1 /*
2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_CODE_RELOCINFO_HPP
26 #define SHARE_VM_CODE_RELOCINFO_HPP
27 
28 #include "memory/allocation.hpp"
29 #include "utilities/top.hpp"
30 
31 class NativeMovConstReg;
32 
33 // Types in this file:
34 //    relocInfo
35 //      One element of an array of halfwords encoding compressed relocations.
36 //      Also, the source of relocation types (relocInfo::oop_type, ...).
37 //    Relocation
38 //      A flyweight object representing a single relocation.
39 //      It is fully unpacked from the compressed relocation array.
40 //    metadata_Relocation, ... (subclasses of Relocation)
41 //      The location of some type-specific operations (metadata_addr, ...).
42 //      Also, the source of relocation specs (metadata_Relocation::spec, ...).
43 //    oop_Relocation, ... (subclasses of Relocation)
44 //      oops in the code stream (strings, class loaders)
45 //      Also, the source of relocation specs (oop_Relocation::spec, ...).
46 //    RelocationHolder
47 //      A ValueObj type which acts as a union holding a Relocation object.
48 //      Represents a relocation spec passed into a CodeBuffer during assembly.
49 //    RelocIterator
50 //      A StackObj which iterates over the relocations associated with
51 //      a range of code addresses.  Can be used to operate a copy of code.
52 //    BoundRelocation
53 //      An _internal_ type shared by packers and unpackers of relocations.
54 //      It pastes together a RelocationHolder with some pointers into
55 //      code and relocInfo streams.
56 
57 
58 // Notes on relocType:
59 //
60 // These hold enough information to read or write a value embedded in
61 // the instructions of an CodeBlob.  They're used to update:
62 //
63 //   1) embedded oops     (isOop()          == true)
64 //   2) inline caches     (isIC()           == true)
65 //   3) runtime calls     (isRuntimeCall()  == true)
66 //   4) internal word ref (isInternalWord() == true)
67 //   5) external word ref (isExternalWord() == true)
68 //
69 // when objects move (GC) or if code moves (compacting the code heap).
70 // They are also used to patch the code (if a call site must change)
71 //
72 // A relocInfo is represented in 16 bits:
73 //   4 bits indicating the relocation type
74 //  12 bits indicating the offset from the previous relocInfo address
75 //
76 // The offsets accumulate along the relocInfo stream to encode the
77 // address within the CodeBlob, which is named RelocIterator::addr().
78 // The address of a particular relocInfo always points to the first
79 // byte of the relevant instruction (and not to any of its subfields
80 // or embedded immediate constants).
81 //
82 // The offset value is scaled appropriately for the target machine.
83 // (See relocInfo_<arch>.hpp for the offset scaling.)
84 //
85 // On some machines, there may also be a "format" field which may provide
86 // additional information about the format of the instruction stream
87 // at the corresponding code address.  The format value is usually zero.
88 // Any machine (such as Intel) whose instructions can sometimes contain
89 // more than one relocatable constant needs format codes to distinguish
90 // which operand goes with a given relocation.
91 //
92 // If the target machine needs N format bits, the offset has 12-N bits,
93 // the format is encoded between the offset and the type, and the
94 // relocInfo_<arch>.hpp file has manifest constants for the format codes.
95 //
96 // If the type is "data_prefix_tag" then the offset bits are further encoded,
97 // and in fact represent not a code-stream offset but some inline data.
98 // The data takes the form of a counted sequence of halfwords, which
99 // precedes the actual relocation record.  (Clients never see it directly.)
100 // The interpetation of this extra data depends on the relocation type.
101 //
102 // On machines that have 32-bit immediate fields, there is usually
103 // little need for relocation "prefix" data, because the instruction stream
104 // is a perfectly reasonable place to store the value.  On machines in
105 // which 32-bit values must be "split" across instructions, the relocation
106 // data is the "true" specification of the value, which is then applied
107 // to some field of the instruction (22 or 13 bits, on SPARC).
108 //
109 // Whenever the location of the CodeBlob changes, any PC-relative
110 // relocations, and any internal_word_type relocations, must be reapplied.
111 // After the GC runs, oop_type relocations must be reapplied.
112 //
113 //
114 // Here are meanings of the types:
115 //
116 // relocInfo::none -- a filler record
117 //   Value:  none
118 //   Instruction: The corresponding code address is ignored
119 //   Data:  Any data prefix and format code are ignored
120 //   (This means that any relocInfo can be disabled by setting
121 //   its type to none.  See relocInfo::remove.)
122 //
123 // relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
124 //   Value:  an oop, or else the address (handle) of an oop
125 //   Instruction types: memory (load), set (load address)
126 //   Data:  []       an oop stored in 4 bytes of instruction
127 //          [n]      n is the index of an oop in the CodeBlob's oop pool
128 //          [[N]n l] and l is a byte offset to be applied to the oop
129 //          [Nn Ll]  both index and offset may be 32 bits if necessary
130 //   Here is a special hack, used only by the old compiler:
131 //          [[N]n 00] the value is the __address__ of the nth oop in the pool
132 //   (Note that the offset allows optimal references to class variables.)
133 //
134 // relocInfo::internal_word_type -- an address within the same CodeBlob
135 // relocInfo::section_word_type -- same, but can refer to another section
136 //   Value:  an address in the CodeBlob's code or constants section
137 //   Instruction types: memory (load), set (load address)
138 //   Data:  []     stored in 4 bytes of instruction
139 //          [[L]l] a relative offset (see [About Offsets] below)
140 //   In the case of section_word_type, the offset is relative to a section
141 //   base address, and the section number (e.g., SECT_INSTS) is encoded
142 //   into the low two bits of the offset L.
143 //
144 // relocInfo::external_word_type -- a fixed address in the runtime system
145 //   Value:  an address
146 //   Instruction types: memory (load), set (load address)
147 //   Data:  []   stored in 4 bytes of instruction
148 //          [n]  the index of a "well-known" stub (usual case on RISC)
149 //          [Ll] a 32-bit address
150 //
151 // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
152 //   Value:  an address
153 //   Instruction types: PC-relative call (or a PC-relative branch)
154 //   Data:  []   stored in 4 bytes of instruction
155 //
156 // relocInfo::static_call_type -- a static call
157 //   Value:  an CodeBlob, a stub, or a fixup routine
158 //   Instruction types: a call
159 //   Data:  []
160 //   The identity of the callee is extracted from debugging information.
161 //   //%note reloc_3
162 //
163 // relocInfo::virtual_call_type -- a virtual call site (which includes an inline
164 //                                 cache)
165 //   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
166 //   Instruction types: a call, plus some associated set-oop instructions
167 //   Data:  []       the associated set-oops are adjacent to the call
168 //          [n]      n is a relative offset to the first set-oop
169 //          [[N]n l] and l is a limit within which the set-oops occur
170 //          [Nn Ll]  both n and l may be 32 bits if necessary
171 //   The identity of the callee is extracted from debugging information.
172 //
173 // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
174 //
175 //    Same info as a static_call_type. We use a special type, so the handling of
176 //    virtuals and statics are separated.
177 //
178 //
179 //   The offset n points to the first set-oop.  (See [About Offsets] below.)
180 //   In turn, the set-oop instruction specifies or contains an oop cell devoted
181 //   exclusively to the IC call, which can be patched along with the call.
182 //
183 //   The locations of any other set-oops are found by searching the relocation
184 //   information starting at the first set-oop, and continuing until all
185 //   relocations up through l have been inspected.  The value l is another
186 //   relative offset.  (Both n and l are relative to the call's first byte.)
187 //
188 //   The limit l of the search is exclusive.  However, if it points within
189 //   the call (e.g., offset zero), it is adjusted to point after the call and
190 //   any associated machine-specific delay slot.
191 //
192 //   Since the offsets could be as wide as 32-bits, these conventions
193 //   put no restrictions whatever upon code reorganization.
194 //
195 //   The compiler is responsible for ensuring that transition from a clean
196 //   state to a monomorphic compiled state is MP-safe.  This implies that
197 //   the system must respond well to intermediate states where a random
198 //   subset of the set-oops has been correctly from the clean state
199 //   upon entry to the VEP of the compiled method.  In the case of a
200 //   machine (Intel) with a single set-oop instruction, the 32-bit
201 //   immediate field must not straddle a unit of memory coherence.
202 //   //%note reloc_3
203 //
204 // relocInfo::static_stub_type -- an extra stub for each static_call_type
205 //   Value:  none
206 //   Instruction types: a virtual call:  { set_oop; jump; }
207 //   Data:  [[N]n]  the offset of the associated static_call reloc
208 //   This stub becomes the target of a static call which must be upgraded
209 //   to a virtual call (because the callee is interpreted).
210 //   See [About Offsets] below.
211 //   //%note reloc_2
212 //
213 // For example:
214 //
215 //   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
216 //   ------------                               ----    -----------
217 // sethi      %hi(myObject),  R               oop_type [n(myObject)]
218 // ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
219 // add R2, 1, R2
220 // st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
221 //%note reloc_1
222 //
223 // This uses 4 instruction words, 8 relocation halfwords,
224 // and an entry (which is sharable) in the CodeBlob's oop pool,
225 // for a total of 36 bytes.
226 //
227 // Note that the compiler is responsible for ensuring the "fldOffset" when
228 // added to "%lo(myObject)" does not overflow the immediate fields of the
229 // memory instructions.
230 //
231 //
232 // [About Offsets] Relative offsets are supplied to this module as
233 // positive byte offsets, but they may be internally stored scaled
234 // and/or negated, depending on what is most compact for the target
235 // system.  Since the object pointed to by the offset typically
236 // precedes the relocation address, it is profitable to store
237 // these negative offsets as positive numbers, but this decision
238 // is internal to the relocation information abstractions.
239 //
240 
241 class Relocation;
242 class CodeBuffer;
243 class CodeSection;
244 class RelocIterator;
245 
246 class relocInfo VALUE_OBJ_CLASS_SPEC {
247   friend class RelocIterator;
248  public:
249   enum relocType {
250     none                    =  0, // Used when no relocation should be generated
251     oop_type                =  1, // embedded oop
252     virtual_call_type       =  2, // a standard inline cache call for a virtual send
253     opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
254     static_call_type        =  4, // a static send
255     static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
256     runtime_call_type       =  6, // call to fixed external routine
257     external_word_type      =  7, // reference to fixed external address
258     internal_word_type      =  8, // reference within the current code blob
259     section_word_type       =  9, // internal, but a cross-section reference
260     poll_type               = 10, // polling instruction for safepoints
261     poll_return_type        = 11, // polling instruction for safepoints at return
262     metadata_type           = 12, // metadata that used to be oops
263     trampoline_stub_type    = 13, // stub-entry for trampoline
264     yet_unused_type_1       = 14, // Still unused
265     data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
266     type_mask               = 15  // A mask which selects only the above values
267   };
268 
269  protected:
270   unsigned short _value;
271 
272   enum RawBitsToken { RAW_BITS };
relocInfo(relocType type,RawBitsToken ignore,int bits)273   relocInfo(relocType type, RawBitsToken ignore, int bits)
274     : _value((type << nontype_width) + bits) { }
275 
relocInfo(relocType type,RawBitsToken ignore,int off,int f)276   relocInfo(relocType type, RawBitsToken ignore, int off, int f)
277     : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
278 
279  public:
280   // constructor
relocInfo(relocType type,int offset,int format=0)281   relocInfo(relocType type, int offset, int format = 0)
282 #ifndef ASSERT
283   {
284     (*this) = relocInfo(type, RAW_BITS, offset, format);
285   }
286 #else
287   // Put a bunch of assertions out-of-line.
288   ;
289 #endif
290 
291   #define APPLY_TO_RELOCATIONS(visitor) \
292     visitor(oop) \
293     visitor(metadata) \
294     visitor(virtual_call) \
295     visitor(opt_virtual_call) \
296     visitor(static_call) \
297     visitor(static_stub) \
298     visitor(runtime_call) \
299     visitor(external_word) \
300     visitor(internal_word) \
301     visitor(poll) \
302     visitor(poll_return) \
303     visitor(section_word) \
304     visitor(trampoline_stub) \
305 
306 
307  public:
308   enum {
309     value_width             = sizeof(unsigned short) * BitsPerByte,
310     type_width              = 4,   // == log2(type_mask+1)
311     nontype_width           = value_width - type_width,
312     datalen_width           = nontype_width-1,
313     datalen_tag             = 1 << datalen_width,  // or-ed into _value
314     datalen_limit           = 1 << datalen_width,
315     datalen_mask            = (1 << datalen_width)-1
316   };
317 
318   // accessors
319  public:
type() const320   relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
format() const321   int  format()           const { return format_mask==0? 0: format_mask &
322                                          ((unsigned)_value >> offset_width); }
addr_offset() const323   int  addr_offset()      const { assert(!is_prefix(), "must have offset");
324                                   return (_value & offset_mask)*offset_unit; }
325 
326  protected:
data() const327   const short* data()     const { assert(is_datalen(), "must have data");
328                                   return (const short*)(this + 1); }
datalen() const329   int          datalen()  const { assert(is_datalen(), "must have data");
330                                   return (_value & datalen_mask); }
immediate() const331   int         immediate() const { assert(is_immediate(), "must have immed");
332                                   return (_value & datalen_mask); }
333  public:
addr_unit()334   static int addr_unit()        { return offset_unit; }
offset_limit()335   static int offset_limit()     { return (1 << offset_width) * offset_unit; }
336 
337   void set_type(relocType type);
338   void set_format(int format);
339 
remove()340   void remove() { set_type(none); }
341 
342  protected:
is_none() const343   bool is_none()                const { return type() == none; }
is_prefix() const344   bool is_prefix()              const { return type() == data_prefix_tag; }
is_datalen() const345   bool is_datalen()             const { assert(is_prefix(), "must be prefix");
346                                         return (_value & datalen_tag) != 0; }
is_immediate() const347   bool is_immediate()           const { assert(is_prefix(), "must be prefix");
348                                         return (_value & datalen_tag) == 0; }
349 
350  public:
351   // Occasionally records of type relocInfo::none will appear in the stream.
352   // We do not bother to filter these out, but clients should ignore them.
353   // These records serve as "filler" in three ways:
354   //  - to skip large spans of unrelocated code (this is rare)
355   //  - to pad out the relocInfo array to the required oop alignment
356   //  - to disable old relocation information which is no longer applicable
357 
358   inline friend relocInfo filler_relocInfo();
359 
360   // Every non-prefix relocation may be preceded by at most one prefix,
361   // which supplies 1 or more halfwords of associated data.  Conventionally,
362   // an int is represented by 0, 1, or 2 halfwords, depending on how
363   // many bits are required to represent the value.  (In addition,
364   // if the sole halfword is a 10-bit unsigned number, it is made
365   // "immediate" in the prefix header word itself.  This optimization
366   // is invisible outside this module.)
367 
368   inline friend relocInfo prefix_relocInfo(int datalen);
369 
370  protected:
371   // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
immediate_relocInfo(int data0)372   static relocInfo immediate_relocInfo(int data0) {
373     assert(fits_into_immediate(data0), "data0 in limits");
374     return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
375   }
fits_into_immediate(int data0)376   static bool fits_into_immediate(int data0) {
377     return (data0 >= 0 && data0 < datalen_limit);
378   }
379 
380  public:
381   // Support routines for compilers.
382 
383   // This routine takes an infant relocInfo (unprefixed) and
384   // edits in its prefix, if any.  It also updates dest.locs_end.
385   void initialize(CodeSection* dest, Relocation* reloc);
386 
387   // This routine updates a prefix and returns the limit pointer.
388   // It tries to compress the prefix from 32 to 16 bits, and if
389   // successful returns a reduced "prefix_limit" pointer.
390   relocInfo* finish_prefix(short* prefix_limit);
391 
392   // bit-packers for the data array:
393 
394   // As it happens, the bytes within the shorts are ordered natively,
395   // but the shorts within the word are ordered big-endian.
396   // This is an arbitrary choice, made this way mainly to ease debugging.
data0_from_int(jint x)397   static int data0_from_int(jint x)         { return x >> value_width; }
data1_from_int(jint x)398   static int data1_from_int(jint x)         { return (short)x; }
jint_from_data(short * data)399   static jint jint_from_data(short* data) {
400     return (data[0] << value_width) + (unsigned short)data[1];
401   }
402 
short_data_at(int n,short * data,int datalen)403   static jint short_data_at(int n, short* data, int datalen) {
404     return datalen > n ? data[n] : 0;
405   }
406 
jint_data_at(int n,short * data,int datalen)407   static jint jint_data_at(int n, short* data, int datalen) {
408     return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
409   }
410 
411   // Update methods for relocation information
412   // (since code is dynamically patched, we also need to dynamically update the relocation info)
413   // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
414   static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
415   static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
416 
417   // Machine dependent stuff
418 #ifdef TARGET_ARCH_x86
419 # include "relocInfo_x86.hpp"
420 #endif
421 #ifdef TARGET_ARCH_aarch64
422 # include "relocInfo_aarch64.hpp"
423 #endif
424 #ifdef TARGET_ARCH_sparc
425 # include "relocInfo_sparc.hpp"
426 #endif
427 #ifdef TARGET_ARCH_zero
428 # include "relocInfo_zero.hpp"
429 #endif
430 #ifdef TARGET_ARCH_arm
431 # include "relocInfo_arm.hpp"
432 #endif
433 #ifdef TARGET_ARCH_ppc
434 # include "relocInfo_ppc.hpp"
435 #endif
436 
437 
438  protected:
439   // Derived constant, based on format_width which is PD:
440   enum {
441     offset_width       = nontype_width - format_width,
442     offset_mask        = (1<<offset_width) - 1,
443     format_mask        = (1<<format_width) - 1
444   };
445  public:
446   enum {
447     // Conservatively large estimate of maximum length (in shorts)
448     // of any relocation record.
449     // Extended format is length prefix, data words, and tag/offset suffix.
450     length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
451     have_format        = format_width > 0
452   };
453 };
454 
455 #define FORWARD_DECLARE_EACH_CLASS(name)              \
456 class name##_Relocation;
APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)457 APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
458 #undef FORWARD_DECLARE_EACH_CLASS
459 
460 
461 
462 inline relocInfo filler_relocInfo() {
463   return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
464 }
465 
prefix_relocInfo(int datalen=0)466 inline relocInfo prefix_relocInfo(int datalen = 0) {
467   assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
468   return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
469 }
470 
471 
472 // Holder for flyweight relocation objects.
473 // Although the flyweight subclasses are of varying sizes,
474 // the holder is "one size fits all".
475 class RelocationHolder VALUE_OBJ_CLASS_SPEC {
476   friend class Relocation;
477   friend class CodeSection;
478 
479  private:
480   // this preallocated memory must accommodate all subclasses of Relocation
481   // (this number is assertion-checked in Relocation::operator new)
482   enum { _relocbuf_size = 5 };
483   void* _relocbuf[ _relocbuf_size ];
484 
485  public:
reloc() const486   Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
487   inline relocInfo::relocType type() const;
488 
489   // Add a constant offset to a relocation.  Helper for class Address.
490   RelocationHolder plus(int offset) const;
491 
492   inline RelocationHolder();                // initializes type to none
493 
494   inline RelocationHolder(Relocation* r);   // make a copy
495 
496   static const RelocationHolder none;
497 };
498 
499 // A RelocIterator iterates through the relocation information of a CodeBlob.
500 // It is a variable BoundRelocation which is able to take on successive
501 // values as it is advanced through a code stream.
502 // Usage:
503 //   RelocIterator iter(nm);
504 //   while (iter.next()) {
505 //     iter.reloc()->some_operation();
506 //   }
507 // or:
508 //   RelocIterator iter(nm);
509 //   while (iter.next()) {
510 //     switch (iter.type()) {
511 //      case relocInfo::oop_type          :
512 //      case relocInfo::ic_type           :
513 //      case relocInfo::prim_type         :
514 //      case relocInfo::uncommon_type     :
515 //      case relocInfo::runtime_call_type :
516 //      case relocInfo::internal_word_type:
517 //      case relocInfo::external_word_type:
518 //      ...
519 //     }
520 //   }
521 
522 class RelocIterator : public StackObj {
523   enum { SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
524   friend class Relocation;
525   friend class relocInfo;       // for change_reloc_info_for_address only
526   typedef relocInfo::relocType relocType;
527 
528  private:
529   address    _limit;   // stop producing relocations after this _addr
530   relocInfo* _current; // the current relocation information
531   relocInfo* _end;     // end marker; we're done iterating when _current == _end
532   nmethod*   _code;    // compiled method containing _addr
533   address    _addr;    // instruction to which the relocation applies
534   short      _databuf; // spare buffer for compressed data
535   short*     _data;    // pointer to the relocation's data
536   short      _datalen; // number of halfwords in _data
537   char       _format;  // position within the instruction
538 
539   // Base addresses needed to compute targets of section_word_type relocs.
540   address    _section_start[SECT_LIMIT];
541   address    _section_end  [SECT_LIMIT];
542 
set_has_current(bool b)543   void set_has_current(bool b) {
544     _datalen = !b ? -1 : 0;
545     debug_only(_data = NULL);
546   }
set_current(relocInfo & ri)547   void set_current(relocInfo& ri) {
548     _current = &ri;
549     set_has_current(true);
550   }
551 
552   RelocationHolder _rh; // where the current relocation is allocated
553 
current() const554   relocInfo* current() const { assert(has_current(), "must have current");
555                                return _current; }
556 
557   void set_limits(address begin, address limit);
558 
559   void advance_over_prefix();    // helper method
560 
561   void initialize_misc();
562 
563   void initialize(nmethod* nm, address begin, address limit);
564 
RelocIterator()565   RelocIterator() { initialize_misc(); }
566 
567  public:
568   // constructor
569   RelocIterator(nmethod* nm,     address begin = NULL, address limit = NULL);
570   RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
571 
572   // get next reloc info, return !eos
next()573   bool next() {
574     _current++;
575     assert(_current <= _end, "must not overrun relocInfo");
576     if (_current == _end) {
577       set_has_current(false);
578       return false;
579     }
580     set_has_current(true);
581 
582     if (_current->is_prefix()) {
583       advance_over_prefix();
584       assert(!current()->is_prefix(), "only one prefix at a time");
585     }
586 
587     _addr += _current->addr_offset();
588 
589     if (_limit != NULL && _addr >= _limit) {
590       set_has_current(false);
591       return false;
592     }
593 
594     if (relocInfo::have_format)  _format = current()->format();
595     return true;
596   }
597 
598   // accessors
limit() const599   address      limit()        const { return _limit; }
600   void     set_limit(address x);
type() const601   relocType    type()         const { return current()->type(); }
format() const602   int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
addr() const603   address      addr()         const { return _addr; }
code() const604   nmethod*     code()         const { return _code; }
data() const605   short*       data()         const { return _data; }
datalen() const606   int          datalen()      const { return _datalen; }
has_current() const607   bool     has_current()      const { return _datalen >= 0; }
608 
set_addr(address addr)609   void       set_addr(address addr) { _addr = addr; }
610   bool   addr_in_const()      const;
611 
section_start(int n) const612   address section_start(int n) const {
613     assert(_section_start[n], "must be initialized");
614     return _section_start[n];
615   }
section_end(int n) const616   address section_end(int n) const {
617     assert(_section_end[n], "must be initialized");
618     return _section_end[n];
619   }
620 
621   // The address points to the affected displacement part of the instruction.
622   // For RISC, this is just the whole instruction.
623   // For Intel, this is an unaligned 32-bit word.
624 
625   // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
626   #define EACH_TYPE(name)                               \
627   inline name##_Relocation* name##_reloc();
628   APPLY_TO_RELOCATIONS(EACH_TYPE)
629   #undef EACH_TYPE
630   // generic relocation accessor; switches on type to call the above
631   Relocation* reloc();
632 
633   // CodeBlob's have relocation indexes for faster random access:
634   static int locs_and_index_size(int code_size, int locs_size);
635   // Store an index into [dest_start+dest_count..dest_end).
636   // At dest_start[0..dest_count] is the actual relocation information.
637   // Everything else up to dest_end is free space for the index.
638   static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
639 
640 #ifndef PRODUCT
641  public:
642   void print();
643   void print_current();
644 #endif
645 };
646 
647 
648 // A Relocation is a flyweight object allocated within a RelocationHolder.
649 // It represents the relocation data of relocation record.
650 // So, the RelocIterator unpacks relocInfos into Relocations.
651 
652 class Relocation VALUE_OBJ_CLASS_SPEC {
653   friend class RelocationHolder;
654   friend class RelocIterator;
655 
656  private:
657   static void guarantee_size();
658 
659   // When a relocation has been created by a RelocIterator,
660   // this field is non-null.  It allows the relocation to know
661   // its context, such as the address to which it applies.
662   RelocIterator* _binding;
663 
664  protected:
binding() const665   RelocIterator* binding() const {
666     assert(_binding != NULL, "must be bound");
667     return _binding;
668   }
set_binding(RelocIterator * b)669   void set_binding(RelocIterator* b) {
670     assert(_binding == NULL, "must be unbound");
671     _binding = b;
672     assert(_binding != NULL, "must now be bound");
673   }
674 
Relocation()675   Relocation() {
676     _binding = NULL;
677   }
678 
newHolder()679   static RelocationHolder newHolder() {
680     return RelocationHolder();
681   }
682 
683  public:
operator new(size_t size,const RelocationHolder & holder)684   void* operator new(size_t size, const RelocationHolder& holder) throw() {
685     if (size > sizeof(holder._relocbuf)) guarantee_size();
686     assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
687     return holder.reloc();
688   }
689 
690   // make a generic relocation for a given type (if possible)
691   static RelocationHolder spec_simple(relocInfo::relocType rtype);
692 
693   // here is the type-specific hook which writes relocation data:
pack_data_to(CodeSection * dest)694   virtual void pack_data_to(CodeSection* dest) { }
695 
696   // here is the type-specific hook which reads (unpacks) relocation data:
unpack_data()697   virtual void unpack_data() {
698     assert(datalen()==0 || type()==relocInfo::none, "no data here");
699   }
700 
is_reloc_index(intptr_t index)701   static bool is_reloc_index(intptr_t index) {
702     return 0 < index && index < os::vm_page_size();
703   }
704 
705  protected:
706   // Helper functions for pack_data_to() and unpack_data().
707 
708   // Most of the compression logic is confined here.
709   // (The "immediate data" mechanism of relocInfo works independently
710   // of this stuff, and acts to further compress most 1-word data prefixes.)
711 
712   // A variable-width int is encoded as a short if it will fit in 16 bits.
713   // The decoder looks at datalen to decide whether to unpack short or jint.
714   // Most relocation records are quite simple, containing at most two ints.
715 
is_short(jint x)716   static bool is_short(jint x) { return x == (short)x; }
add_short(short * p,int x)717   static short* add_short(short* p, int x)  { *p++ = x; return p; }
add_jint(short * p,jint x)718   static short* add_jint (short* p, jint x) {
719     *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
720     return p;
721   }
add_var_int(short * p,jint x)722   static short* add_var_int(short* p, jint x) {   // add a variable-width int
723     if (is_short(x))  p = add_short(p, x);
724     else              p = add_jint (p, x);
725     return p;
726   }
727 
pack_1_int_to(short * p,jint x0)728   static short* pack_1_int_to(short* p, jint x0) {
729     // Format is one of:  [] [x] [Xx]
730     if (x0 != 0)  p = add_var_int(p, x0);
731     return p;
732   }
unpack_1_int()733   int unpack_1_int() {
734     assert(datalen() <= 2, "too much data");
735     return relocInfo::jint_data_at(0, data(), datalen());
736   }
737 
738   // With two ints, the short form is used only if both ints are short.
pack_2_ints_to(short * p,jint x0,jint x1)739   short* pack_2_ints_to(short* p, jint x0, jint x1) {
740     // Format is one of:  [] [x y?] [Xx Y?y]
741     if (x0 == 0 && x1 == 0) {
742       // no halfwords needed to store zeroes
743     } else if (is_short(x0) && is_short(x1)) {
744       // 1-2 halfwords needed to store shorts
745       p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
746     } else {
747       // 3-4 halfwords needed to store jints
748       p = add_jint(p, x0);             p = add_var_int(p, x1);
749     }
750     return p;
751   }
unpack_2_ints(jint & x0,jint & x1)752   void unpack_2_ints(jint& x0, jint& x1) {
753     int    dlen = datalen();
754     short* dp  = data();
755     if (dlen <= 2) {
756       x0 = relocInfo::short_data_at(0, dp, dlen);
757       x1 = relocInfo::short_data_at(1, dp, dlen);
758     } else {
759       assert(dlen <= 4, "too much data");
760       x0 = relocInfo::jint_data_at(0, dp, dlen);
761       x1 = relocInfo::jint_data_at(2, dp, dlen);
762     }
763   }
764 
765  protected:
766   // platform-dependent utilities for decoding and patching instructions
767   void       pd_set_data_value       (address x, intptr_t off, bool verify_only = false); // a set or mem-ref
pd_verify_data_value(address x,intptr_t off)768   void       pd_verify_data_value    (address x, intptr_t off) { pd_set_data_value(x, off, true); }
769   address    pd_call_destination     (address orig_addr = NULL);
770   void       pd_set_call_destination (address x);
771 
772   // this extracts the address of an address in the code stream instead of the reloc data
773   address* pd_address_in_code       ();
774 
775   // this extracts an address from the code stream instead of the reloc data
776   address  pd_get_address_from_code ();
777 
778   // these convert from byte offsets, to scaled offsets, to addresses
scaled_offset(address x,address base)779   static jint scaled_offset(address x, address base) {
780     int byte_offset = x - base;
781     int offset = -byte_offset / relocInfo::addr_unit();
782     assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
783     return offset;
784   }
scaled_offset_null_special(address x,address base)785   static jint scaled_offset_null_special(address x, address base) {
786     // Some relocations treat offset=0 as meaning NULL.
787     // Handle this extra convention carefully.
788     if (x == NULL)  return 0;
789     assert(x != base, "offset must not be zero");
790     return scaled_offset(x, base);
791   }
address_from_scaled_offset(jint offset,address base)792   static address address_from_scaled_offset(jint offset, address base) {
793     int byte_offset = -( offset * relocInfo::addr_unit() );
794     return base + byte_offset;
795   }
796 
797   // these convert between indexes and addresses in the runtime system
798   static int32_t runtime_address_to_index(address runtime_address);
799   static address index_to_runtime_address(int32_t index);
800 
801   // helpers for mapping between old and new addresses after a move or resize
802   address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
803   address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
804   void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
805 
806  public:
807   // accessors which only make sense for a bound Relocation
addr() const808   address  addr()         const { return binding()->addr(); }
code() const809   nmethod* code()         const { return binding()->code(); }
addr_in_const() const810   bool     addr_in_const() const { return binding()->addr_in_const(); }
811  protected:
data() const812   short*   data()         const { return binding()->data(); }
datalen() const813   int      datalen()      const { return binding()->datalen(); }
format() const814   int      format()       const { return binding()->format(); }
815 
816  public:
type()817   virtual relocInfo::relocType type()            { return relocInfo::none; }
818 
819   // is it a call instruction?
is_call()820   virtual bool is_call()                         { return false; }
821 
822   // is it a data movement instruction?
is_data()823   virtual bool is_data()                         { return false; }
824 
825   // some relocations can compute their own values
826   virtual address  value();
827 
828   // all relocations are able to reassert their values
829   virtual void set_value(address x);
830 
clear_inline_cache()831   virtual void clear_inline_cache()              { }
832 
833   // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
834   // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
835   // probably a reasonable assumption, since empty caches simplifies code reloacation.
fix_relocation_after_move(const CodeBuffer * src,CodeBuffer * dest)836   virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
837 
838   void print();
839 };
840 
841 
842 // certain inlines must be deferred until class Relocation is defined:
843 
RelocationHolder()844 inline RelocationHolder::RelocationHolder() {
845   // initialize the vtbl, just to keep things type-safe
846   new(*this) Relocation();
847 }
848 
849 
RelocationHolder(Relocation * r)850 inline RelocationHolder::RelocationHolder(Relocation* r) {
851   // wordwise copy from r (ok if it copies garbage after r)
852   for (int i = 0; i < _relocbuf_size; i++) {
853     _relocbuf[i] = ((void**)r)[i];
854   }
855 }
856 
857 
type() const858 relocInfo::relocType RelocationHolder::type() const {
859   return reloc()->type();
860 }
861 
862 // A DataRelocation always points at a memory or load-constant instruction..
863 // It is absolute on most machines, and the constant is split on RISCs.
864 // The specific subtypes are oop, external_word, and internal_word.
865 // By convention, the "value" does not include a separately reckoned "offset".
866 class DataRelocation : public Relocation {
867  public:
is_data()868   bool          is_data()                      { return true; }
869 
870   // both target and offset must be computed somehow from relocation data
offset()871   virtual int    offset()                      { return 0; }
872   address         value()                      = 0;
set_value(address x)873   void        set_value(address x)             { set_value(x, offset()); }
set_value(address x,intptr_t o)874   void        set_value(address x, intptr_t o) {
875     if (addr_in_const())
876       *(address*)addr() = x;
877     else
878       pd_set_data_value(x, o);
879   }
verify_value(address x)880   void        verify_value(address x) {
881     if (addr_in_const())
882       assert(*(address*)addr() == x, "must agree");
883     else
884       pd_verify_data_value(x, offset());
885   }
886 
887   // The "o" (displacement) argument is relevant only to split relocations
888   // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
889   // can encode more than 32 bits between them.  This allows compilers to
890   // share set-hi instructions between addresses that differ by a small
891   // offset (e.g., different static variables in the same class).
892   // On such machines, the "x" argument to set_value on all set-lo
893   // instructions must be the same as the "x" argument for the
894   // corresponding set-hi instructions.  The "o" arguments for the
895   // set-hi instructions are ignored, and must not affect the high-half
896   // immediate constant.  The "o" arguments for the set-lo instructions are
897   // added into the low-half immediate constant, and must not overflow it.
898 };
899 
900 // A CallRelocation always points at a call instruction.
901 // It is PC-relative on most machines.
902 class CallRelocation : public Relocation {
903  public:
is_call()904   bool is_call() { return true; }
905 
destination()906   address  destination()                    { return pd_call_destination(); }
907   void     set_destination(address x); // pd_set_call_destination
908 
909   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
value()910   address  value()                          { return destination();  }
set_value(address x)911   void     set_value(address x)             { set_destination(x); }
912 };
913 
914 class oop_Relocation : public DataRelocation {
type()915   relocInfo::relocType type() { return relocInfo::oop_type; }
916 
917  public:
918   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
919   // an oop in the CodeBlob's oop pool
spec(int oop_index,int offset=0)920   static RelocationHolder spec(int oop_index, int offset = 0) {
921     assert(oop_index > 0, "must be a pool-resident oop");
922     RelocationHolder rh = newHolder();
923     new(rh) oop_Relocation(oop_index, offset);
924     return rh;
925   }
926   // an oop in the instruction stream
spec_for_immediate()927   static RelocationHolder spec_for_immediate() {
928     const int oop_index = 0;
929     const int offset    = 0;    // if you want an offset, use the oop pool
930     RelocationHolder rh = newHolder();
931     new(rh) oop_Relocation(oop_index, offset);
932     return rh;
933   }
934 
935  private:
936   jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
937   jint _offset;                     // byte offset to apply to the oop itself
938 
oop_Relocation(int oop_index,int offset)939   oop_Relocation(int oop_index, int offset) {
940     _oop_index = oop_index; _offset = offset;
941   }
942 
943   friend class RelocIterator;
oop_Relocation()944   oop_Relocation() { }
945 
946  public:
oop_index()947   int oop_index() { return _oop_index; }
offset()948   int offset()    { return _offset; }
949 
950   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
951   void pack_data_to(CodeSection* dest);
952   void unpack_data();
953 
954   void fix_oop_relocation();        // reasserts oop value
955 
956   void verify_oop_relocation();
957 
value()958   address value()  { return (address) *oop_addr(); }
959 
oop_is_immediate()960   bool oop_is_immediate()  { return oop_index() == 0; }
961 
962   oop* oop_addr();                  // addr or &pool[jint_data]
963   oop  oop_value();                 // *oop_addr
964   // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
965 };
966 
967 
968 // copy of oop_Relocation for now but may delete stuff in both/either
969 class metadata_Relocation : public DataRelocation {
type()970   relocInfo::relocType type() { return relocInfo::metadata_type; }
971 
972  public:
973   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
974   // an metadata in the CodeBlob's metadata pool
spec(int metadata_index,int offset=0)975   static RelocationHolder spec(int metadata_index, int offset = 0) {
976     assert(metadata_index > 0, "must be a pool-resident metadata");
977     RelocationHolder rh = newHolder();
978     new(rh) metadata_Relocation(metadata_index, offset);
979     return rh;
980   }
981   // an metadata in the instruction stream
spec_for_immediate()982   static RelocationHolder spec_for_immediate() {
983     const int metadata_index = 0;
984     const int offset    = 0;    // if you want an offset, use the metadata pool
985     RelocationHolder rh = newHolder();
986     new(rh) metadata_Relocation(metadata_index, offset);
987     return rh;
988   }
989 
990  private:
991   jint _metadata_index;            // if > 0, index into nmethod::metadata_at
992   jint _offset;                     // byte offset to apply to the metadata itself
993 
metadata_Relocation(int metadata_index,int offset)994   metadata_Relocation(int metadata_index, int offset) {
995     _metadata_index = metadata_index; _offset = offset;
996   }
997 
998   friend class RelocIterator;
metadata_Relocation()999   metadata_Relocation() { }
1000 
1001   // Fixes a Metadata pointer in the code. Most platforms embeds the
1002   // Metadata pointer in the code at compile time so this is empty
1003   // for them.
1004   void pd_fix_value(address x);
1005 
1006  public:
metadata_index()1007   int metadata_index() { return _metadata_index; }
offset()1008   int offset()    { return _offset; }
1009 
1010   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
1011   void pack_data_to(CodeSection* dest);
1012   void unpack_data();
1013 
1014   void fix_metadata_relocation();        // reasserts metadata value
1015 
1016   void verify_metadata_relocation();
1017 
value()1018   address value()  { return (address) *metadata_addr(); }
1019 
metadata_is_immediate()1020   bool metadata_is_immediate()  { return metadata_index() == 0; }
1021 
1022   Metadata**   metadata_addr();                  // addr or &pool[jint_data]
1023   Metadata*    metadata_value();                 // *metadata_addr
1024   // Note:  metadata_value transparently converts Universe::non_metadata_word to NULL.
1025 };
1026 
1027 
1028 class virtual_call_Relocation : public CallRelocation {
type()1029   relocInfo::relocType type() { return relocInfo::virtual_call_type; }
1030 
1031  public:
1032   // "cached_value" points to the first associated set-oop.
1033   // The oop_limit helps find the last associated set-oop.
1034   // (See comments at the top of this file.)
spec(address cached_value)1035   static RelocationHolder spec(address cached_value) {
1036     RelocationHolder rh = newHolder();
1037     new(rh) virtual_call_Relocation(cached_value);
1038     return rh;
1039   }
1040 
virtual_call_Relocation(address cached_value)1041   virtual_call_Relocation(address cached_value) {
1042     _cached_value = cached_value;
1043     assert(cached_value != NULL, "first oop address must be specified");
1044   }
1045 
1046  private:
1047   address _cached_value;               // location of set-value instruction
1048 
1049   friend class RelocIterator;
virtual_call_Relocation()1050   virtual_call_Relocation() { }
1051 
1052 
1053  public:
1054   address cached_value();
1055 
1056   // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
1057   // oop_limit is set to 0 if the limit falls somewhere within the call.
1058   // When unpacking, a zero oop_limit is taken to refer to the end of the call.
1059   // (This has the effect of bringing in the call's delay slot on SPARC.)
1060   void pack_data_to(CodeSection* dest);
1061   void unpack_data();
1062 
1063   void clear_inline_cache();
1064 };
1065 
1066 
1067 class opt_virtual_call_Relocation : public CallRelocation {
type()1068   relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
1069 
1070  public:
spec()1071   static RelocationHolder spec() {
1072     RelocationHolder rh = newHolder();
1073     new(rh) opt_virtual_call_Relocation();
1074     return rh;
1075   }
1076 
1077  private:
1078   friend class RelocIterator;
opt_virtual_call_Relocation()1079   opt_virtual_call_Relocation() { }
1080 
1081  public:
1082   void clear_inline_cache();
1083 
1084   // find the matching static_stub
1085   address static_stub();
1086 };
1087 
1088 
1089 class static_call_Relocation : public CallRelocation {
type()1090   relocInfo::relocType type() { return relocInfo::static_call_type; }
1091 
1092  public:
spec()1093   static RelocationHolder spec() {
1094     RelocationHolder rh = newHolder();
1095     new(rh) static_call_Relocation();
1096     return rh;
1097   }
1098 
1099  private:
1100   friend class RelocIterator;
static_call_Relocation()1101   static_call_Relocation() { }
1102 
1103  public:
1104   void clear_inline_cache();
1105 
1106   // find the matching static_stub
1107   address static_stub();
1108 };
1109 
1110 class static_stub_Relocation : public Relocation {
type()1111   relocInfo::relocType type() { return relocInfo::static_stub_type; }
1112 
1113  public:
spec(address static_call)1114   static RelocationHolder spec(address static_call) {
1115     RelocationHolder rh = newHolder();
1116     new(rh) static_stub_Relocation(static_call);
1117     return rh;
1118   }
1119 
1120  private:
1121   address _static_call;             // location of corresponding static_call
1122 
static_stub_Relocation(address static_call)1123   static_stub_Relocation(address static_call) {
1124     _static_call = static_call;
1125   }
1126 
1127   friend class RelocIterator;
static_stub_Relocation()1128   static_stub_Relocation() { }
1129 
1130  public:
1131   void clear_inline_cache();
1132 
static_call()1133   address static_call() { return _static_call; }
1134 
1135   // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
1136   void pack_data_to(CodeSection* dest);
1137   void unpack_data();
1138 };
1139 
1140 class runtime_call_Relocation : public CallRelocation {
type()1141   relocInfo::relocType type() { return relocInfo::runtime_call_type; }
1142 
1143  public:
spec()1144   static RelocationHolder spec() {
1145     RelocationHolder rh = newHolder();
1146     new(rh) runtime_call_Relocation();
1147     return rh;
1148   }
1149 
1150  private:
1151   friend class RelocIterator;
runtime_call_Relocation()1152   runtime_call_Relocation() { }
1153 
1154  public:
1155 };
1156 
1157 // Trampoline Relocations.
1158 // A trampoline allows to encode a small branch in the code, even if there
1159 // is the chance that this branch can not reach all possible code locations.
1160 // If the relocation finds that a branch is too far for the instruction
1161 // in the code, it can patch it to jump to the trampoline where is
1162 // sufficient space for a far branch. Needed on PPC.
1163 class trampoline_stub_Relocation : public Relocation {
type()1164   relocInfo::relocType type() { return relocInfo::trampoline_stub_type; }
1165 
1166  public:
spec(address static_call)1167   static RelocationHolder spec(address static_call) {
1168     RelocationHolder rh = newHolder();
1169     return (new (rh) trampoline_stub_Relocation(static_call));
1170   }
1171 
1172  private:
1173   address _owner;    // Address of the NativeCall that owns the trampoline.
1174 
trampoline_stub_Relocation(address owner)1175   trampoline_stub_Relocation(address owner) {
1176     _owner = owner;
1177   }
1178 
1179   friend class RelocIterator;
trampoline_stub_Relocation()1180   trampoline_stub_Relocation() { }
1181 
1182  public:
1183 
1184   // Return the address of the NativeCall that owns the trampoline.
owner()1185   address owner() { return _owner; }
1186 
1187   void pack_data_to(CodeSection * dest);
1188   void unpack_data();
1189 
1190   // Find the trampoline stub for a call.
1191   static address get_trampoline_for(address call, nmethod* code);
1192 };
1193 
1194 class external_word_Relocation : public DataRelocation {
type()1195   relocInfo::relocType type() { return relocInfo::external_word_type; }
1196 
1197  public:
spec(address target)1198   static RelocationHolder spec(address target) {
1199     assert(target != NULL, "must not be null");
1200     RelocationHolder rh = newHolder();
1201     new(rh) external_word_Relocation(target);
1202     return rh;
1203   }
1204 
1205   // Use this one where all 32/64 bits of the target live in the code stream.
1206   // The target must be an intptr_t, and must be absolute (not relative).
spec_for_immediate()1207   static RelocationHolder spec_for_immediate() {
1208     RelocationHolder rh = newHolder();
1209     new(rh) external_word_Relocation(NULL);
1210     return rh;
1211   }
1212 
1213   // Some address looking values aren't safe to treat as relocations
1214   // and should just be treated as constants.
can_be_relocated(address target)1215   static bool can_be_relocated(address target) {
1216     return target != NULL && !is_reloc_index((intptr_t)target);
1217   }
1218 
1219  private:
1220   address _target;                  // address in runtime
1221 
external_word_Relocation(address target)1222   external_word_Relocation(address target) {
1223     _target = target;
1224   }
1225 
1226   friend class RelocIterator;
external_word_Relocation()1227   external_word_Relocation() { }
1228 
1229  public:
1230   // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
1231   // The function runtime_address_to_index is used to turn full addresses
1232   // to short indexes, if they are pre-registered by the stub mechanism.
1233   // If the "a" value is 0 (i.e., _target is NULL), the address is stored
1234   // in the code stream.  See external_word_Relocation::target().
1235   void pack_data_to(CodeSection* dest);
1236   void unpack_data();
1237 
1238   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1239   address  target();        // if _target==NULL, fetch addr from code stream
value()1240   address  value()          { return target(); }
1241 };
1242 
1243 class internal_word_Relocation : public DataRelocation {
type()1244   relocInfo::relocType type() { return relocInfo::internal_word_type; }
1245 
1246  public:
spec(address target)1247   static RelocationHolder spec(address target) {
1248     assert(target != NULL, "must not be null");
1249     RelocationHolder rh = newHolder();
1250     new(rh) internal_word_Relocation(target);
1251     return rh;
1252   }
1253 
1254   // use this one where all the bits of the target can fit in the code stream:
spec_for_immediate()1255   static RelocationHolder spec_for_immediate() {
1256     RelocationHolder rh = newHolder();
1257     new(rh) internal_word_Relocation(NULL);
1258     return rh;
1259   }
1260 
internal_word_Relocation(address target)1261   internal_word_Relocation(address target) {
1262     _target  = target;
1263     _section = -1;  // self-relative
1264   }
1265 
1266  protected:
1267   address _target;                  // address in CodeBlob
1268   int     _section;                 // section providing base address, if any
1269 
1270   friend class RelocIterator;
internal_word_Relocation()1271   internal_word_Relocation() { }
1272 
1273   // bit-width of LSB field in packed offset, if section >= 0
1274   enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
1275 
1276  public:
1277   // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
1278   // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
1279   // in the code stream.  See internal_word_Relocation::target().
1280   // If _section is not -1, it is appended to the low bits of the offset.
1281   void pack_data_to(CodeSection* dest);
1282   void unpack_data();
1283 
1284   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1285   address  target();        // if _target==NULL, fetch addr from code stream
section()1286   int      section()        { return _section;   }
value()1287   address  value()          { return target();   }
1288 };
1289 
1290 class section_word_Relocation : public internal_word_Relocation {
type()1291   relocInfo::relocType type() { return relocInfo::section_word_type; }
1292 
1293  public:
spec(address target,int section)1294   static RelocationHolder spec(address target, int section) {
1295     RelocationHolder rh = newHolder();
1296     new(rh) section_word_Relocation(target, section);
1297     return rh;
1298   }
1299 
section_word_Relocation(address target,int section)1300   section_word_Relocation(address target, int section) {
1301     assert(target != NULL, "must not be null");
1302     assert(section >= 0, "must be a valid section");
1303     _target  = target;
1304     _section = section;
1305   }
1306 
1307   //void pack_data_to -- inherited
1308   void unpack_data();
1309 
1310  private:
1311   friend class RelocIterator;
section_word_Relocation()1312   section_word_Relocation() { }
1313 };
1314 
1315 
1316 class poll_Relocation : public Relocation {
is_data()1317   bool          is_data()                      { return true; }
type()1318   relocInfo::relocType type() { return relocInfo::poll_type; }
1319   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1320 };
1321 
1322 class poll_return_Relocation : public Relocation {
is_data()1323   bool          is_data()                      { return true; }
type()1324   relocInfo::relocType type() { return relocInfo::poll_return_type; }
1325   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1326 };
1327 
1328 // We know all the xxx_Relocation classes, so now we can define these:
1329 #define EACH_CASE(name)                                         \
1330 inline name##_Relocation* RelocIterator::name##_reloc() {       \
1331   assert(type() == relocInfo::name##_type, "type must agree");  \
1332   /* The purpose of the placed "new" is to re-use the same */   \
1333   /* stack storage for each new iteration. */                   \
1334   name##_Relocation* r = new(_rh) name##_Relocation();          \
1335   r->set_binding(this);                                         \
1336   r->name##_Relocation::unpack_data();                          \
1337   return r;                                                     \
1338 }
1339 APPLY_TO_RELOCATIONS(EACH_CASE);
1340 #undef EACH_CASE
1341 
RelocIterator(nmethod * nm,address begin,address limit)1342 inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
1343   initialize(nm, begin, limit);
1344 }
1345 
1346 #endif // SHARE_VM_CODE_RELOCINFO_HPP
1347