1 /*
2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 // DFA.CPP - Method definitions for outputting the matcher DFA from ADLC
26 #include "adlc.hpp"
27 
28 //---------------------------Switches for debugging output---------------------
29 static bool debug_output   = false;
30 static bool debug_output1  = false;    // top level chain rules
31 
32 //---------------------------Access to internals of class State----------------
33 static const char *sLeft   = "_kids[0]";
34 static const char *sRight  = "_kids[1]";
35 
36 //---------------------------DFA productions-----------------------------------
37 static const char *dfa_production           = "DFA_PRODUCTION";
38 static const char *dfa_production_set_valid = "DFA_PRODUCTION__SET_VALID";
39 
40 //---------------------------Production State----------------------------------
41 static const char *knownInvalid = "knownInvalid";    // The result does NOT have a rule defined
42 static const char *knownValid   = "knownValid";      // The result must be produced by a rule
43 static const char *unknownValid = "unknownValid";    // Unknown (probably due to a child or predicate constraint)
44 
45 static const char *noConstraint  = "noConstraint";   // No constraints seen so far
46 static const char *hasConstraint = "hasConstraint";  // Within the first constraint
47 
48 
49 //------------------------------Production------------------------------------
50 // Track the status of productions for a particular result
51 class Production {
52 public:
53   const char *_result;
54   const char *_constraint;
55   const char *_valid;
56   Expr       *_cost_lb;            // Cost lower bound for this production
57   Expr       *_cost_ub;            // Cost upper bound for this production
58 
59 public:
60   Production(const char *result, const char *constraint, const char *valid);
~Production()61   ~Production() {};
62 
63   void        initialize();        // reset to be an empty container
64 
valid() const65   const char   *valid()  const { return _valid; }
cost_lb() const66   Expr       *cost_lb()  const { return (Expr *)_cost_lb;  }
cost_ub() const67   Expr       *cost_ub()  const { return (Expr *)_cost_ub;  }
68 
69   void print();
70 };
71 
72 
73 //------------------------------ProductionState--------------------------------
74 // Track the status of all production rule results
75 // Reset for each root opcode (e.g., Op_RegI, Op_AddI, ...)
76 class ProductionState {
77 private:
78   Dict _production;    // map result of production, char*, to information or NULL
79   const char *_constraint;
80 
81 public:
82   // cmpstr does string comparisions.  hashstr computes a key.
ProductionState(Arena * arena)83   ProductionState(Arena *arena) : _production(cmpstr, hashstr, arena) { initialize(); };
~ProductionState()84   ~ProductionState() { };
85 
86   void        initialize();                // reset local and dictionary state
87 
88   const char *constraint();
89   void    set_constraint(const char *constraint); // currently working inside of constraints
90 
91   const char *valid(const char *result);   // unknownValid, or status for this production
92   void    set_valid(const char *result);   // if not constrained, set status to knownValid
93 
94   Expr           *cost_lb(const char *result);
95   Expr           *cost_ub(const char *result);
96   void    set_cost_bounds(const char *result, const Expr *cost, bool has_state_check, bool has_cost_check);
97 
98   // Return the Production associated with the result,
99   // or create a new Production and insert it into the dictionary.
100   Production *getProduction(const char *result);
101 
102   void print();
103 
104 private:
105     // Disable public use of constructor, copy-ctor,  ...
ProductionState()106   ProductionState( )                         : _production(cmpstr, hashstr, Form::arena) {  assert( false, "NotImplemented");  };
ProductionState(const ProductionState &)107   ProductionState( const ProductionState & ) : _production(cmpstr, hashstr, Form::arena) {  assert( false, "NotImplemented");  }; // Deep-copy
108 };
109 
110 
111 //---------------------------Helper Functions----------------------------------
112 // cost_check template:
113 // 1)      if (STATE__NOT_YET_VALID(EBXREGI) || _cost[EBXREGI] > c) {
114 // 2)        DFA_PRODUCTION__SET_VALID(EBXREGI, cmovI_memu_rule, c)
115 // 3)      }
116 //
cost_check(FILE * fp,const char * spaces,const char * arrayIdx,const Expr * cost,const char * rule,ProductionState & status)117 static void cost_check(FILE *fp, const char *spaces,
118                        const char *arrayIdx, const Expr *cost, const char *rule, ProductionState &status) {
119   bool state_check               = false;  // true if this production needs to check validity
120   bool cost_check                = false;  // true if this production needs to check cost
121   bool cost_is_above_upper_bound = false;  // true if this production is unnecessary due to high cost
122   bool cost_is_below_lower_bound = false;  // true if this production replaces a higher cost production
123 
124   // Get information about this production
125   const Expr *previous_ub = status.cost_ub(arrayIdx);
126   if( !previous_ub->is_unknown() ) {
127     if( previous_ub->less_than_or_equal(cost) ) {
128       cost_is_above_upper_bound = true;
129       if( debug_output ) { fprintf(fp, "// Previous rule with lower cost than: %s === %s_rule costs %s\n", arrayIdx, rule, cost->as_string()); }
130     }
131   }
132 
133   const Expr *previous_lb = status.cost_lb(arrayIdx);
134   if( !previous_lb->is_unknown() ) {
135     if( cost->less_than_or_equal(previous_lb) ) {
136       cost_is_below_lower_bound = true;
137       if( debug_output ) { fprintf(fp, "// Previous rule with higher cost\n"); }
138     }
139   }
140 
141   // line 1)
142   // Check for validity and compare to other match costs
143   const char *validity_check = status.valid(arrayIdx);
144   if( validity_check == unknownValid ) {
145     fprintf(fp, "%sif (STATE__NOT_YET_VALID(%s) || _cost[%s] > %s) {\n",  spaces, arrayIdx, arrayIdx, cost->as_string());
146     state_check = true;
147     cost_check  = true;
148   }
149   else if( validity_check == knownInvalid ) {
150     if( debug_output ) { fprintf(fp, "%s// %s KNOWN_INVALID \n",  spaces, arrayIdx); }
151   }
152   else if( validity_check == knownValid ) {
153     if( cost_is_above_upper_bound ) {
154       // production cost is known to be too high.
155       return;
156     } else if( cost_is_below_lower_bound ) {
157       // production will unconditionally overwrite a previous production that had higher cost
158     } else {
159       fprintf(fp, "%sif ( /* %s KNOWN_VALID || */ _cost[%s] > %s) {\n",  spaces, arrayIdx, arrayIdx, cost->as_string());
160       cost_check  = true;
161     }
162   }
163 
164   // line 2)
165   // no need to set State vector if our state is knownValid
166   const char *production = (validity_check == knownValid) ? dfa_production : dfa_production_set_valid;
167   fprintf(fp, "%s  %s(%s, %s_rule, %s)", spaces, production, arrayIdx, rule, cost->as_string() );
168   if( validity_check == knownValid ) {
169     if( cost_is_below_lower_bound ) { fprintf(fp, "\t  // overwrites higher cost rule"); }
170    }
171    fprintf(fp, "\n");
172 
173   // line 3)
174   if( cost_check || state_check ) {
175     fprintf(fp, "%s}\n", spaces);
176   }
177 
178   status.set_cost_bounds(arrayIdx, cost, state_check, cost_check);
179 
180   // Update ProductionState
181   if( validity_check != knownValid ) {
182     // set State vector if not previously known
183     status.set_valid(arrayIdx);
184   }
185 }
186 
187 
188 //---------------------------child_test----------------------------------------
189 // Example:
190 //   STATE__VALID_CHILD(_kids[0], FOO) &&  STATE__VALID_CHILD(_kids[1], BAR)
191 // Macro equivalent to: _kids[0]->valid(FOO) && _kids[1]->valid(BAR)
192 //
child_test(FILE * fp,MatchList & mList)193 static void child_test(FILE *fp, MatchList &mList) {
194   if (mList._lchild) { // If left child, check it
195     const char* lchild_to_upper = ArchDesc::getMachOperEnum(mList._lchild);
196     fprintf(fp, "STATE__VALID_CHILD(_kids[0], %s)", lchild_to_upper);
197     delete[] lchild_to_upper;
198   }
199   if (mList._lchild && mList._rchild) { // If both, add the "&&"
200     fprintf(fp, " && ");
201   }
202   if (mList._rchild) { // If right child, check it
203     const char* rchild_to_upper = ArchDesc::getMachOperEnum(mList._rchild);
204     fprintf(fp, "STATE__VALID_CHILD(_kids[1], %s)", rchild_to_upper);
205     delete[] rchild_to_upper;
206   }
207 }
208 
209 //---------------------------calc_cost-----------------------------------------
210 // Example:
211 //           unsigned int c = _kids[0]->_cost[FOO] + _kids[1]->_cost[BAR] + 5;
212 //
calc_cost(FILE * fp,const char * spaces,MatchList & mList,ProductionState & status)213 Expr *ArchDesc::calc_cost(FILE *fp, const char *spaces, MatchList &mList, ProductionState &status) {
214   fprintf(fp, "%sunsigned int c = ", spaces);
215   Expr *c = new Expr("0");
216   if (mList._lchild) { // If left child, add it in
217     const char* lchild_to_upper = ArchDesc::getMachOperEnum(mList._lchild);
218     sprintf(Expr::buffer(), "_kids[0]->_cost[%s]", lchild_to_upper);
219     c->add(Expr::buffer());
220     delete[] lchild_to_upper;
221 }
222   if (mList._rchild) { // If right child, add it in
223     const char* rchild_to_upper = ArchDesc::getMachOperEnum(mList._rchild);
224     sprintf(Expr::buffer(), "_kids[1]->_cost[%s]", rchild_to_upper);
225     c->add(Expr::buffer());
226     delete[] rchild_to_upper;
227   }
228   // Add in cost of this rule
229   const char *mList_cost = mList.get_cost();
230   c->add(mList_cost, *this);
231 
232   fprintf(fp, "%s;\n", c->as_string());
233   c->set_external_name("c");
234   return c;
235 }
236 
237 
238 //---------------------------gen_match-----------------------------------------
gen_match(FILE * fp,MatchList & mList,ProductionState & status,Dict & operands_chained_from)239 void ArchDesc::gen_match(FILE *fp, MatchList &mList, ProductionState &status, Dict &operands_chained_from) {
240   const char *spaces4 = "    ";
241   const char *spaces6 = "      ";
242 
243   fprintf(fp, "%s", spaces4);
244   // Only generate child tests if this is not a leaf node
245   bool has_child_constraints = mList._lchild || mList._rchild;
246   const char *predicate_test = mList.get_pred();
247   if (has_child_constraints || predicate_test) {
248     // Open the child-and-predicate-test braces
249     fprintf(fp, "if( ");
250     status.set_constraint(hasConstraint);
251     child_test(fp, mList);
252     // Only generate predicate test if one exists for this match
253     if (predicate_test) {
254       if (has_child_constraints) {
255         fprintf(fp," &&\n");
256       }
257       fprintf(fp, "%s  %s", spaces6, predicate_test);
258     }
259     // End of outer tests
260     fprintf(fp," ) ");
261   } else {
262     // No child or predicate test needed
263     status.set_constraint(noConstraint);
264   }
265 
266   // End of outer tests
267   fprintf(fp,"{\n");
268 
269   // Calculate cost of this match
270   const Expr *cost = calc_cost(fp, spaces6, mList, status);
271   // Check against other match costs, and update cost & rule vectors
272   cost_check(fp, spaces6, ArchDesc::getMachOperEnum(mList._resultStr), cost, mList._opcode, status);
273 
274   // If this is a member of an operand class, update the class cost & rule
275   expand_opclass( fp, spaces6, cost, mList._resultStr, status);
276 
277   // Check if this rule should be used to generate the chains as well.
278   const char *rule = /* set rule to "Invalid" for internal operands */
279     strcmp(mList._opcode,mList._resultStr) ? mList._opcode : "Invalid";
280 
281   // If this rule produces an operand which has associated chain rules,
282   // update the operands with the chain rule + this rule cost & this rule.
283   chain_rule(fp, spaces6, mList._resultStr, cost, rule, operands_chained_from, status);
284 
285   // Close the child-and-predicate-test braces
286   fprintf(fp, "    }\n");
287 
288 }
289 
290 
291 //---------------------------expand_opclass------------------------------------
292 // Chain from one result_type to all other members of its operand class
expand_opclass(FILE * fp,const char * indent,const Expr * cost,const char * result_type,ProductionState & status)293 void ArchDesc::expand_opclass(FILE *fp, const char *indent, const Expr *cost,
294                               const char *result_type, ProductionState &status) {
295   const Form *form = _globalNames[result_type];
296   OperandForm *op = form ? form->is_operand() : NULL;
297   if( op && op->_classes.count() > 0 ) {
298     if( debug_output ) { fprintf(fp, "// expand operand classes for operand: %s \n", (char *)op->_ident  ); } // %%%%% Explanation
299     // Iterate through all operand classes which include this operand
300     op->_classes.reset();
301     const char *oclass;
302     // Expr *cCost = new Expr(cost);
303     while( (oclass = op->_classes.iter()) != NULL )
304       // Check against other match costs, and update cost & rule vectors
305       cost_check(fp, indent, ArchDesc::getMachOperEnum(oclass), cost, result_type, status);
306   }
307 }
308 
309 //---------------------------chain_rule----------------------------------------
310 // Starting at 'operand', check if we know how to automatically generate other results
chain_rule(FILE * fp,const char * indent,const char * operand,const Expr * icost,const char * irule,Dict & operands_chained_from,ProductionState & status)311 void ArchDesc::chain_rule(FILE *fp, const char *indent, const char *operand,
312      const Expr *icost, const char *irule, Dict &operands_chained_from,  ProductionState &status) {
313 
314   // Check if we have already generated chains from this starting point
315   if( operands_chained_from[operand] != NULL ) {
316     return;
317   } else {
318     operands_chained_from.Insert( operand, operand);
319   }
320   if( debug_output ) { fprintf(fp, "// chain rules starting from: %s  and  %s \n", (char *)operand, (char *)irule); } // %%%%% Explanation
321 
322   ChainList *lst = (ChainList *)_chainRules[operand];
323   if (lst) {
324     // printf("\nChain from <%s> at cost #%s\n",operand, icost ? icost : "_");
325     const char *result, *cost, *rule;
326     for(lst->reset(); (lst->iter(result,cost,rule)) == true; ) {
327       // Do not generate operands that are already available
328       if( operands_chained_from[result] != NULL ) {
329         continue;
330       } else {
331         // Compute the cost for previous match + chain_rule_cost
332         // total_cost = icost + cost;
333         Expr *total_cost = icost->clone();  // icost + cost
334         total_cost->add(cost, *this);
335 
336         // Check for transitive chain rules
337         Form *form = (Form *)_globalNames[rule];
338         if ( ! form->is_instruction()) {
339           // printf("   result=%s cost=%s rule=%s\n", result, total_cost, rule);
340           // Check against other match costs, and update cost & rule vectors
341           const char *reduce_rule = strcmp(irule,"Invalid") ? irule : rule;
342           cost_check(fp, indent, ArchDesc::getMachOperEnum(result), total_cost, reduce_rule, status);
343           chain_rule(fp, indent, result, total_cost, irule, operands_chained_from, status);
344         } else {
345           // printf("   result=%s cost=%s rule=%s\n", result, total_cost, rule);
346           // Check against other match costs, and update cost & rule vectors
347           cost_check(fp, indent, ArchDesc::getMachOperEnum(result), total_cost, rule, status);
348           chain_rule(fp, indent, result, total_cost, rule, operands_chained_from, status);
349         }
350 
351         // If this is a member of an operand class, update class cost & rule
352         expand_opclass( fp, indent, total_cost, result, status );
353       }
354     }
355   }
356 }
357 
358 //---------------------------prune_matchlist-----------------------------------
359 // Check for duplicate entries in a matchlist, and prune out the higher cost
360 // entry.
prune_matchlist(Dict & minimize,MatchList & mlist)361 void ArchDesc::prune_matchlist(Dict &minimize, MatchList &mlist) {
362 
363 }
364 
365 //---------------------------buildDFA------------------------------------------
366 // DFA is a large switch with case statements for each ideal opcode encountered
367 // in any match rule in the ad file.  Each case has a series of if's to handle
368 // the match or fail decisions.  The matches test the cost function of that
369 // rule, and prune any cases which are higher cost for the same reduction.
370 // In order to generate the DFA we walk the table of ideal opcode/MatchList
371 // pairs generated by the ADLC front end to build the contents of the case
372 // statements (a series of if statements).
buildDFA(FILE * fp)373 void ArchDesc::buildDFA(FILE* fp) {
374   int i;
375   // Remember operands that are the starting points for chain rules.
376   // Prevent cycles by checking if we have already generated chain.
377   Dict operands_chained_from(cmpstr, hashstr, Form::arena);
378 
379   // Hash inputs to match rules so that final DFA contains only one entry for
380   // each match pattern which is the low cost entry.
381   Dict minimize(cmpstr, hashstr, Form::arena);
382 
383   // Track status of dfa for each resulting production
384   // reset for each ideal root.
385   ProductionState status(Form::arena);
386 
387   // Output the start of the DFA method into the output file
388 
389   fprintf(fp, "\n");
390   fprintf(fp, "//------------------------- Source -----------------------------------------\n");
391   // Do not put random source code into the DFA.
392   // If there are constants which need sharing, put them in "source_hpp" forms.
393   // _source.output(fp);
394   fprintf(fp, "\n");
395   fprintf(fp, "//------------------------- Attributes -------------------------------------\n");
396   _attributes.output(fp);
397   fprintf(fp, "\n");
398   fprintf(fp, "//------------------------- Macros -----------------------------------------\n");
399   // #define DFA_PRODUCTION(result, rule, cost)\
400   //   _cost[ (result) ] = cost; _rule[ (result) ] = rule;
401   fprintf(fp, "#define %s(result, rule, cost)\\\n", dfa_production);
402   fprintf(fp, "  _cost[ (result) ] = cost; _rule[ (result) ] = rule;\n");
403   fprintf(fp, "\n");
404 
405   // #define DFA_PRODUCTION__SET_VALID(result, rule, cost)\
406   //     DFA_PRODUCTION( (result), (rule), (cost) ); STATE__SET_VALID( (result) );
407   fprintf(fp, "#define %s(result, rule, cost)\\\n", dfa_production_set_valid);
408   fprintf(fp, "  %s( (result), (rule), (cost) ); STATE__SET_VALID( (result) );\n", dfa_production);
409   fprintf(fp, "\n");
410 
411   fprintf(fp, "//------------------------- DFA --------------------------------------------\n");
412 
413   fprintf(fp,
414 "// DFA is a large switch with case statements for each ideal opcode encountered\n"
415 "// in any match rule in the ad file.  Each case has a series of if's to handle\n"
416 "// the match or fail decisions.  The matches test the cost function of that\n"
417 "// rule, and prune any cases which are higher cost for the same reduction.\n"
418 "// In order to generate the DFA we walk the table of ideal opcode/MatchList\n"
419 "// pairs generated by the ADLC front end to build the contents of the case\n"
420 "// statements (a series of if statements).\n"
421 );
422   fprintf(fp, "\n");
423   fprintf(fp, "\n");
424   if (_dfa_small) {
425     // Now build the individual routines just like the switch entries in large version
426     // Iterate over the table of MatchLists, start at first valid opcode of 1
427     for (i = 1; i < _last_opcode; i++) {
428       if (_mlistab[i] == NULL) continue;
429       // Generate the routine header statement for this opcode
430       fprintf(fp, "void  State::_sub_Op_%s(const Node *n){\n", NodeClassNames[i]);
431       // Generate body. Shared for both inline and out-of-line version
432       gen_dfa_state_body(fp, minimize, status, operands_chained_from, i);
433       // End of routine
434       fprintf(fp, "}\n");
435     }
436   }
437   fprintf(fp, "bool State::DFA");
438   fprintf(fp, "(int opcode, const Node *n) {\n");
439   fprintf(fp, "  switch(opcode) {\n");
440 
441   // Iterate over the table of MatchLists, start at first valid opcode of 1
442   for (i = 1; i < _last_opcode; i++) {
443     if (_mlistab[i] == NULL) continue;
444     // Generate the case statement for this opcode
445     if (_dfa_small) {
446       fprintf(fp, "  case Op_%s: { _sub_Op_%s(n);\n", NodeClassNames[i], NodeClassNames[i]);
447     } else {
448       fprintf(fp, "  case Op_%s: {\n", NodeClassNames[i]);
449       // Walk the list, compacting it
450       gen_dfa_state_body(fp, minimize, status, operands_chained_from, i);
451     }
452     // Print the "break"
453     fprintf(fp, "    break;\n");
454     fprintf(fp, "  }\n");
455   }
456 
457   // Generate the default case for switch(opcode)
458   fprintf(fp, "  \n");
459   fprintf(fp, "  default:\n");
460   fprintf(fp, "    tty->print(\"Default case invoked for: \\n\");\n");
461   fprintf(fp, "    tty->print(\"   opcode  = %cd, \\\"%cs\\\"\\n\", opcode, NodeClassNames[opcode]);\n", '%', '%');
462   fprintf(fp, "    return false;\n");
463   fprintf(fp, "  }\n");
464 
465   // Return status, indicating a successful match.
466   fprintf(fp, "  return true;\n");
467   // Generate the closing brace for method Matcher::DFA
468   fprintf(fp, "}\n");
469   Expr::check_buffers();
470 }
471 
472 
473 class dfa_shared_preds {
474   enum { count = 4 };
475 
476   static bool        _found[count];
477   static const char* _type [count];
478   static const char* _var  [count];
479   static const char* _pred [count];
480 
check_index(int index)481   static void check_index(int index) { assert( 0 <= index && index < count, "Invalid index"); }
482 
483   // Confirm that this is a separate sub-expression.
484   // Only need to catch common cases like " ... && shared ..."
485   // and avoid hazardous ones like "...->shared"
valid_loc(char * pred,char * shared)486   static bool valid_loc(char *pred, char *shared) {
487     // start of predicate is valid
488     if( shared == pred ) return true;
489 
490     // Check previous character and recurse if needed
491     char *prev = shared - 1;
492     char c  = *prev;
493     switch( c ) {
494     case ' ':
495     case '\n':
496       return dfa_shared_preds::valid_loc(pred, prev);
497     case '!':
498     case '(':
499     case '<':
500     case '=':
501       return true;
502     case '"':  // such as: #line 10 "myfile.ad"\n mypredicate
503       return true;
504     case '|':
505       if( prev != pred && *(prev-1) == '|' ) return true;
506     case '&':
507       if( prev != pred && *(prev-1) == '&' ) return true;
508     default:
509       return false;
510     }
511 
512     return false;
513   }
514 
515 public:
516 
found(int index)517   static bool        found(int index){ check_index(index); return _found[index]; }
set_found(int index,bool val)518   static void    set_found(int index, bool val) { check_index(index); _found[index] = val; }
reset_found()519   static void  reset_found() {
520     for( int i = 0; i < count; ++i ) { _found[i] = false; }
521   };
522 
type(int index)523   static const char* type(int index) { check_index(index); return _type[index]; }
var(int index)524   static const char* var (int index) { check_index(index); return _var [index];  }
pred(int index)525   static const char* pred(int index) { check_index(index); return _pred[index]; }
526 
527   // Check each predicate in the MatchList for common sub-expressions
cse_matchlist(MatchList * matchList)528   static void cse_matchlist(MatchList *matchList) {
529     for( MatchList *mList = matchList; mList != NULL; mList = mList->get_next() ) {
530       Predicate* predicate = mList->get_pred_obj();
531       char*      pred      = mList->get_pred();
532       if( pred != NULL ) {
533         for(int index = 0; index < count; ++index ) {
534           const char *shared_pred      = dfa_shared_preds::pred(index);
535           const char *shared_pred_var  = dfa_shared_preds::var(index);
536           bool result = dfa_shared_preds::cse_predicate(predicate, shared_pred, shared_pred_var);
537           if( result ) dfa_shared_preds::set_found(index, true);
538         }
539       }
540     }
541   }
542 
543   // If the Predicate contains a common sub-expression, replace the Predicate's
544   // string with one that uses the variable name.
cse_predicate(Predicate * predicate,const char * shared_pred,const char * shared_pred_var)545   static bool cse_predicate(Predicate* predicate, const char *shared_pred, const char *shared_pred_var) {
546     bool result = false;
547     char *pred = predicate->_pred;
548     if( pred != NULL ) {
549       char *new_pred = pred;
550       for( char *shared_pred_loc = strstr(new_pred, shared_pred);
551       shared_pred_loc != NULL && dfa_shared_preds::valid_loc(new_pred,shared_pred_loc);
552       shared_pred_loc = strstr(new_pred, shared_pred) ) {
553         // Do not modify the original predicate string, it is shared
554         if( new_pred == pred ) {
555           new_pred = strdup(pred);
556           shared_pred_loc = strstr(new_pred, shared_pred);
557         }
558         // Replace shared_pred with variable name
559         strncpy(shared_pred_loc, shared_pred_var, strlen(shared_pred_var));
560       }
561       // Install new predicate
562       if( new_pred != pred ) {
563         predicate->_pred = new_pred;
564         result = true;
565       }
566     }
567     return result;
568   }
569 
570   // Output the hoisted common sub-expression if we found it in predicates
generate_cse(FILE * fp)571   static void generate_cse(FILE *fp) {
572     for(int j = 0; j < count; ++j ) {
573       if( dfa_shared_preds::found(j) ) {
574         const char *shared_pred_type = dfa_shared_preds::type(j);
575         const char *shared_pred_var  = dfa_shared_preds::var(j);
576         const char *shared_pred      = dfa_shared_preds::pred(j);
577         fprintf(fp, "    %s %s = %s;\n", shared_pred_type, shared_pred_var, shared_pred);
578       }
579     }
580   }
581 };
582 // shared predicates, _var and _pred entry should be the same length
583 bool         dfa_shared_preds::_found[dfa_shared_preds::count]
584   = { false, false, false, false };
585 const char*  dfa_shared_preds::_type[dfa_shared_preds::count]
586   = { "int", "jlong", "intptr_t", "bool" };
587 const char*  dfa_shared_preds::_var [dfa_shared_preds::count]
588   = { "_n_get_int__", "_n_get_long__", "_n_get_intptr_t__", "Compile__current____select_24_bit_instr__" };
589 const char*  dfa_shared_preds::_pred[dfa_shared_preds::count]
590   = { "n->get_int()", "n->get_long()", "n->get_intptr_t()", "Compile::current()->select_24_bit_instr()" };
591 
592 
gen_dfa_state_body(FILE * fp,Dict & minimize,ProductionState & status,Dict & operands_chained_from,int i)593 void ArchDesc::gen_dfa_state_body(FILE* fp, Dict &minimize, ProductionState &status, Dict &operands_chained_from, int i) {
594   // Start the body of each Op_XXX sub-dfa with a clean state.
595   status.initialize();
596 
597   // Walk the list, compacting it
598   MatchList* mList = _mlistab[i];
599   do {
600     // Hash each entry using inputs as key and pointer as data.
601     // If there is already an entry, keep the one with lower cost, and
602     // remove the other one from the list.
603     prune_matchlist(minimize, *mList);
604     // Iterate
605     mList = mList->get_next();
606   } while(mList != NULL);
607 
608   // Hoist previously specified common sub-expressions out of predicates
609   dfa_shared_preds::reset_found();
610   dfa_shared_preds::cse_matchlist(_mlistab[i]);
611   dfa_shared_preds::generate_cse(fp);
612 
613   mList = _mlistab[i];
614 
615   // Walk the list again, generating code
616   do {
617     // Each match can generate its own chains
618     operands_chained_from.Clear();
619     gen_match(fp, *mList, status, operands_chained_from);
620     mList = mList->get_next();
621   } while(mList != NULL);
622   // Fill in any chain rules which add instructions
623   // These can generate their own chains as well.
624   operands_chained_from.Clear();  //
625   if( debug_output1 ) { fprintf(fp, "// top level chain rules for: %s \n", (char *)NodeClassNames[i]); } // %%%%% Explanation
626   const Expr *zeroCost = new Expr("0");
627   chain_rule(fp, "   ", (char *)NodeClassNames[i], zeroCost, "Invalid",
628              operands_chained_from, status);
629 }
630 
631 
632 
633 //------------------------------Expr------------------------------------------
634 Expr *Expr::_unknown_expr = NULL;
635 char  Expr::string_buffer[STRING_BUFFER_LENGTH];
636 char  Expr::external_buffer[STRING_BUFFER_LENGTH];
637 bool  Expr::_init_buffers = Expr::init_buffers();
638 
Expr()639 Expr::Expr() {
640   _external_name = NULL;
641   _expr          = "Invalid_Expr";
642   _min_value     = Expr::Max;
643   _max_value     = Expr::Zero;
644 }
Expr(const char * cost)645 Expr::Expr(const char *cost) {
646   _external_name = NULL;
647 
648   int intval = 0;
649   if( cost == NULL ) {
650     _expr = "0";
651     _min_value = Expr::Zero;
652     _max_value = Expr::Zero;
653   }
654   else if( ADLParser::is_int_token(cost, intval) ) {
655     _expr = cost;
656     _min_value = intval;
657     _max_value = intval;
658   }
659   else {
660     assert( strcmp(cost,"0") != 0, "Recognize string zero as an int");
661     _expr = cost;
662     _min_value = Expr::Zero;
663     _max_value = Expr::Max;
664   }
665 }
666 
Expr(const char * name,const char * expression,int min_value,int max_value)667 Expr::Expr(const char *name, const char *expression, int min_value, int max_value) {
668   _external_name = name;
669   _expr          = expression ? expression : name;
670   _min_value     = min_value;
671   _max_value     = max_value;
672   assert(_min_value >= 0 && _min_value <= Expr::Max, "value out of range");
673   assert(_max_value >= 0 && _max_value <= Expr::Max, "value out of range");
674 }
675 
clone() const676 Expr *Expr::clone() const {
677   Expr *cost = new Expr();
678   cost->_external_name = _external_name;
679   cost->_expr          = _expr;
680   cost->_min_value     = _min_value;
681   cost->_max_value     = _max_value;
682 
683   return cost;
684 }
685 
add(const Expr * c)686 void Expr::add(const Expr *c) {
687   // Do not update fields until all computation is complete
688   const char *external  = compute_external(this, c);
689   const char *expr      = compute_expr(this, c);
690   int         min_value = compute_min (this, c);
691   int         max_value = compute_max (this, c);
692 
693   _external_name = external;
694   _expr      = expr;
695   _min_value = min_value;
696   _max_value = max_value;
697 }
698 
add(const char * c)699 void Expr::add(const char *c) {
700   Expr *cost = new Expr(c);
701   add(cost);
702 }
703 
add(const char * c,ArchDesc & AD)704 void Expr::add(const char *c, ArchDesc &AD) {
705   const Expr *e = AD.globalDefs()[c];
706   if( e != NULL ) {
707     // use the value of 'c' defined in <arch>.ad
708     add(e);
709   } else {
710     Expr *cost = new Expr(c);
711     add(cost);
712   }
713 }
714 
compute_external(const Expr * c1,const Expr * c2)715 const char *Expr::compute_external(const Expr *c1, const Expr *c2) {
716   const char * result = NULL;
717 
718   // Preserve use of external name which has a zero value
719   if( c1->_external_name != NULL ) {
720     sprintf( string_buffer, "%s", c1->as_string());
721     if( !c2->is_zero() ) {
722       strcat( string_buffer, "+");
723       strcat( string_buffer, c2->as_string());
724     }
725     result = strdup(string_buffer);
726   }
727   else if( c2->_external_name != NULL ) {
728     if( !c1->is_zero() ) {
729       sprintf( string_buffer, "%s", c1->as_string());
730       strcat( string_buffer, " + ");
731     } else {
732       string_buffer[0] = '\0';
733     }
734     strcat( string_buffer, c2->_external_name );
735     result = strdup(string_buffer);
736   }
737   return result;
738 }
739 
compute_expr(const Expr * c1,const Expr * c2)740 const char *Expr::compute_expr(const Expr *c1, const Expr *c2) {
741   if( !c1->is_zero() ) {
742     sprintf( string_buffer, "%s", c1->_expr);
743     if( !c2->is_zero() ) {
744       strcat( string_buffer, "+");
745       strcat( string_buffer, c2->_expr);
746     }
747   }
748   else if( !c2->is_zero() ) {
749     sprintf( string_buffer, "%s", c2->_expr);
750   }
751   else {
752     sprintf( string_buffer, "0");
753   }
754   char *cost = strdup(string_buffer);
755 
756   return cost;
757 }
758 
compute_min(const Expr * c1,const Expr * c2)759 int Expr::compute_min(const Expr *c1, const Expr *c2) {
760   int v1 = c1->_min_value;
761   int v2 = c2->_min_value;
762   assert(0 <= v2 && v2 <= Expr::Max, "sanity");
763   assert(v1 <= Expr::Max - v2, "Invalid cost computation");
764 
765   return v1 + v2;
766 }
767 
768 
compute_max(const Expr * c1,const Expr * c2)769 int Expr::compute_max(const Expr *c1, const Expr *c2) {
770   int v1 = c1->_max_value;
771   int v2 = c2->_max_value;
772 
773   // Check for overflow without producing UB. If v2 is positive
774   // and not larger than Max, the subtraction cannot underflow.
775   assert(0 <= v2 && v2 <= Expr::Max, "sanity");
776   if (v1 > Expr::Max - v2) {
777     return Expr::Max;
778   }
779 
780   return v1 + v2;
781 }
782 
print() const783 void Expr::print() const {
784   if( _external_name != NULL ) {
785     printf("  %s == (%s) === [%d, %d]\n", _external_name, _expr, _min_value, _max_value);
786   } else {
787     printf("  %s === [%d, %d]\n", _expr, _min_value, _max_value);
788   }
789 }
790 
print_define(FILE * fp) const791 void Expr::print_define(FILE *fp) const {
792   assert( _external_name != NULL, "definition does not have a name");
793   assert( _min_value == _max_value, "Expect user definitions to have constant value");
794   fprintf(fp, "#define  %s  (%s)  \n", _external_name, _expr);
795   fprintf(fp, "// value == %d \n", _min_value);
796 }
797 
print_assert(FILE * fp) const798 void Expr::print_assert(FILE *fp) const {
799   assert( _external_name != NULL, "definition does not have a name");
800   assert( _min_value == _max_value, "Expect user definitions to have constant value");
801   fprintf(fp, "  assert( %s == %d, \"Expect (%s) to equal %d\");\n", _external_name, _min_value, _expr, _min_value);
802 }
803 
get_unknown()804 Expr *Expr::get_unknown() {
805   if( Expr::_unknown_expr == NULL ) {
806     Expr::_unknown_expr = new Expr();
807   }
808 
809   return Expr::_unknown_expr;
810 }
811 
init_buffers()812 bool Expr::init_buffers() {
813   // Fill buffers with 0
814   for( int i = 0; i < STRING_BUFFER_LENGTH; ++i ) {
815     external_buffer[i] = '\0';
816     string_buffer[i]   = '\0';
817   }
818 
819   return true;
820 }
821 
check_buffers()822 bool Expr::check_buffers() {
823   // returns 'true' if buffer use may have overflowed
824   bool ok = true;
825   for( int i = STRING_BUFFER_LENGTH - 100; i < STRING_BUFFER_LENGTH; ++i) {
826     if( external_buffer[i] != '\0' || string_buffer[i]   != '\0' ) {
827       ok = false;
828       assert( false, "Expr:: Buffer overflow");
829     }
830   }
831 
832   return ok;
833 }
834 
835 
836 //------------------------------ExprDict---------------------------------------
837 // Constructor
ExprDict(CmpKey cmp,Hash hash,Arena * arena)838 ExprDict::ExprDict( CmpKey cmp, Hash hash, Arena *arena )
839   : _expr(cmp, hash, arena), _defines()  {
840 }
~ExprDict()841 ExprDict::~ExprDict() {
842 }
843 
844 // Return # of name-Expr pairs in dict
Size(void) const845 int ExprDict::Size(void) const {
846   return _expr.Size();
847 }
848 
849 // define inserts the given key-value pair into the dictionary,
850 // and records the name in order for later output, ...
define(const char * name,Expr * expr)851 const Expr  *ExprDict::define(const char *name, Expr *expr) {
852   const Expr *old_expr = (*this)[name];
853   assert(old_expr == NULL, "Implementation does not support redefinition");
854 
855   _expr.Insert(name, expr);
856   _defines.addName(name);
857 
858   return old_expr;
859 }
860 
861 // Insert inserts the given key-value pair into the dictionary.  The prior
862 // value of the key is returned; NULL if the key was not previously defined.
Insert(const char * name,Expr * expr)863 const Expr  *ExprDict::Insert(const char *name, Expr *expr) {
864   return (Expr*)_expr.Insert((void*)name, (void*)expr);
865 }
866 
867 // Finds the value of a given key; or NULL if not found.
868 // The dictionary is NOT changed.
operator [](const char * name) const869 const Expr  *ExprDict::operator [](const char *name) const {
870   return (Expr*)_expr[name];
871 }
872 
print_defines(FILE * fp)873 void ExprDict::print_defines(FILE *fp) {
874   fprintf(fp, "\n");
875   const char *name = NULL;
876   for( _defines.reset(); (name = _defines.iter()) != NULL; ) {
877     const Expr *expr = (const Expr*)_expr[name];
878     assert( expr != NULL, "name in ExprDict without matching Expr in dictionary");
879     expr->print_define(fp);
880   }
881 }
print_asserts(FILE * fp)882 void ExprDict::print_asserts(FILE *fp) {
883   fprintf(fp, "\n");
884   fprintf(fp, "  // Following assertions generated from definition section\n");
885   const char *name = NULL;
886   for( _defines.reset(); (name = _defines.iter()) != NULL; ) {
887     const Expr *expr = (const Expr*)_expr[name];
888     assert( expr != NULL, "name in ExprDict without matching Expr in dictionary");
889     expr->print_assert(fp);
890   }
891 }
892 
893 // Print out the dictionary contents as key-value pairs
dumpekey(const void * key)894 static void dumpekey(const void* key)  { fprintf(stdout, "%s", (char*) key); }
dumpexpr(const void * expr)895 static void dumpexpr(const void* expr) { fflush(stdout); ((Expr*)expr)->print(); }
896 
dump()897 void ExprDict::dump() {
898   _expr.print(dumpekey, dumpexpr);
899 }
900 
901 
902 //------------------------------ExprDict::private------------------------------
903 // Disable public use of constructor, copy-ctor, operator =, operator ==
ExprDict()904 ExprDict::ExprDict( ) : _expr(cmpkey,hashkey), _defines()  {
905   assert( false, "NotImplemented");
906 }
ExprDict(const ExprDict &)907 ExprDict::ExprDict( const ExprDict & ) : _expr(cmpkey,hashkey), _defines() {
908   assert( false, "NotImplemented");
909 }
operator =(const ExprDict & rhs)910 ExprDict &ExprDict::operator =( const ExprDict &rhs) {
911   assert( false, "NotImplemented");
912   _expr = rhs._expr;
913   return *this;
914 }
915 // == compares two dictionaries; they must have the same keys (their keys
916 // must match using CmpKey) and they must have the same values (pointer
917 // comparison).  If so 1 is returned, if not 0 is returned.
operator ==(const ExprDict & d) const918 bool ExprDict::operator ==(const ExprDict &d) const {
919   assert( false, "NotImplemented");
920   return false;
921 }
922 
923 
924 //------------------------------Production-------------------------------------
Production(const char * result,const char * constraint,const char * valid)925 Production::Production(const char *result, const char *constraint, const char *valid) {
926   initialize();
927   _result     = result;
928   _constraint = constraint;
929   _valid      = valid;
930 }
931 
initialize()932 void Production::initialize() {
933   _result     = NULL;
934   _constraint = NULL;
935   _valid      = knownInvalid;
936   _cost_lb    = Expr::get_unknown();
937   _cost_ub    = Expr::get_unknown();
938 }
939 
print()940 void Production::print() {
941   printf("%s", (_result     == NULL ? "NULL" : _result ) );
942   printf("%s", (_constraint == NULL ? "NULL" : _constraint ) );
943   printf("%s", (_valid      == NULL ? "NULL" : _valid ) );
944   _cost_lb->print();
945   _cost_ub->print();
946 }
947 
948 
949 //------------------------------ProductionState--------------------------------
initialize()950 void ProductionState::initialize() {
951   _constraint = noConstraint;
952 
953   // reset each Production currently in the dictionary
954   DictI iter( &_production );
955   const void *x, *y = NULL;
956   for( ; iter.test(); ++iter) {
957     x = iter._key;
958     y = iter._value;
959     Production *p = (Production*)y;
960     if( p != NULL ) {
961       p->initialize();
962     }
963   }
964 }
965 
getProduction(const char * result)966 Production *ProductionState::getProduction(const char *result) {
967   Production *p = (Production *)_production[result];
968   if( p == NULL ) {
969     p = new Production(result, _constraint, knownInvalid);
970     _production.Insert(result, p);
971   }
972 
973   return p;
974 }
975 
set_constraint(const char * constraint)976 void ProductionState::set_constraint(const char *constraint) {
977   _constraint = constraint;
978 }
979 
valid(const char * result)980 const char *ProductionState::valid(const char *result) {
981   return getProduction(result)->valid();
982 }
983 
set_valid(const char * result)984 void ProductionState::set_valid(const char *result) {
985   Production *p = getProduction(result);
986 
987   // Update valid as allowed by current constraints
988   if( _constraint == noConstraint ) {
989     p->_valid = knownValid;
990   } else {
991     if( p->_valid != knownValid ) {
992       p->_valid = unknownValid;
993     }
994   }
995 }
996 
cost_lb(const char * result)997 Expr *ProductionState::cost_lb(const char *result) {
998   return getProduction(result)->cost_lb();
999 }
1000 
cost_ub(const char * result)1001 Expr *ProductionState::cost_ub(const char *result) {
1002   return getProduction(result)->cost_ub();
1003 }
1004 
set_cost_bounds(const char * result,const Expr * cost,bool has_state_check,bool has_cost_check)1005 void ProductionState::set_cost_bounds(const char *result, const Expr *cost, bool has_state_check, bool has_cost_check) {
1006   Production *p = getProduction(result);
1007 
1008   if( p->_valid == knownInvalid ) {
1009     // Our cost bounds are not unknown, just not defined.
1010     p->_cost_lb = cost->clone();
1011     p->_cost_ub = cost->clone();
1012   } else if (has_state_check || _constraint != noConstraint) {
1013     // The production is protected by a condition, so
1014     // the cost bounds may expand.
1015     // _cost_lb = min(cost, _cost_lb)
1016     if( cost->less_than_or_equal(p->_cost_lb) ) {
1017       p->_cost_lb = cost->clone();
1018     }
1019     // _cost_ub = max(cost, _cost_ub)
1020     if( p->_cost_ub->less_than_or_equal(cost) ) {
1021       p->_cost_ub = cost->clone();
1022     }
1023   } else if (has_cost_check) {
1024     // The production has no condition check, but does
1025     // have a cost check that could reduce the upper
1026     // and/or lower bound.
1027     // _cost_lb = min(cost, _cost_lb)
1028     if( cost->less_than_or_equal(p->_cost_lb) ) {
1029       p->_cost_lb = cost->clone();
1030     }
1031     // _cost_ub = min(cost, _cost_ub)
1032     if( cost->less_than_or_equal(p->_cost_ub) ) {
1033       p->_cost_ub = cost->clone();
1034     }
1035   } else {
1036     // The costs are unconditionally set.
1037     p->_cost_lb = cost->clone();
1038     p->_cost_ub = cost->clone();
1039   }
1040 
1041 }
1042 
1043 // Print out the dictionary contents as key-value pairs
print_key(const void * key)1044 static void print_key (const void* key)              { fprintf(stdout, "%s", (char*) key); }
print_production(const void * production)1045 static void print_production(const void* production) { fflush(stdout); ((Production*)production)->print(); }
1046 
print()1047 void ProductionState::print() {
1048   _production.print(print_key, print_production);
1049 }
1050