1 /*
2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
26 #define SHARE_VM_OPTO_LOOPNODE_HPP
27 
28 #include "opto/cfgnode.hpp"
29 #include "opto/multnode.hpp"
30 #include "opto/phaseX.hpp"
31 #include "opto/subnode.hpp"
32 #include "opto/type.hpp"
33 
34 class CmpNode;
35 class CountedLoopEndNode;
36 class CountedLoopNode;
37 class IdealLoopTree;
38 class LoopNode;
39 class Node;
40 class PhaseIdealLoop;
41 class VectorSet;
42 class Invariance;
43 struct small_cache;
44 
45 //
46 //                  I D E A L I Z E D   L O O P S
47 //
48 // Idealized loops are the set of loops I perform more interesting
49 // transformations on, beyond simple hoisting.
50 
51 //------------------------------LoopNode---------------------------------------
52 // Simple loop header.  Fall in path on left, loop-back path on right.
53 class LoopNode : public RegionNode {
54   // Size is bigger to hold the flags.  However, the flags do not change
55   // the semantics so it does not appear in the hash & cmp functions.
size_of() const56   virtual uint size_of() const { return sizeof(*this); }
57 protected:
58   short _loop_flags;
59   // Names for flag bitfields
60   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
61          MainHasNoPreLoop=4,
62          HasExactTripCount=8,
63          InnerLoop=16,
64          PartialPeelLoop=32,
65          PartialPeelFailed=64 };
66   char _unswitch_count;
67   enum { _unswitch_max=3 };
68 
69 public:
70   // Names for edge indices
71   enum { Self=0, EntryControl, LoopBackControl };
72 
is_inner_loop() const73   int is_inner_loop() const { return _loop_flags & InnerLoop; }
set_inner_loop()74   void set_inner_loop() { _loop_flags |= InnerLoop; }
75 
is_partial_peel_loop() const76   int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
set_partial_peel_loop()77   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
partial_peel_has_failed() const78   int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
mark_partial_peel_failed()79   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
80 
unswitch_max()81   int unswitch_max() { return _unswitch_max; }
unswitch_count()82   int unswitch_count() { return _unswitch_count; }
set_unswitch_count(int val)83   void set_unswitch_count(int val) {
84     assert (val <= unswitch_max(), "too many unswitches");
85     _unswitch_count = val;
86   }
87 
LoopNode(Node * entry,Node * backedge)88   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
89     init_class_id(Class_Loop);
90     init_req(EntryControl, entry);
91     init_req(LoopBackControl, backedge);
92   }
93 
94   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
95   virtual int Opcode() const;
can_be_counted_loop(PhaseTransform * phase) const96   bool can_be_counted_loop(PhaseTransform* phase) const {
97     return req() == 3 && in(0) != NULL &&
98       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
99       in(2) != NULL && phase->type(in(2)) != Type::TOP;
100   }
101   bool is_valid_counted_loop() const;
102 #ifndef PRODUCT
103   virtual void dump_spec(outputStream *st) const;
104 #endif
105 };
106 
107 //------------------------------Counted Loops----------------------------------
108 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
109 // path (and maybe some other exit paths).  The trip-counter exit is always
110 // last in the loop.  The trip-counter have to stride by a constant;
111 // the exit value is also loop invariant.
112 
113 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
114 // CountedLoopNode has the incoming loop control and the loop-back-control
115 // which is always the IfTrue before the matching CountedLoopEndNode.  The
116 // CountedLoopEndNode has an incoming control (possibly not the
117 // CountedLoopNode if there is control flow in the loop), the post-increment
118 // trip-counter value, and the limit.  The trip-counter value is always of
119 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
120 // by a Phi connected to the CountedLoopNode.  The stride is constant.
121 // The Op is any commutable opcode, including Add, Mul, Xor.  The
122 // CountedLoopEndNode also takes in the loop-invariant limit value.
123 
124 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
125 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
126 // via the old-trip-counter from the Op node.
127 
128 //------------------------------CountedLoopNode--------------------------------
129 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
130 // inputs the incoming loop-start control and the loop-back control, so they
131 // act like RegionNodes.  They also take in the initial trip counter, the
132 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
133 // produce a loop-body control and the trip counter value.  Since
134 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
135 
136 class CountedLoopNode : public LoopNode {
137   // Size is bigger to hold _main_idx.  However, _main_idx does not change
138   // the semantics so it does not appear in the hash & cmp functions.
size_of() const139   virtual uint size_of() const { return sizeof(*this); }
140 
141   // For Pre- and Post-loops during debugging ONLY, this holds the index of
142   // the Main CountedLoop.  Used to assert that we understand the graph shape.
143   node_idx_t _main_idx;
144 
145   // Known trip count calculated by compute_exact_trip_count()
146   uint  _trip_count;
147 
148   // Expected trip count from profile data
149   float _profile_trip_cnt;
150 
151   // Log2 of original loop bodies in unrolled loop
152   int _unrolled_count_log2;
153 
154   // Node count prior to last unrolling - used to decide if
155   // unroll,optimize,unroll,optimize,... is making progress
156   int _node_count_before_unroll;
157 
158 public:
CountedLoopNode(Node * entry,Node * backedge)159   CountedLoopNode( Node *entry, Node *backedge )
160     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
161       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
162       _node_count_before_unroll(0) {
163     init_class_id(Class_CountedLoop);
164     // Initialize _trip_count to the largest possible value.
165     // Will be reset (lower) if the loop's trip count is known.
166   }
167 
168   virtual int Opcode() const;
169   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
170 
init_control() const171   Node *init_control() const { return in(EntryControl); }
back_control() const172   Node *back_control() const { return in(LoopBackControl); }
173   CountedLoopEndNode *loopexit() const;
174   Node *init_trip() const;
175   Node *stride() const;
176   int   stride_con() const;
177   bool  stride_is_con() const;
178   Node *limit() const;
179   Node *incr() const;
180   Node *phi() const;
181 
182   // Match increment with optional truncation
183   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
184 
185   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
186   // can run short a few iterations and may start a few iterations in.
187   // It will be RCE'd and unrolled and aligned.
188 
189   // A following 'post' loop will run any remaining iterations.  Used
190   // during Range Check Elimination, the 'post' loop will do any final
191   // iterations with full checks.  Also used by Loop Unrolling, where
192   // the 'post' loop will do any epilog iterations needed.  Basically,
193   // a 'post' loop can not profitably be further unrolled or RCE'd.
194 
195   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
196   // it may do under-flow checks for RCE and may do alignment iterations
197   // so the following main loop 'knows' that it is striding down cache
198   // lines.
199 
200   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
201   // Aligned, may be missing it's pre-loop.
is_normal_loop() const202   int is_normal_loop() const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
is_pre_loop() const203   int is_pre_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
is_main_loop() const204   int is_main_loop  () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
is_post_loop() const205   int is_post_loop  () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
is_main_no_pre_loop() const206   int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
set_main_no_pre_loop()207   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
208 
main_idx() const209   int main_idx() const { return _main_idx; }
210 
211 
set_pre_loop(CountedLoopNode * main)212   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
set_main_loop()213   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
set_post_loop(CountedLoopNode * main)214   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
set_normal_loop()215   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
216 
set_trip_count(uint tc)217   void set_trip_count(uint tc) { _trip_count = tc; }
trip_count()218   uint trip_count()            { return _trip_count; }
219 
has_exact_trip_count() const220   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
set_exact_trip_count(uint tc)221   void set_exact_trip_count(uint tc) {
222     _trip_count = tc;
223     _loop_flags |= HasExactTripCount;
224   }
set_nonexact_trip_count()225   void set_nonexact_trip_count() {
226     _loop_flags &= ~HasExactTripCount;
227   }
228 
set_profile_trip_cnt(float ptc)229   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
profile_trip_cnt()230   float profile_trip_cnt()             { return _profile_trip_cnt; }
231 
double_unrolled_count()232   void double_unrolled_count() { _unrolled_count_log2++; }
unrolled_count()233   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
234 
set_node_count_before_unroll(int ct)235   void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
node_count_before_unroll()236   int  node_count_before_unroll()           { return _node_count_before_unroll; }
237 
238 #ifndef PRODUCT
239   virtual void dump_spec(outputStream *st) const;
240 #endif
241 };
242 
243 //------------------------------CountedLoopEndNode-----------------------------
244 // CountedLoopEndNodes end simple trip counted loops.  They act much like
245 // IfNodes.
246 class CountedLoopEndNode : public IfNode {
247 public:
248   enum { TestControl, TestValue };
249 
CountedLoopEndNode(Node * control,Node * test,float prob,float cnt)250   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
251     : IfNode( control, test, prob, cnt) {
252     init_class_id(Class_CountedLoopEnd);
253   }
254   virtual int Opcode() const;
255 
cmp_node() const256   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
incr() const257   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
limit() const258   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
stride() const259   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
init_trip() const260   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
261   int stride_con() const;
stride_is_con() const262   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
test_trip() const263   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
phi() const264   PhiNode *phi() const {
265     Node *tmp = incr();
266     if (tmp && tmp->req() == 3) {
267       Node* phi = tmp->in(1);
268       if (phi->is_Phi()) {
269         return phi->as_Phi();
270       }
271     }
272     return NULL;
273   }
loopnode() const274   CountedLoopNode *loopnode() const {
275     // The CountedLoopNode that goes with this CountedLoopEndNode may
276     // have been optimized out by the IGVN so be cautious with the
277     // pattern matching on the graph
278     PhiNode* iv_phi = phi();
279     if (iv_phi == NULL) {
280       return NULL;
281     }
282     assert(iv_phi->is_Phi(), "should be PhiNode");
283     Node *ln = iv_phi->in(0);
284     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
285       return (CountedLoopNode*)ln;
286     }
287     return NULL;
288   }
289 
290 #ifndef PRODUCT
291   virtual void dump_spec(outputStream *st) const;
292 #endif
293 };
294 
295 
loopexit() const296 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
297   Node *bc = back_control();
298   if( bc == NULL ) return NULL;
299   Node *le = bc->in(0);
300   if( le->Opcode() != Op_CountedLoopEnd )
301     return NULL;
302   return (CountedLoopEndNode*)le;
303 }
init_trip() const304 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
stride() const305 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
stride_con() const306 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
stride_is_con() const307 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
limit() const308 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
incr() const309 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
phi() const310 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
311 
312 //------------------------------LoopLimitNode-----------------------------
313 // Counted Loop limit node which represents exact final iterator value:
314 // trip_count = (limit - init_trip + stride - 1)/stride
315 // final_value= trip_count * stride + init_trip.
316 // Use HW instructions to calculate it when it can overflow in integer.
317 // Note, final_value should fit into integer since counted loop has
318 // limit check: limit <= max_int-stride.
319 class LoopLimitNode : public Node {
320   enum { Init=1, Limit=2, Stride=3 };
321  public:
LoopLimitNode(Compile * C,Node * init,Node * limit,Node * stride)322   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
323     // Put it on the Macro nodes list to optimize during macro nodes expansion.
324     init_flags(Flag_is_macro);
325     C->add_macro_node(this);
326   }
327   virtual int Opcode() const;
bottom_type() const328   virtual const Type *bottom_type() const { return TypeInt::INT; }
ideal_reg() const329   virtual uint ideal_reg() const { return Op_RegI; }
330   virtual const Type *Value( PhaseTransform *phase ) const;
331   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
332   virtual Node *Identity( PhaseTransform *phase );
333 };
334 
335 // -----------------------------IdealLoopTree----------------------------------
336 class IdealLoopTree : public ResourceObj {
337 public:
338   IdealLoopTree *_parent;       // Parent in loop tree
339   IdealLoopTree *_next;         // Next sibling in loop tree
340   IdealLoopTree *_child;        // First child in loop tree
341 
342   // The head-tail backedge defines the loop.
343   // If tail is NULL then this loop has multiple backedges as part of the
344   // same loop.  During cleanup I'll peel off the multiple backedges; merge
345   // them at the loop bottom and flow 1 real backedge into the loop.
346   Node *_head;                  // Head of loop
347   Node *_tail;                  // Tail of loop
348   inline Node *tail();          // Handle lazy update of _tail field
349   PhaseIdealLoop* _phase;
350 
351   Node_List _body;              // Loop body for inner loops
352 
353   uint8 _nest;                  // Nesting depth
354   uint8 _irreducible:1,         // True if irreducible
355         _has_call:1,            // True if has call safepoint
356         _has_sfpt:1,            // True if has non-call safepoint
357         _rce_candidate:1;       // True if candidate for range check elimination
358 
359   Node_List* _safepts;          // List of safepoints in this loop
360   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
361   bool  _allow_optimizations;   // Allow loop optimizations
362 
IdealLoopTree(PhaseIdealLoop * phase,Node * head,Node * tail)363   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
364     : _parent(0), _next(0), _child(0),
365       _head(head), _tail(tail),
366       _phase(phase),
367       _safepts(NULL),
368       _required_safept(NULL),
369       _allow_optimizations(true),
370       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
371   { }
372 
373   // Is 'l' a member of 'this'?
374   int is_member( const IdealLoopTree *l ) const; // Test for nested membership
375 
376   // Set loop nesting depth.  Accumulate has_call bits.
377   int set_nest( uint depth );
378 
379   // Split out multiple fall-in edges from the loop header.  Move them to a
380   // private RegionNode before the loop.  This becomes the loop landing pad.
381   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
382 
383   // Split out the outermost loop from this shared header.
384   void split_outer_loop( PhaseIdealLoop *phase );
385 
386   // Merge all the backedges from the shared header into a private Region.
387   // Feed that region as the one backedge to this loop.
388   void merge_many_backedges( PhaseIdealLoop *phase );
389 
390   // Split shared headers and insert loop landing pads.
391   // Insert a LoopNode to replace the RegionNode.
392   // Returns TRUE if loop tree is structurally changed.
393   bool beautify_loops( PhaseIdealLoop *phase );
394 
395   // Perform optimization to use the loop predicates for null checks and range checks.
396   // Applies to any loop level (not just the innermost one)
397   bool loop_predication( PhaseIdealLoop *phase);
398 
399   // Perform iteration-splitting on inner loops.  Split iterations to
400   // avoid range checks or one-shot null checks.  Returns false if the
401   // current round of loop opts should stop.
402   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
403 
404   // Driver for various flavors of iteration splitting.  Returns false
405   // if the current round of loop opts should stop.
406   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
407 
408   // Given dominators, try to find loops with calls that must always be
409   // executed (call dominates loop tail).  These loops do not need non-call
410   // safepoints (ncsfpt).
411   void check_safepts(VectorSet &visited, Node_List &stack);
412 
413   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
414   // encountered.
415   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
416 
417   // Remove safepoints from loop. Optionally keeping one.
418   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
419 
420   // Convert to counted loops where possible
421   void counted_loop( PhaseIdealLoop *phase );
422 
423   // Check for Node being a loop-breaking test
424   Node *is_loop_exit(Node *iff) const;
425 
426   // Returns true if ctrl is executed on every complete iteration
427   bool dominates_backedge(Node* ctrl);
428 
429   // Remove simplistic dead code from loop body
430   void DCE_loop_body();
431 
432   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
433   // Replace with a 1-in-10 exit guess.
434   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
435 
436   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
437   // Useful for unrolling loops with NO array accesses.
438   bool policy_peel_only( PhaseIdealLoop *phase ) const;
439 
440   // Return TRUE or FALSE if the loop should be unswitched -- clone
441   // loop with an invariant test
442   bool policy_unswitching( PhaseIdealLoop *phase ) const;
443 
444   // Micro-benchmark spamming.  Remove empty loops.
445   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
446 
447   // Convert one iteration loop into normal code.
448   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
449 
450   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
451   // make some loop-invariant test (usually a null-check) happen before the
452   // loop.
453   bool policy_peeling( PhaseIdealLoop *phase ) const;
454 
455   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
456   // known trip count in the counted loop node.
457   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
458 
459   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
460   // the loop is a CountedLoop and the body is small enough.
461   bool policy_unroll( PhaseIdealLoop *phase ) const;
462 
463   // Return TRUE or FALSE if the loop should be range-check-eliminated.
464   // Gather a list of IF tests that are dominated by iteration splitting;
465   // also gather the end of the first split and the start of the 2nd split.
466   bool policy_range_check( PhaseIdealLoop *phase ) const;
467 
468   // Return TRUE or FALSE if the loop should be cache-line aligned.
469   // Gather the expression that does the alignment.  Note that only
470   // one array base can be aligned in a loop (unless the VM guarantees
471   // mutual alignment).  Note that if we vectorize short memory ops
472   // into longer memory ops, we may want to increase alignment.
473   bool policy_align( PhaseIdealLoop *phase ) const;
474 
475   // Return TRUE if "iff" is a range check.
476   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
477 
478   // Compute loop exact trip count if possible
479   void compute_exact_trip_count( PhaseIdealLoop *phase );
480 
481   // Compute loop trip count from profile data
482   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
483 
484   // Reassociate invariant expressions.
485   void reassociate_invariants(PhaseIdealLoop *phase);
486   // Reassociate invariant add and subtract expressions.
487   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
488   // Return nonzero index of invariant operand if invariant and variant
489   // are combined with an Add or Sub. Helper for reassociate_invariants.
490   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
491 
492   // Return true if n is invariant
493   bool is_invariant(Node* n) const;
494 
495   // Put loop body on igvn work list
496   void record_for_igvn();
497 
is_loop()498   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
is_inner()499   bool is_inner()   { return is_loop() && _child == NULL; }
is_counted()500   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
501 
502 #ifndef PRODUCT
503   void dump_head( ) const;      // Dump loop head only
504   void dump() const;            // Dump this loop recursively
505   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
506 #endif
507 
508 };
509 
510 // -----------------------------PhaseIdealLoop---------------------------------
511 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
512 // loop tree.  Drives the loop-based transformations on the ideal graph.
513 class PhaseIdealLoop : public PhaseTransform {
514   friend class IdealLoopTree;
515   friend class SuperWord;
516   // Pre-computed def-use info
517   PhaseIterGVN &_igvn;
518 
519   // Head of loop tree
520   IdealLoopTree *_ltree_root;
521 
522   // Array of pre-order numbers, plus post-visited bit.
523   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
524   // ODD for post-visited.  Other bits are the pre-order number.
525   uint *_preorders;
526   uint _max_preorder;
527 
528   const PhaseIdealLoop* _verify_me;
529   bool _verify_only;
530 
531   // Allocate _preorders[] array
allocate_preorders()532   void allocate_preorders() {
533     _max_preorder = C->unique()+8;
534     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
535     memset(_preorders, 0, sizeof(uint) * _max_preorder);
536   }
537 
538   // Allocate _preorders[] array
reallocate_preorders()539   void reallocate_preorders() {
540     if ( _max_preorder < C->unique() ) {
541       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
542       _max_preorder = C->unique();
543     }
544     memset(_preorders, 0, sizeof(uint) * _max_preorder);
545   }
546 
547   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
548   // adds new nodes.
check_grow_preorders()549   void check_grow_preorders( ) {
550     if ( _max_preorder < C->unique() ) {
551       uint newsize = _max_preorder<<1;  // double size of array
552       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
553       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
554       _max_preorder = newsize;
555     }
556   }
557   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
is_visited(Node * n) const558   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
559   // Pre-order numbers are written to the Nodes array as low-bit-set values.
set_preorder_visited(Node * n,int pre_order)560   void set_preorder_visited( Node *n, int pre_order ) {
561     assert( !is_visited( n ), "already set" );
562     _preorders[n->_idx] = (pre_order<<1);
563   };
564   // Return pre-order number.
get_preorder(Node * n) const565   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
566 
567   // Check for being post-visited.
568   // Should be previsited already (checked with assert(is_visited(n))).
is_postvisited(Node * n) const569   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
570 
571   // Mark as post visited
set_postvisited(Node * n)572   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
573 
574   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
575   // Returns true if "n" is a data node, false if it's a control node.
has_ctrl(Node * n) const576   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
577 
578   // clear out dead code after build_loop_late
579   Node_List _deadlist;
580 
581   // Support for faster execution of get_late_ctrl()/dom_lca()
582   // when a node has many uses and dominator depth is deep.
583   Node_Array _dom_lca_tags;
584   void   init_dom_lca_tags();
585   void   clear_dom_lca_tags();
586 
587   // Helper for debugging bad dominance relationships
588   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
589 
590   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
591 
592   // Inline wrapper for frequent cases:
593   // 1) only one use
594   // 2) a use is the same as the current LCA passed as 'n1'
dom_lca_for_get_late_ctrl(Node * lca,Node * n,Node * tag)595   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
596     assert( n->is_CFG(), "" );
597     // Fast-path NULL lca
598     if( lca != NULL && lca != n ) {
599       assert( lca->is_CFG(), "" );
600       // find LCA of all uses
601       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
602     }
603     return find_non_split_ctrl(n);
604   }
605   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
606 
607   // Helper function for directing control inputs away from CFG split
608   // points.
find_non_split_ctrl(Node * ctrl) const609   Node *find_non_split_ctrl( Node *ctrl ) const {
610     if (ctrl != NULL) {
611       if (ctrl->is_MultiBranch()) {
612         ctrl = ctrl->in(0);
613       }
614       assert(ctrl->is_CFG(), "CFG");
615     }
616     return ctrl;
617   }
618 
619   bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
620 
621 public:
622 
623   static bool is_canonical_main_loop_entry(CountedLoopNode* cl);
624 
has_node(Node * n) const625   bool has_node( Node* n ) const {
626     guarantee(n != NULL, "No Node.");
627     return _nodes[n->_idx] != NULL;
628   }
629   // check if transform created new nodes that need _ctrl recorded
630   Node *get_late_ctrl( Node *n, Node *early );
631   Node *get_early_ctrl( Node *n );
632   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
633   void set_early_ctrl( Node *n );
634   void set_subtree_ctrl( Node *root );
set_ctrl(Node * n,Node * ctrl)635   void set_ctrl( Node *n, Node *ctrl ) {
636     assert( !has_node(n) || has_ctrl(n), "" );
637     assert( ctrl->in(0), "cannot set dead control node" );
638     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
639     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
640   }
641   // Set control and update loop membership
set_ctrl_and_loop(Node * n,Node * ctrl)642   void set_ctrl_and_loop(Node* n, Node* ctrl) {
643     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
644     IdealLoopTree* new_loop = get_loop(ctrl);
645     if (old_loop != new_loop) {
646       if (old_loop->_child == NULL) old_loop->_body.yank(n);
647       if (new_loop->_child == NULL) new_loop->_body.push(n);
648     }
649     set_ctrl(n, ctrl);
650   }
651   // Control nodes can be replaced or subsumed.  During this pass they
652   // get their replacement Node in slot 1.  Instead of updating the block
653   // location of all Nodes in the subsumed block, we lazily do it.  As we
654   // pull such a subsumed block out of the array, we write back the final
655   // correct block.
get_ctrl(Node * i)656   Node *get_ctrl( Node *i ) {
657     assert(has_node(i), "");
658     Node *n = get_ctrl_no_update(i);
659     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
660     assert(has_node(i) && has_ctrl(i), "");
661     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
662     return n;
663   }
664   // true if CFG node d dominates CFG node n
665   bool is_dominator(Node *d, Node *n);
666   // return get_ctrl for a data node and self(n) for a CFG node
ctrl_or_self(Node * n)667   Node* ctrl_or_self(Node* n) {
668     if (has_ctrl(n))
669       return get_ctrl(n);
670     else {
671       assert (n->is_CFG(), "must be a CFG node");
672       return n;
673     }
674   }
675 
676 private:
get_ctrl_no_update_helper(Node * i) const677   Node *get_ctrl_no_update_helper(Node *i) const {
678     assert(has_ctrl(i), "should be control, not loop");
679     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
680   }
681 
get_ctrl_no_update(Node * i) const682   Node *get_ctrl_no_update(Node *i) const {
683     assert( has_ctrl(i), "" );
684     Node *n = get_ctrl_no_update_helper(i);
685     if (!n->in(0)) {
686       // Skip dead CFG nodes
687       do {
688         n = get_ctrl_no_update_helper(n);
689       } while (!n->in(0));
690       n = find_non_split_ctrl(n);
691     }
692     return n;
693   }
694 
695   // Check for loop being set
696   // "n" must be a control node. Returns true if "n" is known to be in a loop.
has_loop(Node * n) const697   bool has_loop( Node *n ) const {
698     assert(!has_node(n) || !has_ctrl(n), "");
699     return has_node(n);
700   }
701   // Set loop
set_loop(Node * n,IdealLoopTree * loop)702   void set_loop( Node *n, IdealLoopTree *loop ) {
703     _nodes.map(n->_idx, (Node*)loop);
704   }
705   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
706   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
707   // from old_node to new_node to support the lazy update.  Reference
708   // replaces loop reference, since that is not needed for dead node.
709 public:
lazy_update(Node * old_node,Node * new_node)710   void lazy_update(Node *old_node, Node *new_node) {
711     assert(old_node != new_node, "no cycles please");
712     // Re-use the side array slot for this node to provide the
713     // forwarding pointer.
714     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
715   }
lazy_replace(Node * old_node,Node * new_node)716   void lazy_replace(Node *old_node, Node *new_node) {
717     _igvn.replace_node(old_node, new_node);
718     lazy_update(old_node, new_node);
719   }
720 
721 private:
722 
723   // Place 'n' in some loop nest, where 'n' is a CFG node
724   void build_loop_tree();
725   int build_loop_tree_impl( Node *n, int pre_order );
726   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
727   // loop tree, not the root.
728   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
729 
730   // Place Data nodes in some loop nest
731   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
732   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
733   void build_loop_late_post ( Node* n );
734 
735   // Array of immediate dominance info for each CFG node indexed by node idx
736 private:
737   uint _idom_size;
738   Node **_idom;                 // Array of immediate dominators
739   uint *_dom_depth;           // Used for fast LCA test
740   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
741 
idom_no_update(Node * d) const742   Node* idom_no_update(Node* d) const {
743     assert(d->_idx < _idom_size, "oob");
744     Node* n = _idom[d->_idx];
745     assert(n != NULL,"Bad immediate dominator info.");
746     while (n->in(0) == NULL) {  // Skip dead CFG nodes
747       //n = n->in(1);
748       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
749       assert(n != NULL,"Bad immediate dominator info.");
750     }
751     return n;
752   }
idom(Node * d) const753   Node *idom(Node* d) const {
754     uint didx = d->_idx;
755     Node *n = idom_no_update(d);
756     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
757     return n;
758   }
dom_depth(Node * d) const759   uint dom_depth(Node* d) const {
760     guarantee(d != NULL, "Null dominator info.");
761     guarantee(d->_idx < _idom_size, "");
762     return _dom_depth[d->_idx];
763   }
764   void set_idom(Node* d, Node* n, uint dom_depth);
765   // Locally compute IDOM using dom_lca call
766   Node *compute_idom( Node *region ) const;
767   // Recompute dom_depth
768   void recompute_dom_depth();
769 
770   // Is safept not required by an outer loop?
771   bool is_deleteable_safept(Node* sfpt);
772 
773   // Replace parallel induction variable (parallel to trip counter)
774   void replace_parallel_iv(IdealLoopTree *loop);
775 
776   // Perform verification that the graph is valid.
PhaseIdealLoop(PhaseIterGVN & igvn)777   PhaseIdealLoop( PhaseIterGVN &igvn) :
778     PhaseTransform(Ideal_Loop),
779     _igvn(igvn),
780     _dom_lca_tags(arena()), // Thread::resource_area
781     _verify_me(NULL),
782     _verify_only(true) {
783     build_and_optimize(false, false);
784   }
785 
786   // build the loop tree and perform any requested optimizations
787   void build_and_optimize(bool do_split_if, bool skip_loop_opts);
788 
789 public:
790   // Dominators for the sea of nodes
791   void Dominators();
dom_lca(Node * n1,Node * n2) const792   Node *dom_lca( Node *n1, Node *n2 ) const {
793     return find_non_split_ctrl(dom_lca_internal(n1, n2));
794   }
795   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
796 
797   // Compute the Ideal Node to Loop mapping
PhaseIdealLoop(PhaseIterGVN & igvn,bool do_split_ifs,bool skip_loop_opts=false)798   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
799     PhaseTransform(Ideal_Loop),
800     _igvn(igvn),
801     _dom_lca_tags(arena()), // Thread::resource_area
802     _verify_me(NULL),
803     _verify_only(false) {
804     build_and_optimize(do_split_ifs, skip_loop_opts);
805   }
806 
807   // Verify that verify_me made the same decisions as a fresh run.
PhaseIdealLoop(PhaseIterGVN & igvn,const PhaseIdealLoop * verify_me)808   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
809     PhaseTransform(Ideal_Loop),
810     _igvn(igvn),
811     _dom_lca_tags(arena()), // Thread::resource_area
812     _verify_me(verify_me),
813     _verify_only(false) {
814     build_and_optimize(false, false);
815   }
816 
817   // Build and verify the loop tree without modifying the graph.  This
818   // is useful to verify that all inputs properly dominate their uses.
verify(PhaseIterGVN & igvn)819   static void verify(PhaseIterGVN& igvn) {
820 #ifdef ASSERT
821     PhaseIdealLoop v(igvn);
822 #endif
823   }
824 
825   // True if the method has at least 1 irreducible loop
826   bool _has_irreducible_loops;
827 
828   // Per-Node transform
transform(Node * a_node)829   virtual Node *transform( Node *a_node ) { return 0; }
830 
831   bool is_counted_loop( Node *x, IdealLoopTree *loop );
832 
833   Node* exact_limit( IdealLoopTree *loop );
834 
835   // Return a post-walked LoopNode
get_loop(Node * n) const836   IdealLoopTree *get_loop( Node *n ) const {
837     // Dead nodes have no loop, so return the top level loop instead
838     if (!has_node(n))  return _ltree_root;
839     assert(!has_ctrl(n), "");
840     return (IdealLoopTree*)_nodes[n->_idx];
841   }
842 
843   // Is 'n' a (nested) member of 'loop'?
is_member(const IdealLoopTree * loop,Node * n) const844   int is_member( const IdealLoopTree *loop, Node *n ) const {
845     return loop->is_member(get_loop(n)); }
846 
847   // This is the basic building block of the loop optimizations.  It clones an
848   // entire loop body.  It makes an old_new loop body mapping; with this
849   // mapping you can find the new-loop equivalent to an old-loop node.  All
850   // new-loop nodes are exactly equal to their old-loop counterparts, all
851   // edges are the same.  All exits from the old-loop now have a RegionNode
852   // that merges the equivalent new-loop path.  This is true even for the
853   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
854   // now come from (one or more) Phis that merge their new-loop equivalents.
855   // Parameter side_by_side_idom:
856   //   When side_by_size_idom is NULL, the dominator tree is constructed for
857   //      the clone loop to dominate the original.  Used in construction of
858   //      pre-main-post loop sequence.
859   //   When nonnull, the clone and original are side-by-side, both are
860   //      dominated by the passed in side_by_side_idom node.  Used in
861   //      construction of unswitched loops.
862   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
863                    Node* side_by_side_idom = NULL);
864 
865   // If we got the effect of peeling, either by actually peeling or by
866   // making a pre-loop which must execute at least once, we can remove
867   // all loop-invariant dominated tests in the main body.
868   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
869 
870   // Generate code to do a loop peel for the given loop (and body).
871   // old_new is a temp array.
872   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
873 
874   // Add pre and post loops around the given loop.  These loops are used
875   // during RCE, unrolling and aligning loops.
876   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
877   // If Node n lives in the back_ctrl block, we clone a private version of n
878   // in preheader_ctrl block and return that, otherwise return n.
879   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
880 
881   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
882   // unroll to do double iterations.  The next round of major loop transforms
883   // will repeat till the doubled loop body does all remaining iterations in 1
884   // pass.
885   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
886 
887   // Unroll the loop body one step - make each trip do 2 iterations.
888   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
889 
890   // Return true if exp is a constant times an induction var
891   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
892 
893   // Return true if exp is a scaled induction var plus (or minus) constant
894   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
895 
896   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
897   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
898                                         Deoptimization::DeoptReason reason);
899   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
900 
901   // Clone loop predicates to cloned loops (peeled, unswitched)
902   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
903                                    Deoptimization::DeoptReason reason,
904                                    PhaseIdealLoop* loop_phase,
905                                    PhaseIterGVN* igvn);
906 
907   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
908                                          bool clone_limit_check,
909                                          PhaseIdealLoop* loop_phase,
910                                          PhaseIterGVN* igvn);
911   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
912 
913   static Node* skip_loop_predicates(Node* entry);
914 
915   // Find a good location to insert a predicate
916   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
917   // Find a predicate
918   static Node* find_predicate(Node* entry);
919   // Construct a range check for a predicate if
920   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
921                          int scale, Node* offset,
922                          Node* init, Node* limit, jint stride,
923                          Node* range, bool upper, bool &overflow);
924 
925   // Implementation of the loop predication to promote checks outside the loop
926   bool loop_predication_impl(IdealLoopTree *loop);
927 
928   // Helper function to collect predicate for eliminating the useless ones
929   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
930   void eliminate_useless_predicates();
931 
932   // Change the control input of expensive nodes to allow commoning by
933   // IGVN when it is guaranteed to not result in a more frequent
934   // execution of the expensive node. Return true if progress.
935   bool process_expensive_nodes();
936 
937   // Check whether node has become unreachable
is_node_unreachable(Node * n) const938   bool is_node_unreachable(Node *n) const {
939     return !has_node(n) || n->is_unreachable(_igvn);
940   }
941 
942   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
943   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
944 
945   // Create a slow version of the loop by cloning the loop
946   // and inserting an if to select fast-slow versions.
947   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
948                                         Node_List &old_new);
949 
950   // Clone loop with an invariant test (that does not exit) and
951   // insert a clone of the test that selects which version to
952   // execute.
953   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
954 
955   // Find candidate "if" for unswitching
956   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
957 
958   // Range Check Elimination uses this function!
959   // Constrain the main loop iterations so the affine function:
960   //    low_limit <= scale_con * I + offset  <  upper_limit
961   // always holds true.  That is, either increase the number of iterations in
962   // the pre-loop or the post-loop until the condition holds true in the main
963   // loop.  Scale_con, offset and limit are all loop invariant.
964   void add_constraint(jlong stride_con, jlong scale_con, Node* offset, Node* low_limit, Node* upper_limit, Node* pre_ctrl, Node** pre_limit, Node** main_limit);
965   // Helper function for add_constraint().
966   Node* adjust_limit(bool reduce, Node* scale, Node* offset, Node* rc_limit, Node* old_limit, Node* pre_ctrl, bool round);
967 
968   // Partially peel loop up through last_peel node.
969   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
970 
971   // Create a scheduled list of nodes control dependent on ctrl set.
972   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
973   // Has a use in the vector set
974   bool has_use_in_set( Node* n, VectorSet& vset );
975   // Has use internal to the vector set (ie. not in a phi at the loop head)
976   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
977   // clone "n" for uses that are outside of loop
978   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
979   // clone "n" for special uses that are in the not_peeled region
980   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
981                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
982   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
983   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
984 #ifdef ASSERT
985   // Validate the loop partition sets: peel and not_peel
986   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
987   // Ensure that uses outside of loop are of the right form
988   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
989                                  uint orig_exit_idx, uint clone_exit_idx);
990   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
991 #endif
992 
993   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
994   int stride_of_possible_iv( Node* iff );
is_possible_iv_test(Node * iff)995   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
996   // Return the (unique) control output node that's in the loop (if it exists.)
997   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
998   // Insert a signed compare loop exit cloned from an unsigned compare.
999   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1000   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1001   // Utility to register node "n" with PhaseIdealLoop
1002   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1003   // Utility to create an if-projection
1004   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1005   // Force the iff control output to be the live_proj
1006   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1007   // Insert a region before an if projection
1008   RegionNode* insert_region_before_proj(ProjNode* proj);
1009   // Insert a new if before an if projection
1010   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1011 
1012   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1013   // "Nearly" because all Nodes have been cloned from the original in the loop,
1014   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1015   // through the Phi recursively, and return a Bool.
1016   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1017   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1018 
1019 
1020   // Rework addressing expressions to get the most loop-invariant stuff
1021   // moved out.  We'd like to do all associative operators, but it's especially
1022   // important (common) to do address expressions.
1023   Node *remix_address_expressions( Node *n );
1024 
1025   // Attempt to use a conditional move instead of a phi/branch
1026   Node *conditional_move( Node *n );
1027 
1028   // Reorganize offset computations to lower register pressure.
1029   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1030   // (which are then alive with the post-incremented trip counter
1031   // forcing an extra register move)
1032   void reorg_offsets( IdealLoopTree *loop );
1033 
1034   // Check for aggressive application of 'split-if' optimization,
1035   // using basic block level info.
1036   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1037   Node *split_if_with_blocks_pre ( Node *n );
1038   void  split_if_with_blocks_post( Node *n );
1039   Node *has_local_phi_input( Node *n );
1040   // Mark an IfNode as being dominated by a prior test,
1041   // without actually altering the CFG (and hence IDOM info).
1042   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1043 
1044   // Split Node 'n' through merge point
1045   Node *split_thru_region( Node *n, Node *region );
1046   // Split Node 'n' through merge point if there is enough win.
1047   Node *split_thru_phi( Node *n, Node *region, int policy );
1048   // Found an If getting its condition-code input from a Phi in the
1049   // same block.  Split thru the Region.
1050   void do_split_if( Node *iff );
1051 
1052   // Conversion of fill/copy patterns into intrisic versions
1053   bool do_intrinsify_fill();
1054   bool intrinsify_fill(IdealLoopTree* lpt);
1055   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1056                        Node*& shift, Node*& offset);
1057 
1058 private:
1059   // Return a type based on condition control flow
1060   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
filtered_type(Node * n)1061   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1062  // Helpers for filtered type
1063   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1064 
1065   // Helper functions
1066   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1067   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1068   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1069   bool split_up( Node *n, Node *blk1, Node *blk2 );
1070   void sink_use( Node *use, Node *post_loop );
1071   Node *place_near_use( Node *useblock ) const;
1072 
1073   bool _created_loop_node;
1074 public:
set_created_loop_node()1075   void set_created_loop_node() { _created_loop_node = true; }
created_loop_node()1076   bool created_loop_node()     { return _created_loop_node; }
1077   void register_new_node( Node *n, Node *blk );
1078 
1079 #ifdef ASSERT
1080   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1081 #endif
1082 
1083 #ifndef PRODUCT
1084   void dump( ) const;
1085   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1086   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1087   void verify() const;          // Major slow  :-)
1088   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
get_loop_idx(Node * n) const1089   IdealLoopTree *get_loop_idx(Node* n) const {
1090     // Dead nodes have no loop, so return the top level loop instead
1091     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1092   }
1093   // Print some stats
1094   static void print_statistics();
1095   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1096   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1097 #endif
1098 };
1099 
tail()1100 inline Node* IdealLoopTree::tail() {
1101 // Handle lazy update of _tail field
1102   Node *n = _tail;
1103   //while( !n->in(0) )  // Skip dead CFG nodes
1104     //n = n->in(1);
1105   if (n->in(0) == NULL)
1106     n = _phase->get_ctrl(n);
1107   _tail = n;
1108   return n;
1109 }
1110 
1111 
1112 // Iterate over the loop tree using a preorder, left-to-right traversal.
1113 //
1114 // Example that visits all counted loops from within PhaseIdealLoop
1115 //
1116 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1117 //   IdealLoopTree* lpt = iter.current();
1118 //   if (!lpt->is_counted()) continue;
1119 //   ...
1120 class LoopTreeIterator : public StackObj {
1121 private:
1122   IdealLoopTree* _root;
1123   IdealLoopTree* _curnt;
1124 
1125 public:
LoopTreeIterator(IdealLoopTree * root)1126   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1127 
done()1128   bool done() { return _curnt == NULL; }       // Finished iterating?
1129 
1130   void next();                                 // Advance to next loop tree
1131 
current()1132   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1133 };
1134 
1135 #endif // SHARE_VM_OPTO_LOOPNODE_HPP
1136