1 /*
2  * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
27 
28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
29 #include "runtime/timer.hpp"
30 
31 // This class keeps statistical information and computes the
32 // size of the heap for the concurrent mark sweep collector.
33 //
34 // Cost for garbage collector include cost for
35 //   minor collection
36 //   concurrent collection
37 //      stop-the-world component
38 //      concurrent component
39 //   major compacting collection
40 //      uses decaying cost
41 
42 // Forward decls
43 class elapsedTimer;
44 
45 class CMSAdaptiveSizePolicy : public AdaptiveSizePolicy {
46  friend class CMSGCAdaptivePolicyCounters;
47  friend class CMSCollector;
48  private:
49 
50   // Total number of processors available
51   int _processor_count;
52   // Number of processors used by the concurrent phases of GC
53   // This number is assumed to be the same for all concurrent
54   // phases.
55   int _concurrent_processor_count;
56 
57   // Time that the mutators run exclusive of a particular
58   // phase.  For example, the time the mutators run excluding
59   // the time during which the cms collector runs concurrently
60   // with the mutators.
61   //   Between end of most recent cms reset and start of initial mark
62                 // This may be redundant
63   double _latest_cms_reset_end_to_initial_mark_start_secs;
64   //   Between end of the most recent initial mark and start of remark
65   double _latest_cms_initial_mark_end_to_remark_start_secs;
66   //   Between end of most recent collection and start of
67   //   a concurrent collection
68   double _latest_cms_collection_end_to_collection_start_secs;
69   //   Times of the concurrent phases of the most recent
70   //   concurrent collection
71   double _latest_cms_concurrent_marking_time_secs;
72   double _latest_cms_concurrent_precleaning_time_secs;
73   double _latest_cms_concurrent_sweeping_time_secs;
74   //   Between end of most recent STW MSC and start of next STW MSC
75   double _latest_cms_msc_end_to_msc_start_time_secs;
76   //   Between end of most recent MS and start of next MS
77   //   This does not include any time spent during a concurrent
78   // collection.
79   double _latest_cms_ms_end_to_ms_start;
80   //   Between start and end of the initial mark of the most recent
81   // concurrent collection.
82   double _latest_cms_initial_mark_start_to_end_time_secs;
83   //   Between start and end of the remark phase of the most recent
84   // concurrent collection
85   double _latest_cms_remark_start_to_end_time_secs;
86   //   Between start and end of the most recent MS STW marking phase
87   double _latest_cms_ms_marking_start_to_end_time_secs;
88 
89   // Pause time timers
90   static elapsedTimer _STW_timer;
91   // Concurrent collection timer.  Used for total of all concurrent phases
92   // during 1 collection cycle.
93   static elapsedTimer _concurrent_timer;
94 
95   // When the size of the generation is changed, the size
96   // of the change will rounded up or down (depending on the
97   // type of change) by this value.
98   size_t _generation_alignment;
99 
100   // If this variable is true, the size of the young generation
101   // may be changed in order to reduce the pause(s) of the
102   // collection of the tenured generation in order to meet the
103   // pause time goal.  It is common to change the size of the
104   // tenured generation in order to meet the pause time goal
105   // for the tenured generation.  With the CMS collector for
106   // the tenured generation, the size of the young generation
107   // can have an significant affect on the pause times for collecting the
108   // tenured generation.
109   // This is a duplicate of a variable in PSAdaptiveSizePolicy.  It
110   // is duplicated because it is not clear that it is general enough
111   // to go into AdaptiveSizePolicy.
112   int _change_young_gen_for_maj_pauses;
113 
114   // Variable that is set to true after a collection.
115   bool _first_after_collection;
116 
117   // Fraction of collections that are of each type
118   double concurrent_fraction() const;
119   double STW_msc_fraction() const;
120   double STW_ms_fraction() const;
121 
122   // This call cannot be put into the epilogue as long as some
123   // of the counters can be set during concurrent phases.
124   virtual void clear_generation_free_space_flags();
125 
set_first_after_collection()126   void set_first_after_collection() { _first_after_collection = true; }
127 
128  protected:
129   // Average of the sum of the concurrent times for
130   // one collection in seconds.
131   AdaptiveWeightedAverage* _avg_concurrent_time;
132   // Average time between concurrent collections in seconds.
133   AdaptiveWeightedAverage* _avg_concurrent_interval;
134   // Average cost of the concurrent part of a collection
135   // in seconds.
136   AdaptiveWeightedAverage* _avg_concurrent_gc_cost;
137 
138   // Average of the initial pause of a concurrent collection in seconds.
139   AdaptivePaddedAverage* _avg_initial_pause;
140   // Average of the remark pause of a concurrent collection in seconds.
141   AdaptivePaddedAverage* _avg_remark_pause;
142 
143   // Average of the stop-the-world (STW) (initial mark + remark)
144   // times in seconds for concurrent collections.
145   AdaptiveWeightedAverage* _avg_cms_STW_time;
146   // Average of the STW collection cost for concurrent collections.
147   AdaptiveWeightedAverage* _avg_cms_STW_gc_cost;
148 
149   // Average of the bytes free at the start of the sweep.
150   AdaptiveWeightedAverage* _avg_cms_free_at_sweep;
151   // Average of the bytes free at the end of the collection.
152   AdaptiveWeightedAverage* _avg_cms_free;
153   // Average of the bytes promoted between cms collections.
154   AdaptiveWeightedAverage* _avg_cms_promo;
155 
156   // stop-the-world (STW) mark-sweep-compact
157   // Average of the pause time in seconds for STW mark-sweep-compact
158   // collections.
159   AdaptiveWeightedAverage* _avg_msc_pause;
160   // Average of the interval in seconds between STW mark-sweep-compact
161   // collections.
162   AdaptiveWeightedAverage* _avg_msc_interval;
163   // Average of the collection costs for STW mark-sweep-compact
164   // collections.
165   AdaptiveWeightedAverage* _avg_msc_gc_cost;
166 
167   // Averages for mark-sweep collections.
168   // The collection may have started as a background collection
169   // that completes in a stop-the-world (STW) collection.
170   // Average of the pause time in seconds for mark-sweep
171   // collections.
172   AdaptiveWeightedAverage* _avg_ms_pause;
173   // Average of the interval in seconds between mark-sweep
174   // collections.
175   AdaptiveWeightedAverage* _avg_ms_interval;
176   // Average of the collection costs for mark-sweep
177   // collections.
178   AdaptiveWeightedAverage* _avg_ms_gc_cost;
179 
180   // These variables contain a linear fit of
181   // a generation size as the independent variable
182   // and a pause time as the dependent variable.
183   // For example _remark_pause_old_estimator
184   // is a fit of the old generation size as the
185   // independent variable and the remark pause
186   // as the dependent variable.
187   //   remark pause time vs. cms gen size
188   LinearLeastSquareFit* _remark_pause_old_estimator;
189   //   initial pause time vs. cms gen size
190   LinearLeastSquareFit* _initial_pause_old_estimator;
191   //   remark pause time vs. young gen size
192   LinearLeastSquareFit* _remark_pause_young_estimator;
193   //   initial pause time vs. young gen size
194   LinearLeastSquareFit* _initial_pause_young_estimator;
195 
196   // Accessors
processor_count() const197   int processor_count() const { return _processor_count; }
concurrent_processor_count() const198   int concurrent_processor_count() const { return _concurrent_processor_count; }
199 
avg_concurrent_time() const200   AdaptiveWeightedAverage* avg_concurrent_time() const {
201     return _avg_concurrent_time;
202   }
203 
avg_concurrent_interval() const204   AdaptiveWeightedAverage* avg_concurrent_interval() const {
205     return _avg_concurrent_interval;
206   }
207 
avg_concurrent_gc_cost() const208   AdaptiveWeightedAverage* avg_concurrent_gc_cost() const {
209     return _avg_concurrent_gc_cost;
210   }
211 
avg_cms_STW_time() const212   AdaptiveWeightedAverage* avg_cms_STW_time() const {
213     return _avg_cms_STW_time;
214   }
215 
avg_cms_STW_gc_cost() const216   AdaptiveWeightedAverage* avg_cms_STW_gc_cost() const {
217     return _avg_cms_STW_gc_cost;
218   }
219 
avg_initial_pause() const220   AdaptivePaddedAverage* avg_initial_pause() const {
221     return _avg_initial_pause;
222   }
223 
avg_remark_pause() const224   AdaptivePaddedAverage* avg_remark_pause() const {
225     return _avg_remark_pause;
226   }
227 
avg_cms_free() const228   AdaptiveWeightedAverage* avg_cms_free() const {
229     return _avg_cms_free;
230   }
231 
avg_cms_free_at_sweep() const232   AdaptiveWeightedAverage* avg_cms_free_at_sweep() const {
233     return _avg_cms_free_at_sweep;
234   }
235 
avg_msc_pause() const236   AdaptiveWeightedAverage* avg_msc_pause() const {
237     return _avg_msc_pause;
238   }
239 
avg_msc_interval() const240   AdaptiveWeightedAverage* avg_msc_interval() const {
241     return _avg_msc_interval;
242   }
243 
avg_msc_gc_cost() const244   AdaptiveWeightedAverage* avg_msc_gc_cost() const {
245     return _avg_msc_gc_cost;
246   }
247 
avg_ms_pause() const248   AdaptiveWeightedAverage* avg_ms_pause() const {
249     return _avg_ms_pause;
250   }
251 
avg_ms_interval() const252   AdaptiveWeightedAverage* avg_ms_interval() const {
253     return _avg_ms_interval;
254   }
255 
avg_ms_gc_cost() const256   AdaptiveWeightedAverage* avg_ms_gc_cost() const {
257     return _avg_ms_gc_cost;
258   }
259 
remark_pause_old_estimator()260   LinearLeastSquareFit* remark_pause_old_estimator() {
261     return _remark_pause_old_estimator;
262   }
initial_pause_old_estimator()263   LinearLeastSquareFit* initial_pause_old_estimator() {
264     return _initial_pause_old_estimator;
265   }
remark_pause_young_estimator()266   LinearLeastSquareFit* remark_pause_young_estimator() {
267     return _remark_pause_young_estimator;
268   }
initial_pause_young_estimator()269   LinearLeastSquareFit* initial_pause_young_estimator() {
270     return _initial_pause_young_estimator;
271   }
272 
273   // These *slope() methods return the slope
274   // m for the linear fit of an independent
275   // variable vs. a dependent variable.  For
276   // example
277   //  remark_pause = m * old_generation_size + c
278   // These may be used to determine if an
279   // adjustment should be made to achieve a goal.
280   // For example, if remark_pause_old_slope() is
281   // positive, a reduction of the old generation
282   // size has on average resulted in the reduction
283   // of the remark pause.
remark_pause_old_slope()284   float remark_pause_old_slope() {
285     return _remark_pause_old_estimator->slope();
286   }
287 
initial_pause_old_slope()288   float initial_pause_old_slope() {
289     return _initial_pause_old_estimator->slope();
290   }
291 
remark_pause_young_slope()292   float remark_pause_young_slope() {
293     return _remark_pause_young_estimator->slope();
294   }
295 
initial_pause_young_slope()296   float initial_pause_young_slope() {
297     return _initial_pause_young_estimator->slope();
298   }
299 
300   // Update estimators
301   void update_minor_pause_old_estimator(double minor_pause_in_ms);
302 
303   // Fraction of processors used by the concurrent phases.
304   double concurrent_processor_fraction();
305 
306   // Returns the total times for the concurrent part of the
307   // latest collection in seconds.
308   double concurrent_collection_time();
309 
310   // Return the total times for the concurrent part of the
311   // latest collection in seconds where the times of the various
312   // concurrent phases are scaled by the processor fraction used
313   // during the phase.
314   double scaled_concurrent_collection_time();
315 
316   // Dimensionless concurrent GC cost for all the concurrent phases.
317   double concurrent_collection_cost(double interval_in_seconds);
318 
319   // Dimensionless GC cost
320   double collection_cost(double pause_in_seconds, double interval_in_seconds);
321 
kind() const322   virtual GCPolicyKind kind() const { return _gc_cms_adaptive_size_policy; }
323 
324   virtual double time_since_major_gc() const;
325 
326   // This returns the maximum average for the concurrent, ms, and
327   // msc collections.  This is meant to be used for the calculation
328   // of the decayed major gc cost and is not in general the
329   // average of all the different types of major collections.
330   virtual double major_gc_interval_average_for_decay() const;
331 
332  public:
333   CMSAdaptiveSizePolicy(size_t init_eden_size,
334                         size_t init_promo_size,
335                         size_t init_survivor_size,
336                         double max_gc_minor_pause_sec,
337                         double max_gc_pause_sec,
338                         uint gc_cost_ratio);
339 
340   // The timers for the stop-the-world phases measure a total
341   // stop-the-world time.  The timer is started and stopped
342   // for each phase but is only reset after the final checkpoint.
343   void checkpoint_roots_initial_begin();
344   void checkpoint_roots_initial_end(GCCause::Cause gc_cause);
345   void checkpoint_roots_final_begin();
346   void checkpoint_roots_final_end(GCCause::Cause gc_cause);
347 
348   // Methods for gathering information about the
349   // concurrent marking phase of the collection.
350   // Records the mutator times and
351   // resets the concurrent timer.
352   void concurrent_marking_begin();
353   // Resets concurrent phase timer in the begin methods and
354   // saves the time for a phase in the end methods.
355   void concurrent_marking_end();
356   void concurrent_sweeping_begin();
357   void concurrent_sweeping_end();
358   // Similar to the above (e.g., concurrent_marking_end()) and
359   // is used for both the precleaning an abortable precleaing
360   // phases.
361   void concurrent_precleaning_begin();
362   void concurrent_precleaning_end();
363   // Stops the concurrent phases time.  Gathers
364   // information and resets the timer.
365   void concurrent_phases_end(GCCause::Cause gc_cause,
366                               size_t cur_eden,
367                               size_t cur_promo);
368 
369   // Methods for gather information about STW Mark-Sweep-Compact
370   void msc_collection_begin();
371   void msc_collection_end(GCCause::Cause gc_cause);
372 
373   // Methods for gather information about Mark-Sweep done
374   // in the foreground.
375   void ms_collection_begin();
376   void ms_collection_end(GCCause::Cause gc_cause);
377 
378   // Cost for a mark-sweep tenured gen collection done in the foreground
ms_gc_cost() const379   double ms_gc_cost() const {
380     return MAX2(0.0F, _avg_ms_gc_cost->average());
381   }
382 
383   // Cost of collecting the tenured generation.  Includes
384   // concurrent collection and STW collection costs
385   double cms_gc_cost() const;
386 
387   // Cost of STW mark-sweep-compact tenured gen collection.
msc_gc_cost() const388   double msc_gc_cost() const {
389     return MAX2(0.0F, _avg_msc_gc_cost->average());
390   }
391 
392   //
compacting_gc_cost() const393   double compacting_gc_cost() const {
394     double result = MIN2(1.0, minor_gc_cost() + msc_gc_cost());
395     assert(result >= 0.0, "Both minor and major costs are non-negative");
396     return result;
397   }
398 
399    // Restarts the concurrent phases timer.
400    void concurrent_phases_resume();
401 
402    // Time beginning and end of the marking phase for
403    // a synchronous MS collection.  A MS collection
404    // that finishes in the foreground can have started
405    // in the background.  These methods capture the
406    // completion of the marking (after the initial
407    // marking) that is done in the foreground.
408    void ms_collection_marking_begin();
409    void ms_collection_marking_end(GCCause::Cause gc_cause);
410 
concurrent_timer_ptr()411    static elapsedTimer* concurrent_timer_ptr() {
412      return &_concurrent_timer;
413    }
414 
avg_cms_promo() const415   AdaptiveWeightedAverage* avg_cms_promo() const {
416     return _avg_cms_promo;
417   }
418 
change_young_gen_for_maj_pauses()419   int change_young_gen_for_maj_pauses() {
420     return _change_young_gen_for_maj_pauses;
421   }
set_change_young_gen_for_maj_pauses(int v)422   void set_change_young_gen_for_maj_pauses(int v) {
423     _change_young_gen_for_maj_pauses = v;
424   }
425 
426   void clear_internal_time_intervals();
427 
428 
429   // Either calculated_promo_size_in_bytes() or promo_size()
430   // should be deleted.
promo_size()431   size_t promo_size() { return _promo_size; }
set_promo_size(size_t v)432   void set_promo_size(size_t v) { _promo_size = v; }
433 
434   // Cost of GC for all types of collections.
435   virtual double gc_cost() const;
436 
generation_alignment()437   size_t generation_alignment() { return _generation_alignment; }
438 
439   virtual void compute_eden_space_size(size_t cur_eden,
440                                        size_t max_eden_size);
441   // Calculates new survivor space size;  returns a new tenuring threshold
442   // value. Stores new survivor size in _survivor_size.
443   virtual uint compute_survivor_space_size_and_threshold(
444                                                 bool   is_survivor_overflow,
445                                                 uint   tenuring_threshold,
446                                                 size_t survivor_limit);
447 
448   virtual void compute_tenured_generation_free_space(size_t cur_tenured_free,
449                                            size_t max_tenured_available,
450                                            size_t cur_eden);
451 
452   size_t eden_decrement_aligned_down(size_t cur_eden);
453   size_t eden_increment_aligned_up(size_t cur_eden);
454 
455   size_t adjust_eden_for_pause_time(size_t cur_eden);
456   size_t adjust_eden_for_throughput(size_t cur_eden);
457   size_t adjust_eden_for_footprint(size_t cur_eden);
458 
459   size_t promo_decrement_aligned_down(size_t cur_promo);
460   size_t promo_increment_aligned_up(size_t cur_promo);
461 
462   size_t adjust_promo_for_pause_time(size_t cur_promo);
463   size_t adjust_promo_for_throughput(size_t cur_promo);
464   size_t adjust_promo_for_footprint(size_t cur_promo, size_t cur_eden);
465 
466   // Scale down the input size by the ratio of the cost to collect the
467   // generation to the total GC cost.
468   size_t scale_by_gen_gc_cost(size_t base_change, double gen_gc_cost);
469 
470   // Return the value and clear it.
471   bool get_and_clear_first_after_collection();
472 
473   // Printing support
474   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
475 };
476 
477 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
478