1 /* Copyright (C) 2008-2020 Free Software Foundation, Inc.
2    Contributed by Richard Henderson <rth@redhat.com>.
3 
4    This file is part of the GNU Transactional Memory Library (libitm).
5 
6    Libitm is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
12    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
13    FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14    more details.
15 
16    Under Section 7 of GPL version 3, you are granted additional
17    permissions described in the GCC Runtime Library Exception, version
18    3.1, as published by the Free Software Foundation.
19 
20    You should have received a copy of the GNU General Public License and
21    a copy of the GCC Runtime Library Exception along with this program;
22    see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23    <http://www.gnu.org/licenses/>.  */
24 
25 #include "libitm_i.h"
26 #include <pthread.h>
27 
28 
29 using namespace GTM;
30 
31 #if !defined(HAVE_ARCH_GTM_THREAD) || !defined(HAVE_ARCH_GTM_THREAD_DISP)
32 extern __thread gtm_thread_tls _gtm_thr_tls;
33 #endif
34 
35 // Put this at the start of a cacheline so that serial_lock's writers and
36 // htm_fastpath fields are on the same cacheline, so that HW transactions
37 // only have to pay one cacheline capacity to monitor both.
38 gtm_rwlock GTM::gtm_thread::serial_lock
39   __attribute__((aligned(HW_CACHELINE_SIZE)));
40 gtm_thread *GTM::gtm_thread::list_of_threads = 0;
41 unsigned GTM::gtm_thread::number_of_threads = 0;
42 
43 /* ??? Move elsewhere when we figure out library initialization.  */
44 uint64_t GTM::gtm_spin_count_var = 1000;
45 
46 #ifdef HAVE_64BIT_SYNC_BUILTINS
47 static atomic<_ITM_transactionId_t> global_tid;
48 #else
49 static _ITM_transactionId_t global_tid;
50 static pthread_mutex_t global_tid_lock = PTHREAD_MUTEX_INITIALIZER;
51 #endif
52 
53 
54 // Provides a on-thread-exit callback used to release per-thread data.
55 static pthread_key_t thr_release_key;
56 static pthread_once_t thr_release_once = PTHREAD_ONCE_INIT;
57 
58 /* Allocate a transaction structure.  */
59 void *
60 GTM::gtm_thread::operator new (size_t s)
61 {
62   void *tx;
63 
64   assert(s == sizeof(gtm_thread));
65 
66   tx = xmalloc (sizeof (gtm_thread), true);
67   memset (tx, 0, sizeof (gtm_thread));
68 
69   return tx;
70 }
71 
72 /* Free the given transaction. Raises an error if the transaction is still
73    in use.  */
74 void
75 GTM::gtm_thread::operator delete(void *tx)
76 {
77   free(tx);
78 }
79 
80 static void
81 thread_exit_handler(void *)
82 {
83   gtm_thread *thr = gtm_thr();
84   if (thr)
85     delete thr;
86   set_gtm_thr(0);
87 }
88 
89 static void
90 thread_exit_init()
91 {
92   if (pthread_key_create(&thr_release_key, thread_exit_handler))
93     GTM_fatal("Creating thread release TLS key failed.");
94 }
95 
96 
97 GTM::gtm_thread::~gtm_thread()
98 {
99   if (nesting > 0)
100     GTM_fatal("Thread exit while a transaction is still active.");
101 
102   // Deregister this transaction.
103   serial_lock.write_lock ();
104   gtm_thread **prev = &list_of_threads;
105   for (; *prev; prev = &(*prev)->next_thread)
106     {
107       if (*prev == this)
108 	{
109 	  *prev = (*prev)->next_thread;
110 	  break;
111 	}
112     }
113   number_of_threads--;
114   number_of_threads_changed(number_of_threads + 1, number_of_threads);
115   serial_lock.write_unlock ();
116 }
117 
118 GTM::gtm_thread::gtm_thread ()
119 {
120   // This object's memory has been set to zero by operator new, so no need
121   // to initialize any of the other primitive-type members that do not have
122   // constructors.
123   shared_state.store(-1, memory_order_relaxed);
124 
125   // Register this transaction with the list of all threads' transactions.
126   serial_lock.write_lock ();
127   next_thread = list_of_threads;
128   list_of_threads = this;
129   number_of_threads++;
130   number_of_threads_changed(number_of_threads - 1, number_of_threads);
131   serial_lock.write_unlock ();
132 
133   init_cpp_exceptions ();
134 
135   if (pthread_once(&thr_release_once, thread_exit_init))
136     GTM_fatal("Initializing thread release TLS key failed.");
137   // Any non-null value is sufficient to trigger destruction of this
138   // transaction when the current thread terminates.
139   if (pthread_setspecific(thr_release_key, this))
140     GTM_fatal("Setting thread release TLS key failed.");
141 }
142 
143 static inline uint32_t
144 choose_code_path(uint32_t prop, abi_dispatch *disp)
145 {
146   if ((prop & pr_uninstrumentedCode) && disp->can_run_uninstrumented_code())
147     return a_runUninstrumentedCode;
148   else
149     return a_runInstrumentedCode;
150 }
151 
152 #ifdef TARGET_BEGIN_TRANSACTION_ATTRIBUTE
153 /* This macro can be used to define target specific attributes for this
154    function.  For example, S/390 requires floating point to be disabled in
155    begin_transaction.  */
156 TARGET_BEGIN_TRANSACTION_ATTRIBUTE
157 #endif
158 uint32_t
159 GTM::gtm_thread::begin_transaction (uint32_t prop, const gtm_jmpbuf *jb)
160 {
161   static const _ITM_transactionId_t tid_block_size = 1 << 16;
162 
163   gtm_thread *tx;
164   abi_dispatch *disp;
165   uint32_t ret;
166 
167   // ??? pr_undoLogCode is not properly defined in the ABI. Are barriers
168   // omitted because they are not necessary (e.g., a transaction on thread-
169   // local data) or because the compiler thinks that some kind of global
170   // synchronization might perform better?
171   if (unlikely(prop & pr_undoLogCode))
172     GTM_fatal("pr_undoLogCode not supported");
173 
174 #ifdef USE_HTM_FASTPATH
175   // HTM fastpath.  Only chosen in the absence of transaction_cancel to allow
176   // using an uninstrumented code path.
177   // The fastpath is enabled only by dispatch_htm's method group, which uses
178   // serial-mode methods as fallback.  Serial-mode transactions cannot execute
179   // concurrently with HW transactions because the latter monitor the serial
180   // lock's writer flag and thus abort if another thread is or becomes a
181   // serial transaction.  Therefore, if the fastpath is enabled, then a
182   // transaction is not executing as a HW transaction iff the serial lock is
183   // write-locked.  Also, HW transactions monitor the fastpath control
184   // variable, so that they will only execute if dispatch_htm is still the
185   // current method group.  This allows us to use htm_fastpath and the serial
186   // lock's writers flag to reliable determine whether the current thread runs
187   // a HW transaction, and thus we do not need to maintain this information in
188   // per-thread state.
189   // If an uninstrumented code path is not available, we can still run
190   // instrumented code from a HW transaction because the HTM fastpath kicks
191   // in early in both begin and commit, and the transaction is not canceled.
192   // HW transactions might get requests to switch to serial-irrevocable mode,
193   // but these can be ignored because the HTM provides all necessary
194   // correctness guarantees.  Transactions cannot detect whether they are
195   // indeed in serial mode, and HW transactions should never need serial mode
196   // for any internal changes (e.g., they never abort visibly to the STM code
197   // and thus do not trigger the standard retry handling).
198 #ifndef HTM_CUSTOM_FASTPATH
199   if (likely(serial_lock.get_htm_fastpath() && (prop & pr_hasNoAbort)))
200     {
201       // Note that the snapshot of htm_fastpath that we take here could be
202       // outdated, and a different method group than dispatch_htm may have
203       // been chosen in the meantime.  Therefore, take care not not touch
204       // anything besides the serial lock, which is independent of method
205       // groups.
206       for (uint32_t t = serial_lock.get_htm_fastpath(); t; t--)
207 	{
208 	  uint32_t ret = htm_begin();
209 	  if (htm_begin_success(ret))
210 	    {
211 	      // We are executing a transaction now.
212 	      // Monitor the writer flag in the serial-mode lock, and abort
213 	      // if there is an active or waiting serial-mode transaction.
214 	      // Also checks that htm_fastpath is still nonzero and thus
215 	      // HW transactions are allowed to run.
216 	      // Note that this can also happen due to an enclosing
217 	      // serial-mode transaction; we handle this case below.
218 	      if (unlikely(serial_lock.htm_fastpath_disabled()))
219 		htm_abort();
220 	      else
221 		// We do not need to set a_saveLiveVariables because of HTM.
222 		return (prop & pr_uninstrumentedCode) ?
223 		    a_runUninstrumentedCode : a_runInstrumentedCode;
224 	    }
225 	  // The transaction has aborted.  Don't retry if it's unlikely that
226 	  // retrying the transaction will be successful.
227 	  if (!htm_abort_should_retry(ret))
228 	    break;
229 	  // Check whether the HTM fastpath has been disabled.
230 	  if (!serial_lock.get_htm_fastpath())
231 	    break;
232 	  // Wait until any concurrent serial-mode transactions have finished.
233 	  // This is an empty critical section, but won't be elided.
234 	  if (serial_lock.htm_fastpath_disabled())
235 	    {
236 	      tx = gtm_thr();
237 	      if (unlikely(tx == NULL))
238 	        {
239 	          // See below.
240 	          tx = new gtm_thread();
241 	          set_gtm_thr(tx);
242 	        }
243 	      // Check whether there is an enclosing serial-mode transaction;
244 	      // if so, we just continue as a nested transaction and don't
245 	      // try to use the HTM fastpath.  This case can happen when an
246 	      // outermost relaxed transaction calls unsafe code that starts
247 	      // a transaction.
248 	      if (tx->nesting > 0)
249 		break;
250 	      // Another thread is running a serial-mode transaction.  Wait.
251 	      serial_lock.read_lock(tx);
252 	      serial_lock.read_unlock(tx);
253 	      // TODO We should probably reset the retry count t here, unless
254 	      // we have retried so often that we should go serial to avoid
255 	      // starvation.
256 	    }
257 	}
258     }
259 #else
260   // If we have a custom HTM fastpath in ITM_beginTransaction, we implement
261   // just the retry policy here.  We communicate with the custom fastpath
262   // through additional property bits and return codes, and either transfer
263   // control back to the custom fastpath or run the fallback mechanism.  The
264   // fastpath synchronization algorithm itself is the same.
265   // pr_HTMRetryableAbort states that a HW transaction started by the custom
266   // HTM fastpath aborted, and that we thus have to decide whether to retry
267   // the fastpath (returning a_tryHTMFastPath) or just proceed with the
268   // fallback method.
269   if (likely(serial_lock.get_htm_fastpath() && (prop & pr_HTMRetryableAbort)))
270     {
271       tx = gtm_thr();
272       if (unlikely(tx == NULL))
273         {
274           // See below.
275           tx = new gtm_thread();
276           set_gtm_thr(tx);
277         }
278       // If this is the first abort, reset the retry count.  We abuse
279       // restart_total for the retry count, which is fine because our only
280       // other fallback will use serial transactions, which don't use
281       // restart_total but will reset it when committing.
282       if (!(prop & pr_HTMRetriedAfterAbort))
283 	tx->restart_total = gtm_thread::serial_lock.get_htm_fastpath();
284 
285       if (--tx->restart_total > 0)
286 	{
287 	  // Wait until any concurrent serial-mode transactions have finished.
288 	  // Essentially the same code as above.
289 	  if (!serial_lock.get_htm_fastpath())
290 	    goto stop_custom_htm_fastpath;
291 	  if (serial_lock.htm_fastpath_disabled())
292 	    {
293 	      if (tx->nesting > 0)
294 		goto stop_custom_htm_fastpath;
295 	      serial_lock.read_lock(tx);
296 	      serial_lock.read_unlock(tx);
297 	    }
298 	  // Let ITM_beginTransaction retry the custom HTM fastpath.
299 	  return a_tryHTMFastPath;
300 	}
301     }
302  stop_custom_htm_fastpath:
303 #endif
304 #endif
305 
306   tx = gtm_thr();
307   if (unlikely(tx == NULL))
308     {
309       // Create the thread object. The constructor will also set up automatic
310       // deletion on thread termination.
311       tx = new gtm_thread();
312       set_gtm_thr(tx);
313     }
314 
315   if (tx->nesting > 0)
316     {
317       // This is a nested transaction.
318       // Check prop compatibility:
319       // The ABI requires pr_hasNoFloatUpdate, pr_hasNoVectorUpdate,
320       // pr_hasNoIrrevocable, pr_aWBarriersOmitted, pr_RaRBarriersOmitted, and
321       // pr_hasNoSimpleReads to hold for the full dynamic scope of a
322       // transaction. We could check that these are set for the nested
323       // transaction if they are also set for the parent transaction, but the
324       // ABI does not require these flags to be set if they could be set,
325       // so the check could be too strict.
326       // ??? For pr_readOnly, lexical or dynamic scope is unspecified.
327 
328       if (prop & pr_hasNoAbort)
329 	{
330 	  // We can use flat nesting, so elide this transaction.
331 	  if (!(prop & pr_instrumentedCode))
332 	    {
333 	      if (!(tx->state & STATE_SERIAL) ||
334 		  !(tx->state & STATE_IRREVOCABLE))
335 		tx->serialirr_mode();
336 	    }
337 	  // Increment nesting level after checking that we have a method that
338 	  // allows us to continue.
339 	  tx->nesting++;
340 	  return choose_code_path(prop, abi_disp());
341 	}
342 
343       // The transaction might abort, so use closed nesting if possible.
344       // pr_hasNoAbort has lexical scope, so the compiler should really have
345       // generated an instrumented code path.
346       assert(prop & pr_instrumentedCode);
347 
348       // Create a checkpoint of the current transaction.
349       gtm_transaction_cp *cp = tx->parent_txns.push();
350       cp->save(tx);
351       new (&tx->alloc_actions) aa_tree<uintptr_t, gtm_alloc_action>();
352 
353       // Check whether the current method actually supports closed nesting.
354       // If we can switch to another one, do so.
355       // If not, we assume that actual aborts are infrequent, and rather
356       // restart in _ITM_abortTransaction when we really have to.
357       disp = abi_disp();
358       if (!disp->closed_nesting())
359 	{
360 	  // ??? Should we elide the transaction if there is no alternative
361 	  // method that supports closed nesting? If we do, we need to set
362 	  // some flag to prevent _ITM_abortTransaction from aborting the
363 	  // wrong transaction (i.e., some parent transaction).
364 	  abi_dispatch *cn_disp = disp->closed_nesting_alternative();
365 	  if (cn_disp)
366 	    {
367 	      disp = cn_disp;
368 	      set_abi_disp(disp);
369 	    }
370 	}
371     }
372   else
373     {
374       // Outermost transaction
375       disp = tx->decide_begin_dispatch (prop);
376       set_abi_disp (disp);
377     }
378 
379   // Initialization that is common for outermost and nested transactions.
380   tx->prop = prop;
381   tx->nesting++;
382 
383   tx->jb = *jb;
384 
385   // As long as we have not exhausted a previously allocated block of TIDs,
386   // we can avoid an atomic operation on a shared cacheline.
387   if (tx->local_tid & (tid_block_size - 1))
388     tx->id = tx->local_tid++;
389   else
390     {
391 #ifdef HAVE_64BIT_SYNC_BUILTINS
392       // We don't really care which block of TIDs we get but only that we
393       // acquire one atomically; therefore, relaxed memory order is
394       // sufficient.
395       tx->id = global_tid.fetch_add(tid_block_size, memory_order_relaxed);
396       tx->local_tid = tx->id + 1;
397 #else
398       pthread_mutex_lock (&global_tid_lock);
399       global_tid += tid_block_size;
400       tx->id = global_tid;
401       tx->local_tid = tx->id + 1;
402       pthread_mutex_unlock (&global_tid_lock);
403 #endif
404     }
405 
406   // Log the number of uncaught exceptions if we might have to roll back this
407   // state.
408   if (tx->cxa_uncaught_count_ptr != 0)
409     tx->cxa_uncaught_count = *tx->cxa_uncaught_count_ptr;
410 
411   // Run dispatch-specific restart code. Retry until we succeed.
412   GTM::gtm_restart_reason rr;
413   while ((rr = disp->begin_or_restart()) != NO_RESTART)
414     {
415       tx->decide_retry_strategy(rr);
416       disp = abi_disp();
417     }
418 
419   // Determine the code path to run. Only irrevocable transactions cannot be
420   // restarted, so all other transactions need to save live variables.
421   ret = choose_code_path(prop, disp);
422   if (!(tx->state & STATE_IRREVOCABLE))
423     ret |= a_saveLiveVariables;
424   return ret;
425 }
426 
427 
428 void
429 GTM::gtm_transaction_cp::save(gtm_thread* tx)
430 {
431   // Save everything that we might have to restore on restarts or aborts.
432   jb = tx->jb;
433   undolog_size = tx->undolog.size();
434 
435   /* FIXME!  Assignment of an aatree like alloc_actions is unsafe; if either
436    *this or *tx is destroyed, the other ends up pointing to a freed node.  */
437 #pragma GCC diagnostic warning "-Wdeprecated-copy"
438   alloc_actions = tx->alloc_actions;
439 
440   user_actions_size = tx->user_actions.size();
441   id = tx->id;
442   prop = tx->prop;
443   cxa_catch_count = tx->cxa_catch_count;
444   cxa_uncaught_count = tx->cxa_uncaught_count;
445   disp = abi_disp();
446   nesting = tx->nesting;
447 }
448 
449 void
450 GTM::gtm_transaction_cp::commit(gtm_thread* tx)
451 {
452   // Restore state that is not persistent across commits. Exception handling,
453   // information, nesting level, and any logs do not need to be restored on
454   // commits of nested transactions. Allocation actions must be committed
455   // before committing the snapshot.
456   tx->jb = jb;
457   tx->alloc_actions = alloc_actions;
458   tx->id = id;
459   tx->prop = prop;
460 }
461 
462 
463 void
464 GTM::gtm_thread::rollback (gtm_transaction_cp *cp, bool aborting)
465 {
466   // The undo log is special in that it used for both thread-local and shared
467   // data. Because of the latter, we have to roll it back before any
468   // dispatch-specific rollback (which handles synchronization with other
469   // transactions).
470   undolog.rollback (this, cp ? cp->undolog_size : 0);
471 
472   // Perform dispatch-specific rollback.
473   abi_disp()->rollback (cp);
474 
475   // Roll back all actions that are supposed to happen around the transaction.
476   rollback_user_actions (cp ? cp->user_actions_size : 0);
477   commit_allocations (true, (cp ? &cp->alloc_actions : 0));
478   revert_cpp_exceptions (cp);
479 
480   if (cp)
481     {
482       // We do not yet handle restarts of nested transactions. To do that, we
483       // would have to restore some state (jb, id, prop, nesting) not to the
484       // checkpoint but to the transaction that was started from this
485       // checkpoint (e.g., nesting = cp->nesting + 1);
486       assert(aborting);
487       // Roll back the rest of the state to the checkpoint.
488       jb = cp->jb;
489       id = cp->id;
490       prop = cp->prop;
491       if (cp->disp != abi_disp())
492 	set_abi_disp(cp->disp);
493       alloc_actions = cp->alloc_actions;
494       nesting = cp->nesting;
495     }
496   else
497     {
498       // Roll back to the outermost transaction.
499       // Restore the jump buffer and transaction properties, which we will
500       // need for the longjmp used to restart or abort the transaction.
501       if (parent_txns.size() > 0)
502 	{
503 	  jb = parent_txns[0].jb;
504 	  id = parent_txns[0].id;
505 	  prop = parent_txns[0].prop;
506 	}
507       // Reset the transaction. Do not reset this->state, which is handled by
508       // the callers. Note that if we are not aborting, we reset the
509       // transaction to the point after having executed begin_transaction
510       // (we will return from it), so the nesting level must be one, not zero.
511       nesting = (aborting ? 0 : 1);
512       parent_txns.clear();
513     }
514 
515   if (this->eh_in_flight)
516     {
517       _Unwind_DeleteException ((_Unwind_Exception *) this->eh_in_flight);
518       this->eh_in_flight = NULL;
519     }
520 }
521 
522 void ITM_REGPARM
523 _ITM_abortTransaction (_ITM_abortReason reason)
524 {
525   gtm_thread *tx = gtm_thr();
526 
527   assert (reason == userAbort || reason == (userAbort | outerAbort));
528   assert ((tx->prop & pr_hasNoAbort) == 0);
529 
530   if (tx->state & gtm_thread::STATE_IRREVOCABLE)
531     abort ();
532 
533   // Roll back to innermost transaction.
534   if (tx->parent_txns.size() > 0 && !(reason & outerAbort))
535     {
536       // If the current method does not support closed nesting but we are
537       // nested and must only roll back the innermost transaction, then
538       // restart with a method that supports closed nesting.
539       abi_dispatch *disp = abi_disp();
540       if (!disp->closed_nesting())
541 	tx->restart(RESTART_CLOSED_NESTING);
542 
543       // The innermost transaction is a closed nested transaction.
544       gtm_transaction_cp *cp = tx->parent_txns.pop();
545       uint32_t longjmp_prop = tx->prop;
546       gtm_jmpbuf longjmp_jb = tx->jb;
547 
548       tx->rollback (cp, true);
549 
550       // Jump to nested transaction (use the saved jump buffer).
551       GTM_longjmp (a_abortTransaction | a_restoreLiveVariables,
552 		   &longjmp_jb, longjmp_prop);
553     }
554   else
555     {
556       // There is no nested transaction or an abort of the outermost
557       // transaction was requested, so roll back to the outermost transaction.
558       tx->rollback (0, true);
559 
560       // Aborting an outermost transaction finishes execution of the whole
561       // transaction. Therefore, reset transaction state.
562       if (tx->state & gtm_thread::STATE_SERIAL)
563 	gtm_thread::serial_lock.write_unlock ();
564       else
565 	gtm_thread::serial_lock.read_unlock (tx);
566       tx->state = 0;
567 
568       GTM_longjmp (a_abortTransaction | a_restoreLiveVariables,
569 		   &tx->jb, tx->prop);
570     }
571 }
572 
573 bool
574 GTM::gtm_thread::trycommit ()
575 {
576   nesting--;
577 
578   // Skip any real commit for elided transactions.
579   if (nesting > 0 && (parent_txns.size() == 0 ||
580       nesting > parent_txns[parent_txns.size() - 1].nesting))
581     return true;
582 
583   if (nesting > 0)
584     {
585       // Commit of a closed-nested transaction. Remove one checkpoint and add
586       // any effects of this transaction to the parent transaction.
587       gtm_transaction_cp *cp = parent_txns.pop();
588       commit_allocations(false, &cp->alloc_actions);
589       cp->commit(this);
590       return true;
591     }
592 
593   // Commit of an outermost transaction.
594   gtm_word priv_time = 0;
595   if (abi_disp()->trycommit (priv_time))
596     {
597       // The transaction is now finished but we will still access some shared
598       // data if we have to ensure privatization safety.
599       bool do_read_unlock = false;
600       if (state & gtm_thread::STATE_SERIAL)
601         {
602           gtm_thread::serial_lock.write_unlock ();
603           // There are no other active transactions, so there's no need to
604           // enforce privatization safety.
605           priv_time = 0;
606         }
607       else
608 	{
609 	  // If we have to ensure privatization safety, we must not yet
610 	  // release the read lock and become inactive because (1) we still
611 	  // have to go through the list of all transactions, which can be
612 	  // modified by serial mode threads, and (2) we interpret each
613 	  // transactions' shared_state in the context of what we believe to
614 	  // be the current method group (and serial mode transactions can
615 	  // change the method group).  Therefore, if we have to ensure
616 	  // privatization safety, delay becoming inactive but set a maximum
617 	  // snapshot time (we have committed and thus have an empty snapshot,
618 	  // so it will always be most recent).  Use release MO so that this
619 	  // synchronizes with other threads observing our snapshot time.
620 	  if (priv_time)
621 	    {
622 	      do_read_unlock = true;
623 	      shared_state.store((~(typeof gtm_thread::shared_state)0) - 1,
624 		  memory_order_release);
625 	    }
626 	  else
627 	    gtm_thread::serial_lock.read_unlock (this);
628 	}
629       state = 0;
630 
631       // We can commit the undo log after dispatch-specific commit and after
632       // making the transaction inactive because we only have to reset
633       // gtm_thread state.
634       undolog.commit ();
635       // Reset further transaction state.
636       cxa_catch_count = 0;
637       restart_total = 0;
638 
639       // Ensure privatization safety, if necessary.
640       if (priv_time)
641 	{
642           // There must be a seq_cst fence between the following loads of the
643           // other transactions' shared_state and the dispatch-specific stores
644           // that signal updates by this transaction (e.g., lock
645           // acquisitions).  This ensures that if we read prior to other
646           // reader transactions setting their shared_state to 0, then those
647           // readers will observe our updates.  We can reuse the seq_cst fence
648           // in serial_lock.read_unlock() if we performed that; if not, we
649 	  // issue the fence.
650 	  if (do_read_unlock)
651 	    atomic_thread_fence (memory_order_seq_cst);
652 	  // TODO Don't just spin but also block using cond vars / futexes
653 	  // here. Should probably be integrated with the serial lock code.
654 	  for (gtm_thread *it = gtm_thread::list_of_threads; it != 0;
655 	      it = it->next_thread)
656 	    {
657 	      if (it == this) continue;
658 	      // We need to load other threads' shared_state using acquire
659 	      // semantics (matching the release semantics of the respective
660 	      // updates).  This is necessary to ensure that the other
661 	      // threads' memory accesses happen before our actions that
662 	      // assume privatization safety.
663 	      // TODO Are there any platform-specific optimizations (e.g.,
664 	      // merging barriers)?
665 	      while (it->shared_state.load(memory_order_acquire) < priv_time)
666 		cpu_relax();
667 	    }
668 	}
669 
670       // After ensuring privatization safety, we are now truly inactive and
671       // thus can release the read lock.  We will also execute potentially
672       // privatizing actions (e.g., calling free()).  User actions are first.
673       if (do_read_unlock)
674 	gtm_thread::serial_lock.read_unlock (this);
675       commit_user_actions ();
676       commit_allocations (false, 0);
677 
678       return true;
679     }
680   return false;
681 }
682 
683 void ITM_NORETURN
684 GTM::gtm_thread::restart (gtm_restart_reason r, bool finish_serial_upgrade)
685 {
686   // Roll back to outermost transaction. Do not reset transaction state because
687   // we will continue executing this transaction.
688   rollback ();
689 
690   // If we have to restart while an upgrade of the serial lock is happening,
691   // we need to finish this here, after rollback (to ensure privatization
692   // safety despite undo writes) and before deciding about the retry strategy
693   // (which could switch to/from serial mode).
694   if (finish_serial_upgrade)
695     gtm_thread::serial_lock.write_upgrade_finish(this);
696 
697   decide_retry_strategy (r);
698 
699   // Run dispatch-specific restart code. Retry until we succeed.
700   abi_dispatch* disp = abi_disp();
701   GTM::gtm_restart_reason rr;
702   while ((rr = disp->begin_or_restart()) != NO_RESTART)
703     {
704       decide_retry_strategy(rr);
705       disp = abi_disp();
706     }
707 
708   GTM_longjmp (choose_code_path(prop, disp) | a_restoreLiveVariables,
709 	       &jb, prop);
710 }
711 
712 void ITM_REGPARM
713 _ITM_commitTransaction(void)
714 {
715 #if defined(USE_HTM_FASTPATH)
716   // HTM fastpath.  If we are not executing a HW transaction, then we will be
717   // a serial-mode transaction.  If we are, then there will be no other
718   // concurrent serial-mode transaction.
719   // See gtm_thread::begin_transaction.
720   if (likely(!gtm_thread::serial_lock.htm_fastpath_disabled()))
721     {
722       htm_commit();
723       return;
724     }
725 #endif
726   gtm_thread *tx = gtm_thr();
727   if (!tx->trycommit ())
728     tx->restart (RESTART_VALIDATE_COMMIT);
729 }
730 
731 void ITM_REGPARM
732 _ITM_commitTransactionEH(void *exc_ptr)
733 {
734 #if defined(USE_HTM_FASTPATH)
735   // See _ITM_commitTransaction.
736   if (likely(!gtm_thread::serial_lock.htm_fastpath_disabled()))
737     {
738       htm_commit();
739       return;
740     }
741 #endif
742   gtm_thread *tx = gtm_thr();
743   if (!tx->trycommit ())
744     {
745       tx->eh_in_flight = exc_ptr;
746       tx->restart (RESTART_VALIDATE_COMMIT);
747     }
748 }
749