThreadState saved_state = thread->thread_state();
1574     thread->set_thread_state(_thread_in_vm);
1575       {
1576         // In order to get locks work, we need to fake a in_VM state
1577         ttyLocker ttyl;
1578         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1579         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1580         BytecodeCounter::print();
1581         }
1582         if (os::message_box(msg, "Execution stopped, print registers?"))
1583           regs->print(::tty);
1584       }
1585     BREAKPOINT;
1586       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1587   }
1588   else {
1589      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1590   }
1591   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
1592 }
1593 
1594 
calc_mem_param_words(Register Rparam_words,Register Rresult)1595 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
1596   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
1597   Label no_extras;
1598   br( negative, true, pt, no_extras ); // if neg, clear reg
1599   delayed()->set(0, Rresult);          // annuled, so only if taken
1600   bind( no_extras );
1601 }
1602 
1603 
calc_frame_size(Register Rextra_words,Register Rresult)1604 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
1605 #ifdef _LP64
1606   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
1607 #else
1608   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
1609 #endif
1610   bclr(1, Rresult);
1611   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
1612 }
1613 
1614 
calc_frame_size_and_save(Register Rextra_words,Register Rresult)1615 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
1616   calc_frame_size(Rextra_words, Rresult);
1617   neg(Rresult);
1618   save(SP, Rresult, SP);
1619 }
1620 
1621 
1622 // ---------------------------------------------------------
cond2rcond(Assembler::Condition c)1623 Assembler::RCondition cond2rcond(Assembler::Condition c) {
1624   switch (c) {
1625     /*case zero: */
1626     case Assembler::equal:        return Assembler::rc_z;
1627     case Assembler::lessEqual:    return Assembler::rc_lez;
1628     case Assembler::less:         return Assembler::rc_lz;
1629     /*case notZero:*/
1630     case Assembler::notEqual:     return Assembler::rc_nz;
1631     case Assembler::greater:      return Assembler::rc_gz;
1632     case Assembler::greaterEqual: return Assembler::rc_gez;
1633   }
1634   ShouldNotReachHere();
1635   return Assembler::rc_z;
1636 }
1637 
1638 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
cmp_zero_and_br(Condition c,Register s1,Label & L,bool a,Predict p)1639 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
1640   tst(s1);
1641   br (c, a, p, L);
1642 }
1643 
1644 // Compares a pointer register with zero and branches on null.
1645 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
br_null(Register s1,bool a,Predict p,Label & L)1646 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
1647   assert_not_delayed();
1648 #ifdef _LP64
1649   bpr( rc_z, a, p, s1, L );
1650 #else
1651   tst(s1);
1652   br ( zero, a, p, L );
1653 #endif
1654 }
1655 
br_notnull(Register s1,bool a,Predict p,Label & L)1656 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
1657   assert_not_delayed();
1658 #ifdef _LP64
1659   bpr( rc_nz, a, p, s1, L );
1660 #else
1661   tst(s1);
1662   br ( notZero, a, p, L );
1663 #endif
1664 }
1665 
1666 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
1667 
1668 // Compare integer (32 bit) values (icc only).
cmp_and_br_short(Register s1,Register s2,Condition c,Predict p,Label & L)1669 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
1670                                       Predict p, Label& L) {
1671   assert_not_delayed();
1672   if (use_cbcond(L)) {
1673     Assembler::cbcond(c, icc, s1, s2, L);
1674   } else {
1675     cmp(s1, s2);
1676     br(c, false, p, L);
1677     delayed()->nop();
1678   }
1679 }
1680 
1681 // Compare integer (32 bit) values (icc only).
cmp_and_br_short(Register s1,int simm13a,Condition c,Predict p,Label & L)1682 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
1683                                       Predict p, Label& L) {
1684   assert_not_delayed();
1685   if (is_simm(simm13a,5) && use_cbcond(L)) {
1686     Assembler::cbcond(c, icc, s1, simm13a, L);
1687   } else {
1688     cmp(s1, simm13a);
1689     br(c, false, p, L);
1690     delayed()->nop();
1691   }
1692 }
1693 
1694 // Branch that tests xcc in LP64 and icc in !LP64
cmp_and_brx_short(Register s1,Register s2,Condition c,Predict p,Label & L)1695 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
1696                                        Predict p, Label& L) {
1697   assert_not_delayed();
1698   if (use_cbcond(L)) {
1699     Assembler::cbcond(c, ptr_cc, s1, s2, L);
1700   } else {
1701     cmp(s1, s2);
1702     brx(c, false, p, L);
1703     delayed()->nop();
1704   }
1705 }
1706 
1707 // Branch that tests xcc in LP64 and icc in !LP64
cmp_and_brx_short(Register s1,int simm13a,Condition c,Predict p,Label & L)1708 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
1709                                        Predict p, Label& L) {
1710   assert_not_delayed();
1711   if (is_simm(simm13a,5) && use_cbcond(L)) {
1712     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
1713   } else {
1714     cmp(s1, simm13a);
1715     brx(c, false, p, L);
1716     delayed()->nop();
1717   }
1718 }
1719 
1720 // Short branch version for compares a pointer with zero.
1721 
br_null_short(Register s1,Predict p,Label & L)1722 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
1723   assert_not_delayed();
1724   if (use_cbcond(L)) {
1725     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
1726     return;
1727   }
1728   br_null(s1, false, p, L);
1729   delayed()->nop();
1730 }
1731 
br_notnull_short(Register s1,Predict p,Label & L)1732 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
1733   assert_not_delayed();
1734   if (use_cbcond(L)) {
1735     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
1736     return;
1737   }
1738   br_notnull(s1, false, p, L);
1739   delayed()->nop();
1740 }
1741 
1742 // Unconditional short branch
ba_short(Label & L)1743 void MacroAssembler::ba_short(Label& L) {
1744   if (use_cbcond(L)) {
1745     Assembler::cbcond(equal, icc, G0, G0, L);
1746     return;
1747   }
1748   br(always, false, pt, L);
1749   delayed()->nop();
1750 }
1751 
1752 // instruction sequences factored across compiler & interpreter
1753 
1754 
lcmp(Register Ra_hi,Register Ra_low,Register Rb_hi,Register Rb_low,Register Rresult)1755 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
1756                            Register Rb_hi, Register Rb_low,
1757                            Register Rresult) {
1758 
1759   Label check_low_parts, done;
1760 
1761   cmp(Ra_hi, Rb_hi );  // compare hi parts
1762   br(equal, true, pt, check_low_parts);
1763   delayed()->cmp(Ra_low, Rb_low); // test low parts
1764 
1765   // And, with an unsigned comparison, it does not matter if the numbers
1766   // are negative or not.
1767   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
1768   // The second one is bigger (unsignedly).
1769 
1770   // Other notes:  The first move in each triplet can be unconditional
1771   // (and therefore probably prefetchable).
1772   // And the equals case for the high part does not need testing,
1773   // since that triplet is reached only after finding the high halves differ.
1774 
1775   mov(-1, Rresult);
1776   ba(done);
1777   delayed()->movcc(greater, false, icc,  1, Rresult);
1778 
1779   bind(check_low_parts);
1780 
1781   mov(                               -1, Rresult);
1782   movcc(equal,           false, icc,  0, Rresult);
1783   movcc(greaterUnsigned, false, icc,  1, Rresult);
1784 
1785   bind(done);
1786 }
1787 
lneg(Register Rhi,Register Rlow)1788 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
1789   subcc(  G0, Rlow, Rlow );
1790   subc(   G0, Rhi,  Rhi  );
1791 }
1792 
lshl(Register Rin_high,Register Rin_low,Register Rcount,Register Rout_high,Register Rout_low,Register Rtemp)1793 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
1794                            Register Rcount,
1795                            Register Rout_high, Register Rout_low,
1796                            Register Rtemp ) {
1797 
1798 
1799   Register Ralt_count = Rtemp;
1800   Register Rxfer_bits = Rtemp;
1801 
1802   assert( Ralt_count != Rin_high
1803       &&  Ralt_count != Rin_low
1804       &&  Ralt_count != Rcount
1805       &&  Rxfer_bits != Rin_low
1806       &&  Rxfer_bits != Rin_high
1807       &&  Rxfer_bits != Rcount
1808       &&  Rxfer_bits != Rout_low
1809       &&  Rout_low   != Rin_high,
1810         "register alias checks");
1811 
1812   Label big_shift, done;
1813 
1814   // This code can be optimized to use the 64 bit shifts in V9.
1815   // Here we use the 32 bit shifts.
1816 
1817   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1818   subcc(Rcount,   31, Ralt_count);
1819   br(greater, true, pn, big_shift);
1820   delayed()->dec(Ralt_count);
1821 
1822   // shift < 32 bits, Ralt_count = Rcount-31
1823 
1824   // We get the transfer bits by shifting right by 32-count the low
1825   // register. This is done by shifting right by 31-count and then by one
1826   // more to take care of the special (rare) case where count is zero
1827   // (shifting by 32 would not work).
1828 
1829   neg(Ralt_count);
1830 
1831   // The order of the next two instructions is critical in the case where
1832   // Rin and Rout are the same and should not be reversed.
1833 
1834   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
1835   if (Rcount != Rout_low) {
1836     sll(Rin_low, Rcount, Rout_low); // low half
1837   }
1838   sll(Rin_high, Rcount, Rout_high);
1839   if (Rcount == Rout_low) {
1840     sll(Rin_low, Rcount, Rout_low); // low half
1841   }
1842   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
1843   ba(done);
1844   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
1845 
1846   // shift >= 32 bits, Ralt_count = Rcount-32
1847   bind(big_shift);
1848   sll(Rin_low, Ralt_count, Rout_high  );
1849   clr(Rout_low);
1850 
1851   bind(done);
1852 }
1853 
1854 
lshr(Register Rin_high,Register Rin_low,Register Rcount,Register Rout_high,Register Rout_low,Register Rtemp)1855 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
1856                            Register Rcount,
1857                            Register Rout_high, Register Rout_low,
1858                            Register Rtemp ) {
1859 
1860   Register Ralt_count = Rtemp;
1861   Register Rxfer_bits = Rtemp;
1862 
1863   assert( Ralt_count != Rin_high
1864       &&  Ralt_count != Rin_low
1865       &&  Ralt_count != Rcount
1866       &&  Rxfer_bits != Rin_low
1867       &&  Rxfer_bits != Rin_high
1868       &&  Rxfer_bits != Rcount
1869       &&  Rxfer_bits != Rout_high
1870       &&  Rout_high  != Rin_low,
1871         "register alias checks");
1872 
1873   Label big_shift, done;
1874 
1875   // This code can be optimized to use the 64 bit shifts in V9.
1876   // Here we use the 32 bit shifts.
1877 
1878   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1879   subcc(Rcount,   31, Ralt_count);
1880   br(greater, true, pn, big_shift);
1881   delayed()->dec(Ralt_count);
1882 
1883   // shift < 32 bits, Ralt_count = Rcount-31
1884 
1885   // We get the transfer bits by shifting left by 32-count the high
1886   // register. This is done by shifting left by 31-count and then by one
1887   // more to take care of the special (rare) case where count is zero
1888   // (shifting by 32 would not work).
1889 
1890   neg(Ralt_count);
1891   if (Rcount != Rout_low) {
1892     srl(Rin_low, Rcount, Rout_low);
1893   }
1894 
1895   // The order of the next two instructions is critical in the case where
1896   // Rin and Rout are the same and should not be reversed.
1897 
1898   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1899   sra(Rin_high,     Rcount, Rout_high ); // high half
1900   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1901   if (Rcount == Rout_low) {
1902     srl(Rin_low, Rcount, Rout_low);
1903   }
1904   ba(done);
1905   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1906 
1907   // shift >= 32 bits, Ralt_count = Rcount-32
1908   bind(big_shift);
1909 
1910   sra(Rin_high, Ralt_count, Rout_low);
1911   sra(Rin_high,         31, Rout_high); // sign into hi
1912 
1913   bind( done );
1914 }
1915 
1916 
1917 
lushr(Register Rin_high,Register Rin_low,Register Rcount,Register Rout_high,Register Rout_low,Register Rtemp)1918 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
1919                             Register Rcount,
1920                             Register Rout_high, Register Rout_low,
1921                             Register Rtemp ) {
1922 
1923   Register Ralt_count = Rtemp;
1924   Register Rxfer_bits = Rtemp;
1925 
1926   assert( Ralt_count != Rin_high
1927       &&  Ralt_count != Rin_low
1928       &&  Ralt_count != Rcount
1929       &&  Rxfer_bits != Rin_low
1930       &&  Rxfer_bits != Rin_high
1931       &&  Rxfer_bits != Rcount
1932       &&  Rxfer_bits != Rout_high
1933       &&  Rout_high  != Rin_low,
1934         "register alias checks");
1935 
1936   Label big_shift, done;
1937 
1938   // This code can be optimized to use the 64 bit shifts in V9.
1939   // Here we use the 32 bit shifts.
1940 
1941   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
1942   subcc(Rcount,   31, Ralt_count);
1943   br(greater, true, pn, big_shift);
1944   delayed()->dec(Ralt_count);
1945 
1946   // shift < 32 bits, Ralt_count = Rcount-31
1947 
1948   // We get the transfer bits by shifting left by 32-count the high
1949   // register. This is done by shifting left by 31-count and then by one
1950   // more to take care of the special (rare) case where count is zero
1951   // (shifting by 32 would not work).
1952 
1953   neg(Ralt_count);
1954   if (Rcount != Rout_low) {
1955     srl(Rin_low, Rcount, Rout_low);
1956   }
1957 
1958   // The order of the next two instructions is critical in the case where
1959   // Rin and Rout are the same and should not be reversed.
1960 
1961   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
1962   srl(Rin_high,     Rcount, Rout_high ); // high half
1963   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
1964   if (Rcount == Rout_low) {
1965     srl(Rin_low, Rcount, Rout_low);
1966   }
1967   ba(done);
1968   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
1969 
1970   // shift >= 32 bits, Ralt_count = Rcount-32
1971   bind(big_shift);
1972 
1973   srl(Rin_high, Ralt_count, Rout_low);
1974   clr(Rout_high);
1975 
1976   bind( done );
1977 }
1978 
1979 #ifdef _LP64
lcmp(Register Ra,Register Rb,Register Rresult)1980 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
1981   cmp(Ra, Rb);
1982   mov(-1, Rresult);
1983   movcc(equal,   false, xcc,  0, Rresult);
1984   movcc(greater, false, xcc,  1, Rresult);
1985 }
1986 #endif
1987 
1988 
load_sized_value(Address src,Register dst,size_t size_in_bytes,bool is_signed)1989 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
1990   switch (size_in_bytes) {
1991   case  8:  ld_long(src, dst); break;
1992   case  4:  ld(     src, dst); break;
1993   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
1994   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
1995   default:  ShouldNotReachHere();
1996   }
1997 }
1998 
store_sized_value(Register src,Address dst,size_t size_in_bytes)1999 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
2000   switch (size_in_bytes) {
2001   case  8:  st_long(src, dst); break;
2002   case  4:  st(     src, dst); break;
2003   case  2:  sth(    src, dst); break;
2004   case  1:  stb(    src, dst); break;
2005   default:  ShouldNotReachHere();
2006   }
2007 }
2008 
2009 
float_cmp(bool is_float,int unordered_result,FloatRegister Fa,FloatRegister Fb,Register Rresult)2010 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2011                                 FloatRegister Fa, FloatRegister Fb,
2012                                 Register Rresult) {
2013   if (is_float) {
2014     fcmp(FloatRegisterImpl::S, fcc0, Fa, Fb);
2015   } else {
2016     fcmp(FloatRegisterImpl::D, fcc0, Fa, Fb);
2017   }
2018 
2019   if (unordered_result == 1) {
2020     mov(                                    -1, Rresult);
2021     movcc(f_equal,              true, fcc0,  0, Rresult);
2022     movcc(f_unorderedOrGreater, true, fcc0,  1, Rresult);
2023   } else {
2024     mov(                                    -1, Rresult);
2025     movcc(f_equal,              true, fcc0,  0, Rresult);
2026     movcc(f_greater,            true, fcc0,  1, Rresult);
2027   }
2028 }
2029 
2030 
save_all_globals_into_locals()2031 void MacroAssembler::save_all_globals_into_locals() {
2032   mov(G1,L1);
2033   mov(G2,L2);
2034   mov(G3,L3);
2035   mov(G4,L4);
2036   mov(G5,L5);
2037   mov(G6,L6);
2038   mov(G7,L7);
2039 }
2040 
restore_globals_from_locals()2041 void MacroAssembler::restore_globals_from_locals() {
2042   mov(L1,G1);
2043   mov(L2,G2);
2044   mov(L3,G3);
2045   mov(L4,G4);
2046   mov(L5,G5);
2047   mov(L6,G6);
2048   mov(L7,G7);
2049 }
2050 
delayed_value_impl(intptr_t * delayed_value_addr,Register tmp,int offset)2051 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2052                                                       Register tmp,
2053                                                       int offset) {
2054   intptr_t value = *delayed_value_addr;
2055   if (value != 0)
2056     return RegisterOrConstant(value + offset);
2057 
2058   // load indirectly to solve generation ordering problem
2059   AddressLiteral a(delayed_value_addr);
2060   load_ptr_contents(a, tmp);
2061 
2062 #ifdef ASSERT
2063   tst(tmp);
2064   breakpoint_trap(zero, xcc);
2065 #endif
2066 
2067   if (offset != 0)
2068     add(tmp, offset, tmp);
2069 
2070   return RegisterOrConstant(tmp);
2071 }
2072 
2073 
regcon_andn_ptr(RegisterOrConstant s1,RegisterOrConstant s2,RegisterOrConstant d,Register temp)2074 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2075   assert(d.register_or_noreg() != G0, "lost side effect");
2076   if ((s2.is_constant() && s2.as_constant() == 0) ||
2077       (s2.is_register() && s2.as_register() == G0)) {
2078     // Do nothing, just move value.
2079     if (s1.is_register()) {
2080       if (d.is_constant())  d = temp;
2081       mov(s1.as_register(), d.as_register());
2082       return d;
2083     } else {
2084       return s1;
2085     }
2086   }
2087 
2088   if (s1.is_register()) {
2089     assert_different_registers(s1.as_register(), temp);
2090     if (d.is_constant())  d = temp;
2091     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2092     return d;
2093   } else {
2094     if (s2.is_register()) {
2095       assert_different_registers(s2.as_register(), temp);
2096       if (d.is_constant())  d = temp;
2097       set(s1.as_constant(), temp);
2098       andn(temp, s2.as_register(), d.as_register());
2099       return d;
2100     } else {
2101       intptr_t res = s1.as_constant() & ~s2.as_constant();
2102       return res;
2103     }
2104   }
2105 }
2106 
regcon_inc_ptr(RegisterOrConstant s1,RegisterOrConstant s2,RegisterOrConstant d,Register temp)2107 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2108   assert(d.register_or_noreg() != G0, "lost side effect");
2109   if ((s2.is_constant() && s2.as_constant() == 0) ||
2110       (s2.is_register() && s2.as_register() == G0)) {
2111     // Do nothing, just move value.
2112     if (s1.is_register()) {
2113       if (d.is_constant())  d = temp;
2114       mov(s1.as_register(), d.as_register());
2115       return d;
2116     } else {
2117       return s1;
2118     }
2119   }
2120 
2121   if (s1.is_register()) {
2122     assert_different_registers(s1.as_register(), temp);
2123     if (d.is_constant())  d = temp;
2124     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2125     return d;
2126   } else {
2127     if (s2.is_register()) {
2128       assert_different_registers(s2.as_register(), temp);
2129       if (d.is_constant())  d = temp;
2130       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2131       return d;
2132     } else {
2133       intptr_t res = s1.as_constant() + s2.as_constant();
2134       return res;
2135     }
2136   }
2137 }
2138 
regcon_sll_ptr(RegisterOrConstant s1,RegisterOrConstant s2,RegisterOrConstant d,Register temp)2139 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2140   assert(d.register_or_noreg() != G0, "lost side effect");
2141   if (!is_simm13(s2.constant_or_zero()))
2142     s2 = (s2.as_constant() & 0xFF);
2143   if ((s2.is_constant() && s2.as_constant() == 0) ||
2144       (s2.is_register() && s2.as_register() == G0)) {
2145     // Do nothing, just move value.
2146     if (s1.is_register()) {
2147       if (d.is_constant())  d = temp;
2148       mov(s1.as_register(), d.as_register());
2149       return d;
2150     } else {
2151       return s1;
2152     }
2153   }
2154 
2155   if (s1.is_register()) {
2156     assert_different_registers(s1.as_register(), temp);
2157     if (d.is_constant())  d = temp;
2158     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2159     return d;
2160   } else {
2161     if (s2.is_register()) {
2162       assert_different_registers(s2.as_register(), temp);
2163       if (d.is_constant())  d = temp;
2164       set(s1.as_constant(), temp);
2165       sll_ptr(temp, s2.as_register(), d.as_register());
2166       return d;
2167     } else {
2168       intptr_t res = s1.as_constant() << s2.as_constant();
2169       return res;
2170     }
2171   }
2172 }
2173 
2174 
2175 // Look up the method for a megamorphic invokeinterface call.
2176 // The target method is determined by <intf_klass, itable_index>.
2177 // The receiver klass is in recv_klass.
2178 // On success, the result will be in method_result, and execution falls through.
2179 // On failure, execution transfers to the given label.
lookup_interface_method(Register recv_klass,Register intf_klass,RegisterOrConstant itable_index,Register method_result,Register scan_temp,Register sethi_temp,Label & L_no_such_interface,bool return_method)2180 void MacroAssembler::lookup_interface_method(Register recv_klass,
2181                                              Register intf_klass,
2182                                              RegisterOrConstant itable_index,
2183                                              Register method_result,
2184                                              Register scan_temp,
2185                                              Register sethi_temp,
2186                                              Label& L_no_such_interface,
2187                                              bool return_method) {
2188   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2189   assert(!return_method || itable_index.is_constant() || itable_index.as_register() == method_result,
2190          "caller must use same register for non-constant itable index as for method");
2191 
2192   Label L_no_such_interface_restore;
2193   bool did_save = false;
2194   if (scan_temp == noreg || sethi_temp == noreg) {
2195     Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
2196     Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
2197     assert(method_result->is_global(), "must be able to return value");
2198     scan_temp  = L2;
2199     sethi_temp = L3;
2200     save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
2201     recv_klass = recv_2;
2202     intf_klass = intf_2;
2203     did_save = true;
2204   }
2205 
2206   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2207   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
2208   int scan_step   = itableOffsetEntry::size() * wordSize;
2209   int vte_size    = vtableEntry::size() * wordSize;
2210 
2211   lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
2212   // %%% We should store the aligned, prescaled offset in the klassoop.
2213   // Then the next several instructions would fold away.
2214 
2215   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2216   int itb_offset = vtable_base;
2217   if (round_to_unit != 0) {
2218     // hoist first instruction of round_to(scan_temp, BytesPerLong):
2219     itb_offset += round_to_unit - wordSize;
2220   }
2221   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2222   sll(scan_temp, itb_scale,  scan_temp);
2223   add(scan_temp, itb_offset, scan_temp);
2224   if (round_to_unit != 0) {
2225     // Round up to align_object_offset boundary
2226     // see code for InstanceKlass::start_of_itable!
2227     // Was: round_to(scan_temp, BytesPerLong);
2228     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2229     and3(scan_temp, -round_to_unit, scan_temp);
2230   }
2231   add(recv_klass, scan_temp, scan_temp);
2232 
2233   if (return_method) {
2234     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2235     RegisterOrConstant itable_offset = itable_index;
2236     itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2237     itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2238     add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2239   }
2240 
2241   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2242   //   if (scan->interface() == intf) {
2243   //     result = (klass + scan->offset() + itable_index);
2244   //   }
2245   // }
2246   Label L_search, L_found_method;
2247 
2248   for (int peel = 1; peel >= 0; peel--) {
2249     // %%%% Could load both offset and interface in one ldx, if they were
2250     // in the opposite order.  This would save a load.
2251     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2252 
2253     // Check that this entry is non-null.  A null entry means that
2254     // the receiver class doesn't implement the interface, and wasn't the
2255     // same as when the caller was compiled.
2256     bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
2257     delayed()->cmp(method_result, intf_klass);
2258 
2259     if (peel) {
2260       brx(Assembler::equal,    false, Assembler::pt, L_found_method);
2261     } else {
2262       brx(Assembler::notEqual, false, Assembler::pn, L_search);
2263       // (invert the test to fall through to found_method...)
2264     }
2265     delayed()->add(scan_temp, scan_step, scan_temp);
2266 
2267     if (!peel)  break;
2268 
2269     bind(L_search);
2270   }
2271 
2272   bind(L_found_method);
2273 
2274   if (return_method) {
2275     // Got a hit.
2276     int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2277     // scan_temp[-scan_step] points to the vtable offset we need
2278     ito_offset -= scan_step;
2279     lduw(scan_temp, ito_offset, scan_temp);
2280     ld_ptr(recv_klass, scan_temp, method_result);
2281   }
2282 
2283   if (did_save) {
2284     Label L_done;
2285     ba(L_done);
2286     delayed()->restore();
2287 
2288     bind(L_no_such_interface_restore);
2289     ba(L_no_such_interface);
2290     delayed()->restore();
2291 
2292     bind(L_done);
2293   }
2294 }
2295 
2296 
2297 // virtual method calling
lookup_virtual_method(Register recv_klass,RegisterOrConstant vtable_index,Register method_result)2298 void MacroAssembler::lookup_virtual_method(Register recv_klass,
2299                                            RegisterOrConstant vtable_index,
2300                                            Register method_result) {
2301   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
2302   Register sethi_temp = method_result;
2303   const int base = (InstanceKlass::vtable_start_offset() * wordSize +
2304                     // method pointer offset within the vtable entry:
2305                     vtableEntry::method_offset_in_bytes());
2306   RegisterOrConstant vtable_offset = vtable_index;
2307   // Each of the following three lines potentially generates an instruction.
2308   // But the total number of address formation instructions will always be
2309   // at most two, and will often be zero.  In any case, it will be optimal.
2310   // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
2311   // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
2312   vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
2313   vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
2314   Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
2315   ld_ptr(vtable_entry_addr, method_result);
2316 }
2317 
2318 
check_klass_subtype(Register sub_klass,Register super_klass,Register temp_reg,Register temp2_reg,Label & L_success)2319 void MacroAssembler::check_klass_subtype(Register sub_klass,
2320                                          Register super_klass,
2321                                          Register temp_reg,
2322                                          Register temp2_reg,
2323                                          Label& L_success) {
2324   Register sub_2 = sub_klass;
2325   Register sup_2 = super_klass;
2326   if (!sub_2->is_global())  sub_2 = L0;
2327   if (!sup_2->is_global())  sup_2 = L1;
2328   bool did_save = false;
2329   if (temp_reg == noreg || temp2_reg == noreg) {
2330     temp_reg = L2;
2331     temp2_reg = L3;
2332     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2333     sub_klass = sub_2;
2334     super_klass = sup_2;
2335     did_save = true;
2336   }
2337   Label L_failure, L_pop_to_failure, L_pop_to_success;
2338   check_klass_subtype_fast_path(sub_klass, super_klass,
2339                                 temp_reg, temp2_reg,
2340                                 (did_save ? &L_pop_to_success : &L_success),
2341                                 (did_save ? &L_pop_to_failure : &L_failure), NULL);
2342 
2343   if (!did_save)
2344     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2345   check_klass_subtype_slow_path(sub_2, sup_2,
2346                                 L2, L3, L4, L5,
2347                                 NULL, &L_pop_to_failure);
2348 
2349   // on success:
2350   bind(L_pop_to_success);
2351   restore();
2352   ba_short(L_success);
2353 
2354   // on failure:
2355   bind(L_pop_to_failure);
2356   restore();
2357   bind(L_failure);
2358 }
2359 
2360 
check_klass_subtype_fast_path(Register sub_klass,Register super_klass,Register temp_reg,Register temp2_reg,Label * L_success,Label * L_failure,Label * L_slow_path,RegisterOrConstant super_check_offset)2361 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
2362                                                    Register super_klass,
2363                                                    Register temp_reg,
2364                                                    Register temp2_reg,
2365                                                    Label* L_success,
2366                                                    Label* L_failure,
2367                                                    Label* L_slow_path,
2368                                         RegisterOrConstant super_check_offset) {
2369   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2370   int sco_offset = in_bytes(Klass::super_check_offset_offset());
2371 
2372   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
2373   bool need_slow_path = (must_load_sco ||
2374                          super_check_offset.constant_or_zero() == sco_offset);
2375 
2376   assert_different_registers(sub_klass, super_klass, temp_reg);
2377   if (super_check_offset.is_register()) {
2378     assert_different_registers(sub_klass, super_klass, temp_reg,
2379                                super_check_offset.as_register());
2380   } else if (must_load_sco) {
2381     assert(temp2_reg != noreg, "supply either a temp or a register offset");
2382   }
2383 
2384   Label L_fallthrough;
2385   int label_nulls = 0;
2386   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2387   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2388   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2389   assert(label_nulls <= 1 ||
2390          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2391          "at most one NULL in the batch, usually");
2392 
2393   // If the pointers are equal, we are done (e.g., String[] elements).
2394   // This self-check enables sharing of secondary supertype arrays among
2395   // non-primary types such as array-of-interface.  Otherwise, each such
2396   // type would need its own customized SSA.
2397   // We move this check to the front of the fast path because many
2398   // type checks are in fact trivially successful in this manner,
2399   // so we get a nicely predicted branch right at the start of the check.
2400   cmp(super_klass, sub_klass);
2401   brx(Assembler::equal, false, Assembler::pn, *L_success);
2402   delayed()->nop();
2403 
2404   // Check the supertype display:
2405   if (must_load_sco) {
2406     // The super check offset is always positive...
2407     lduw(super_klass, sco_offset, temp2_reg);
2408     super_check_offset = RegisterOrConstant(temp2_reg);
2409     // super_check_offset is register.
2410     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
2411   }
2412   ld_ptr(sub_klass, super_check_offset, temp_reg);
2413   cmp(super_klass, temp_reg);
2414 
2415   // This check has worked decisively for primary supers.
2416   // Secondary supers are sought in the super_cache ('super_cache_addr').
2417   // (Secondary supers are interfaces and very deeply nested subtypes.)
2418   // This works in the same check above because of a tricky aliasing
2419   // between the super_cache and the primary super display elements.
2420   // (The 'super_check_addr' can address either, as the case requires.)
2421   // Note that the cache is updated below if it does not help us find
2422   // what we need immediately.
2423   // So if it was a primary super, we can just fail immediately.
2424   // Otherwise, it's the slow path for us (no success at this point).
2425 
2426   // Hacked ba(), which may only be used just before L_fallthrough.
2427 #define FINAL_JUMP(label)            \
2428   if (&(label) != &L_fallthrough) {  \
2429     ba(label);  delayed()->nop();    \
2430   }
2431 
2432   if (super_check_offset.is_register()) {
2433     brx(Assembler::equal, false, Assembler::pn, *L_success);
2434     delayed()->cmp(super_check_offset.as_register(), sc_offset);
2435 
2436     if (L_failure == &L_fallthrough) {
2437       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
2438       delayed()->nop();
2439     } else {
2440       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2441       delayed()->nop();
2442       FINAL_JUMP(*L_slow_path);
2443     }
2444   } else if (super_check_offset.as_constant() == sc_offset) {
2445     // Need a slow path; fast failure is impossible.
2446     if (L_slow_path == &L_fallthrough) {
2447       brx(Assembler::equal, false, Assembler::pt, *L_success);
2448       delayed()->nop();
2449     } else {
2450       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
2451       delayed()->nop();
2452       FINAL_JUMP(*L_success);
2453     }
2454   } else {
2455     // No slow path; it's a fast decision.
2456     if (L_failure == &L_fallthrough) {
2457       brx(Assembler::equal, false, Assembler::pt, *L_success);
2458       delayed()->nop();
2459     } else {
2460       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
2461       delayed()->nop();
2462       FINAL_JUMP(*L_success);
2463     }
2464   }
2465 
2466   bind(L_fallthrough);
2467 
2468 #undef FINAL_JUMP
2469 }
2470 
2471 
check_klass_subtype_slow_path(Register sub_klass,Register super_klass,Register count_temp,Register scan_temp,Register scratch_reg,Register coop_reg,Label * L_success,Label * L_failure)2472 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
2473                                                    Register super_klass,
2474                                                    Register count_temp,
2475                                                    Register scan_temp,
2476                                                    Register scratch_reg,
2477                                                    Register coop_reg,
2478                                                    Label* L_success,
2479                                                    Label* L_failure) {
2480   assert_different_registers(sub_klass, super_klass,
2481                              count_temp, scan_temp, scratch_reg, coop_reg);
2482 
2483   Label L_fallthrough, L_loop;
2484   int label_nulls = 0;
2485   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2486   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2487   assert(label_nulls <= 1, "at most one NULL in the batch");
2488 
2489   // a couple of useful fields in sub_klass:
2490   int ss_offset = in_bytes(Klass::secondary_supers_offset());
2491   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
2492 
2493   // Do a linear scan of the secondary super-klass chain.
2494   // This code is rarely used, so simplicity is a virtue here.
2495 
2496 #ifndef PRODUCT
2497   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
2498   inc_counter((address) pst_counter, count_temp, scan_temp);
2499 #endif
2500 
2501   // We will consult the secondary-super array.
2502   ld_ptr(sub_klass, ss_offset, scan_temp);
2503 
2504   Register search_key = super_klass;
2505 
2506   // Load the array length.  (Positive movl does right thing on LP64.)
2507   lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
2508 
2509   // Check for empty secondary super list
2510   tst(count_temp);
2511 
2512   // In the array of super classes elements are pointer sized.
2513   int element_size = wordSize;
2514 
2515   // Top of search loop
2516   bind(L_loop);
2517   br(Assembler::equal, false, Assembler::pn, *L_failure);
2518   delayed()->add(scan_temp, element_size, scan_temp);
2519 
2520   // Skip the array header in all array accesses.
2521   int elem_offset = Array<Klass*>::base_offset_in_bytes();
2522   elem_offset -= element_size;   // the scan pointer was pre-incremented also
2523 
2524   // Load next super to check
2525     ld_ptr( scan_temp, elem_offset, scratch_reg );
2526 
2527   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
2528   cmp(scratch_reg, search_key);
2529 
2530   // A miss means we are NOT a subtype and need to keep looping
2531   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
2532   delayed()->deccc(count_temp); // decrement trip counter in delay slot
2533 
2534   // Success.  Cache the super we found and proceed in triumph.
2535   st_ptr(super_klass, sub_klass, sc_offset);
2536 
2537   if (L_success != &L_fallthrough) {
2538     ba(*L_success);
2539     delayed()->nop();
2540   }
2541 
2542   bind(L_fallthrough);
2543 }
2544 
2545 
argument_offset(RegisterOrConstant arg_slot,Register temp_reg,int extra_slot_offset)2546 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2547                                                    Register temp_reg,
2548                                                    int extra_slot_offset) {
2549   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2550   int stackElementSize = Interpreter::stackElementSize;
2551   int offset = extra_slot_offset * stackElementSize;
2552   if (arg_slot.is_constant()) {
2553     offset += arg_slot.as_constant() * stackElementSize;
2554     return offset;
2555   } else {
2556     assert(temp_reg != noreg, "must specify");
2557     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
2558     if (offset != 0)
2559       add(temp_reg, offset, temp_reg);
2560     return temp_reg;
2561   }
2562 }
2563 
2564 
argument_address(RegisterOrConstant arg_slot,Register temp_reg,int extra_slot_offset)2565 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
2566                                          Register temp_reg,
2567                                          int extra_slot_offset) {
2568   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
2569 }
2570 
2571 
biased_locking_enter(Register obj_reg,Register mark_reg,Register temp_reg,Label & done,Label * slow_case,BiasedLockingCounters * counters)2572 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
2573                                           Register temp_reg,
2574                                           Label& done, Label* slow_case,
2575                                           BiasedLockingCounters* counters) {
2576   assert(UseBiasedLocking, "why call this otherwise?");
2577 
2578   if (PrintBiasedLockingStatistics) {
2579     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
2580     if (counters == NULL)
2581       counters = BiasedLocking::counters();
2582   }
2583 
2584   Label cas_label;
2585 
2586   // Biased locking
2587   // See whether the lock is currently biased toward our thread and
2588   // whether the epoch is still valid
2589   // Note that the runtime guarantees sufficient alignment of JavaThread
2590   // pointers to allow age to be placed into low bits
2591   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
2592   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2593   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
2594 
2595   load_klass(obj_reg, temp_reg);
2596   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2597   or3(G2_thread, temp_reg, temp_reg);
2598   xor3(mark_reg, temp_reg, temp_reg);
2599   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
2600   if (counters != NULL) {
2601     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
2602     // Reload mark_reg as we may need it later
2603     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
2604   }
2605   brx(Assembler::equal, true, Assembler::pt, done);
2606   delayed()->nop();
2607 
2608   Label try_revoke_bias;
2609   Label try_rebias;
2610   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
2611   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2612 
2613   // At this point we know that the header has the bias pattern and
2614   // that we are not the bias owner in the current epoch. We need to
2615   // figure out more details about the state of the header in order to
2616   // know what operations can be legally performed on the object's
2617   // header.
2618 
2619   // If the low three bits in the xor result aren't clear, that means
2620   // the prototype header is no longer biased and we have to revoke
2621   // the bias on this object.
2622   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
2623   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
2624 
2625   // Biasing is still enabled for this data type. See whether the
2626   // epoch of the current bias is still valid, meaning that the epoch
2627   // bits of the mark word are equal to the epoch bits of the
2628   // prototype header. (Note that the prototype header's epoch bits
2629   // only change at a safepoint.) If not, attempt to rebias the object
2630   // toward the current thread. Note that we must be absolutely sure
2631   // that the current epoch is invalid in order to do this because
2632   // otherwise the manipulations it performs on the mark word are
2633   // illegal.
2634   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
2635   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
2636 
2637   // The epoch of the current bias is still valid but we know nothing
2638   // about the owner; it might be set or it might be clear. Try to
2639   // acquire the bias of the object using an atomic operation. If this
2640   // fails we will go in to the runtime to revoke the object's bias.
2641   // Note that we first construct the presumed unbiased header so we
2642   // don't accidentally blow away another thread's valid bias.
2643   delayed()->and3(mark_reg,
2644                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
2645                   mark_reg);
2646   or3(G2_thread, mark_reg, temp_reg);
2647   cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2648   // If the biasing toward our thread failed, this means that
2649   // another thread succeeded in biasing it toward itself and we
2650   // need to revoke that bias. The revocation will occur in the
2651   // interpreter runtime in the slow case.
2652   cmp(mark_reg, temp_reg);
2653   if (counters != NULL) {
2654     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
2655   }
2656   if (slow_case != NULL) {
2657     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2658     delayed()->nop();
2659   }
2660   ba_short(done);
2661 
2662   bind(try_rebias);
2663   // At this point we know the epoch has expired, meaning that the
2664   // current "bias owner", if any, is actually invalid. Under these
2665   // circumstances _only_, we are allowed to use the current header's
2666   // value as the comparison value when doing the cas to acquire the
2667   // bias in the current epoch. In other words, we allow transfer of
2668   // the bias from one thread to another directly in this situation.
2669   //
2670   // FIXME: due to a lack of registers we currently blow away the age
2671   // bits in this situation. Should attempt to preserve them.
2672   load_klass(obj_reg, temp_reg);
2673   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2674   or3(G2_thread, temp_reg, temp_reg);
2675   cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2676   // If the biasing toward our thread failed, this means that
2677   // another thread succeeded in biasing it toward itself and we
2678   // need to revoke that bias. The revocation will occur in the
2679   // interpreter runtime in the slow case.
2680   cmp(mark_reg, temp_reg);
2681   if (counters != NULL) {
2682     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
2683   }
2684   if (slow_case != NULL) {
2685     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
2686     delayed()->nop();
2687   }
2688   ba_short(done);
2689 
2690   bind(try_revoke_bias);
2691   // The prototype mark in the klass doesn't have the bias bit set any
2692   // more, indicating that objects of this data type are not supposed
2693   // to be biased any more. We are going to try to reset the mark of
2694   // this object to the prototype value and fall through to the
2695   // CAS-based locking scheme. Note that if our CAS fails, it means
2696   // that another thread raced us for the privilege of revoking the
2697   // bias of this particular object, so it's okay to continue in the
2698   // normal locking code.
2699   //
2700   // FIXME: due to a lack of registers we currently blow away the age
2701   // bits in this situation. Should attempt to preserve them.
2702   load_klass(obj_reg, temp_reg);
2703   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
2704   cas_ptr(mark_addr.base(), mark_reg, temp_reg);
2705   // Fall through to the normal CAS-based lock, because no matter what
2706   // the result of the above CAS, some thread must have succeeded in
2707   // removing the bias bit from the object's header.
2708   if (counters != NULL) {
2709     cmp(mark_reg, temp_reg);
2710     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
2711   }
2712 
2713   bind(cas_label);
2714 }
2715 
biased_locking_exit(Address mark_addr,Register temp_reg,Label & done,bool allow_delay_slot_filling)2716 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
2717                                           bool allow_delay_slot_filling) {
2718   // Check for biased locking unlock case, which is a no-op
2719   // Note: we do not have to check the thread ID for two reasons.
2720   // First, the interpreter checks for IllegalMonitorStateException at
2721   // a higher level. Second, if the bias was revoked while we held the
2722   // lock, the object could not be rebiased toward another thread, so
2723   // the bias bit would be clear.
2724   ld_ptr(mark_addr, temp_reg);
2725   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
2726   cmp(temp_reg, markOopDesc::biased_lock_pattern);
2727   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
2728   delayed();
2729   if (!allow_delay_slot_filling) {
2730     nop();
2731   }
2732 }
2733 
2734 
2735 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
2736 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
2737 // The code could be tightened up considerably.
2738 //
2739 // box->dhw disposition - post-conditions at DONE_LABEL.
2740 // -   Successful inflated lock:  box->dhw != 0.
2741 //     Any non-zero value suffices.
2742 //     Consider G2_thread, rsp, boxReg, or unused_mark()
2743 // -   Successful Stack-lock: box->dhw == mark.
2744 //     box->dhw must contain the displaced mark word value
2745 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
2746 //     The slow-path fast_enter() and slow_enter() operators
2747 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
2748 // -   Biased: box->dhw is undefined
2749 //
2750 // SPARC refworkload performance - specifically jetstream and scimark - are
2751 // extremely sensitive to the size of the code emitted by compiler_lock_object
2752 // and compiler_unlock_object.  Critically, the key factor is code size, not path
2753 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
2754 // effect).
2755 
2756 
compiler_lock_object(Register Roop,Register Rmark,Register Rbox,Register Rscratch,BiasedLockingCounters * counters,bool try_bias)2757 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
2758                                           Register Rbox, Register Rscratch,
2759                                           BiasedLockingCounters* counters,
2760                                           bool try_bias) {
2761    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2762 
2763    verify_oop(Roop);
2764    Label done ;
2765 
2766    if (counters != NULL) {
2767      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
2768    }
2769 
2770    if (EmitSync & 1) {
2771      mov(3, Rscratch);
2772      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2773      cmp(SP, G0);
2774      return ;
2775    }
2776 
2777    if (EmitSync & 2) {
2778 
2779      // Fetch object's markword
2780      ld_ptr(mark_addr, Rmark);
2781 
2782      if (try_bias) {
2783         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2784      }
2785 
2786      // Save Rbox in Rscratch to be used for the cas operation
2787      mov(Rbox, Rscratch);
2788 
2789      // set Rmark to markOop | markOopDesc::unlocked_value
2790      or3(Rmark, markOopDesc::unlocked_value, Rmark);
2791 
2792      // Initialize the box.  (Must happen before we update the object mark!)
2793      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2794 
2795      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
2796      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2797      cas_ptr(mark_addr.base(), Rmark, Rscratch);
2798 
2799      // if compare/exchange succeeded we found an unlocked object and we now have locked it
2800      // hence we are done
2801      cmp(Rmark, Rscratch);
2802 #ifdef _LP64
2803      sub(Rscratch, STACK_BIAS, Rscratch);
2804 #endif
2805      brx(Assembler::equal, false, Assembler::pt, done);
2806      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
2807 
2808      // we did not find an unlocked object so see if this is a recursive case
2809      // sub(Rscratch, SP, Rscratch);
2810      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2811      andcc(Rscratch, 0xfffff003, Rscratch);
2812      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2813      bind (done);
2814      return ;
2815    }
2816 
2817    Label Egress ;
2818 
2819    if (EmitSync & 256) {
2820       Label IsInflated ;
2821 
2822       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2823       // Triage: biased, stack-locked, neutral, inflated
2824       if (try_bias) {
2825         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2826         // Invariant: if control reaches this point in the emitted stream
2827         // then Rmark has not been modified.
2828       }
2829 
2830       // Store mark into displaced mark field in the on-stack basic-lock "box"
2831       // Critically, this must happen before the CAS
2832       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
2833       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2834       andcc(Rmark, 2, G0);
2835       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2836       delayed()->
2837 
2838       // Try stack-lock acquisition.
2839       // Beware: the 1st instruction is in a delay slot
2840       mov(Rbox,  Rscratch);
2841       or3(Rmark, markOopDesc::unlocked_value, Rmark);
2842       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2843       cas_ptr(mark_addr.base(), Rmark, Rscratch);
2844       cmp(Rmark, Rscratch);
2845       brx(Assembler::equal, false, Assembler::pt, done);
2846       delayed()->sub(Rscratch, SP, Rscratch);
2847 
2848       // Stack-lock attempt failed - check for recursive stack-lock.
2849       // See the comments below about how we might remove this case.
2850 #ifdef _LP64
2851       sub(Rscratch, STACK_BIAS, Rscratch);
2852 #endif
2853       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2854       andcc(Rscratch, 0xfffff003, Rscratch);
2855       br(Assembler::always, false, Assembler::pt, done);
2856       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2857 
2858       bind(IsInflated);
2859       if (EmitSync & 64) {
2860          // If m->owner != null goto IsLocked
2861          // Pessimistic form: Test-and-CAS vs CAS
2862          // The optimistic form avoids RTS->RTO cache line upgrades.
2863          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
2864          andcc(Rscratch, Rscratch, G0);
2865          brx(Assembler::notZero, false, Assembler::pn, done);
2866          delayed()->nop();
2867          // m->owner == null : it's unlocked.
2868       }
2869 
2870       // Try to CAS m->owner from null to Self
2871       // Invariant: if we acquire the lock then _recursions should be 0.
2872       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
2873       mov(G2_thread, Rscratch);
2874       cas_ptr(Rmark, G0, Rscratch);
2875       cmp(Rscratch, G0);
2876       // Intentional fall-through into done
2877    } else {
2878       // Aggressively avoid the Store-before-CAS penalty
2879       // Defer the store into box->dhw until after the CAS
2880       Label IsInflated, Recursive ;
2881 
2882 // Anticipate CAS -- Avoid RTS->RTO upgrade
2883 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2884 
2885       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
2886       // Triage: biased, stack-locked, neutral, inflated
2887 
2888       if (try_bias) {
2889         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
2890         // Invariant: if control reaches this point in the emitted stream
2891         // then Rmark has not been modified.
2892       }
2893       andcc(Rmark, 2, G0);
2894       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
2895       delayed()->                         // Beware - dangling delay-slot
2896 
2897       // Try stack-lock acquisition.
2898       // Transiently install BUSY (0) encoding in the mark word.
2899       // if the CAS of 0 into the mark was successful then we execute:
2900       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
2901       //   ST obj->mark = box    -- overwrite transient 0 value
2902       // This presumes TSO, of course.
2903 
2904       mov(0, Rscratch);
2905       or3(Rmark, markOopDesc::unlocked_value, Rmark);
2906       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
2907       cas_ptr(mark_addr.base(), Rmark, Rscratch);
2908 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
2909       cmp(Rscratch, Rmark);
2910       brx(Assembler::notZero, false, Assembler::pn, Recursive);
2911       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
2912       if (counters != NULL) {
2913         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2914       }
2915       ba(done);
2916       delayed()->st_ptr(Rbox, mark_addr);
2917 
2918       bind(Recursive);
2919       // Stack-lock attempt failed - check for recursive stack-lock.
2920       // Tests show that we can remove the recursive case with no impact
2921       // on refworkload 0.83.  If we need to reduce the size of the code
2922       // emitted by compiler_lock_object() the recursive case is perfect
2923       // candidate.
2924       //
2925       // A more extreme idea is to always inflate on stack-lock recursion.
2926       // This lets us eliminate the recursive checks in compiler_lock_object
2927       // and compiler_unlock_object and the (box->dhw == 0) encoding.
2928       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
2929       // and showed a performance *increase*.  In the same experiment I eliminated
2930       // the fast-path stack-lock code from the interpreter and always passed
2931       // control to the "slow" operators in synchronizer.cpp.
2932 
2933       // RScratch contains the fetched obj->mark value from the failed CAS.
2934 #ifdef _LP64
2935       sub(Rscratch, STACK_BIAS, Rscratch);
2936 #endif
2937       sub(Rscratch, SP, Rscratch);
2938       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
2939       andcc(Rscratch, 0xfffff003, Rscratch);
2940       if (counters != NULL) {
2941         // Accounting needs the Rscratch register
2942         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2943         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
2944         ba_short(done);
2945       } else {
2946         ba(done);
2947         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
2948       }
2949 
2950       bind   (IsInflated);
2951       if (EmitSync & 64) {
2952          // If m->owner != null goto IsLocked
2953          // Test-and-CAS vs CAS
2954          // Pessimistic form avoids futile (doomed) CAS attempts
2955          // The optimistic form avoids RTS->RTO cache line upgrades.
2956          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
2957          andcc(Rscratch, Rscratch, G0);
2958          brx(Assembler::notZero, false, Assembler::pn, done);
2959          delayed()->nop();
2960          // m->owner == null : it's unlocked.
2961       }
2962 
2963       // Try to CAS m->owner from null to Self
2964       // Invariant: if we acquire the lock then _recursions should be 0.
2965       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
2966       mov(G2_thread, Rscratch);
2967       cas_ptr(Rmark, G0, Rscratch);
2968       cmp(Rscratch, G0);
2969       // ST box->displaced_header = NonZero.
2970       // Any non-zero value suffices:
2971       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
2972       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
2973       // Intentional fall-through into done
2974    }
2975 
2976    bind   (done);
2977 }
2978 
compiler_unlock_object(Register Roop,Register Rmark,Register Rbox,Register Rscratch,bool try_bias)2979 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
2980                                             Register Rbox, Register Rscratch,
2981                                             bool try_bias) {
2982    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
2983 
2984    Label done ;
2985 
2986    if (EmitSync & 4) {
2987      cmp(SP, G0);
2988      return ;
2989    }
2990 
2991    if (EmitSync & 8) {
2992      if (try_bias) {
2993         biased_locking_exit(mark_addr, Rscratch, done);
2994      }
2995 
2996      // Test first if it is a fast recursive unlock
2997      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
2998      br_null_short(Rmark, Assembler::pt, done);
2999 
3000      // Check if it is still a light weight lock, this is is true if we see
3001      // the stack address of the basicLock in the markOop of the object
3002      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3003      cas_ptr(mark_addr.base(), Rbox, Rmark);
3004      ba(done);
3005      delayed()->cmp(Rbox, Rmark);
3006      bind(done);
3007      return ;
3008    }
3009 
3010    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3011    // is too large performance rolls abruptly off a cliff.
3012    // This could be related to inlining policies, code cache management, or
3013    // I$ effects.
3014    Label LStacked ;
3015 
3016    if (try_bias) {
3017       // TODO: eliminate redundant LDs of obj->mark
3018       biased_locking_exit(mark_addr, Rscratch, done);
3019    }
3020 
3021    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
3022    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3023    andcc(Rscratch, Rscratch, G0);
3024    brx(Assembler::zero, false, Assembler::pn, done);
3025    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
3026    andcc(Rmark, 2, G0);
3027    brx(Assembler::zero, false, Assembler::pt, LStacked);
3028    delayed()->nop();
3029 
3030    // It's inflated
3031    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3032    // the ST of 0 into _owner which releases the lock.  This prevents loads
3033    // and stores within the critical section from reordering (floating)
3034    // past the store that releases the lock.  But TSO is a strong memory model
3035    // and that particular flavor of barrier is a noop, so we can safely elide it.
3036    // Note that we use 1-0 locking by default for the inflated case.  We
3037    // close the resultant (and rare) race by having contented threads in
3038    // monitorenter periodically poll _owner.
3039    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3040    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
3041    xor3(Rscratch, G2_thread, Rscratch);
3042    orcc(Rbox, Rscratch, Rbox);
3043    brx(Assembler::notZero, false, Assembler::pn, done);
3044    delayed()->
3045    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
3046    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
3047    orcc(Rbox, Rscratch, G0);
3048    if (EmitSync & 65536) {
3049       Label LSucc ;
3050       brx(Assembler::notZero, false, Assembler::pn, LSucc);
3051       delayed()->nop();
3052       ba(done);
3053       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3054 
3055       bind(LSucc);
3056       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3057       if (os::is_MP()) { membar (StoreLoad); }
3058       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
3059       andcc(Rscratch, Rscratch, G0);
3060       brx(Assembler::notZero, false, Assembler::pt, done);
3061       delayed()->andcc(G0, G0, G0);
3062       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
3063       mov(G2_thread, Rscratch);
3064       cas_ptr(Rmark, G0, Rscratch);
3065       // invert icc.zf and goto done
3066       br_notnull(Rscratch, false, Assembler::pt, done);
3067       delayed()->cmp(G0, G0);
3068       ba(done);
3069       delayed()->cmp(G0, 1);
3070    } else {
3071       brx(Assembler::notZero, false, Assembler::pn, done);
3072       delayed()->nop();
3073       ba(done);
3074       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3075    }
3076 
3077    bind   (LStacked);
3078    // Consider: we could replace the expensive CAS in the exit
3079    // path with a simple ST of the displaced mark value fetched from
3080    // the on-stack basiclock box.  That admits a race where a thread T2
3081    // in the slow lock path -- inflating with monitor M -- could race a
3082    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3083    // More precisely T1 in the stack-lock unlock path could "stomp" the
3084    // inflated mark value M installed by T2, resulting in an orphan
3085    // object monitor M and T2 becoming stranded.  We can remedy that situation
3086    // by having T2 periodically poll the object's mark word using timed wait
3087    // operations.  If T2 discovers that a stomp has occurred it vacates
3088    // the monitor M and wakes any other threads stranded on the now-orphan M.
3089    // In addition the monitor scavenger, which performs deflation,
3090    // would also need to check for orpan monitors and stranded threads.
3091    //
3092    // Finally, inflation is also used when T2 needs to assign a hashCode
3093    // to O and O is stack-locked by T1.  The "stomp" race could cause
3094    // an assigned hashCode value to be lost.  We can avoid that condition
3095    // and provide the necessary hashCode stability invariants by ensuring
3096    // that hashCode generation is idempotent between copying GCs.
3097    // For example we could compute the hashCode of an object O as
3098    // O's heap address XOR some high quality RNG value that is refreshed
3099    // at GC-time.  The monitor scavenger would install the hashCode
3100    // found in any orphan monitors.  Again, the mechanism admits a
3101    // lost-update "stomp" WAW race but detects and recovers as needed.
3102    //
3103    // A prototype implementation showed excellent results, although
3104    // the scavenger and timeout code was rather involved.
3105 
3106    cas_ptr(mark_addr.base(), Rbox, Rscratch);
3107    cmp(Rbox, Rscratch);
3108    // Intentional fall through into done ...
3109 
3110    bind(done);
3111 }
3112 
3113 
3114 
print_CPU_state()3115 void MacroAssembler::print_CPU_state() {
3116   // %%%%% need to implement this
3117 }
3118 
verify_FPU(int stack_depth,const char * s)3119 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3120   // %%%%% need to implement this
3121 }
3122 
push_IU_state()3123 void MacroAssembler::push_IU_state() {
3124   // %%%%% need to implement this
3125 }
3126 
3127 
pop_IU_state()3128 void MacroAssembler::pop_IU_state() {
3129   // %%%%% need to implement this
3130 }
3131 
3132 
push_FPU_state()3133 void MacroAssembler::push_FPU_state() {
3134   // %%%%% need to implement this
3135 }
3136 
3137 
pop_FPU_state()3138 void MacroAssembler::pop_FPU_state() {
3139   // %%%%% need to implement this
3140 }
3141 
3142 
push_CPU_state()3143 void MacroAssembler::push_CPU_state() {
3144   // %%%%% need to implement this
3145 }
3146 
3147 
pop_CPU_state()3148 void MacroAssembler::pop_CPU_state() {
3149   // %%%%% need to implement this
3150 }
3151 
3152 
3153 
verify_tlab()3154 void MacroAssembler::verify_tlab() {
3155 #ifdef ASSERT
3156   if (UseTLAB && VerifyOops) {
3157     Label next, next2, ok;
3158     Register t1 = L0;
3159     Register t2 = L1;
3160     Register t3 = L2;
3161 
3162     save_frame(0);
3163     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3164     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3165     or3(t1, t2, t3);
3166     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
3167     STOP("assert(top >= start)");
3168     should_not_reach_here();
3169 
3170     bind(next);
3171     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3172     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3173     or3(t3, t2, t3);
3174     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
3175     STOP("assert(top <= end)");
3176     should_not_reach_here();
3177 
3178     bind(next2);
3179     and3(t3, MinObjAlignmentInBytesMask, t3);
3180     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
3181     STOP("assert(aligned)");
3182     should_not_reach_here();
3183 
3184     bind(ok);
3185     restore();
3186   }
3187 #endif
3188 }
3189 
3190 
eden_allocate(Register obj,Register var_size_in_bytes,int con_size_in_bytes,Register t1,Register t2,Label & slow_case)3191 void MacroAssembler::eden_allocate(
3192   Register obj,                        // result: pointer to object after successful allocation
3193   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3194   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3195   Register t1,                         // temp register
3196   Register t2,                         // temp register
3197   Label&   slow_case                   // continuation point if fast allocation fails
3198 ){
3199   // make sure arguments make sense
3200   assert_different_registers(obj, var_size_in_bytes, t1, t2);
3201   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3202   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3203 
3204   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3205     // No allocation in the shared eden.
3206     ba(slow_case);
3207     delayed()->nop();
3208   } else {
3209     // get eden boundaries
3210     // note: we need both top & top_addr!
3211     const Register top_addr = t1;
3212     const Register end      = t2;
3213 
3214     CollectedHeap* ch = Universe::heap();
3215     set((intx)ch->top_addr(), top_addr);
3216     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3217     ld_ptr(top_addr, delta, end);
3218     ld_ptr(top_addr, 0, obj);
3219 
3220     // try to allocate
3221     Label retry;
3222     bind(retry);
3223 #ifdef ASSERT
3224     // make sure eden top is properly aligned
3225     {
3226       Label L;
3227       btst(MinObjAlignmentInBytesMask, obj);
3228       br(Assembler::zero, false, Assembler::pt, L);
3229       delayed()->nop();
3230       STOP("eden top is not properly aligned");
3231       bind(L);
3232     }
3233 #endif // ASSERT
3234     const Register free = end;
3235     sub(end, obj, free);                                   // compute amount of free space
3236     if (var_size_in_bytes->is_valid()) {
3237       // size is unknown at compile time
3238       cmp(free, var_size_in_bytes);
3239       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3240       delayed()->add(obj, var_size_in_bytes, end);
3241     } else {
3242       // size is known at compile time
3243       cmp(free, con_size_in_bytes);
3244       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3245       delayed()->add(obj, con_size_in_bytes, end);
3246     }
3247     // Compare obj with the value at top_addr; if still equal, swap the value of
3248     // end with the value at top_addr. If not equal, read the value at top_addr
3249     // into end.
3250     cas_ptr(top_addr, obj, end);
3251     // if someone beat us on the allocation, try again, otherwise continue
3252     cmp(obj, end);
3253     brx(Assembler::notEqual, false, Assembler::pn, retry);
3254     delayed()->mov(end, obj);                              // nop if successfull since obj == end
3255 
3256 #ifdef ASSERT
3257     // make sure eden top is properly aligned
3258     {
3259       Label L;
3260       const Register top_addr = t1;
3261 
3262       set((intx)ch->top_addr(), top_addr);
3263       ld_ptr(top_addr, 0, top_addr);
3264       btst(MinObjAlignmentInBytesMask, top_addr);
3265       br(Assembler::zero, false, Assembler::pt, L);
3266       delayed()->nop();
3267       STOP("eden top is not properly aligned");
3268       bind(L);
3269     }
3270 #endif // ASSERT
3271   }
3272 }
3273 
3274 
tlab_allocate(Register obj,Register var_size_in_bytes,int con_size_in_bytes,Register t1,Label & slow_case)3275 void MacroAssembler::tlab_allocate(
3276   Register obj,                        // result: pointer to object after successful allocation
3277   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3278   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3279   Register t1,                         // temp register
3280   Label&   slow_case                   // continuation point if fast allocation fails
3281 ){
3282   // make sure arguments make sense
3283   assert_different_registers(obj, var_size_in_bytes, t1);
3284   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3285   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3286 
3287   const Register free  = t1;
3288 
3289   verify_tlab();
3290 
3291   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3292 
3293   // calculate amount of free space
3294   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3295   sub(free, obj, free);
3296 
3297   Label done;
3298   if (var_size_in_bytes == noreg) {
3299     cmp(free, con_size_in_bytes);
3300   } else {
3301     cmp(free, var_size_in_bytes);
3302   }
3303   br(Assembler::less, false, Assembler::pn, slow_case);
3304   // calculate the new top pointer
3305   if (var_size_in_bytes == noreg) {
3306     delayed()->add(obj, con_size_in_bytes, free);
3307   } else {
3308     delayed()->add(obj, var_size_in_bytes, free);
3309   }
3310 
3311   bind(done);
3312 
3313 #ifdef ASSERT
3314   // make sure new free pointer is properly aligned
3315   {
3316     Label L;
3317     btst(MinObjAlignmentInBytesMask, free);
3318     br(Assembler::zero, false, Assembler::pt, L);
3319     delayed()->nop();
3320     STOP("updated TLAB free is not properly aligned");
3321     bind(L);
3322   }
3323 #endif // ASSERT
3324 
3325   // update the tlab top pointer
3326   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3327   verify_tlab();
3328 }
3329 
3330 
tlab_refill(Label & retry,Label & try_eden,Label & slow_case)3331 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3332   Register top = O0;
3333   Register t1 = G1;
3334   Register t2 = G3;
3335   Register t3 = O1;
3336   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3337   Label do_refill, discard_tlab;
3338 
3339   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3340     // No allocation in the shared eden.
3341     ba(slow_case);
3342     delayed()->nop();
3343   }
3344 
3345   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3346   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3347   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3348 
3349   // calculate amount of free space
3350   sub(t1, top, t1);
3351   srl_ptr(t1, LogHeapWordSize, t1);
3352 
3353   // Retain tlab and allocate object in shared space if
3354   // the amount free in the tlab is too large to discard.
3355   cmp(t1, t2);
3356   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
3357 
3358   // increment waste limit to prevent getting stuck on this slow path
3359   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
3360   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
3361   if (TLABStats) {
3362     // increment number of slow_allocations
3363     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
3364     add(t2, 1, t2);
3365     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
3366   }
3367   ba(try_eden);
3368   delayed()->nop();
3369 
3370   bind(discard_tlab);
3371   if (TLABStats) {
3372     // increment number of refills
3373     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
3374     add(t2, 1, t2);
3375     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
3376     // accumulate wastage
3377     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
3378     add(t2, t1, t2);
3379     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
3380   }
3381 
3382   // if tlab is currently allocated (top or end != null) then
3383   // fill [top, end + alignment_reserve) with array object
3384   br_null_short(top, Assembler::pn, do_refill);
3385 
3386   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
3387   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
3388   // set klass to intArrayKlass
3389   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
3390   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
3391   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
3392   st(t1, top, arrayOopDesc::length_offset_in_bytes());
3393   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
3394   ld_ptr(t2, 0, t2);
3395   // store klass last.  concurrent gcs assumes klass length is valid if
3396   // klass field is not null.
3397   store_klass(t2, top);
3398   verify_oop(top);
3399 
3400   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
3401   sub(top, t1, t1); // size of tlab's allocated portion
3402   incr_allocated_bytes(t1, t2, t3);
3403 
3404   // refill the tlab with an eden allocation
3405   bind(do_refill);
3406   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
3407   sll_ptr(t1, LogHeapWordSize, t1);
3408   // allocate new tlab, address returned in top
3409   eden_allocate(top, t1, 0, t2, t3, slow_case);
3410 
3411   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
3412   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3413 #ifdef ASSERT
3414   // check that tlab_size (t1) is still valid
3415   {
3416     Label ok;
3417     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
3418     sll_ptr(t2, LogHeapWordSize, t2);
3419     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
3420     STOP("assert(t1 == tlab_size)");
3421     should_not_reach_here();
3422 
3423     bind(ok);
3424   }
3425 #endif // ASSERT
3426   add(top, t1, top); // t1 is tlab_size
3427   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
3428   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
3429   verify_tlab();
3430   ba(retry);
3431   delayed()->nop();
3432 }
3433 
incr_allocated_bytes(RegisterOrConstant size_in_bytes,Register t1,Register t2)3434 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
3435                                           Register t1, Register t2) {
3436   // Bump total bytes allocated by this thread
3437   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
3438   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
3439   // v8 support has gone the way of the dodo
3440   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
3441   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
3442   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
3443 }
3444 
negate_condition(Assembler::Condition cond)3445 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
3446   switch (cond) {
3447     // Note some conditions are synonyms for others
3448     case Assembler::never:                return Assembler::always;
3449     case Assembler::zero:                 return Assembler::notZero;
3450     case Assembler::lessEqual:            return Assembler::greater;
3451     case Assembler::less:                 return Assembler::greaterEqual;
3452     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
3453     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
3454     case Assembler::negative:             return Assembler::positive;
3455     case Assembler::overflowSet:          return Assembler::overflowClear;
3456     case Assembler::always:               return Assembler::never;
3457     case Assembler::notZero:              return Assembler::zero;
3458     case Assembler::greater:              return Assembler::lessEqual;
3459     case Assembler::greaterEqual:         return Assembler::less;
3460     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
3461     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
3462     case Assembler::positive:             return Assembler::negative;
3463     case Assembler::overflowClear:        return Assembler::overflowSet;
3464   }
3465 
3466   ShouldNotReachHere(); return Assembler::overflowClear;
3467 }
3468 
cond_inc(Assembler::Condition cond,address counter_ptr,Register Rtmp1,Register Rtmp2)3469 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
3470                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
3471   Condition negated_cond = negate_condition(cond);
3472   Label L;
3473   brx(negated_cond, false, Assembler::pt, L);
3474   delayed()->nop();
3475   inc_counter(counter_ptr, Rtmp1, Rtmp2);
3476   bind(L);
3477 }
3478 
inc_counter(address counter_addr,Register Rtmp1,Register Rtmp2)3479 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
3480   AddressLiteral addrlit(counter_addr);
3481   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
3482   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
3483   ld(addr, Rtmp2);
3484   inc(Rtmp2);
3485   st(Rtmp2, addr);
3486 }
3487 
inc_counter(int * counter_addr,Register Rtmp1,Register Rtmp2)3488 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
3489   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
3490 }
3491 
SkipIfEqual(MacroAssembler * masm,Register temp,const bool * flag_addr,Assembler::Condition condition)3492 SkipIfEqual::SkipIfEqual(
3493     MacroAssembler* masm, Register temp, const bool* flag_addr,
3494     Assembler::Condition condition) {
3495   _masm = masm;
3496   AddressLiteral flag(flag_addr);
3497   _masm->sethi(flag, temp);
3498   _masm->ldub(temp, flag.low10(), temp);
3499   _masm->tst(temp);
3500   _masm->br(condition, false, Assembler::pt, _label);
3501   _masm->delayed()->nop();
3502 }
3503 
~SkipIfEqual()3504 SkipIfEqual::~SkipIfEqual() {
3505   _masm->bind(_label);
3506 }
3507 
3508 
3509 // Writes to stack successive pages until offset reached to check for
3510 // stack overflow + shadow pages.  This clobbers tsp and scratch.
bang_stack_size(Register Rsize,Register Rtsp,Register Rscratch)3511 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
3512                                      Register Rscratch) {
3513   // Use stack pointer in temp stack pointer
3514   mov(SP, Rtsp);
3515 
3516   // Bang stack for total size given plus stack shadow page size.
3517   // Bang one page at a time because a large size can overflow yellow and
3518   // red zones (the bang will fail but stack overflow handling can't tell that
3519   // it was a stack overflow bang vs a regular segv).
3520   int offset = os::vm_page_size();
3521   Register Roffset = Rscratch;
3522 
3523   Label loop;
3524   bind(loop);
3525   set((-offset)+STACK_BIAS, Rscratch);
3526   st(G0, Rtsp, Rscratch);
3527   set(offset, Roffset);
3528   sub(Rsize, Roffset, Rsize);
3529   cmp(Rsize, G0);
3530   br(Assembler::greater, false, Assembler::pn, loop);
3531   delayed()->sub(Rtsp, Roffset, Rtsp);
3532 
3533   // Bang down shadow pages too.
3534   // At this point, (tmp-0) is the last address touched, so don't
3535   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
3536   // was post-decremented.)  Skip this address by starting at i=1, and
3537   // touch a few more pages below.  N.B.  It is important to touch all
3538   // the way down to and including i=StackShadowPages.
3539   for (int i = 1; i < StackShadowPages; i++) {
3540     set((-i*offset)+STACK_BIAS, Rscratch);
3541     st(G0, Rtsp, Rscratch);
3542   }
3543 }
3544 
3545 ///////////////////////////////////////////////////////////////////////////////////
3546 #if INCLUDE_ALL_GCS
3547 
3548 static address satb_log_enqueue_with_frame = NULL;
3549 static u_char* satb_log_enqueue_with_frame_end = NULL;
3550 
3551 static address satb_log_enqueue_frameless = NULL;
3552 static u_char* satb_log_enqueue_frameless_end = NULL;
3553 
3554 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
3555 
generate_satb_log_enqueue(bool with_frame)3556 static void generate_satb_log_enqueue(bool with_frame) {
3557   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
3558   CodeBuffer buf(bb);
3559   MacroAssembler masm(&buf);
3560 
3561 #define __ masm.
3562 
3563   address start = __ pc();
3564   Register pre_val;
3565 
3566   Label refill, restart;
3567   if (with_frame) {
3568     __ save_frame(0);
3569     pre_val = I0;  // Was O0 before the save.
3570   } else {
3571     pre_val = O0;
3572   }
3573 
3574   int satb_q_index_byte_offset =
3575     in_bytes(JavaThread::satb_mark_queue_offset() +
3576              PtrQueue::byte_offset_of_index());
3577 
3578   int satb_q_buf_byte_offset =
3579     in_bytes(JavaThread::satb_mark_queue_offset() +
3580              PtrQueue::byte_offset_of_buf());
3581 
3582   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
3583          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
3584          "check sizes in assembly below");
3585 
3586   __ bind(restart);
3587 
3588   // Load the index into the SATB buffer. PtrQueue::_index is a size_t
3589   // so ld_ptr is appropriate.
3590   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
3591 
3592   // index == 0?
3593   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3594 
3595   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
3596   __ sub(L0, oopSize, L0);
3597 
3598   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
3599   if (!with_frame) {
3600     // Use return-from-leaf
3601     __ retl();
3602     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3603   } else {
3604     // Not delayed.
3605     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
3606   }
3607   if (with_frame) {
3608     __ ret();
3609     __ delayed()->restore();
3610   }
3611   __ bind(refill);
3612 
3613   address handle_zero =
3614     CAST_FROM_FN_PTR(address,
3615                      &SATBMarkQueueSet::handle_zero_index_for_thread);
3616   // This should be rare enough that we can afford to save all the
3617   // scratch registers that the calling context might be using.
3618   __ mov(G1_scratch, L0);
3619   __ mov(G3_scratch, L1);
3620   __ mov(G4, L2);
3621   // We need the value of O0 above (for the write into the buffer), so we
3622   // save and restore it.
3623   __ mov(O0, L3);
3624   // Since the call will overwrite O7, we save and restore that, as well.
3625   __ mov(O7, L4);
3626   __ call_VM_leaf(L5, handle_zero, G2_thread);
3627   __ mov(L0, G1_scratch);
3628   __ mov(L1, G3_scratch);
3629   __ mov(L2, G4);
3630   __ mov(L3, O0);
3631   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3632   __ delayed()->mov(L4, O7);
3633 
3634   if (with_frame) {
3635     satb_log_enqueue_with_frame = start;
3636     satb_log_enqueue_with_frame_end = __ pc();
3637   } else {
3638     satb_log_enqueue_frameless = start;
3639     satb_log_enqueue_frameless_end = __ pc();
3640   }
3641 
3642 #undef __
3643 }
3644 
generate_satb_log_enqueue_if_necessary(bool with_frame)3645 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
3646   if (with_frame) {
3647     if (satb_log_enqueue_with_frame == 0) {
3648       generate_satb_log_enqueue(with_frame);
3649       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
3650       if (G1SATBPrintStubs) {
3651         tty->print_cr("Generated with-frame satb enqueue:");
3652         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
3653                              satb_log_enqueue_with_frame_end,
3654                              tty);
3655       }
3656     }
3657   } else {
3658     if (satb_log_enqueue_frameless == 0) {
3659       generate_satb_log_enqueue(with_frame);
3660       assert(satb_log_enqueue_frameless != 0, "postcondition.");
3661       if (G1SATBPrintStubs) {
3662         tty->print_cr("Generated frameless satb enqueue:");
3663         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
3664                              satb_log_enqueue_frameless_end,
3665                              tty);
3666       }
3667     }
3668   }
3669 }
3670 
g1_write_barrier_pre(Register obj,Register index,int offset,Register pre_val,Register tmp,bool preserve_o_regs)3671 void MacroAssembler::g1_write_barrier_pre(Register obj,
3672                                           Register index,
3673                                           int offset,
3674                                           Register pre_val,
3675                                           Register tmp,
3676                                           bool preserve_o_regs) {
3677   Label filtered;
3678 
3679   if (obj == noreg) {
3680     // We are not loading the previous value so make
3681     // sure that we don't trash the value in pre_val
3682     // with the code below.
3683     assert_different_registers(pre_val, tmp);
3684   } else {
3685     // We will be loading the previous value
3686     // in this code so...
3687     assert(offset == 0 || index == noreg, "choose one");
3688     assert(pre_val == noreg, "check this code");
3689   }
3690 
3691   // Is marking active?
3692   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
3693     ld(G2,
3694        in_bytes(JavaThread::satb_mark_queue_offset() +
3695                 PtrQueue::byte_offset_of_active()),
3696        tmp);
3697   } else {
3698     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
3699               "Assumption");
3700     ldsb(G2,
3701          in_bytes(JavaThread::satb_mark_queue_offset() +
3702                   PtrQueue::byte_offset_of_active()),
3703          tmp);
3704   }
3705 
3706   // Is marking active?
3707   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3708 
3709   // Do we need to load the previous value?
3710   if (obj != noreg) {
3711     // Load the previous value...
3712     if (index == noreg) {
3713       if (Assembler::is_simm13(offset)) {
3714         load_heap_oop(obj, offset, tmp);
3715       } else {
3716         set(offset, tmp);
3717         load_heap_oop(obj, tmp, tmp);
3718       }
3719     } else {
3720       load_heap_oop(obj, index, tmp);
3721     }
3722     // Previous value has been loaded into tmp
3723     pre_val = tmp;
3724   }
3725 
3726   assert(pre_val != noreg, "must have a real register");
3727 
3728   // Is the previous value null?
3729   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
3730 
3731   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
3732   // case, pre_val will be a scratch G-reg, but there are some cases in
3733   // which it's an O-reg.  In the first case, do a normal call.  In the
3734   // latter, do a save here and call the frameless version.
3735 
3736   guarantee(pre_val->is_global() || pre_val->is_out(),
3737             "Or we need to think harder.");
3738 
3739   if (pre_val->is_global() && !preserve_o_regs) {
3740     generate_satb_log_enqueue_if_necessary(true); // with frame
3741 
3742     call(satb_log_enqueue_with_frame);
3743     delayed()->mov(pre_val, O0);
3744   } else {
3745     generate_satb_log_enqueue_if_necessary(false); // frameless
3746 
3747     save_frame(0);
3748     call(satb_log_enqueue_frameless);
3749     delayed()->mov(pre_val->after_save(), O0);
3750     restore();
3751   }
3752 
3753   bind(filtered);
3754 }
3755 
3756 static address dirty_card_log_enqueue = 0;
3757 static u_char* dirty_card_log_enqueue_end = 0;
3758 
3759 // This gets to assume that o0 contains the object address.
generate_dirty_card_log_enqueue(jbyte * byte_map_base)3760 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
3761   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
3762   CodeBuffer buf(bb);
3763   MacroAssembler masm(&buf);
3764 #define __ masm.
3765   address start = __ pc();
3766 
3767   Label not_already_dirty, restart, refill, young_card;
3768 
3769 #ifdef _LP64
3770   __ srlx(O0, CardTableModRefBS::card_shift, O0);
3771 #else
3772   __ srl(O0, CardTableModRefBS::card_shift, O0);
3773 #endif
3774   AddressLiteral addrlit(byte_map_base);
3775   __ set(addrlit, O1); // O1 := <card table base>
3776   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3777 
3778   __ cmp_and_br_short(O2, G1SATBCardTableModRefBS::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
3779 
3780   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3781   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
3782 
3783   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
3784   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
3785 
3786   __ bind(young_card);
3787   // We didn't take the branch, so we're already dirty: return.
3788   // Use return-from-leaf
3789   __ retl();
3790   __ delayed()->nop();
3791 
3792   // Not dirty.
3793   __ bind(not_already_dirty);
3794 
3795   // Get O0 + O1 into a reg by itself
3796   __ add(O0, O1, O3);
3797 
3798   // First, dirty it.
3799   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
3800 
3801   int dirty_card_q_index_byte_offset =
3802     in_bytes(JavaThread::dirty_card_queue_offset() +
3803              PtrQueue::byte_offset_of_index());
3804   int dirty_card_q_buf_byte_offset =
3805     in_bytes(JavaThread::dirty_card_queue_offset() +
3806              PtrQueue::byte_offset_of_buf());
3807   __ bind(restart);
3808 
3809   // Load the index into the update buffer. PtrQueue::_index is
3810   // a size_t so ld_ptr is appropriate here.
3811   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
3812 
3813   // index == 0?
3814   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
3815 
3816   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
3817   __ sub(L0, oopSize, L0);
3818 
3819   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
3820   // Use return-from-leaf
3821   __ retl();
3822   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
3823 
3824   __ bind(refill);
3825   address handle_zero =
3826     CAST_FROM_FN_PTR(address,
3827                      &DirtyCardQueueSet::handle_zero_index_for_thread);
3828   // This should be rare enough that we can afford to save all the
3829   // scratch registers that the calling context might be using.
3830   __ mov(G1_scratch, L3);
3831   __ mov(G3_scratch, L5);
3832   // We need the value of O3 above (for the write into the buffer), so we
3833   // save and restore it.
3834   __ mov(O3, L6);
3835   // Since the call will overwrite O7, we save and restore that, as well.
3836   __ mov(O7, L4);
3837 
3838   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
3839   __ mov(L3, G1_scratch);
3840   __ mov(L5, G3_scratch);
3841   __ mov(L6, O3);
3842   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
3843   __ delayed()->mov(L4, O7);
3844 
3845   dirty_card_log_enqueue = start;
3846   dirty_card_log_enqueue_end = __ pc();
3847   // XXX Should have a guarantee here about not going off the end!
3848   // Does it already do so?  Do an experiment...
3849 
3850 #undef __
3851 
3852 }
3853 
3854 static inline void
generate_dirty_card_log_enqueue_if_necessary(jbyte * byte_map_base)3855 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
3856   if (dirty_card_log_enqueue == 0) {
3857     generate_dirty_card_log_enqueue(byte_map_base);
3858     assert(dirty_card_log_enqueue != 0, "postcondition.");
3859     if (G1SATBPrintStubs) {
3860       tty->print_cr("Generated dirty_card enqueue:");
3861       Disassembler::decode((u_char*)dirty_card_log_enqueue,
3862                            dirty_card_log_enqueue_end,
3863                            tty);
3864     }
3865   }
3866 }
3867 
3868 
g1_write_barrier_post(Register store_addr,Register new_val,Register tmp)3869 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3870 
3871   Label filtered;
3872   MacroAssembler* post_filter_masm = this;
3873 
3874   if (new_val == G0) return;
3875 
3876   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
3877   assert(bs->kind() == BarrierSet::G1SATBCT ||
3878          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
3879 
3880   if (G1RSBarrierRegionFilter) {
3881     xor3(store_addr, new_val, tmp);
3882 #ifdef _LP64
3883     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
3884 #else
3885     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
3886 #endif
3887 
3888     // XXX Should I predict this taken or not?  Does it matter?
3889     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
3890   }
3891 
3892   // If the "store_addr" register is an "in" or "local" register, move it to
3893   // a scratch reg so we can pass it as an argument.
3894   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
3895   // Pick a scratch register different from "tmp".
3896   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
3897   // Make sure we use up the delay slot!
3898   if (use_scr) {
3899     post_filter_masm->mov(store_addr, scr);
3900   } else {
3901     post_filter_masm->nop();
3902   }
3903   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
3904   save_frame(0);
3905   call(dirty_card_log_enqueue);
3906   if (use_scr) {
3907     delayed()->mov(scr, O0);
3908   } else {
3909     delayed()->mov(store_addr->after_save(), O0);
3910   }
3911   restore();
3912 
3913   bind(filtered);
3914 }
3915 
3916 #endif // INCLUDE_ALL_GCS
3917 ///////////////////////////////////////////////////////////////////////////////////
3918 
card_write_barrier_post(Register store_addr,Register new_val,Register tmp)3919 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
3920   // If we're writing constant NULL, we can skip the write barrier.
3921   if (new_val == G0) return;
3922   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
3923   assert(bs->kind() == BarrierSet::CardTableModRef ||
3924          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
3925   card_table_write(bs->byte_map_base, tmp, store_addr);
3926 }
3927 
load_klass(Register src_oop,Register klass)3928 void MacroAssembler::load_klass(Register src_oop, Register klass) {
3929   // The number of bytes in this code is used by
3930   // MachCallDynamicJavaNode::ret_addr_offset()
3931   // if this changes, change that.
3932   if (UseCompressedClassPointers) {
3933     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3934     decode_klass_not_null(klass);
3935   } else {
3936     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
3937   }
3938 }
3939 
store_klass(Register klass,Register dst_oop)3940 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
3941   if (UseCompressedClassPointers) {
3942     assert(dst_oop != klass, "not enough registers");
3943     encode_klass_not_null(klass);
3944     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3945   } else {
3946     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
3947   }
3948 }
3949 
store_klass_gap(Register s,Register d)3950 void MacroAssembler::store_klass_gap(Register s, Register d) {
3951   if (UseCompressedClassPointers) {
3952     assert(s != d, "not enough registers");
3953     st(s, d, oopDesc::klass_gap_offset_in_bytes());
3954   }
3955 }
3956 
load_heap_oop(const Address & s,Register d)3957 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
3958   if (UseCompressedOops) {
3959     lduw(s, d);
3960     decode_heap_oop(d);
3961   } else {
3962     ld_ptr(s, d);
3963   }
3964 }
3965 
load_heap_oop(Register s1,Register s2,Register d)3966 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
3967    if (UseCompressedOops) {
3968     lduw(s1, s2, d);
3969     decode_heap_oop(d, d);
3970   } else {
3971     ld_ptr(s1, s2, d);
3972   }
3973 }
3974 
load_heap_oop(Register s1,int simm13a,Register d)3975 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
3976    if (UseCompressedOops) {
3977     lduw(s1, simm13a, d);
3978     decode_heap_oop(d, d);
3979   } else {
3980     ld_ptr(s1, simm13a, d);
3981   }
3982 }
3983 
load_heap_oop(Register s1,RegisterOrConstant s2,Register d)3984 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
3985   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
3986   else                   load_heap_oop(s1, s2.as_register(), d);
3987 }
3988 
store_heap_oop(Register d,Register s1,Register s2)3989 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
3990   if (UseCompressedOops) {
3991     assert(s1 != d && s2 != d, "not enough registers");
3992     encode_heap_oop(d);
3993     st(d, s1, s2);
3994   } else {
3995     st_ptr(d, s1, s2);
3996   }
3997 }
3998 
store_heap_oop(Register d,Register s1,int simm13a)3999 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4000   if (UseCompressedOops) {
4001     assert(s1 != d, "not enough registers");
4002     encode_heap_oop(d);
4003     st(d, s1, simm13a);
4004   } else {
4005     st_ptr(d, s1, simm13a);
4006   }
4007 }
4008 
store_heap_oop(Register d,const Address & a,int offset)4009 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4010   if (UseCompressedOops) {
4011     assert(a.base() != d, "not enough registers");
4012     encode_heap_oop(d);
4013     st(d, a, offset);
4014   } else {
4015     st_ptr(d, a, offset);
4016   }
4017 }
4018 
4019 
encode_heap_oop(Register src,Register dst)4020 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4021   assert (UseCompressedOops, "must be compressed");
4022   assert (Universe::heap() != NULL, "java heap should be initialized");
4023   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4024   verify_oop(src);
4025   if (Universe::narrow_oop_base() == NULL) {
4026     srlx(src, LogMinObjAlignmentInBytes, dst);
4027     return;
4028   }
4029   Label done;
4030   if (src == dst) {
4031     // optimize for frequent case src == dst
4032     bpr(rc_nz, true, Assembler::pt, src, done);
4033     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4034     bind(done);
4035     srlx(src, LogMinObjAlignmentInBytes, dst);
4036   } else {
4037     bpr(rc_z, false, Assembler::pn, src, done);
4038     delayed() -> mov(G0, dst);
4039     // could be moved before branch, and annulate delay,
4040     // but may add some unneeded work decoding null
4041     sub(src, G6_heapbase, dst);
4042     srlx(dst, LogMinObjAlignmentInBytes, dst);
4043     bind(done);
4044   }
4045 }
4046 
4047 
encode_heap_oop_not_null(Register r)4048 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4049   assert (UseCompressedOops, "must be compressed");
4050   assert (Universe::heap() != NULL, "java heap should be initialized");
4051   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4052   verify_oop(r);
4053   if (Universe::narrow_oop_base() != NULL)
4054     sub(r, G6_heapbase, r);
4055   srlx(r, LogMinObjAlignmentInBytes, r);
4056 }
4057 
encode_heap_oop_not_null(Register src,Register dst)4058 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4059   assert (UseCompressedOops, "must be compressed");
4060   assert (Universe::heap() != NULL, "java heap should be initialized");
4061   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4062   verify_oop(src);
4063   if (Universe::narrow_oop_base() == NULL) {
4064     srlx(src, LogMinObjAlignmentInBytes, dst);
4065   } else {
4066     sub(src, G6_heapbase, dst);
4067     srlx(dst, LogMinObjAlignmentInBytes, dst);
4068   }
4069 }
4070 
4071 // Same algorithm as oops.inline.hpp decode_heap_oop.
decode_heap_oop(Register src,Register dst)4072 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4073   assert (UseCompressedOops, "must be compressed");
4074   assert (Universe::heap() != NULL, "java heap should be initialized");
4075   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4076   sllx(src, LogMinObjAlignmentInBytes, dst);
4077   if (Universe::narrow_oop_base() != NULL) {
4078     Label done;
4079     bpr(rc_nz, true, Assembler::pt, dst, done);
4080     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4081     bind(done);
4082   }
4083   verify_oop(dst);
4084 }
4085 
decode_heap_oop_not_null(Register r)4086 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4087   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4088   // pd_code_size_limit.
4089   // Also do not verify_oop as this is called by verify_oop.
4090   assert (UseCompressedOops, "must be compressed");
4091   assert (Universe::heap() != NULL, "java heap should be initialized");
4092   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4093   sllx(r, LogMinObjAlignmentInBytes, r);
4094   if (Universe::narrow_oop_base() != NULL)
4095     add(r, G6_heapbase, r);
4096 }
4097 
decode_heap_oop_not_null(Register src,Register dst)4098 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4099   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4100   // pd_code_size_limit.
4101   // Also do not verify_oop as this is called by verify_oop.
4102   assert (UseCompressedOops, "must be compressed");
4103   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4104   sllx(src, LogMinObjAlignmentInBytes, dst);
4105   if (Universe::narrow_oop_base() != NULL)
4106     add(dst, G6_heapbase, dst);
4107 }
4108 
encode_klass_not_null(Register r)4109 void MacroAssembler::encode_klass_not_null(Register r) {
4110   assert (UseCompressedClassPointers, "must be compressed");
4111   if (Universe::narrow_klass_base() != NULL) {
4112     assert(r != G6_heapbase, "bad register choice");
4113     set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4114     sub(r, G6_heapbase, r);
4115     if (Universe::narrow_klass_shift() != 0) {
4116       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
4117       srlx(r, LogKlassAlignmentInBytes, r);
4118     }
4119     reinit_heapbase();
4120   } else {
4121     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4122     srlx(r, Universe::narrow_klass_shift(), r);
4123   }
4124 }
4125 
encode_klass_not_null(Register src,Register dst)4126 void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
4127   if (src == dst) {
4128     encode_klass_not_null(src);
4129   } else {
4130     assert (UseCompressedClassPointers, "must be compressed");
4131     if (Universe::narrow_klass_base() != NULL) {
4132       set((intptr_t)Universe::narrow_klass_base(), dst);
4133       sub(src, dst, dst);
4134       if (Universe::narrow_klass_shift() != 0) {
4135         srlx(dst, LogKlassAlignmentInBytes, dst);
4136       }
4137     } else {
4138       // shift src into dst
4139       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4140       srlx(src, Universe::narrow_klass_shift(), dst);
4141     }
4142   }
4143 }
4144 
4145 // Function instr_size_for_decode_klass_not_null() counts the instructions
4146 // generated by decode_klass_not_null() and reinit_heapbase().  Hence, if
4147 // the instructions they generate change, then this method needs to be updated.
instr_size_for_decode_klass_not_null()4148 int MacroAssembler::instr_size_for_decode_klass_not_null() {
4149   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
4150   int num_instrs = 1;  // shift src,dst or add
4151   if (Universe::narrow_klass_base() != NULL) {
4152     // set + add + set
4153     num_instrs += insts_for_internal_set((intptr_t)Universe::narrow_klass_base()) +
4154                   insts_for_internal_set((intptr_t)Universe::narrow_ptrs_base());
4155     if (Universe::narrow_klass_shift() != 0) {
4156       num_instrs += 1;  // sllx
4157     }
4158   }
4159   return num_instrs * BytesPerInstWord;
4160 }
4161 
4162 // !!! If the instructions that get generated here change then function
4163 // instr_size_for_decode_klass_not_null() needs to get updated.
decode_klass_not_null(Register r)4164 void  MacroAssembler::decode_klass_not_null(Register r) {
4165   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4166   // pd_code_size_limit.
4167   assert (UseCompressedClassPointers, "must be compressed");
4168   if (Universe::narrow_klass_base() != NULL) {
4169     assert(r != G6_heapbase, "bad register choice");
4170     set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4171     if (Universe::narrow_klass_shift() != 0)
4172       sllx(r, LogKlassAlignmentInBytes, r);
4173     add(r, G6_heapbase, r);
4174     reinit_heapbase();
4175   } else {
4176     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4177     sllx(r, Universe::narrow_klass_shift(), r);
4178   }
4179 }
4180 
decode_klass_not_null(Register src,Register dst)4181 void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
4182   if (src == dst) {
4183     decode_klass_not_null(src);
4184   } else {
4185     // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4186     // pd_code_size_limit.
4187     assert (UseCompressedClassPointers, "must be compressed");
4188     if (Universe::narrow_klass_base() != NULL) {
4189       if (Universe::narrow_klass_shift() != 0) {
4190         assert((src != G6_heapbase) && (dst != G6_heapbase), "bad register choice");
4191         set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
4192         sllx(src, LogKlassAlignmentInBytes, dst);
4193         add(dst, G6_heapbase, dst);
4194         reinit_heapbase();
4195       } else {
4196         set((intptr_t)Universe::narrow_klass_base(), dst);
4197         add(src, dst, dst);
4198       }
4199     } else {
4200       // shift/mov src into dst.
4201       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
4202       sllx(src, Universe::narrow_klass_shift(), dst);
4203     }
4204   }
4205 }
4206 
reinit_heapbase()4207 void MacroAssembler::reinit_heapbase() {
4208   if (UseCompressedOops || UseCompressedClassPointers) {
4209     if (Universe::heap() != NULL) {
4210       set((intptr_t)Universe::narrow_ptrs_base(), G6_heapbase);
4211     } else {
4212       AddressLiteral base(Universe::narrow_ptrs_base_addr());
4213       load_ptr_contents(base, G6_heapbase);
4214     }
4215   }
4216 }
4217 
4218 // Compare char[] arrays aligned to 4 bytes.
char_arrays_equals(Register ary1,Register ary2,Register limit,Register result,Register chr1,Register chr2,Label & Ldone)4219 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4220                                         Register limit, Register result,
4221                                         Register chr1, Register chr2, Label& Ldone) {
4222   Label Lvector, Lloop;
4223   assert(chr1 == result, "should be the same");
4224 
4225   // Note: limit contains number of bytes (2*char_elements) != 0.
4226   andcc(limit, 0x2, chr1); // trailing character ?
4227   br(Assembler::zero, false, Assembler::pt, Lvector);
4228   delayed()->nop();
4229 
4230   // compare the trailing char
4231   sub(limit, sizeof(jchar), limit);
4232   lduh(ary1, limit, chr1);
4233   lduh(ary2, limit, chr2);
4234   cmp(chr1, chr2);
4235   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4236   delayed()->mov(G0, result);     // not equal
4237 
4238   // only one char ?
4239   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
4240   delayed()->add(G0, 1, result); // zero-length arrays are equal
4241 
4242   // word by word compare, dont't need alignment check
4243   bind(Lvector);
4244   // Shift ary1 and ary2 to the end of the arrays, negate limit
4245   add(ary1, limit, ary1);
4246   add(ary2, limit, ary2);
4247   neg(limit, limit);
4248 
4249   lduw(ary1, limit, chr1);
4250   bind(Lloop);
4251   lduw(ary2, limit, chr2);
4252   cmp(chr1, chr2);
4253   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4254   delayed()->mov(G0, result);     // not equal
4255   inccc(limit, 2*sizeof(jchar));
4256   // annul LDUW if branch is not taken to prevent access past end of array
4257   br(Assembler::notZero, true, Assembler::pt, Lloop);
4258   delayed()->lduw(ary1, limit, chr1); // hoisted
4259 
4260   // Caller should set it:
4261   // add(G0, 1, result); // equals
4262 }
4263 
4264 // Use BIS for zeroing (count is in bytes).
bis_zeroing(Register to,Register count,Register temp,Label & Ldone)4265 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
4266   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
4267   Register end = count;
4268   int cache_line_size = VM_Version::prefetch_data_size();
4269   assert(cache_line_size > 0, "cache line size should be known for this code");
4270   // Minimum count when BIS zeroing can be used since
4271   // it needs membar which is expensive.
4272   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
4273 
4274   Label small_loop;
4275   // Check if count is negative (dead code) or zero.
4276   // Note, count uses 64bit in 64 bit VM.
4277   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
4278 
4279   // Use BIS zeroing only for big arrays since it requires membar.
4280   if (Assembler::is_simm13(block_zero_size)) { // < 4096
4281     cmp(count, block_zero_size);
4282   } else {
4283     set(block_zero_size, temp);
4284     cmp(count, temp);
4285   }
4286   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
4287   delayed()->add(to, count, end);
4288 
4289   // Note: size is >= three (32 bytes) cache lines.
4290 
4291   // Clean the beginning of space up to next cache line.
4292   for (int offs = 0; offs < cache_line_size; offs += 8) {
4293     stx(G0, to, offs);
4294   }
4295 
4296   // align to next cache line
4297   add(to, cache_line_size, to);
4298   and3(to, -cache_line_size, to);
4299 
4300   // Note: size left >= two (32 bytes) cache lines.
4301 
4302   // BIS should not be used to zero tail (64 bytes)
4303   // to avoid zeroing a header of the following object.
4304   sub(end, (cache_line_size*2)-8, end);
4305 
4306   Label bis_loop;
4307   bind(bis_loop);
4308   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
4309   add(to, cache_line_size, to);
4310   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
4311 
4312   // BIS needs membar.
4313   membar(Assembler::StoreLoad);
4314 
4315   add(end, (cache_line_size*2)-8, end); // restore end
4316   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
4317 
4318   // Clean the tail.
4319   bind(small_loop);
4320   stx(G0, to, 0);
4321   add(to, 8, to);
4322   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
4323   nop(); // Separate short branches
4324 }
4325