1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2    Copyright (C) 1992-2020 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
4    and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
5    Software Science at the University of Utah.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 /* For long call handling.  */
24 extern unsigned long total_code_bytes;
25 
26 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
27 
28 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
29 
30 /* Generate code for the HPPA 2.0 architecture in 64bit mode.  */
31 #ifndef TARGET_64BIT
32 #define TARGET_64BIT 0
33 #endif
34 
35 /* Generate code for ELF32 ABI.  */
36 #ifndef TARGET_ELF32
37 #define TARGET_ELF32 0
38 #endif
39 
40 /* Generate code for SOM 32bit ABI.  */
41 #ifndef TARGET_SOM
42 #define TARGET_SOM 0
43 #endif
44 
45 /* HP-UX UNIX features.  */
46 #ifndef TARGET_HPUX
47 #define TARGET_HPUX 0
48 #endif
49 
50 /* HP-UX 10.10 UNIX 95 features.  */
51 #ifndef TARGET_HPUX_10_10
52 #define TARGET_HPUX_10_10 0
53 #endif
54 
55 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.)  */
56 #ifndef TARGET_HPUX_11
57 #define TARGET_HPUX_11 0
58 #endif
59 
60 /* HP-UX 11i multibyte and UNIX 98 extensions.  */
61 #ifndef TARGET_HPUX_11_11
62 #define TARGET_HPUX_11_11 0
63 #endif
64 
65 /* HP-UX 11i multibyte and UNIX 2003 extensions.  */
66 #ifndef TARGET_HPUX_11_31
67 #define TARGET_HPUX_11_31 0
68 #endif
69 
70 /* HP-UX long double library.  */
71 #ifndef HPUX_LONG_DOUBLE_LIBRARY
72 #define HPUX_LONG_DOUBLE_LIBRARY 0
73 #endif
74 
75 /* Linux kernel atomic operation support.  */
76 #ifndef TARGET_SYNC_LIBCALL
77 #define TARGET_SYNC_LIBCALL 0
78 #endif
79 
80 /* The following three defines are potential target switches.  The current
81    defines are optimal given the current capabilities of GAS and GNU ld.  */
82 
83 /* Define to a C expression evaluating to true to use long absolute calls.
84    Currently, only the HP assembler and SOM linker support long absolute
85    calls.  They are used only in non-pic code.  */
86 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
87 
88 /* Define to a C expression evaluating to true to use long PIC symbol
89    difference calls.  Long PIC symbol difference calls are only used with
90    the HP assembler and linker.  The HP assembler detects this instruction
91    sequence and treats it as long pc-relative call.  Currently, GAS only
92    allows a difference of two symbols in the same subspace, and it doesn't
93    detect the sequence as a pc-relative call.  */
94 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
95 
96 /* Define to a C expression evaluating to true to use SOM secondary
97    definition symbols for weak support.  Linker support for secondary
98    definition symbols is buggy prior to HP-UX 11.X.  */
99 #define TARGET_SOM_SDEF 0
100 
101 /* Define to a C expression evaluating to true to save the entry value
102    of SP in the current frame marker.  This is normally unnecessary.
103    However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
104    HP compilers don't use this flag but it is supported by the assembler.
105    We set this flag to indicate that register %r3 has been saved at the
106    start of the frame.  Thus, when the HP unwind library is used, we
107    need to generate additional code to save SP into the frame marker.  */
108 #define TARGET_HPUX_UNWIND_LIBRARY 0
109 
110 #ifndef TARGET_DEFAULT
111 #define TARGET_DEFAULT MASK_GAS
112 #endif
113 
114 #ifndef TARGET_CPU_DEFAULT
115 #define TARGET_CPU_DEFAULT 0
116 #endif
117 
118 #ifndef TARGET_SCHED_DEFAULT
119 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
120 #endif
121 
122 /* Support for a compile-time default CPU, et cetera.  The rules are:
123    --with-schedule is ignored if -mschedule is specified.
124    --with-arch is ignored if -march is specified.  */
125 #define OPTION_DEFAULT_SPECS \
126   {"arch", "%{!march=*:-march=%(VALUE)}" }, \
127   {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
128 
129 /* Specify the dialect of assembler to use.  New mnemonics is dialect one
130    and the old mnemonics are dialect zero.  */
131 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
132 
133 /* Override some settings from dbxelf.h.  */
134 
135 /* We do not have to be compatible with dbx, so we enable gdb extensions
136    by default.  */
137 #define DEFAULT_GDB_EXTENSIONS 1
138 
139 /* This used to be zero (no max length), but big enums and such can
140    cause huge strings which killed gas.
141 
142    We also have to avoid lossage in dbxout.c -- it does not compute the
143    string size accurately, so we are real conservative here.  */
144 #undef DBX_CONTIN_LENGTH
145 #define DBX_CONTIN_LENGTH 3000
146 
147 /* GDB always assumes the current function's frame begins at the value
148    of the stack pointer upon entry to the current function.  Accessing
149    local variables and parameters passed on the stack is done using the
150    base of the frame + an offset provided by GCC.
151 
152    For functions which have frame pointers this method works fine;
153    the (frame pointer) == (stack pointer at function entry) and GCC provides
154    an offset relative to the frame pointer.
155 
156    This loses for functions without a frame pointer; GCC provides an offset
157    which is relative to the stack pointer after adjusting for the function's
158    frame size.  GDB would prefer the offset to be relative to the value of
159    the stack pointer at the function's entry.  Yuk!  */
160 #define DEBUGGER_AUTO_OFFSET(X) \
161   ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
162     + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
163 
164 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
165   ((GET_CODE (X) == PLUS ? OFFSET : 0) \
166     + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
167 
168 #define TARGET_CPU_CPP_BUILTINS()				\
169 do {								\
170      builtin_assert("cpu=hppa");				\
171      builtin_assert("machine=hppa");				\
172      builtin_define("__hppa");					\
173      builtin_define("__hppa__");				\
174      builtin_define("__BIG_ENDIAN__");				\
175      if (TARGET_PA_20)						\
176        builtin_define("_PA_RISC2_0");				\
177      else if (TARGET_PA_11)					\
178        builtin_define("_PA_RISC1_1");				\
179      else							\
180        builtin_define("_PA_RISC1_0");				\
181      if (HPUX_LONG_DOUBLE_LIBRARY)				\
182        builtin_define("__SIZEOF_FLOAT128__=16");		\
183 } while (0)
184 
185 /* An old set of OS defines for various BSD-like systems.  */
186 #define TARGET_OS_CPP_BUILTINS()				\
187   do								\
188     {								\
189 	builtin_define_std ("REVARGV");				\
190 	builtin_define_std ("hp800");				\
191 	builtin_define_std ("hp9000");				\
192 	builtin_define_std ("hp9k8");				\
193 	if (!c_dialect_cxx () && !flag_iso)			\
194 	  builtin_define ("hppa");				\
195 	builtin_define_std ("spectrum");			\
196 	builtin_define_std ("unix");				\
197 	builtin_assert ("system=bsd");				\
198 	builtin_assert ("system=unix");				\
199     }								\
200   while (0)
201 
202 #define CC1_SPEC "%{pg:} %{p:}"
203 
204 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
205 
206 /* We don't want -lg.  */
207 #ifndef LIB_SPEC
208 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
209 #endif
210 
211 /* Make gcc agree with <machine/ansi.h> */
212 
213 #define SIZE_TYPE "unsigned int"
214 #define PTRDIFF_TYPE "int"
215 #define WCHAR_TYPE "unsigned int"
216 #define WCHAR_TYPE_SIZE 32
217 
218 /* target machine storage layout */
219 typedef struct GTY(()) machine_function
220 {
221   /* Flag indicating that a .NSUBSPA directive has been output for
222      this function.  */
223   int in_nsubspa;
224 } machine_function;
225 
226 /* Define this macro if it is advisable to hold scalars in registers
227    in a wider mode than that declared by the program.  In such cases,
228    the value is constrained to be within the bounds of the declared
229    type, but kept valid in the wider mode.  The signedness of the
230    extension may differ from that of the type.  */
231 
232 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
233   if (GET_MODE_CLASS (MODE) == MODE_INT	\
234       && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)  	\
235     (MODE) = word_mode;
236 
237 /* Define this if most significant bit is lowest numbered
238    in instructions that operate on numbered bit-fields.  */
239 #define BITS_BIG_ENDIAN 1
240 
241 /* Define this if most significant byte of a word is the lowest numbered.  */
242 /* That is true on the HP-PA.  */
243 #define BYTES_BIG_ENDIAN 1
244 
245 /* Define this if most significant word of a multiword number is lowest
246    numbered.  */
247 #define WORDS_BIG_ENDIAN 1
248 
249 #define MAX_BITS_PER_WORD 64
250 
251 /* Width of a word, in units (bytes).  */
252 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
253 
254 /* Minimum number of units in a word.  If this is undefined, the default
255    is UNITS_PER_WORD.  Otherwise, it is the constant value that is the
256    smallest value that UNITS_PER_WORD can have at run-time.
257 
258    FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
259    building of various TImode routines in libgcc.  The HP runtime
260    specification doesn't provide the alignment requirements and calling
261    conventions for TImode variables.  */
262 #define MIN_UNITS_PER_WORD 4
263 
264 /* The widest floating point format supported by the hardware.  Note that
265    setting this influences some Ada floating point type sizes, currently
266    required for GNAT to operate properly.  */
267 #define WIDEST_HARDWARE_FP_SIZE 64
268 
269 /* Allocation boundary (in *bits*) for storing arguments in argument list.  */
270 #define PARM_BOUNDARY BITS_PER_WORD
271 
272 /* Largest alignment required for any stack parameter, in bits.
273    Don't define this if it is equal to PARM_BOUNDARY */
274 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
275 
276 /* Boundary (in *bits*) on which stack pointer is always aligned;
277    certain optimizations in combine depend on this.
278 
279    The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
280    the stack on the 32 and 64-bit ports, respectively.  However, we
281    are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
282    in main.  Thus, we treat the former as the preferred alignment.  */
283 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
284 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
285 
286 /* Allocation boundary (in *bits*) for the code of a function.  */
287 #define FUNCTION_BOUNDARY BITS_PER_WORD
288 
289 /* Alignment of field after `int : 0' in a structure.  */
290 #define EMPTY_FIELD_BOUNDARY 32
291 
292 /* Every structure's size must be a multiple of this.  */
293 #define STRUCTURE_SIZE_BOUNDARY 8
294 
295 /* A bit-field declared as `int' forces `int' alignment for the struct.  */
296 #define PCC_BITFIELD_TYPE_MATTERS 1
297 
298 /* No data type wants to be aligned rounder than this.  The long double
299    type has 16-byte alignment on the 64-bit target even though it was never
300    implemented in hardware.  The software implementation only needs 8-byte
301    alignment.  This matches the biggest alignment of the HP compilers.  */
302 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
303 
304 /* Alignment, in bits, a C conformant malloc implementation has to provide.
305    The HP-UX malloc implementation provides a default alignment of 8 bytes.
306    It should be 16 bytes on the 64-bit target since long double has 16-byte
307    alignment.  It can be increased with mallopt but it's non critical since
308    long double was never implemented in hardware.  The glibc implementation
309    currently provides 8-byte alignment.  It should be 16 bytes since various
310    POSIX types such as pthread_mutex_t require 16-byte alignment.  Again,
311    this is non critical since 16-byte alignment is no longer needed for
312    atomic operations.  */
313 #define MALLOC_ABI_ALIGNMENT (TARGET_64BIT ? 128 : 64)
314 
315 /* Make arrays of chars word-aligned for the same reasons.  */
316 #define DATA_ALIGNMENT(TYPE, ALIGN)		\
317   (TREE_CODE (TYPE) == ARRAY_TYPE		\
318    && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
319    && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
320 
321 /* Set this nonzero if move instructions will actually fail to work
322    when given unaligned data.  */
323 #define STRICT_ALIGNMENT 1
324 
325 /* Specify the registers used for certain standard purposes.
326    The values of these macros are register numbers.  */
327 
328 /* The HP-PA pc isn't overloaded on a register that the compiler knows about.  */
329 /* #define PC_REGNUM  */
330 
331 /* Register to use for pushing function arguments.  */
332 #define STACK_POINTER_REGNUM 30
333 
334 /* Fixed register for local variable access.  Always eliminated.  */
335 #define FRAME_POINTER_REGNUM (TARGET_64BIT ? 61 : 89)
336 
337 /* Base register for access to local variables of the function.  */
338 #define HARD_FRAME_POINTER_REGNUM 3
339 
340 /* Don't allow hard registers to be renamed into r2 unless r2
341    is already live or already being saved (due to eh).  */
342 
343 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
344   ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
345 
346 /* Base register for access to arguments of the function.  */
347 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
348 
349 /* Register in which static-chain is passed to a function.  */
350 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
351 
352 /* Register used to address the offset table for position-independent
353    data references.  */
354 #define PIC_OFFSET_TABLE_REGNUM \
355   (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
356 
357 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
358 
359 /* Function to return the rtx used to save the pic offset table register
360    across function calls.  */
361 extern rtx hppa_pic_save_rtx (void);
362 
363 #define DEFAULT_PCC_STRUCT_RETURN 0
364 
365 /* Register in which address to store a structure value
366    is passed to a function.  */
367 #define PA_STRUCT_VALUE_REGNUM 28
368 
369 /* Definitions for register eliminations.
370 
371    We have two registers that can be eliminated.  First, the frame pointer
372    register can often be eliminated in favor of the stack pointer register.
373    Secondly, the argument pointer register can always be eliminated in the
374    32-bit runtimes.  */
375 
376 /* This is an array of structures.  Each structure initializes one pair
377    of eliminable registers.  The "from" register number is given first,
378    followed by "to".  Eliminations of the same "from" register are listed
379    in order of preference.
380 
381    The argument pointer cannot be eliminated in the 64-bit runtime.  It
382    is the same register as the hard frame pointer in the 32-bit runtime.
383    So, it does not need to be listed.  */
384 #define ELIMINABLE_REGS                                 \
385 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},    \
386  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},         \
387  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
388 
389 /* Define the offset between two registers, one to be eliminated,
390    and the other its replacement, at the start of a routine.  */
391 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
392   ((OFFSET) = pa_initial_elimination_offset(FROM, TO))
393 
394 /* Describe how we implement __builtin_eh_return.  */
395 #define EH_RETURN_DATA_REGNO(N)	\
396   ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
397 #define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 29)
398 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
399 
400 /* Offset from the frame pointer register value to the top of stack.  */
401 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
402 
403 /* The maximum number of hard registers that can be saved in the call
404    frame.  The soft frame pointer is not included.  */
405 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
406 
407 /* A C expression whose value is RTL representing the location of the
408    incoming return address at the beginning of any function, before the
409    prologue.  You only need to define this macro if you want to support
410    call frame debugging information like that provided by DWARF 2.  */
411 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
412 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
413 
414 /* A C expression whose value is an integer giving a DWARF 2 column
415    number that may be used as an alternate return column.  This should
416    be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
417    register, but an alternate column needs to be used for signal frames.
418 
419    Column 0 is not used but unfortunately its register size is set to
420    4 bytes (sizeof CCmode) so it can't be used on 64-bit targets.  */
421 #define DWARF_ALT_FRAME_RETURN_COLUMN (FIRST_PSEUDO_REGISTER - 1)
422 
423 /* This macro chooses the encoding of pointers embedded in the exception
424    handling sections.  If at all possible, this should be defined such
425    that the exception handling section will not require dynamic relocations,
426    and so may be read-only.
427 
428    Because the HP assembler auto aligns, it is necessary to use
429    DW_EH_PE_aligned.  It's not possible to make the data read-only
430    on the HP-UX SOM port since the linker requires fixups for label
431    differences in different sections to be word aligned.  However,
432    the SOM linker can do unaligned fixups for absolute pointers.
433    We also need aligned pointers for global and function pointers.
434 
435    Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
436    fixups, the runtime doesn't have a consistent relationship between
437    text and data for dynamically loaded objects.  Thus, it's not possible
438    to use pc-relative encoding for pointers on this target.  It may be
439    possible to use segment relative encodings but GAS doesn't currently
440    have a mechanism to generate these encodings.  For other targets, we
441    use pc-relative encoding for pointers.  If the pointer might require
442    dynamic relocation, we make it indirect.  */
443 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL)			\
444   (TARGET_GAS && !TARGET_HPUX						\
445    ? (DW_EH_PE_pcrel							\
446       | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0)		\
447       | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4))		\
448    : (!TARGET_GAS || (GLOBAL) || (CODE) == 2				\
449       ? DW_EH_PE_aligned : DW_EH_PE_absptr))
450 
451 /* Handle special EH pointer encodings.  Absolute, pc-relative, and
452    indirect are handled automatically.  We output pc-relative, and
453    indirect pc-relative ourself since we need some special magic to
454    generate pc-relative relocations, and to handle indirect function
455    pointers.  */
456 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
457   do {									\
458     if (((ENCODING) & 0x70) == DW_EH_PE_pcrel)				\
459       {									\
460 	fputs (integer_asm_op (SIZE, FALSE), FILE);			\
461 	if ((ENCODING) & DW_EH_PE_indirect)				\
462 	  output_addr_const (FILE, pa_get_deferred_plabel (ADDR));	\
463 	else								\
464 	  assemble_name (FILE, XSTR ((ADDR), 0));			\
465 	fputs ("+8-$PIC_pcrel$0", FILE);				\
466 	goto DONE;							\
467       }									\
468     } while (0)
469 
470 
471 /* The class value for index registers, and the one for base regs.  */
472 #define INDEX_REG_CLASS GENERAL_REGS
473 #define BASE_REG_CLASS GENERAL_REGS
474 
475 #define FP_REG_CLASS_P(CLASS) \
476   ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
477 
478 /* True if register is floating-point.  */
479 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
480 
481 #define MAYBE_FP_REG_CLASS_P(CLASS) \
482   reg_classes_intersect_p ((CLASS), FP_REGS)
483 
484 
485 /* Stack layout; function entry, exit and calling.  */
486 
487 /* Define this if pushing a word on the stack
488    makes the stack pointer a smaller address.  */
489 /* #define STACK_GROWS_DOWNWARD */
490 
491 /* Believe it or not.  */
492 #define ARGS_GROW_DOWNWARD 1
493 
494 /* Define this to nonzero if the nominal address of the stack frame
495    is at the high-address end of the local variables;
496    that is, each additional local variable allocated
497    goes at a more negative offset in the frame.  */
498 #define FRAME_GROWS_DOWNWARD 0
499 
500 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
501    of the stack.  The default is to align it to STACK_BOUNDARY.  */
502 #define STACK_ALIGNMENT_NEEDED 0
503 
504 /* If we generate an insn to push BYTES bytes,
505    this says how many the stack pointer really advances by.
506    On the HP-PA, don't define this because there are no push insns.  */
507 /*  #define PUSH_ROUNDING(BYTES) */
508 
509 /* Offset of first parameter from the argument pointer register value.
510    This value will be negated because the arguments grow down.
511    Also note that on STACK_GROWS_UPWARD machines (such as this one)
512    this is the distance from the frame pointer to the end of the first
513    argument, not it's beginning.  To get the real offset of the first
514    argument, the size of the argument must be added.  */
515 
516 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
517 
518 /* When a parameter is passed in a register, stack space is still
519    allocated for it.  */
520 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
521 
522 /* Define this if the above stack space is to be considered part of the
523    space allocated by the caller.  */
524 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
525 
526 /* Keep the stack pointer constant throughout the function.
527    This is both an optimization and a necessity: longjmp
528    doesn't behave itself when the stack pointer moves within
529    the function!  */
530 #define ACCUMULATE_OUTGOING_ARGS 1
531 
532 /* The weird HPPA calling conventions require a minimum of 48 bytes on
533    the stack: 16 bytes for register saves, and 32 bytes for magic.
534    This is the difference between the logical top of stack and the
535    actual sp.
536 
537    On the 64-bit port, the HP C compiler allocates a 48-byte frame
538    marker, although the runtime documentation only describes a 16
539    byte marker.  For compatibility, we allocate 48 bytes.  */
540 #define STACK_POINTER_OFFSET \
541   (TARGET_64BIT ? -(crtl->outgoing_args_size + 48) : poly_int64 (-32))
542 
543 #define STACK_DYNAMIC_OFFSET(FNDECL)	\
544   (TARGET_64BIT				\
545    ? (STACK_POINTER_OFFSET)		\
546    : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
547 
548 
549 /* Define a data type for recording info about an argument list
550    during the scan of that argument list.  This data type should
551    hold all necessary information about the function itself
552    and about the args processed so far, enough to enable macros
553    such as FUNCTION_ARG to determine where the next arg should go.
554 
555    On the HP-PA, the WORDS field holds the number of words
556    of arguments scanned so far (including the invisible argument,
557    if any, which holds the structure-value-address).  Thus, 4 or
558    more means all following args should go on the stack.
559 
560    The INCOMING field tracks whether this is an "incoming" or
561    "outgoing" argument.
562 
563    The INDIRECT field indicates whether this is an indirect
564    call or not.
565 
566    The NARGS_PROTOTYPE field indicates that an argument does not
567    have a prototype when it less than or equal to 0.  */
568 
569 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
570 
571 #define CUMULATIVE_ARGS struct hppa_args
572 
573 /* Initialize a variable CUM of type CUMULATIVE_ARGS
574    for a call to a function whose data type is FNTYPE.
575    For a library call, FNTYPE is 0.  */
576 
577 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
578   (CUM).words = 0, 							\
579   (CUM).incoming = 0,							\
580   (CUM).indirect = (FNTYPE) && !(FNDECL),				\
581   (CUM).nargs_prototype = (FNTYPE && prototype_p (FNTYPE)		\
582 			   ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1	\
583 			      + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
584 				 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
585 			   : 0)
586 
587 
588 
589 /* Similar, but when scanning the definition of a procedure.  We always
590    set NARGS_PROTOTYPE large so we never return a PARALLEL.  */
591 
592 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
593   (CUM).words = 0,				\
594   (CUM).incoming = 1,				\
595   (CUM).indirect = 0,				\
596   (CUM).nargs_prototype = 1000
597 
598 /* Determine where to put an argument to a function.
599    Value is zero to push the argument on the stack,
600    or a hard register in which to store the argument.
601 
602    MODE is the argument's machine mode.
603    TYPE is the data type of the argument (as a tree).
604     This is null for libcalls where that information may
605     not be available.
606    CUM is a variable of type CUMULATIVE_ARGS which gives info about
607     the preceding args and about the function being called.
608    NAMED is nonzero if this argument is a named parameter
609     (otherwise it is an extra parameter matching an ellipsis).
610 
611    On the HP-PA the first four words of args are normally in registers
612    and the rest are pushed.  But any arg that won't entirely fit in regs
613    is pushed.
614 
615    Arguments passed in registers are either 1 or 2 words long.
616 
617    The caller must make a distinction between calls to explicitly named
618    functions and calls through pointers to functions -- the conventions
619    are different!  Calls through pointers to functions only use general
620    registers for the first four argument words.
621 
622    Of course all this is different for the portable runtime model
623    HP wants everyone to use for ELF.  Ugh.  Here's a quick description
624    of how it's supposed to work.
625 
626    1) callee side remains unchanged.  It expects integer args to be
627    in the integer registers, float args in the float registers and
628    unnamed args in integer registers.
629 
630    2) caller side now depends on if the function being called has
631    a prototype in scope (rather than if it's being called indirectly).
632 
633       2a) If there is a prototype in scope, then arguments are passed
634       according to their type (ints in integer registers, floats in float
635       registers, unnamed args in integer registers.
636 
637       2b) If there is no prototype in scope, then floating point arguments
638       are passed in both integer and float registers.  egad.
639 
640   FYI: The portable parameter passing conventions are almost exactly like
641   the standard parameter passing conventions on the RS6000.  That's why
642   you'll see lots of similar code in rs6000.h.  */
643 
644 /* Specify padding for the last element of a block move between registers
645    and memory.
646 
647    The 64-bit runtime specifies that objects need to be left justified
648    (i.e., the normal justification for a big endian target).  The 32-bit
649    runtime specifies right justification for objects smaller than 64 bits.
650    We use a DImode register in the parallel for 5 to 7 byte structures
651    so that there is only one element.  This allows the object to be
652    correctly padded.  */
653 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
654   targetm.calls.function_arg_padding ((MODE), (TYPE))
655 
656 
657 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
658    as assembly via FUNCTION_PROFILER.  Just output a local label.
659    We can't use the function label because the GAS SOM target can't
660    handle the difference of a global symbol and a local symbol.  */
661 
662 #ifndef FUNC_BEGIN_PROLOG_LABEL
663 #define FUNC_BEGIN_PROLOG_LABEL        "LFBP"
664 #endif
665 
666 #define FUNCTION_PROFILER(FILE, LABEL) \
667   (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
668 
669 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
670 
671 /* The profile counter if emitted must come before the prologue.  */
672 #define PROFILE_BEFORE_PROLOGUE 1
673 
674 /* We never want final.c to emit profile counters.  When profile
675    counters are required, we have to defer emitting them to the end
676    of the current file.  */
677 #define NO_PROFILE_COUNTERS 1
678 
679 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
680    the stack pointer does not matter.  The value is tested only in
681    functions that have frame pointers.
682    No definition is equivalent to always zero.  */
683 
684 extern int may_call_alloca;
685 
686 #define EXIT_IGNORE_STACK	\
687  (maybe_ne (get_frame_size (), 0)	\
688   || cfun->calls_alloca || maybe_ne (crtl->outgoing_args_size, 0))
689 
690 /* Length in units of the trampoline for entering a nested function.  */
691 
692 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 64)
693 
694 /* Alignment required by the trampoline.  */
695 
696 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
697 
698 /* Minimum length of a cache line.  A length of 16 will work on all
699    PA-RISC processors.  All PA 1.1 processors have a cache line of
700    32 bytes.  Most but not all PA 2.0 processors have a cache line
701    of 64 bytes.  As cache flushes are expensive and we don't support
702    PA 1.0, we use a minimum length of 32.  */
703 
704 #define MIN_CACHELINE_SIZE 32
705 
706 
707 /* Addressing modes, and classification of registers for them.
708 
709    Using autoincrement addressing modes on PA8000 class machines is
710    not profitable.  */
711 
712 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
713 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
714 
715 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
716 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
717 
718 /* Macros to check register numbers against specific register classes.  */
719 
720 /* The following macros assume that X is a hard or pseudo reg number.
721    They give nonzero only if X is a hard reg of the suitable class
722    or a pseudo reg currently allocated to a suitable hard reg.
723    Since they use reg_renumber, they are safe only once reg_renumber
724    has been allocated, which happens in reginfo.c during register
725    allocation.  */
726 
727 #define REGNO_OK_FOR_INDEX_P(X) \
728   ((X) && ((X) < 32							\
729    || ((X) == FRAME_POINTER_REGNUM)					\
730    || ((X) >= FIRST_PSEUDO_REGISTER					\
731        && reg_renumber							\
732        && (unsigned) reg_renumber[X] < 32)))
733 #define REGNO_OK_FOR_BASE_P(X) \
734   ((X) && ((X) < 32							\
735    || ((X) == FRAME_POINTER_REGNUM)					\
736    || ((X) >= FIRST_PSEUDO_REGISTER					\
737        && reg_renumber							\
738        && (unsigned) reg_renumber[X] < 32)))
739 #define REGNO_OK_FOR_FP_P(X) \
740   (FP_REGNO_P (X)							\
741    || (X >= FIRST_PSEUDO_REGISTER					\
742        && reg_renumber							\
743        && FP_REGNO_P (reg_renumber[X])))
744 
745 /* Now macros that check whether X is a register and also,
746    strictly, whether it is in a specified class.
747 
748    These macros are specific to the HP-PA, and may be used only
749    in code for printing assembler insns and in conditions for
750    define_optimization.  */
751 
752 /* 1 if X is an fp register.  */
753 
754 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
755 
756 /* Maximum number of registers that can appear in a valid memory address.  */
757 
758 #define MAX_REGS_PER_ADDRESS 2
759 
760 /* TLS symbolic reference.  */
761 #define PA_SYMBOL_REF_TLS_P(X) \
762   (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (X) != 0)
763 
764 /* Recognize any constant value that is a valid address except
765    for symbolic addresses.  We get better CSE by rejecting them
766    here and allowing hppa_legitimize_address to break them up.  We
767    use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE.  */
768 
769 #define CONSTANT_ADDRESS_P(X) \
770   ((GET_CODE (X) == LABEL_REF 						\
771    || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X))		\
772    || GET_CODE (X) == CONST_INT						\
773    || (GET_CODE (X) == CONST && !tls_referenced_p (X))			\
774    || GET_CODE (X) == HIGH) 						\
775    && (reload_in_progress || reload_completed				\
776        || ! pa_symbolic_expression_p (X)))
777 
778 /* A C expression that is nonzero if we are using the new HP assembler.  */
779 
780 #ifndef NEW_HP_ASSEMBLER
781 #define NEW_HP_ASSEMBLER 0
782 #endif
783 
784 /* The macros below define the immediate range for CONST_INTS on
785    the 64-bit port.  Constants in this range can be loaded in three
786    instructions using a ldil/ldo/depdi sequence.  Constants outside
787    this range are forced to the constant pool prior to reload.  */
788 
789 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
790 #define MIN_LEGIT_64BIT_CONST_INT \
791   ((HOST_WIDE_INT)((unsigned HOST_WIDE_INT) -32 << 31))
792 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
793   ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
794 
795 /* Target flags set on a symbol_ref.  */
796 
797 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output.  */
798 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
799 #define SYMBOL_REF_REFERENCED_P(RTX) \
800   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
801 
802 /* Defines for constraints.md.  */
803 
804 /* Return 1 iff OP is a scaled or unscaled index address.  */
805 #define IS_INDEX_ADDR_P(OP) \
806   (GET_CODE (OP) == PLUS				\
807    && GET_MODE (OP) == Pmode				\
808    && (GET_CODE (XEXP (OP, 0)) == MULT			\
809        || GET_CODE (XEXP (OP, 1)) == MULT		\
810        || (REG_P (XEXP (OP, 0))				\
811 	   && REG_P (XEXP (OP, 1)))))
812 
813 /* Return 1 iff OP is a LO_SUM DLT address.  */
814 #define IS_LO_SUM_DLT_ADDR_P(OP) \
815   (GET_CODE (OP) == LO_SUM				\
816    && GET_MODE (OP) == Pmode				\
817    && REG_P (XEXP (OP, 0))				\
818    && REG_OK_FOR_BASE_P (XEXP (OP, 0))			\
819    && GET_CODE (XEXP (OP, 1)) == UNSPEC)
820 
821 /* Nonzero if 14-bit offsets can be used for all loads and stores.
822    This is not possible when generating PA 1.x code as floating point
823    loads and stores only support 5-bit offsets.  Note that we do not
824    forbid the use of 14-bit offsets for integer modes.  Instead, we
825    use secondary reloads to fix REG+D memory addresses for integer
826    mode floating-point loads and stores.
827 
828    FIXME: the ELF32 linker clobbers the LSB of the FP register number
829    in PA 2.0 floating-point insns with long displacements.  This is
830    because R_PARISC_DPREL14WR and other relocations like it are not
831    yet supported by GNU ld.  For now, we reject long displacements
832    on this target.  */
833 
834 #define INT14_OK_STRICT \
835   (TARGET_SOFT_FLOAT                                                   \
836    || TARGET_DISABLE_FPREGS                                            \
837    || (TARGET_PA_20 && !TARGET_ELF32))
838 
839 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
840    and check its validity for a certain class.
841    We have two alternate definitions for each of them.
842    The usual definition accepts all pseudo regs; the other rejects
843    them unless they have been allocated suitable hard regs.
844 
845    Most source files want to accept pseudo regs in the hope that
846    they will get allocated to the class that the insn wants them to be in.
847    Source files for reload pass need to be strict.
848    After reload, it makes no difference, since pseudo regs have
849    been eliminated by then.  */
850 
851 /* Nonzero if X is a hard reg that can be used as an index
852    or if it is a pseudo reg.  */
853 #define REG_OK_FOR_INDEX_P(X) \
854   (REGNO (X) && (REGNO (X) < 32 				\
855    || REGNO (X) == FRAME_POINTER_REGNUM				\
856    || REGNO (X) >= FIRST_PSEUDO_REGISTER))
857 
858 /* Nonzero if X is a hard reg that can be used as a base reg
859    or if it is a pseudo reg.  */
860 #define REG_OK_FOR_BASE_P(X) \
861   (REGNO (X) && (REGNO (X) < 32 				\
862    || REGNO (X) == FRAME_POINTER_REGNUM				\
863    || REGNO (X) >= FIRST_PSEUDO_REGISTER))
864 
865 /* Nonzero if X is a hard reg that can be used as an index.  */
866 #define STRICT_REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
867 
868 /* Nonzero if X is a hard reg that can be used as a base reg.  */
869 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
870 
871 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
872 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
873 
874 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
875 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
876 
877 #define VAL_U6_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x40)
878 #define INT_U6_BITS(X) VAL_U6_BITS_P (INTVAL (X))
879 
880 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
881 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
882 
883 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
884 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
885 
886 #if HOST_BITS_PER_WIDE_INT > 32
887 #define VAL_32_BITS_P(X) \
888   ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31)    \
889    < (unsigned HOST_WIDE_INT) 2 << 31)
890 #else
891 #define VAL_32_BITS_P(X) 1
892 #endif
893 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
894 
895 /* These are the modes that we allow for scaled indexing.  */
896 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
897   ((TARGET_64BIT && (MODE) == DImode)					\
898    || (MODE) == SImode							\
899    || (MODE) == HImode							\
900    || (MODE) == SFmode							\
901    || (MODE) == DFmode)
902 
903 /* These are the modes that we allow for unscaled indexing.  */
904 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
905   ((TARGET_64BIT && (MODE) == DImode)					\
906    || (MODE) == SImode							\
907    || (MODE) == HImode							\
908    || (MODE) == QImode							\
909    || (MODE) == SFmode							\
910    || (MODE) == DFmode)
911 
912 /* Try a machine-dependent way of reloading an illegitimate address
913    operand.  If we find one, push the reload and jump to WIN.  This
914    macro is used in only one place: `find_reloads_address' in reload.c.  */
915 
916 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND_L, WIN) 	     \
917 do {									     \
918   rtx new_ad = pa_legitimize_reload_address (AD, MODE, OPNUM, TYPE, IND_L);  \
919   if (new_ad)								     \
920     {									     \
921       AD = new_ad;							     \
922       goto WIN;								     \
923     }									     \
924 } while (0)
925 
926 
927 #define TARGET_ASM_SELECT_SECTION  pa_select_section
928 
929 /* Return a nonzero value if DECL has a section attribute.  */
930 #define IN_NAMED_SECTION_P(DECL) \
931   ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
932    && DECL_SECTION_NAME (DECL) != NULL)
933 
934 /* Define this macro if references to a symbol must be treated
935    differently depending on something about the variable or
936    function named by the symbol (such as what section it is in).
937 
938    The macro definition, if any, is executed immediately after the
939    rtl for DECL or other node is created.
940    The value of the rtl will be a `mem' whose address is a
941    `symbol_ref'.
942 
943    The usual thing for this macro to do is to a flag in the
944    `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
945    name string in the `symbol_ref' (if one bit is not enough
946    information).
947 
948    On the HP-PA we use this to indicate if a symbol is in text or
949    data space.  Also, function labels need special treatment.  */
950 
951 #define TEXT_SPACE_P(DECL)\
952   (TREE_CODE (DECL) == FUNCTION_DECL					\
953    || (TREE_CODE (DECL) == VAR_DECL					\
954        && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL)		\
955        && (! DECL_INITIAL (DECL) || ! pa_reloc_needed (DECL_INITIAL (DECL))) \
956        && !flag_pic)							\
957    || CONSTANT_CLASS_P (DECL))
958 
959 #define FUNCTION_NAME_P(NAME)  (*(NAME) == '@')
960 
961 /* Specify the machine mode that this machine uses for the index in the
962    tablejump instruction.  We use a 32-bit absolute address for non-pic code,
963    and a 32-bit offset for 32 and 64-bit pic code.  */
964 #define CASE_VECTOR_MODE SImode
965 
966 /* Jump tables must be 32-bit aligned, no matter the size of the element.  */
967 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
968 
969 /* Define this as 1 if `char' should by default be signed; else as 0.  */
970 #define DEFAULT_SIGNED_CHAR 1
971 
972 /* Max number of bytes we can move from memory to memory
973    in one reasonably fast instruction.  */
974 #define MOVE_MAX 8
975 
976 /* Higher than the default as we prefer to use simple move insns
977    (better scheduling and delay slot filling) and because our
978    built-in block move is really a 2X unrolled loop.
979 
980    Believe it or not, this has to be big enough to allow for copying all
981    arguments passed in registers to avoid infinite recursion during argument
982    setup for a function call.  Why?  Consider how we copy the stack slots
983    reserved for parameters when they may be trashed by a call.  */
984 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
985 
986 /* Define if operations between registers always perform the operation
987    on the full register even if a narrower mode is specified.  */
988 #define WORD_REGISTER_OPERATIONS 1
989 
990 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
991    will either zero-extend or sign-extend.  The value of this macro should
992    be the code that says which one of the two operations is implicitly
993    done, UNKNOWN if none.  */
994 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
995 
996 /* Nonzero if access to memory by bytes is slow and undesirable.  */
997 #define SLOW_BYTE_ACCESS 1
998 
999 /* Specify the machine mode that pointers have.
1000    After generation of rtl, the compiler makes no further distinction
1001    between pointers and any other objects of this machine mode.  */
1002 #define Pmode word_mode
1003 
1004 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1005    return the mode to be used for the comparison.  For floating-point, CCFPmode
1006    should be used.  CC_NOOVmode should be used when the first operand is a
1007    PLUS, MINUS, or NEG.  CCmode should be used when no special processing is
1008    needed.  */
1009 #define SELECT_CC_MODE(OP,X,Y) \
1010   (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode)    \
1011 
1012 /* A function address in a call instruction
1013    is a byte address (for indexing purposes)
1014    so give the MEM rtx a byte's mode.  */
1015 #define FUNCTION_MODE SImode
1016 
1017 /* Define this if addresses of constant functions
1018    shouldn't be put through pseudo regs where they can be cse'd.
1019    Desirable on machines where ordinary constants are expensive
1020    but a CALL with constant address is cheap.  */
1021 #define NO_FUNCTION_CSE 1
1022 
1023 /* Define this to be nonzero if shift instructions ignore all but the low-order
1024    few bits.  */
1025 #define SHIFT_COUNT_TRUNCATED 1
1026 
1027 /* Adjust the cost of branches.  */
1028 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1029 
1030 /* Handling the special cases is going to get too complicated for a macro,
1031    just call `pa_adjust_insn_length' to do the real work.  */
1032 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1033   ((LENGTH) = pa_adjust_insn_length ((INSN), (LENGTH)))
1034 
1035 /* Millicode insns are actually function calls with some special
1036    constraints on arguments and register usage.
1037 
1038    Millicode calls always expect their arguments in the integer argument
1039    registers, and always return their result in %r29 (ret1).  They
1040    are expected to clobber their arguments, %r1, %r29, and the return
1041    pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1042 
1043    This macro tells reorg that the references to arguments and
1044    millicode calls do not appear to happen until after the millicode call.
1045    This allows reorg to put insns which set the argument registers into the
1046    delay slot of the millicode call -- thus they act more like traditional
1047    CALL_INSNs.
1048 
1049    Note we cannot consider side effects of the insn to be delayed because
1050    the branch and link insn will clobber the return pointer.  If we happened
1051    to use the return pointer in the delay slot of the call, then we lose.
1052 
1053    get_attr_type will try to recognize the given insn, so make sure to
1054    filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1055    in particular.  */
1056 #define INSN_REFERENCES_ARE_DELAYED(X) (pa_insn_refs_are_delayed (X))
1057 
1058 
1059 /* Control the assembler format that we output.  */
1060 
1061 /* A C string constant describing how to begin a comment in the target
1062    assembler language.  The compiler assumes that the comment will end at
1063    the end of the line.  */
1064 
1065 #define ASM_COMMENT_START ";"
1066 
1067 /* Output to assembler file text saying following lines
1068    may contain character constants, extra white space, comments, etc.  */
1069 
1070 #define ASM_APP_ON ""
1071 
1072 /* Output to assembler file text saying following lines
1073    no longer contain unusual constructs.  */
1074 
1075 #define ASM_APP_OFF ""
1076 
1077 /* This is how to output the definition of a user-level label named NAME,
1078    such as the label on a static function or variable NAME.  */
1079 
1080 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1081   do {							\
1082     assemble_name ((FILE), (NAME));			\
1083     if (TARGET_GAS)					\
1084       fputs (":\n", (FILE));				\
1085     else						\
1086       fputc ('\n', (FILE));				\
1087   } while (0)
1088 
1089 /* This is how to output a reference to a user-level label named NAME.
1090    `assemble_name' uses this.  */
1091 
1092 #define ASM_OUTPUT_LABELREF(FILE,NAME)	\
1093   do {					\
1094     const char *xname = (NAME);		\
1095     if (FUNCTION_NAME_P (NAME))		\
1096       xname += 1;			\
1097     if (xname[0] == '*')		\
1098       xname += 1;			\
1099     else				\
1100       fputs (user_label_prefix, FILE);	\
1101     fputs (xname, FILE);		\
1102   } while (0)
1103 
1104 /* This how we output the symbol_ref X.  */
1105 
1106 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1107   do {                                                 \
1108     SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED;    \
1109     assemble_name (FILE, XSTR (X, 0));                 \
1110   } while (0)
1111 
1112 /* This is how to store into the string LABEL
1113    the symbol_ref name of an internal numbered label where
1114    PREFIX is the class of label and NUM is the number within the class.
1115    This is suitable for output with `assemble_name'.  */
1116 
1117 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)		\
1118   do								\
1119     {								\
1120       char *__p;						\
1121       (LABEL)[0] = '*';						\
1122       (LABEL)[1] = (PREFIX)[0];					\
1123       (LABEL)[2] = '$';						\
1124       __p = stpcpy (&(LABEL)[3], &(PREFIX)[1]);			\
1125       sprint_ul (__p, (unsigned long) (NUM));			\
1126     }								\
1127   while (0)
1128 
1129 
1130 /* Output the definition of a compiler-generated label named NAME.  */
1131 
1132 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1133   do {							\
1134     assemble_name_raw ((FILE), (NAME));			\
1135     if (TARGET_GAS)					\
1136       fputs (":\n", (FILE));				\
1137     else						\
1138       fputc ('\n', (FILE));				\
1139   } while (0)
1140 
1141 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1142 
1143 #define ASM_OUTPUT_ASCII(FILE, P, SIZE)  \
1144   pa_output_ascii ((FILE), (P), (SIZE))
1145 
1146 /* Jump tables are always placed in the text section.  We have to do
1147    this for the HP-UX SOM target as we can't switch sections in the
1148    middle of a function.
1149 
1150    On ELF targets, it is possible to put them in the readonly-data section.
1151    This would get the table out of .text and reduce branch lengths.
1152 
1153    A downside is that an additional insn (addil) is needed to access
1154    the table when generating PIC code.  The address difference table
1155    also has to use 32-bit pc-relative relocations.
1156 
1157    The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1158    when using ELF GAS.  A simple difference can be used when using
1159    the HP assembler.
1160 
1161    The final downside is GDB complains about the nesting of the label
1162    for the table.  */
1163 
1164 #define JUMP_TABLES_IN_TEXT_SECTION 1
1165 
1166 /* This is how to output an element of a case-vector that is absolute.  */
1167 
1168 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
1169   fprintf (FILE, "\t.word L$%d\n", VALUE)
1170 
1171 /* This is how to output an element of a case-vector that is relative.
1172    Since we always place jump tables in the text section, the difference
1173    is absolute and requires no relocation.  */
1174 
1175 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)  \
1176   fprintf (FILE, "\t.word L$%d-L$%d\n", VALUE, REL)
1177 
1178 /* This is how to output an absolute case-vector.  */
1179 
1180 #define ASM_OUTPUT_ADDR_VEC(LAB,BODY)	\
1181   pa_output_addr_vec ((LAB),(BODY))
1182 
1183 /* This is how to output a relative case-vector.  */
1184 
1185 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,BODY)	\
1186   pa_output_addr_diff_vec ((LAB),(BODY))
1187 
1188 /* This is how to output an assembler line that says to advance the
1189    location counter to a multiple of 2**LOG bytes.  */
1190 
1191 #define ASM_OUTPUT_ALIGN(FILE,LOG)	\
1192     fprintf (FILE, "\t.align %d\n", (1 << (LOG)))
1193 
1194 #define ASM_OUTPUT_SKIP(FILE,SIZE)  \
1195   fprintf (FILE, "\t.blockz " HOST_WIDE_INT_PRINT_UNSIGNED"\n",		\
1196 	   (unsigned HOST_WIDE_INT)(SIZE))
1197 
1198 /* This says how to output an assembler line to define an uninitialized
1199    global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1200    This macro exists to properly support languages like C++ which do not
1201    have common data.  */
1202 
1203 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN)		\
1204   pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1205 
1206 /* This says how to output an assembler line to define a global common symbol
1207    with size SIZE (in bytes) and alignment ALIGN (in bits).  */
1208 
1209 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN)  		\
1210   pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1211 
1212 /* This says how to output an assembler line to define a local common symbol
1213    with size SIZE (in bytes) and alignment ALIGN (in bits).  This macro
1214    controls how the assembler definitions of uninitialized static variables
1215    are output.  */
1216 
1217 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN)		\
1218   pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1219 
1220 /* All HP assemblers use "!" to separate logical lines.  */
1221 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1222 
1223 /* Print operand X (an rtx) in assembler syntax to file FILE.
1224    CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1225    For `%' followed by punctuation, CODE is the punctuation and X is null.
1226 
1227    On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1228    and an immediate zero should be represented as `r0'.
1229 
1230    Several % codes are defined:
1231    O an operation
1232    C compare conditions
1233    N extract conditions
1234    M modifier to handle preincrement addressing for memory refs.
1235    F modifier to handle preincrement addressing for fp memory refs */
1236 
1237 #define PRINT_OPERAND(FILE, X, CODE) pa_print_operand (FILE, X, CODE)
1238 
1239 
1240 /* Print a memory address as an operand to reference that memory location.  */
1241 
1242 #define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
1243 { rtx addr = ADDR;							\
1244   switch (GET_CODE (addr))						\
1245     {									\
1246     case REG:								\
1247       fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]);		\
1248       break;								\
1249     case PLUS:								\
1250       gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);		\
1251       fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)),		\
1252 	       reg_names [REGNO (XEXP (addr, 0))]);			\
1253       break;								\
1254     case LO_SUM:							\
1255       if (!symbolic_operand (XEXP (addr, 1), VOIDmode))			\
1256 	fputs ("R'", FILE);						\
1257       else if (flag_pic == 0)						\
1258 	fputs ("RR'", FILE);						\
1259       else								\
1260 	fputs ("RT'", FILE);						\
1261       pa_output_global_address (FILE, XEXP (addr, 1), 0);		\
1262       fputs ("(", FILE);						\
1263       output_operand (XEXP (addr, 0), 0);				\
1264       fputs (")", FILE);						\
1265       break;								\
1266     case CONST_INT:							\
1267       fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr));	\
1268       break;								\
1269     default:								\
1270       output_addr_const (FILE, addr);					\
1271     }}
1272 
1273 
1274 /* Find the return address associated with the frame given by
1275    FRAMEADDR.  */
1276 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR)				 \
1277   (pa_return_addr_rtx (COUNT, FRAMEADDR))
1278 
1279 /* Used to mask out junk bits from the return address, such as
1280    processor state, interrupt status, condition codes and the like.  */
1281 #define MASK_RETURN_ADDR						\
1282   /* The privilege level is in the two low order bits, mask em out	\
1283      of the return address.  */						\
1284   (GEN_INT (-4))
1285 
1286 /* We need a libcall to canonicalize function pointers on TARGET_ELF32.  */
1287 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1288   "__canonicalize_funcptr_for_compare"
1289 
1290 #ifdef HAVE_AS_TLS
1291 #undef TARGET_HAVE_TLS
1292 #define TARGET_HAVE_TLS true
1293 #endif
1294 
1295 /* The maximum offset in bytes for a PA 1.X pc-relative call to the
1296    head of the preceding stub table.  A long branch stub is two or three
1297    instructions for non-PIC and PIC, respectively.  Import stubs are
1298    seven and five instructions for HP-UX and ELF targets, respectively.
1299    The default stub group size for ELF targets is 217856 bytes.
1300    FIXME: We need an option to set the maximum offset.  */
1301 #define MAX_PCREL17F_OFFSET (TARGET_HPUX ? 198164 : 217856)
1302 
1303 #define NEED_INDICATE_EXEC_STACK 0
1304 
1305 /* Target CPU versions for D.  */
1306 #define TARGET_D_CPU_VERSIONS pa_d_target_versions
1307 
1308 /* Output default function prologue for hpux.  */
1309 #define TARGET_ASM_FUNCTION_PROLOGUE pa_output_function_prologue
1310