1 /* RTL-based forward propagation pass for GNU compiler.
2    Copyright (C) 2005-2020 Free Software Foundation, Inc.
3    Contributed by Paolo Bonzini and Steven Bosscher.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 
35 #include "sparseset.h"
36 #include "cfgrtl.h"
37 #include "cfgcleanup.h"
38 #include "cfgloop.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "rtl-iter.h"
42 
43 
44 /* This pass does simple forward propagation and simplification when an
45    operand of an insn can only come from a single def.  This pass uses
46    df.c, so it is global.  However, we only do limited analysis of
47    available expressions.
48 
49    1) The pass tries to propagate the source of the def into the use,
50    and checks if the result is independent of the substituted value.
51    For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52    zero, independent of the source register.
53 
54    In particular, we propagate constants into the use site.  Sometimes
55    RTL expansion did not put the constant in the same insn on purpose,
56    to satisfy a predicate, and the result will fail to be recognized;
57    but this happens rarely and in this case we can still create a
58    REG_EQUAL note.  For multi-word operations, this
59 
60       (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61       (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62       (set (subreg:SI (reg:DI 122) 0)
63          (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64       (set (subreg:SI (reg:DI 122) 4)
65          (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 
67    can be simplified to the much simpler
68 
69       (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70       (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 
72    This particular propagation is also effective at putting together
73    complex addressing modes.  We are more aggressive inside MEMs, in
74    that all definitions are propagated if the use is in a MEM; if the
75    result is a valid memory address we check address_cost to decide
76    whether the substitution is worthwhile.
77 
78    2) The pass propagates register copies.  This is not as effective as
79    the copy propagation done by CSE's canon_reg, which works by walking
80    the instruction chain, it can help the other transformations.
81 
82    We should consider removing this optimization, and instead reorder the
83    RTL passes, because GCSE does this transformation too.  With some luck,
84    the CSE pass at the end of rest_of_handle_gcse could also go away.
85 
86    3) The pass looks for paradoxical subregs that are actually unnecessary.
87    Things like this:
88 
89      (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90      (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91      (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92                                 (subreg:SI (reg:QI 121) 0)))
93 
94    are very common on machines that can only do word-sized operations.
95    For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96    if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97    we can replace the paradoxical subreg with simply (reg:WIDE M).  The
98    above will simplify this to
99 
100      (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101      (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102      (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 
104    where the first two insns are now dead.
105 
106    We used to use reaching definitions to find which uses have a
107    single reaching definition (sounds obvious...), but this is too
108    complex a problem in nasty testcases like PR33928.  Now we use the
109    multiple definitions problem in df-problems.c.  The similarity
110    between that problem and SSA form creation is taken further, in
111    that fwprop does a dominator walk to create its chains; however,
112    instead of creating a PHI function where multiple definitions meet
113    I just punt and record only singleton use-def chains, which is
114    all that is needed by fwprop.  */
115 
116 
117 static int num_changes;
118 
119 static vec<df_ref> use_def_ref;
120 static vec<df_ref> reg_defs;
121 static vec<df_ref> reg_defs_stack;
122 
123 /* The maximum number of propagations that are still allowed.  If we do
124    more propagations than originally we had uses, we must have ended up
125    in a propagation loop, as in PR79405.  Until the algorithm fwprop
126    uses can obviously not get into such loops we need a workaround like
127    this.  */
128 static int propagations_left;
129 
130 /* The MD bitmaps are trimmed to include only live registers to cut
131    memory usage on testcases like insn-recog.c.  Track live registers
132    in the basic block and do not perform forward propagation if the
133    destination is a dead pseudo occurring in a note.  */
134 static bitmap local_md;
135 static bitmap local_lr;
136 
137 /* Return the only def in USE's use-def chain, or NULL if there is
138    more than one def in the chain.  */
139 
140 static inline df_ref
get_def_for_use(df_ref use)141 get_def_for_use (df_ref use)
142 {
143   return use_def_ref[DF_REF_ID (use)];
144 }
145 
146 
147 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
148    TOP_FLAG says which artificials uses should be used, when DEF_REC
149    is an artificial def vector.  LOCAL_MD is modified as after a
150    df_md_simulate_* function; we do more or less the same processing
151    done there, so we do not use those functions.  */
152 
153 #define DF_MD_GEN_FLAGS \
154 	(DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
155 
156 static void
process_defs(df_ref def,int top_flag)157 process_defs (df_ref def, int top_flag)
158 {
159   for (; def; def = DF_REF_NEXT_LOC (def))
160     {
161       df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
162       unsigned int dregno;
163 
164       if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
165 	continue;
166 
167       dregno = DF_REF_REGNO (def);
168       if (curr_def)
169 	reg_defs_stack.safe_push (curr_def);
170       else
171 	{
172 	  /* Do not store anything if "transitioning" from NULL to NULL.  But
173              otherwise, push a special entry on the stack to tell the
174 	     leave_block callback that the entry in reg_defs was NULL.  */
175 	  if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
176 	    ;
177 	  else
178 	    reg_defs_stack.safe_push (def);
179 	}
180 
181       if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
182 	{
183 	  bitmap_set_bit (local_md, dregno);
184 	  reg_defs[dregno] = NULL;
185 	}
186       else
187 	{
188 	  bitmap_clear_bit (local_md, dregno);
189 	  reg_defs[dregno] = def;
190 	}
191     }
192 }
193 
194 
195 /* Fill the use_def_ref vector with values for the uses in USE_REC,
196    taking reaching definitions info from LOCAL_MD and REG_DEFS.
197    TOP_FLAG says which artificials uses should be used, when USE_REC
198    is an artificial use vector.  */
199 
200 static void
process_uses(df_ref use,int top_flag)201 process_uses (df_ref use, int top_flag)
202 {
203   for (; use; use = DF_REF_NEXT_LOC (use))
204     if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
205       {
206         unsigned int uregno = DF_REF_REGNO (use);
207         if (reg_defs[uregno]
208 	    && !bitmap_bit_p (local_md, uregno)
209 	    && bitmap_bit_p (local_lr, uregno))
210 	  use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
211       }
212 }
213 
214 class single_def_use_dom_walker : public dom_walker
215 {
216 public:
single_def_use_dom_walker(cdi_direction direction)217   single_def_use_dom_walker (cdi_direction direction)
218     : dom_walker (direction) {}
219   virtual edge before_dom_children (basic_block);
220   virtual void after_dom_children (basic_block);
221 };
222 
223 edge
before_dom_children(basic_block bb)224 single_def_use_dom_walker::before_dom_children (basic_block bb)
225 {
226   int bb_index = bb->index;
227   class df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
228   class df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
229   rtx_insn *insn;
230 
231   bitmap_copy (local_md, &md_bb_info->in);
232   bitmap_copy (local_lr, &lr_bb_info->in);
233 
234   /* Push a marker for the leave_block callback.  */
235   reg_defs_stack.safe_push (NULL);
236 
237   process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
238   process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
239 
240   /* We don't call df_simulate_initialize_forwards, as it may overestimate
241      the live registers if there are unused artificial defs.  We prefer
242      liveness to be underestimated.  */
243 
244   FOR_BB_INSNS (bb, insn)
245     if (INSN_P (insn))
246       {
247         unsigned int uid = INSN_UID (insn);
248         process_uses (DF_INSN_UID_USES (uid), 0);
249         process_uses (DF_INSN_UID_EQ_USES (uid), 0);
250         process_defs (DF_INSN_UID_DEFS (uid), 0);
251 	df_simulate_one_insn_forwards (bb, insn, local_lr);
252       }
253 
254   process_uses (df_get_artificial_uses (bb_index), 0);
255   process_defs (df_get_artificial_defs (bb_index), 0);
256 
257   return NULL;
258 }
259 
260 /* Pop the definitions created in this basic block when leaving its
261    dominated parts.  */
262 
263 void
after_dom_children(basic_block bb ATTRIBUTE_UNUSED)264 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
265 {
266   df_ref saved_def;
267   while ((saved_def = reg_defs_stack.pop ()) != NULL)
268     {
269       unsigned int dregno = DF_REF_REGNO (saved_def);
270 
271       /* See also process_defs.  */
272       if (saved_def == reg_defs[dregno])
273 	reg_defs[dregno] = NULL;
274       else
275 	reg_defs[dregno] = saved_def;
276     }
277 }
278 
279 
280 /* Build a vector holding the reaching definitions of uses reached by a
281    single dominating definition.  */
282 
283 static void
build_single_def_use_links(void)284 build_single_def_use_links (void)
285 {
286   /* We use the multiple definitions problem to compute our restricted
287      use-def chains.  */
288   df_set_flags (DF_EQ_NOTES);
289   df_md_add_problem ();
290   df_note_add_problem ();
291   df_analyze ();
292   df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
293 
294   use_def_ref.create (DF_USES_TABLE_SIZE ());
295   use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
296 
297   reg_defs.create (max_reg_num ());
298   reg_defs.safe_grow_cleared (max_reg_num ());
299 
300   reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
301   local_md = BITMAP_ALLOC (NULL);
302   local_lr = BITMAP_ALLOC (NULL);
303 
304   /* Walk the dominator tree looking for single reaching definitions
305      dominating the uses.  This is similar to how SSA form is built.  */
306   single_def_use_dom_walker (CDI_DOMINATORS)
307     .walk (cfun->cfg->x_entry_block_ptr);
308 
309   BITMAP_FREE (local_lr);
310   BITMAP_FREE (local_md);
311   reg_defs.release ();
312   reg_defs_stack.release ();
313 }
314 
315 
316 /* Do not try to replace constant addresses or addresses of local and
317    argument slots.  These MEM expressions are made only once and inserted
318    in many instructions, as well as being used to control symbol table
319    output.  It is not safe to clobber them.
320 
321    There are some uncommon cases where the address is already in a register
322    for some reason, but we cannot take advantage of that because we have
323    no easy way to unshare the MEM.  In addition, looking up all stack
324    addresses is costly.  */
325 
326 static bool
can_simplify_addr(rtx addr)327 can_simplify_addr (rtx addr)
328 {
329   rtx reg;
330 
331   if (CONSTANT_ADDRESS_P (addr))
332     return false;
333 
334   if (GET_CODE (addr) == PLUS)
335     reg = XEXP (addr, 0);
336   else
337     reg = addr;
338 
339   return (!REG_P (reg)
340 	  || (REGNO (reg) != FRAME_POINTER_REGNUM
341 	      && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
342 	      && REGNO (reg) != ARG_POINTER_REGNUM));
343 }
344 
345 /* Returns a canonical version of X for the address, from the point of view,
346    that all multiplications are represented as MULT instead of the multiply
347    by a power of 2 being represented as ASHIFT.
348 
349    Every ASHIFT we find has been made by simplify_gen_binary and was not
350    there before, so it is not shared.  So we can do this in place.  */
351 
352 static void
canonicalize_address(rtx x)353 canonicalize_address (rtx x)
354 {
355   for (;;)
356     switch (GET_CODE (x))
357       {
358       case ASHIFT:
359         if (CONST_INT_P (XEXP (x, 1))
360 	    && INTVAL (XEXP (x, 1)) < GET_MODE_UNIT_BITSIZE (GET_MODE (x))
361 	    && INTVAL (XEXP (x, 1)) >= 0)
362 	  {
363 	    HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
364 	    PUT_CODE (x, MULT);
365 	    XEXP (x, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift,
366 					GET_MODE (x));
367 	  }
368 
369 	x = XEXP (x, 0);
370         break;
371 
372       case PLUS:
373         if (GET_CODE (XEXP (x, 0)) == PLUS
374 	    || GET_CODE (XEXP (x, 0)) == ASHIFT
375 	    || GET_CODE (XEXP (x, 0)) == CONST)
376 	  canonicalize_address (XEXP (x, 0));
377 
378 	x = XEXP (x, 1);
379         break;
380 
381       case CONST:
382 	x = XEXP (x, 0);
383         break;
384 
385       default:
386         return;
387       }
388 }
389 
390 /* OLD is a memory address.  Return whether it is good to use NEW instead,
391    for a memory access in the given MODE.  */
392 
393 static bool
should_replace_address(rtx old_rtx,rtx new_rtx,machine_mode mode,addr_space_t as,bool speed)394 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
395 			addr_space_t as, bool speed)
396 {
397   int gain;
398 
399   if (rtx_equal_p (old_rtx, new_rtx)
400       || !memory_address_addr_space_p (mode, new_rtx, as))
401     return false;
402 
403   /* Copy propagation is always ok.  */
404   if (REG_P (old_rtx) && REG_P (new_rtx))
405     return true;
406 
407   /* Prefer the new address if it is less expensive.  */
408   gain = (address_cost (old_rtx, mode, as, speed)
409 	  - address_cost (new_rtx, mode, as, speed));
410 
411   /* If the addresses have equivalent cost, prefer the new address
412      if it has the highest `set_src_cost'.  That has the potential of
413      eliminating the most insns without additional costs, and it
414      is the same that cse.c used to do.  */
415   if (gain == 0)
416     gain = (set_src_cost (new_rtx, VOIDmode, speed)
417 	    - set_src_cost (old_rtx, VOIDmode, speed));
418 
419   return (gain > 0);
420 }
421 
422 
423 /* Flags for the last parameter of propagate_rtx_1.  */
424 
425 enum {
426   /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
427      if it is false, propagate_rtx_1 returns false if, for at least
428      one occurrence OLD, it failed to collapse the result to a constant.
429      For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
430      collapse to zero if replacing (reg:M B) with (reg:M A).
431 
432      PR_CAN_APPEAR is disregarded inside MEMs: in that case,
433      propagate_rtx_1 just tries to make cheaper and valid memory
434      addresses.  */
435   PR_CAN_APPEAR = 1,
436 
437   /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
438      outside memory addresses.  This is needed because propagate_rtx_1 does
439      not do any analysis on memory; thus it is very conservative and in general
440      it will fail if non-read-only MEMs are found in the source expression.
441 
442      PR_HANDLE_MEM is set when the source of the propagation was not
443      another MEM.  Then, it is safe not to treat non-read-only MEMs as
444      ``opaque'' objects.  */
445   PR_HANDLE_MEM = 2,
446 
447   /* Set when costs should be optimized for speed.  */
448   PR_OPTIMIZE_FOR_SPEED = 4
449 };
450 
451 /* Check that X has a single def.  */
452 
453 static bool
reg_single_def_p(rtx x)454 reg_single_def_p (rtx x)
455 {
456   if (!REG_P (x))
457     return false;
458 
459   int regno = REGNO (x);
460   return (DF_REG_DEF_COUNT (regno) == 1
461 	  && !bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)), regno));
462 }
463 
464 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
465    resulting expression.  Replace *PX with a new RTL expression if an
466    occurrence of OLD was found.
467 
468    This is only a wrapper around simplify-rtx.c: do not add any pattern
469    matching code here.  (The sole exception is the handling of LO_SUM, but
470    that is because there is no simplify_gen_* function for LO_SUM).  */
471 
472 static bool
propagate_rtx_1(rtx * px,rtx old_rtx,rtx new_rtx,int flags)473 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
474 {
475   rtx x = *px, tem = NULL_RTX, op0, op1, op2;
476   enum rtx_code code = GET_CODE (x);
477   machine_mode mode = GET_MODE (x);
478   machine_mode op_mode;
479   bool can_appear = (flags & PR_CAN_APPEAR) != 0;
480   bool valid_ops = true;
481 
482   if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
483     {
484       /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
485 	 they have side effects or not).  */
486       *px = (side_effects_p (x)
487 	     ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
488 	     : gen_rtx_SCRATCH (GET_MODE (x)));
489       return false;
490     }
491 
492   /* If X is OLD_RTX, return NEW_RTX.  But not if replacing only within an
493      address, and we are *not* inside one.  */
494   if (x == old_rtx)
495     {
496       *px = new_rtx;
497       return can_appear;
498     }
499 
500   /* If this is an expression, try recursive substitution.  */
501   switch (GET_RTX_CLASS (code))
502     {
503     case RTX_UNARY:
504       op0 = XEXP (x, 0);
505       op_mode = GET_MODE (op0);
506       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
507       if (op0 == XEXP (x, 0))
508 	return true;
509       tem = simplify_gen_unary (code, mode, op0, op_mode);
510       break;
511 
512     case RTX_BIN_ARITH:
513     case RTX_COMM_ARITH:
514       op0 = XEXP (x, 0);
515       op1 = XEXP (x, 1);
516       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
517       valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
518       if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
519 	return true;
520       tem = simplify_gen_binary (code, mode, op0, op1);
521       break;
522 
523     case RTX_COMPARE:
524     case RTX_COMM_COMPARE:
525       op0 = XEXP (x, 0);
526       op1 = XEXP (x, 1);
527       op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
528       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
529       valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
530       if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
531 	return true;
532       tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
533       break;
534 
535     case RTX_TERNARY:
536     case RTX_BITFIELD_OPS:
537       op0 = XEXP (x, 0);
538       op1 = XEXP (x, 1);
539       op2 = XEXP (x, 2);
540       op_mode = GET_MODE (op0);
541       valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
542       valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
543       valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
544       if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
545 	return true;
546       if (op_mode == VOIDmode)
547 	op_mode = GET_MODE (op0);
548       tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
549       break;
550 
551     case RTX_EXTRA:
552       /* The only case we try to handle is a SUBREG.  */
553       if (code == SUBREG)
554 	{
555           op0 = XEXP (x, 0);
556 	  valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
557           if (op0 == XEXP (x, 0))
558 	    return true;
559 	  tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
560 				     SUBREG_BYTE (x));
561 	}
562 
563       else
564 	{
565 	  rtvec vec;
566 	  rtvec newvec;
567 	  const char *fmt = GET_RTX_FORMAT (code);
568 	  rtx op;
569 
570 	  for (int i = 0; fmt[i]; i++)
571 	    switch (fmt[i])
572 	      {
573 	      case 'E':
574 		vec = XVEC (x, i);
575 		newvec = vec;
576 		for (int j = 0; j < GET_NUM_ELEM (vec); j++)
577 		  {
578 		    op = RTVEC_ELT (vec, j);
579 		    valid_ops &= propagate_rtx_1 (&op, old_rtx, new_rtx, flags);
580 		    if (op != RTVEC_ELT (vec, j))
581 		      {
582 			if (newvec == vec)
583 			  {
584 			    newvec = shallow_copy_rtvec (vec);
585 			    if (!tem)
586 			      tem = shallow_copy_rtx (x);
587 			    XVEC (tem, i) = newvec;
588 			  }
589 			RTVEC_ELT (newvec, j) = op;
590 		      }
591 		  }
592 	        break;
593 
594 	      case 'e':
595 		if (XEXP (x, i))
596 		  {
597 		    op = XEXP (x, i);
598 		    valid_ops &= propagate_rtx_1 (&op, old_rtx, new_rtx, flags);
599 		    if (op != XEXP (x, i))
600 		      {
601 			if (!tem)
602 			  tem = shallow_copy_rtx (x);
603 			XEXP (tem, i) = op;
604 		      }
605 		  }
606 	        break;
607 	      }
608 	}
609 
610       break;
611 
612     case RTX_OBJ:
613       if (code == MEM && x != new_rtx)
614 	{
615 	  rtx new_op0;
616 	  op0 = XEXP (x, 0);
617 
618 	  /* There are some addresses that we cannot work on.  */
619 	  if (!can_simplify_addr (op0))
620 	    return true;
621 
622 	  op0 = new_op0 = targetm.delegitimize_address (op0);
623 	  valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
624 					flags | PR_CAN_APPEAR);
625 
626 	  /* Dismiss transformation that we do not want to carry on.  */
627 	  if (!valid_ops
628 	      || new_op0 == op0
629 	      || !(GET_MODE (new_op0) == GET_MODE (op0)
630 		   || GET_MODE (new_op0) == VOIDmode))
631 	    return true;
632 
633 	  canonicalize_address (new_op0);
634 
635 	  /* Copy propagations are always ok.  Otherwise check the costs.  */
636 	  if (!(REG_P (old_rtx) && REG_P (new_rtx))
637 	      && !should_replace_address (op0, new_op0, GET_MODE (x),
638 					  MEM_ADDR_SPACE (x),
639 	      			 	  flags & PR_OPTIMIZE_FOR_SPEED))
640 	    return true;
641 
642 	  tem = replace_equiv_address_nv (x, new_op0);
643 	}
644 
645       else if (code == LO_SUM)
646 	{
647           op0 = XEXP (x, 0);
648           op1 = XEXP (x, 1);
649 
650 	  /* The only simplification we do attempts to remove references to op0
651 	     or make it constant -- in both cases, op0's invalidity will not
652 	     make the result invalid.  */
653 	  propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
654 	  valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
655           if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
656 	    return true;
657 
658 	  /* (lo_sum (high x) x) -> x  */
659 	  if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
660 	    tem = op1;
661 	  else
662 	    tem = gen_rtx_LO_SUM (mode, op0, op1);
663 
664 	  /* OP1 is likely not a legitimate address, otherwise there would have
665 	     been no LO_SUM.  We want it to disappear if it is invalid, return
666 	     false in that case.  */
667 	  return memory_address_p (mode, tem);
668 	}
669 
670       else if (code == REG)
671 	{
672 	  if (rtx_equal_p (x, old_rtx))
673 	    {
674               *px = new_rtx;
675               return can_appear;
676 	    }
677 	}
678       break;
679 
680     default:
681       break;
682     }
683 
684   /* No change, no trouble.  */
685   if (tem == NULL_RTX)
686     return true;
687 
688   *px = tem;
689 
690   /* Allow replacements that simplify operations on a vector or complex
691      value to a component.  The most prominent case is
692      (subreg ([vec_]concat ...)).   */
693   if (REG_P (tem) && !HARD_REGISTER_P (tem)
694       && (VECTOR_MODE_P (GET_MODE (new_rtx))
695 	  || COMPLEX_MODE_P (GET_MODE (new_rtx)))
696       && GET_MODE (tem) == GET_MODE_INNER (GET_MODE (new_rtx)))
697     return true;
698 
699   /* The replacement we made so far is valid, if all of the recursive
700      replacements were valid, or we could simplify everything to
701      a constant.  */
702   return valid_ops || can_appear || CONSTANT_P (tem);
703 }
704 
705 
706 /* Return true if X constains a non-constant mem.  */
707 
708 static bool
varying_mem_p(const_rtx x)709 varying_mem_p (const_rtx x)
710 {
711   subrtx_iterator::array_type array;
712   FOR_EACH_SUBRTX (iter, array, x, NONCONST)
713     if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
714       return true;
715   return false;
716 }
717 
718 
719 /* Replace all occurrences of OLD in X with NEW and try to simplify the
720    resulting expression (in mode MODE).  Return a new expression if it is
721    a constant, otherwise X.
722 
723    Simplifications where occurrences of NEW collapse to a constant are always
724    accepted.  All simplifications are accepted if NEW is a pseudo too.
725    Otherwise, we accept simplifications that have a lower or equal cost.  */
726 
727 static rtx
propagate_rtx(rtx x,machine_mode mode,rtx old_rtx,rtx new_rtx,bool speed)728 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
729 	       bool speed)
730 {
731   rtx tem;
732   bool collapsed;
733   int flags;
734 
735   if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
736     return NULL_RTX;
737 
738   flags = 0;
739   if (REG_P (new_rtx)
740       || CONSTANT_P (new_rtx)
741       || (GET_CODE (new_rtx) == SUBREG
742 	  && REG_P (SUBREG_REG (new_rtx))
743 	  && !paradoxical_subreg_p (new_rtx)))
744     flags |= PR_CAN_APPEAR;
745   if (!varying_mem_p (new_rtx))
746     flags |= PR_HANDLE_MEM;
747 
748   if (speed)
749     flags |= PR_OPTIMIZE_FOR_SPEED;
750 
751   tem = x;
752   collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
753   if (tem == x || !collapsed)
754     return NULL_RTX;
755 
756   /* gen_lowpart_common will not be able to process VOIDmode entities other
757      than CONST_INTs.  */
758   if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
759     return NULL_RTX;
760 
761   if (GET_MODE (tem) == VOIDmode)
762     tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
763   else
764     gcc_assert (GET_MODE (tem) == mode);
765 
766   return tem;
767 }
768 
769 
770 
771 
772 /* Return true if the register from reference REF is killed
773    between FROM to (but not including) TO.  */
774 
775 static bool
local_ref_killed_between_p(df_ref ref,rtx_insn * from,rtx_insn * to)776 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
777 {
778   rtx_insn *insn;
779 
780   for (insn = from; insn != to; insn = NEXT_INSN (insn))
781     {
782       df_ref def;
783       if (!INSN_P (insn))
784 	continue;
785 
786       FOR_EACH_INSN_DEF (def, insn)
787 	if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
788 	  return true;
789     }
790   return false;
791 }
792 
793 
794 /* Check if USE is killed between DEF_INSN and TARGET_INSN.  This would
795    require full computation of available expressions; we check only a few
796    restricted conditions:
797    - if the reg in USE has only one definition, go ahead;
798    - in the same basic block, we check for no definitions killing the use;
799    - if TARGET_INSN's basic block has DEF_INSN's basic block as its sole
800      predecessor, we check if the use is killed after DEF_INSN or before
801      TARGET_INSN insn, in their respective basic blocks.  */
802 
803 static bool
use_killed_between(df_ref use,rtx_insn * def_insn,rtx_insn * target_insn)804 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
805 {
806   basic_block def_bb = BLOCK_FOR_INSN (def_insn);
807   basic_block target_bb = BLOCK_FOR_INSN (target_insn);
808   int regno;
809   df_ref def;
810 
811   /* We used to have a def reaching a use that is _before_ the def,
812      with the def not dominating the use even though the use and def
813      are in the same basic block, when a register may be used
814      uninitialized in a loop.  This should not happen anymore since
815      we do not use reaching definitions, but still we test for such
816      cases and assume that DEF is not available.  */
817   if (def_bb == target_bb
818       ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
819       : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
820     return true;
821 
822   /* Check if the reg in USE has only one definition.  We already
823      know that this definition reaches use, or we wouldn't be here.
824      However, this is invalid for hard registers because if they are
825      live at the beginning of the function it does not mean that we
826      have an uninitialized access.  And we have to check for the case
827      where a register may be used uninitialized in a loop as above.  */
828   regno = DF_REF_REGNO (use);
829   def = DF_REG_DEF_CHAIN (regno);
830   if (def
831       && DF_REF_NEXT_REG (def) == NULL
832       && regno >= FIRST_PSEUDO_REGISTER
833       && (BLOCK_FOR_INSN (DF_REF_INSN (def)) == def_bb
834 	  ? DF_INSN_LUID (DF_REF_INSN (def)) < DF_INSN_LUID (def_insn)
835 	  : dominated_by_p (CDI_DOMINATORS,
836 			    def_bb, BLOCK_FOR_INSN (DF_REF_INSN (def)))))
837     return false;
838 
839   /* Check locally if we are in the same basic block.  */
840   if (def_bb == target_bb)
841     return local_ref_killed_between_p (use, def_insn, target_insn);
842 
843   /* Finally, if DEF_BB is the sole predecessor of TARGET_BB.  */
844   if (single_pred_p (target_bb)
845       && single_pred (target_bb) == def_bb)
846     {
847       df_ref x;
848 
849       /* See if USE is killed between DEF_INSN and the last insn in the
850 	 basic block containing DEF_INSN.  */
851       x = df_bb_regno_last_def_find (def_bb, regno);
852       if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
853 	return true;
854 
855       /* See if USE is killed between TARGET_INSN and the first insn in the
856 	 basic block containing TARGET_INSN.  */
857       x = df_bb_regno_first_def_find (target_bb, regno);
858       if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
859 	return true;
860 
861       return false;
862     }
863 
864   /* Otherwise assume the worst case.  */
865   return true;
866 }
867 
868 
869 /* Check if all uses in DEF_INSN can be used in TARGET_INSN.  This
870    would require full computation of available expressions;
871    we check only restricted conditions, see use_killed_between.  */
872 static bool
all_uses_available_at(rtx_insn * def_insn,rtx_insn * target_insn)873 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
874 {
875   df_ref use;
876   struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
877   rtx def_set = single_set (def_insn);
878   rtx_insn *next;
879 
880   gcc_assert (def_set);
881 
882   /* If target_insn comes right after def_insn, which is very common
883      for addresses, we can use a quicker test.  Ignore debug insns
884      other than target insns for this.  */
885   next = NEXT_INSN (def_insn);
886   while (next && next != target_insn && DEBUG_INSN_P (next))
887     next = NEXT_INSN (next);
888   if (next == target_insn && REG_P (SET_DEST (def_set)))
889     {
890       rtx def_reg = SET_DEST (def_set);
891 
892       /* If the insn uses the reg that it defines, the substitution is
893          invalid.  */
894       FOR_EACH_INSN_INFO_USE (use, insn_info)
895 	if (rtx_equal_p (DF_REF_REG (use), def_reg))
896 	  return false;
897       FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
898 	if (rtx_equal_p (DF_REF_REG (use), def_reg))
899 	  return false;
900     }
901   else
902     {
903       rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
904 
905       /* Look at all the uses of DEF_INSN, and see if they are not
906 	 killed between DEF_INSN and TARGET_INSN.  */
907       FOR_EACH_INSN_INFO_USE (use, insn_info)
908 	{
909 	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
910 	    return false;
911 	  if (use_killed_between (use, def_insn, target_insn))
912 	    return false;
913 	}
914       FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
915 	{
916 	  if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
917 	    return false;
918 	  if (use_killed_between (use, def_insn, target_insn))
919 	    return false;
920 	}
921     }
922 
923   return true;
924 }
925 
926 
927 static df_ref *active_defs;
928 static sparseset active_defs_check;
929 
930 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
931    mentioned in USE_REC.  Register the valid entries in ACTIVE_DEFS_CHECK
932    too, for checking purposes.  */
933 
934 static void
register_active_defs(df_ref use)935 register_active_defs (df_ref use)
936 {
937   for (; use; use = DF_REF_NEXT_LOC (use))
938     {
939       df_ref def = get_def_for_use (use);
940       int regno = DF_REF_REGNO (use);
941 
942       if (flag_checking)
943 	sparseset_set_bit (active_defs_check, regno);
944       active_defs[regno] = def;
945     }
946 }
947 
948 
949 /* Build the use->def links that we use to update the dataflow info
950    for new uses.  Note that building the links is very cheap and if
951    it were done earlier, they could be used to rule out invalid
952    propagations (in addition to what is done in all_uses_available_at).
953    I'm not doing this yet, though.  */
954 
955 static void
update_df_init(rtx_insn * def_insn,rtx_insn * insn)956 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
957 {
958   if (flag_checking)
959     sparseset_clear (active_defs_check);
960   register_active_defs (DF_INSN_USES (def_insn));
961   register_active_defs (DF_INSN_USES (insn));
962   register_active_defs (DF_INSN_EQ_USES (insn));
963 }
964 
965 
966 /* Update the USE_DEF_REF array for the given use, using the active definitions
967    in the ACTIVE_DEFS array to match pseudos to their def. */
968 
969 static inline void
update_uses(df_ref use)970 update_uses (df_ref use)
971 {
972   for (; use; use = DF_REF_NEXT_LOC (use))
973     {
974       int regno = DF_REF_REGNO (use);
975 
976       /* Set up the use-def chain.  */
977       if (DF_REF_ID (use) >= (int) use_def_ref.length ())
978         use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
979 
980       if (flag_checking)
981 	gcc_assert (sparseset_bit_p (active_defs_check, regno));
982       use_def_ref[DF_REF_ID (use)] = active_defs[regno];
983     }
984 }
985 
986 
987 /* Update the USE_DEF_REF array for the uses in INSN.  Only update note
988    uses if NOTES_ONLY is true.  */
989 
990 static void
update_df(rtx_insn * insn,rtx note)991 update_df (rtx_insn *insn, rtx note)
992 {
993   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
994 
995   if (note)
996     {
997       df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
998       df_notes_rescan (insn);
999     }
1000   else
1001     {
1002       df_uses_create (&PATTERN (insn), insn, 0);
1003       df_insn_rescan (insn);
1004       update_uses (DF_INSN_INFO_USES (insn_info));
1005     }
1006 
1007   update_uses (DF_INSN_INFO_EQ_USES (insn_info));
1008 }
1009 
1010 
1011 /* Try substituting NEW into LOC, which originated from forward propagation
1012    of USE's value from DEF_INSN.  SET_REG_EQUAL says whether we are
1013    substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
1014    new insn is not recognized.  Return whether the substitution was
1015    performed.  */
1016 
1017 static bool
try_fwprop_subst(df_ref use,rtx * loc,rtx new_rtx,rtx_insn * def_insn,bool set_reg_equal)1018 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
1019 		  bool set_reg_equal)
1020 {
1021   rtx_insn *insn = DF_REF_INSN (use);
1022   rtx set = single_set (insn);
1023   rtx note = NULL_RTX;
1024   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1025   int old_cost = 0;
1026   bool ok;
1027 
1028   update_df_init (def_insn, insn);
1029 
1030   /* forward_propagate_subreg may be operating on an instruction with
1031      multiple sets.  If so, assume the cost of the new instruction is
1032      not greater than the old one.  */
1033   if (set)
1034     old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
1035   if (dump_file)
1036     {
1037       fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
1038       print_inline_rtx (dump_file, *loc, 2);
1039       fprintf (dump_file, "\n with ");
1040       print_inline_rtx (dump_file, new_rtx, 2);
1041       fprintf (dump_file, "\n");
1042     }
1043 
1044   validate_unshare_change (insn, loc, new_rtx, true);
1045   if (!verify_changes (0))
1046     {
1047       if (dump_file)
1048 	fprintf (dump_file, "Changes to insn %d not recognized\n",
1049 		 INSN_UID (insn));
1050       ok = false;
1051     }
1052 
1053   else if (DF_REF_TYPE (use) == DF_REF_REG_USE
1054 	   && set
1055 	   && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
1056 	       > old_cost))
1057     {
1058       if (dump_file)
1059 	fprintf (dump_file, "Changes to insn %d not profitable\n",
1060 		 INSN_UID (insn));
1061       ok = false;
1062     }
1063 
1064   else
1065     {
1066       if (dump_file)
1067 	fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1068       ok = true;
1069     }
1070 
1071   if (ok)
1072     {
1073       confirm_change_group ();
1074       num_changes++;
1075     }
1076   else
1077     {
1078       cancel_changes (0);
1079 
1080       /* Can also record a simplified value in a REG_EQUAL note,
1081 	 making a new one if one does not already exist.  */
1082       if (set_reg_equal)
1083 	{
1084 	  /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note,
1085 	     because the bits in there can be anything and so might not
1086 	     match the REG_EQUAL note content.  See PR70574.  */
1087 	  subrtx_var_iterator::array_type array;
1088 	  FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
1089 	    {
1090 	      rtx x = *iter;
1091 	      if (SUBREG_P (x) && paradoxical_subreg_p (x))
1092 		{
1093 		  set_reg_equal = false;
1094 		  break;
1095 		}
1096 	    }
1097 
1098 	  if (set_reg_equal)
1099 	    {
1100 	      if (dump_file)
1101 		fprintf (dump_file, " Setting REG_EQUAL note\n");
1102 
1103 	      note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1104 	    }
1105 	}
1106     }
1107 
1108   if ((ok || note) && !CONSTANT_P (new_rtx))
1109     update_df (insn, note);
1110 
1111   return ok;
1112 }
1113 
1114 /* For the given single_set INSN, containing SRC known to be a
1115    ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1116    is redundant due to the register being set by a LOAD_EXTEND_OP
1117    load from memory.  */
1118 
1119 static bool
free_load_extend(rtx src,rtx_insn * insn)1120 free_load_extend (rtx src, rtx_insn *insn)
1121 {
1122   rtx reg;
1123   df_ref def, use;
1124 
1125   reg = XEXP (src, 0);
1126   if (load_extend_op (GET_MODE (reg)) != GET_CODE (src))
1127     return false;
1128 
1129   FOR_EACH_INSN_USE (use, insn)
1130     if (!DF_REF_IS_ARTIFICIAL (use)
1131 	&& DF_REF_TYPE (use) == DF_REF_REG_USE
1132 	&& DF_REF_REG (use) == reg)
1133       break;
1134   if (!use)
1135     return false;
1136 
1137   def = get_def_for_use (use);
1138   if (!def)
1139     return false;
1140 
1141   if (DF_REF_IS_ARTIFICIAL (def))
1142     return false;
1143 
1144   if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1145     {
1146       rtx patt = PATTERN (DF_REF_INSN (def));
1147 
1148       if (GET_CODE (patt) == SET
1149 	  && GET_CODE (SET_SRC (patt)) == MEM
1150 	  && rtx_equal_p (SET_DEST (patt), reg))
1151 	return true;
1152     }
1153   return false;
1154 }
1155 
1156 /* If USE is a subreg, see if it can be replaced by a pseudo.  */
1157 
1158 static bool
forward_propagate_subreg(df_ref use,rtx_insn * def_insn,rtx def_set)1159 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1160 {
1161   rtx use_reg = DF_REF_REG (use);
1162   rtx_insn *use_insn;
1163   rtx src;
1164   scalar_int_mode int_use_mode, src_mode;
1165 
1166   /* Only consider subregs... */
1167   machine_mode use_mode = GET_MODE (use_reg);
1168   if (GET_CODE (use_reg) != SUBREG
1169       || !REG_P (SET_DEST (def_set)))
1170     return false;
1171 
1172   if (paradoxical_subreg_p (use_reg))
1173     {
1174       /* If this is a paradoxical SUBREG, we have no idea what value the
1175 	 extra bits would have.  However, if the operand is equivalent to
1176 	 a SUBREG whose operand is the same as our mode, and all the modes
1177 	 are within a word, we can just use the inner operand because
1178 	 these SUBREGs just say how to treat the register.  */
1179       use_insn = DF_REF_INSN (use);
1180       src = SET_SRC (def_set);
1181       if (GET_CODE (src) == SUBREG
1182 	  && REG_P (SUBREG_REG (src))
1183 	  && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1184 	  && GET_MODE (SUBREG_REG (src)) == use_mode
1185 	  && subreg_lowpart_p (src)
1186 	  && all_uses_available_at (def_insn, use_insn))
1187 	return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1188 				 def_insn, false);
1189     }
1190 
1191   /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1192      is the low part of the reg being extended then just use the inner
1193      operand.  Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1194      be removed due to it matching a LOAD_EXTEND_OP load from memory,
1195      or due to the operation being a no-op when applied to registers.
1196      For example, if we have:
1197 
1198 	 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1199 	 B: (... (subreg:SI (reg:DI X)) ...)
1200 
1201      and mode_rep_extended says that Y is already sign-extended,
1202      the backend will typically allow A to be combined with the
1203      definition of Y or, failing that, allow A to be deleted after
1204      reload through register tying.  Introducing more uses of Y
1205      prevents both optimisations.  */
1206   else if (is_a <scalar_int_mode> (use_mode, &int_use_mode)
1207 	   && subreg_lowpart_p (use_reg))
1208     {
1209       use_insn = DF_REF_INSN (use);
1210       src = SET_SRC (def_set);
1211       if ((GET_CODE (src) == ZERO_EXTEND
1212 	   || GET_CODE (src) == SIGN_EXTEND)
1213 	  && is_a <scalar_int_mode> (GET_MODE (src), &src_mode)
1214 	  && REG_P (XEXP (src, 0))
1215 	  && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1216 	  && GET_MODE (XEXP (src, 0)) == use_mode
1217 	  && !free_load_extend (src, def_insn)
1218 	  && (targetm.mode_rep_extended (int_use_mode, src_mode)
1219 	      != (int) GET_CODE (src))
1220 	  && all_uses_available_at (def_insn, use_insn))
1221 	return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1222 				 def_insn, false);
1223     }
1224 
1225   return false;
1226 }
1227 
1228 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm.  */
1229 
1230 static bool
forward_propagate_asm(df_ref use,rtx_insn * def_insn,rtx def_set,rtx reg)1231 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1232 {
1233   rtx_insn *use_insn = DF_REF_INSN (use);
1234   rtx src, use_pat, asm_operands, new_rtx, *loc;
1235   int speed_p, i;
1236   df_ref uses;
1237 
1238   gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1239 
1240   src = SET_SRC (def_set);
1241   use_pat = PATTERN (use_insn);
1242 
1243   /* In __asm don't replace if src might need more registers than
1244      reg, as that could increase register pressure on the __asm.  */
1245   uses = DF_INSN_USES (def_insn);
1246   if (uses && DF_REF_NEXT_LOC (uses))
1247     return false;
1248 
1249   update_df_init (def_insn, use_insn);
1250   speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1251   asm_operands = NULL_RTX;
1252   switch (GET_CODE (use_pat))
1253     {
1254     case ASM_OPERANDS:
1255       asm_operands = use_pat;
1256       break;
1257     case SET:
1258       if (MEM_P (SET_DEST (use_pat)))
1259 	{
1260 	  loc = &SET_DEST (use_pat);
1261 	  new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1262 	  if (new_rtx)
1263 	    validate_unshare_change (use_insn, loc, new_rtx, true);
1264 	}
1265       asm_operands = SET_SRC (use_pat);
1266       break;
1267     case PARALLEL:
1268       for (i = 0; i < XVECLEN (use_pat, 0); i++)
1269 	if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1270 	  {
1271 	    if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1272 	      {
1273 		loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1274 		new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1275 					 src, speed_p);
1276 		if (new_rtx)
1277 		  validate_unshare_change (use_insn, loc, new_rtx, true);
1278 	      }
1279 	    asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1280 	  }
1281 	else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1282 	  asm_operands = XVECEXP (use_pat, 0, i);
1283       break;
1284     default:
1285       gcc_unreachable ();
1286     }
1287 
1288   gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1289   for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1290     {
1291       loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1292       new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1293       if (new_rtx)
1294 	validate_unshare_change (use_insn, loc, new_rtx, true);
1295     }
1296 
1297   if (num_changes_pending () == 0 || !apply_change_group ())
1298     return false;
1299 
1300   update_df (use_insn, NULL);
1301   num_changes++;
1302   return true;
1303 }
1304 
1305 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1306    result.  */
1307 
1308 static bool
forward_propagate_and_simplify(df_ref use,rtx_insn * def_insn,rtx def_set)1309 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1310 {
1311   rtx_insn *use_insn = DF_REF_INSN (use);
1312   rtx use_set = single_set (use_insn);
1313   rtx src, reg, new_rtx, *loc;
1314   bool set_reg_equal;
1315   machine_mode mode;
1316   int asm_use = -1;
1317 
1318   if (INSN_CODE (use_insn) < 0)
1319     asm_use = asm_noperands (PATTERN (use_insn));
1320 
1321   if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1322     return false;
1323 
1324   /* Do not propagate into PC, CC0, etc.  */
1325   if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1326     return false;
1327 
1328   /* If def and use are subreg, check if they match.  */
1329   reg = DF_REF_REG (use);
1330   if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1331     {
1332       if (maybe_ne (SUBREG_BYTE (SET_DEST (def_set)), SUBREG_BYTE (reg)))
1333 	return false;
1334     }
1335   /* Check if the def had a subreg, but the use has the whole reg.  */
1336   else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1337     return false;
1338   /* Check if the use has a subreg, but the def had the whole reg.  Unlike the
1339      previous case, the optimization is possible and often useful indeed.  */
1340   else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1341     reg = SUBREG_REG (reg);
1342 
1343   /* Make sure that we can treat REG as having the same mode as the
1344      source of DEF_SET.  */
1345   if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1346     return false;
1347 
1348   /* Check if the substitution is valid (last, because it's the most
1349      expensive check!).  */
1350   src = SET_SRC (def_set);
1351   if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1352     return false;
1353 
1354   /* Check if the def is loading something from the constant pool; in this
1355      case we would undo optimization such as compress_float_constant.
1356      Still, we can set a REG_EQUAL note.  */
1357   if (MEM_P (src) && MEM_READONLY_P (src))
1358     {
1359       rtx x = avoid_constant_pool_reference (src);
1360       if (x != src && use_set)
1361 	{
1362           rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1363 	  rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1364 	  rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1365 	  if (old_rtx != new_rtx)
1366             set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1367 	}
1368       return false;
1369     }
1370 
1371   if (asm_use >= 0)
1372     return forward_propagate_asm (use, def_insn, def_set, reg);
1373 
1374   /* Else try simplifying.  */
1375 
1376   if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1377     {
1378       loc = &SET_DEST (use_set);
1379       set_reg_equal = false;
1380     }
1381   else if (!use_set)
1382     {
1383       loc = &INSN_VAR_LOCATION_LOC (use_insn);
1384       set_reg_equal = false;
1385     }
1386   else
1387     {
1388       rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1389       if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1390 	loc = &XEXP (note, 0);
1391       else
1392 	loc = &SET_SRC (use_set);
1393 
1394       /* Do not replace an existing REG_EQUAL note if the insn is not
1395 	 recognized.  Either we're already replacing in the note, or we'll
1396 	 separately try plugging the definition in the note and simplifying.
1397 	 And only install a REQ_EQUAL note when the destination is a REG
1398 	 that isn't mentioned in USE_SET, as the note would be invalid
1399 	 otherwise.  We also don't want to install a note if we are merely
1400 	 propagating a pseudo since verifying that this pseudo isn't dead
1401 	 is a pain; moreover such a note won't help anything.
1402 	 If the use is a paradoxical subreg, make sure we don't add a
1403 	 REG_EQUAL note for it, because it is not equivalent, it is one
1404 	 possible value for it, but we can't rely on it holding that value.
1405 	 See PR70574.  */
1406       set_reg_equal = (note == NULL_RTX
1407 		       && REG_P (SET_DEST (use_set))
1408 		       && !REG_P (src)
1409 		       && !(GET_CODE (src) == SUBREG
1410 			    && REG_P (SUBREG_REG (src)))
1411 		       && !reg_mentioned_p (SET_DEST (use_set),
1412 					    SET_SRC (use_set))
1413 		       && !paradoxical_subreg_p (DF_REF_REG (use)));
1414     }
1415 
1416   if (GET_MODE (*loc) == VOIDmode)
1417     mode = GET_MODE (SET_DEST (use_set));
1418   else
1419     mode = GET_MODE (*loc);
1420 
1421   new_rtx = propagate_rtx (*loc, mode, reg, src,
1422   			   optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1423 
1424   if (!new_rtx)
1425     return false;
1426 
1427   return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1428 }
1429 
1430 
1431 /* Given a use USE of an insn, if it has a single reaching
1432    definition, try to forward propagate it into that insn.
1433    Return true if cfg cleanup will be needed.
1434    REG_PROP_ONLY is true if we should only propagate register copies.  */
1435 
1436 static bool
1437 forward_propagate_into (df_ref use, bool reg_prop_only = false)
1438 {
1439   df_ref def;
1440   rtx_insn *def_insn, *use_insn;
1441   rtx def_set;
1442   rtx parent;
1443 
1444   if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1445     return false;
1446   if (DF_REF_IS_ARTIFICIAL (use))
1447     return false;
1448 
1449   /* Only consider uses that have a single definition.  */
1450   def = get_def_for_use (use);
1451   if (!def)
1452     return false;
1453   if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1454     return false;
1455   if (DF_REF_IS_ARTIFICIAL (def))
1456     return false;
1457 
1458   /* Check if the use is still present in the insn!  */
1459   use_insn = DF_REF_INSN (use);
1460   if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1461     parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1462   else
1463     parent = PATTERN (use_insn);
1464 
1465   if (!reg_mentioned_p (DF_REF_REG (use), parent))
1466     return false;
1467 
1468   def_insn = DF_REF_INSN (def);
1469   if (multiple_sets (def_insn))
1470     return false;
1471   def_set = single_set (def_insn);
1472   if (!def_set)
1473     return false;
1474 
1475   if (reg_prop_only
1476       && (!reg_single_def_p (SET_SRC (def_set))
1477 	  || !reg_single_def_p (SET_DEST (def_set))))
1478     return false;
1479 
1480   /* Allow propagations into a loop only for reg-to-reg copies, since
1481      replacing one register by another shouldn't increase the cost.  */
1482 
1483   if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father
1484       && (!reg_single_def_p (SET_SRC (def_set))
1485 	  || !reg_single_def_p (SET_DEST (def_set))))
1486     return false;
1487 
1488   /* Only try one kind of propagation.  If two are possible, we'll
1489      do it on the following iterations.  */
1490   if (forward_propagate_and_simplify (use, def_insn, def_set)
1491       || forward_propagate_subreg (use, def_insn, def_set))
1492     {
1493       propagations_left--;
1494 
1495       if (cfun->can_throw_non_call_exceptions
1496 	  && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1497 	  && purge_dead_edges (DF_REF_BB (use)))
1498 	return true;
1499     }
1500   return false;
1501 }
1502 
1503 
1504 static void
fwprop_init(void)1505 fwprop_init (void)
1506 {
1507   num_changes = 0;
1508   calculate_dominance_info (CDI_DOMINATORS);
1509 
1510   /* We do not always want to propagate into loops, so we have to find
1511      loops and be careful about them.  Avoid CFG modifications so that
1512      we don't have to update dominance information afterwards for
1513      build_single_def_use_links.  */
1514   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1515 
1516   build_single_def_use_links ();
1517   df_set_flags (DF_DEFER_INSN_RESCAN);
1518 
1519   active_defs = XNEWVEC (df_ref, max_reg_num ());
1520   if (flag_checking)
1521     active_defs_check = sparseset_alloc (max_reg_num ());
1522 
1523   propagations_left = DF_USES_TABLE_SIZE ();
1524 }
1525 
1526 static void
fwprop_done(void)1527 fwprop_done (void)
1528 {
1529   loop_optimizer_finalize ();
1530 
1531   use_def_ref.release ();
1532   free (active_defs);
1533   if (flag_checking)
1534     sparseset_free (active_defs_check);
1535 
1536   free_dominance_info (CDI_DOMINATORS);
1537   cleanup_cfg (0);
1538   delete_trivially_dead_insns (get_insns (), max_reg_num ());
1539 
1540   if (dump_file)
1541     fprintf (dump_file,
1542 	     "\nNumber of successful forward propagations: %d\n\n",
1543 	     num_changes);
1544 }
1545 
1546 
1547 /* Main entry point.  */
1548 
1549 static bool
gate_fwprop(void)1550 gate_fwprop (void)
1551 {
1552   return optimize > 0 && flag_forward_propagate;
1553 }
1554 
1555 static unsigned int
fwprop(bool fwprop_addr_p)1556 fwprop (bool fwprop_addr_p)
1557 {
1558   unsigned i;
1559 
1560   fwprop_init ();
1561 
1562   /* Go through all the uses.  df_uses_create will create new ones at the
1563      end, and we'll go through them as well.
1564 
1565      Do not forward propagate addresses into loops until after unrolling.
1566      CSE did so because it was able to fix its own mess, but we are not.  */
1567 
1568   for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1569     {
1570       if (!propagations_left)
1571 	break;
1572 
1573       df_ref use = DF_USES_GET (i);
1574       if (use)
1575 	{
1576 	  if (DF_REF_TYPE (use) == DF_REF_REG_USE
1577 	      || DF_REF_BB (use)->loop_father == NULL
1578 	      /* The outer most loop is not really a loop.  */
1579 	      || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1580 	    forward_propagate_into (use, fwprop_addr_p);
1581 
1582 	  else if (fwprop_addr_p)
1583 	    forward_propagate_into (use, false);
1584 	}
1585     }
1586 
1587   fwprop_done ();
1588   return 0;
1589 }
1590 
1591 namespace {
1592 
1593 const pass_data pass_data_rtl_fwprop =
1594 {
1595   RTL_PASS, /* type */
1596   "fwprop1", /* name */
1597   OPTGROUP_NONE, /* optinfo_flags */
1598   TV_FWPROP, /* tv_id */
1599   0, /* properties_required */
1600   0, /* properties_provided */
1601   0, /* properties_destroyed */
1602   0, /* todo_flags_start */
1603   TODO_df_finish, /* todo_flags_finish */
1604 };
1605 
1606 class pass_rtl_fwprop : public rtl_opt_pass
1607 {
1608 public:
pass_rtl_fwprop(gcc::context * ctxt)1609   pass_rtl_fwprop (gcc::context *ctxt)
1610     : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1611   {}
1612 
1613   /* opt_pass methods: */
gate(function *)1614   virtual bool gate (function *) { return gate_fwprop (); }
execute(function *)1615   virtual unsigned int execute (function *) { return fwprop (false); }
1616 
1617 }; // class pass_rtl_fwprop
1618 
1619 } // anon namespace
1620 
1621 rtl_opt_pass *
make_pass_rtl_fwprop(gcc::context * ctxt)1622 make_pass_rtl_fwprop (gcc::context *ctxt)
1623 {
1624   return new pass_rtl_fwprop (ctxt);
1625 }
1626 
1627 namespace {
1628 
1629 const pass_data pass_data_rtl_fwprop_addr =
1630 {
1631   RTL_PASS, /* type */
1632   "fwprop2", /* name */
1633   OPTGROUP_NONE, /* optinfo_flags */
1634   TV_FWPROP, /* tv_id */
1635   0, /* properties_required */
1636   0, /* properties_provided */
1637   0, /* properties_destroyed */
1638   0, /* todo_flags_start */
1639   TODO_df_finish, /* todo_flags_finish */
1640 };
1641 
1642 class pass_rtl_fwprop_addr : public rtl_opt_pass
1643 {
1644 public:
pass_rtl_fwprop_addr(gcc::context * ctxt)1645   pass_rtl_fwprop_addr (gcc::context *ctxt)
1646     : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1647   {}
1648 
1649   /* opt_pass methods: */
gate(function *)1650   virtual bool gate (function *) { return gate_fwprop (); }
execute(function *)1651   virtual unsigned int execute (function *) { return fwprop (true); }
1652 
1653 }; // class pass_rtl_fwprop_addr
1654 
1655 } // anon namespace
1656 
1657 rtl_opt_pass *
make_pass_rtl_fwprop_addr(gcc::context * ctxt)1658 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1659 {
1660   return new pass_rtl_fwprop_addr (ctxt);
1661 }
1662