1 Unit JFDctFst;
2 
3 { This file contains a fast, not so accurate integer implementation of the
4   forward DCT (Discrete Cosine Transform).
5 
6   A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
7   on each column.  Direct algorithms are also available, but they are
8   much more complex and seem not to be any faster when reduced to code.
9 
10   This implementation is based on Arai, Agui, and Nakajima's algorithm for
11   scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
12   Japanese, but the algorithm is described in the Pennebaker & Mitchell
13   JPEG textbook (see REFERENCES section in file README).  The following code
14   is based directly on figure 4-8 in P&M.
15   While an 8-point DCT cannot be done in less than 11 multiplies, it is
16   possible to arrange the computation so that many of the multiplies are
17   simple scalings of the final outputs.  These multiplies can then be
18   folded into the multiplications or divisions by the JPEG quantization
19   table entries.  The AA&N method leaves only 5 multiplies and 29 adds
20   to be done in the DCT itself.
21   The primary disadvantage of this method is that with fixed-point math,
22   accuracy is lost due to imprecise representation of the scaled
23   quantization values.  The smaller the quantization table entry, the less
24   precise the scaled value, so this implementation does worse with high-
25   quality-setting files than with low-quality ones. }
26 
27 { Original: jfdctfst.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
28 
29 
30 interface
31 
32 {$I jconfig.inc}
33 
34 uses
35   jmorecfg,
36   jinclude,
37   jpeglib,
38   jdct;         { Private declarations for DCT subsystem }
39 
40 
41 { Perform the forward DCT on one block of samples. }
42 
43 {GLOBAL}
44 procedure jpeg_fdct_ifast (var data : array of DCTELEM);
45 
46 implementation
47 
48 { This module is specialized to the case DCTSIZE = 8. }
49 
50 {$ifndef DCTSIZE_IS_8}
51   Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
52 {$endif}
53 
54 
55 { Scaling decisions are generally the same as in the LL&M algorithm;
56   see jfdctint.c for more details.  However, we choose to descale
57   (right shift) multiplication products as soon as they are formed,
58   rather than carrying additional fractional bits into subsequent additions.
59   This compromises accuracy slightly, but it lets us save a few shifts.
60   More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
61   everywhere except in the multiplications proper; this saves a good deal
62   of work on 16-bit-int machines.
63 
64   Again to save a few shifts, the intermediate results between pass 1 and
65   pass 2 are not upscaled, but are represented only to integral precision.
66 
67   A final compromise is to represent the multiplicative constants to only
68   8 fractional bits, rather than 13.  This saves some shifting work on some
69   machines, and may also reduce the cost of multiplication (since there
70   are fewer one-bits in the constants). }
71 
72 const
73   CONST_BITS = 8;
74 const
75   CONST_SCALE = (INT32(1) shl CONST_BITS);
76 
77 
78 const
79   FIX_0_382683433 = INT32(Round(CONST_SCALE * 0.382683433)); {98}
80   FIX_0_541196100 = INT32(Round(CONST_SCALE * 0.541196100)); {139}
81   FIX_0_707106781 = INT32(Round(CONST_SCALE * 0.707106781)); {181}
82   FIX_1_306562965 = INT32(Round(CONST_SCALE * 1.306562965)); {334}
83 
84 { Descale and correctly round an INT32 value that's scaled by N bits.
85   We assume RIGHT_SHIFT rounds towards minus infinity, so adding
86   the fudge factor is correct for either sign of X. }
87 
DESCALEnull88 function DESCALE(x : INT32; n : int) : INT32;
89 var
90   shift_temp : INT32;
91 begin
92 { We can gain a little more speed, with a further compromise in accuracy,
93   by omitting the addition in a descaling shift.  This yields an incorrectly
94   rounded result half the time... }
95 {$ifndef USE_ACCURATE_ROUNDING}
96   shift_temp := x;
97 {$else}
98   shift_temp := x + (INT32(1) shl (n-1));
99 {$endif}
100 
101 {$ifdef RIGHT_SHIFT_IS_UNSIGNED}
102   if shift_temp < 0 then
103     Descale :=  (shift_temp shr n) or ((not INT32(0)) shl (32-n))
104   else
105 {$endif}
106     Descale :=  (shift_temp shr n);
107 end;
108 
109 { Multiply a DCTELEM variable by an INT32 constant, and immediately
110   descale to yield a DCTELEM result. }
111 
112 
MULTIPLYnull113    function MULTIPLY(X : DCTELEM; Y: INT32): DCTELEM;
114    begin
115      Multiply := DeScale((X) * (Y), CONST_BITS);
116    end;
117 
118 
119 { Perform the forward DCT on one block of samples. }
120 
121 {GLOBAL}
122 procedure jpeg_fdct_ifast (var data : array of DCTELEM);
123 type
124   PWorkspace = ^TWorkspace;
125   TWorkspace = array [0..DCTSIZE2-1] of DCTELEM;
126 var
127   tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : DCTELEM;
128   tmp10, tmp11, tmp12, tmp13 : DCTELEM;
129   z1, z2, z3, z4, z5, z11, z13 : DCTELEM;
130   dataptr :  PWorkspace;
131   ctr : int;
132   {SHIFT_TEMPS}
133 begin
134   { Pass 1: process rows. }
135 
136   dataptr := PWorkspace(@data);
137   for ctr := DCTSIZE-1 downto 0 do
138   begin
139     tmp0 := dataptr^[0] + dataptr^[7];
140     tmp7 := dataptr^[0] - dataptr^[7];
141     tmp1 := dataptr^[1] + dataptr^[6];
142     tmp6 := dataptr^[1] - dataptr^[6];
143     tmp2 := dataptr^[2] + dataptr^[5];
144     tmp5 := dataptr^[2] - dataptr^[5];
145     tmp3 := dataptr^[3] + dataptr^[4];
146     tmp4 := dataptr^[3] - dataptr^[4];
147 
148     { Even part }
149 
150     tmp10 := tmp0 + tmp3;       { phase 2 }
151     tmp13 := tmp0 - tmp3;
152     tmp11 := tmp1 + tmp2;
153     tmp12 := tmp1 - tmp2;
154 
155     dataptr^[0] := tmp10 + tmp11; { phase 3 }
156     dataptr^[4] := tmp10 - tmp11;
157 
158     z1 := MULTIPLY(tmp12 + tmp13, FIX_0_707106781); { c4 }
159     dataptr^[2] := tmp13 + z1;  { phase 5 }
160     dataptr^[6] := tmp13 - z1;
161 
162     { Odd part }
163 
164     tmp10 := tmp4 + tmp5;       { phase 2 }
165     tmp11 := tmp5 + tmp6;
166     tmp12 := tmp6 + tmp7;
167 
168     { The rotator is modified from fig 4-8 to avoid extra negations. }
169     z5 := MULTIPLY(tmp10 - tmp12, FIX_0_382683433); { c6 }
170     z2 := MULTIPLY(tmp10, FIX_0_541196100) + z5; { c2-c6 }
171     z4 := MULTIPLY(tmp12, FIX_1_306562965) + z5; { c2+c6 }
172     z3 := MULTIPLY(tmp11, FIX_0_707106781); { c4 }
173 
174     z11 := tmp7 + z3;           { phase 5 }
175     z13 := tmp7 - z3;
176 
177     dataptr^[5] := z13 + z2;    { phase 6 }
178     dataptr^[3] := z13 - z2;
179     dataptr^[1] := z11 + z4;
180     dataptr^[7] := z11 - z4;
181 
182     Inc(DCTELEMPTR(dataptr), DCTSIZE);  { advance pointer to next row }
183   end;
184 
185   { Pass 2: process columns. }
186 
187   dataptr := PWorkspace(@data);
188   for ctr := DCTSIZE-1 downto 0 do
189   begin
190     tmp0 := dataptr^[DCTSIZE*0] + dataptr^[DCTSIZE*7];
191     tmp7 := dataptr^[DCTSIZE*0] - dataptr^[DCTSIZE*7];
192     tmp1 := dataptr^[DCTSIZE*1] + dataptr^[DCTSIZE*6];
193     tmp6 := dataptr^[DCTSIZE*1] - dataptr^[DCTSIZE*6];
194     tmp2 := dataptr^[DCTSIZE*2] + dataptr^[DCTSIZE*5];
195     tmp5 := dataptr^[DCTSIZE*2] - dataptr^[DCTSIZE*5];
196     tmp3 := dataptr^[DCTSIZE*3] + dataptr^[DCTSIZE*4];
197     tmp4 := dataptr^[DCTSIZE*3] - dataptr^[DCTSIZE*4];
198 
199     { Even part }
200 
201     tmp10 := tmp0 + tmp3;       { phase 2 }
202     tmp13 := tmp0 - tmp3;
203     tmp11 := tmp1 + tmp2;
204     tmp12 := tmp1 - tmp2;
205 
206     dataptr^[DCTSIZE*0] := tmp10 + tmp11; { phase 3 }
207     dataptr^[DCTSIZE*4] := tmp10 - tmp11;
208 
209     z1 := MULTIPLY(tmp12 + tmp13, FIX_0_707106781); { c4 }
210     dataptr^[DCTSIZE*2] := tmp13 + z1; { phase 5 }
211     dataptr^[DCTSIZE*6] := tmp13 - z1;
212 
213     { Odd part }
214 
215     tmp10 := tmp4 + tmp5;       { phase 2 }
216     tmp11 := tmp5 + tmp6;
217     tmp12 := tmp6 + tmp7;
218 
219     { The rotator is modified from fig 4-8 to avoid extra negations. }
220     z5 := MULTIPLY(tmp10 - tmp12, FIX_0_382683433); { c6 }
221     z2 := MULTIPLY(tmp10, FIX_0_541196100) + z5; { c2-c6 }
222     z4 := MULTIPLY(tmp12, FIX_1_306562965) + z5; { c2+c6 }
223     z3 := MULTIPLY(tmp11, FIX_0_707106781); { c4 }
224 
225     z11 := tmp7 + z3;           { phase 5 }
226     z13 := tmp7 - z3;
227 
228     dataptr^[DCTSIZE*5] := z13 + z2; { phase 6 }
229     dataptr^[DCTSIZE*3] := z13 - z2;
230     dataptr^[DCTSIZE*1] := z11 + z4;
231     dataptr^[DCTSIZE*7] := z11 - z4;
232 
233     Inc(DCTELEMPTR(dataptr));   { advance pointer to next column }
234   end;
235 end;
236 
237 end.
238