1------------------------------------------------------------------------------
2--                                                                          --
3--                         GNAT COMPILER COMPONENTS                         --
4--                                                                          --
5--                              E X P _ C H 5                               --
6--                                                                          --
7--                                 B o d y                                  --
8--                                                                          --
9--          Copyright (C) 1992-2019, Free Software Foundation, Inc.         --
10--                                                                          --
11-- GNAT is free software;  you can  redistribute it  and/or modify it under --
12-- terms of the  GNU General Public License as published  by the Free Soft- --
13-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
14-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
17-- for  more details.  You should have  received  a copy of the GNU General --
18-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license.          --
20--                                                                          --
21-- GNAT was originally developed  by the GNAT team at  New York University. --
22-- Extensive contributions were provided by Ada Core Technologies Inc.      --
23--                                                                          --
24------------------------------------------------------------------------------
25
26with Aspects;  use Aspects;
27with Atree;    use Atree;
28with Checks;   use Checks;
29with Debug;    use Debug;
30with Einfo;    use Einfo;
31with Elists;   use Elists;
32with Errout;   use Errout;
33with Exp_Aggr; use Exp_Aggr;
34with Exp_Ch6;  use Exp_Ch6;
35with Exp_Ch7;  use Exp_Ch7;
36with Exp_Ch11; use Exp_Ch11;
37with Exp_Dbug; use Exp_Dbug;
38with Exp_Pakd; use Exp_Pakd;
39with Exp_Tss;  use Exp_Tss;
40with Exp_Util; use Exp_Util;
41with Inline;   use Inline;
42with Namet;    use Namet;
43with Nlists;   use Nlists;
44with Nmake;    use Nmake;
45with Opt;      use Opt;
46with Restrict; use Restrict;
47with Rident;   use Rident;
48with Rtsfind;  use Rtsfind;
49with Sinfo;    use Sinfo;
50with Sem;      use Sem;
51with Sem_Aux;  use Sem_Aux;
52with Sem_Ch3;  use Sem_Ch3;
53with Sem_Ch8;  use Sem_Ch8;
54with Sem_Ch13; use Sem_Ch13;
55with Sem_Eval; use Sem_Eval;
56with Sem_Res;  use Sem_Res;
57with Sem_Util; use Sem_Util;
58with Snames;   use Snames;
59with Stand;    use Stand;
60with Stringt;  use Stringt;
61with Tbuild;   use Tbuild;
62with Uintp;    use Uintp;
63with Validsw;  use Validsw;
64
65package body Exp_Ch5 is
66
67   procedure Build_Formal_Container_Iteration
68     (N         : Node_Id;
69      Container : Entity_Id;
70      Cursor    : Entity_Id;
71      Init      : out Node_Id;
72      Advance   : out Node_Id;
73      New_Loop  : out Node_Id);
74   --  Utility to create declarations and loop statement for both forms
75   --  of formal container iterators.
76
77   function Convert_To_Iterable_Type
78     (Container : Entity_Id;
79      Loc       : Source_Ptr) return Node_Id;
80   --  Returns New_Occurrence_Of (Container), possibly converted to an ancestor
81   --  type, if the type of Container inherited the Iterable aspect from that
82   --  ancestor.
83
84   function Change_Of_Representation (N : Node_Id) return Boolean;
85   --  Determine if the right-hand side of assignment N is a type conversion
86   --  which requires a change of representation. Called only for the array
87   --  and record cases.
88
89   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
90   --  N is an assignment which assigns an array value. This routine process
91   --  the various special cases and checks required for such assignments,
92   --  including change of representation. Rhs is normally simply the right-
93   --  hand side of the assignment, except that if the right-hand side is a
94   --  type conversion or a qualified expression, then the RHS is the actual
95   --  expression inside any such type conversions or qualifications.
96
97   function Expand_Assign_Array_Loop
98     (N      : Node_Id;
99      Larray : Entity_Id;
100      Rarray : Entity_Id;
101      L_Type : Entity_Id;
102      R_Type : Entity_Id;
103      Ndim   : Pos;
104      Rev    : Boolean) return Node_Id;
105   --  N is an assignment statement which assigns an array value. This routine
106   --  expands the assignment into a loop (or nested loops for the case of a
107   --  multi-dimensional array) to do the assignment component by component.
108   --  Larray and Rarray are the entities of the actual arrays on the left-hand
109   --  and right-hand sides. L_Type and R_Type are the types of these arrays
110   --  (which may not be the same, due to either sliding, or to a change of
111   --  representation case). Ndim is the number of dimensions and the parameter
112   --  Rev indicates if the loops run normally (Rev = False), or reversed
113   --  (Rev = True). The value returned is the constructed loop statement.
114   --  Auxiliary declarations are inserted before node N using the standard
115   --  Insert_Actions mechanism.
116
117   function Expand_Assign_Array_Bitfield
118     (N      : Node_Id;
119      Larray : Entity_Id;
120      Rarray : Entity_Id;
121      L_Type : Entity_Id;
122      R_Type : Entity_Id;
123      Rev    : Boolean) return Node_Id;
124   --  Alternative to Expand_Assign_Array_Loop for packed bitfields. Generates
125   --  a call to the System.Bitfields.Copy_Bitfield, which is more efficient
126   --  than copying component-by-component.
127
128   function Expand_Assign_Array_Loop_Or_Bitfield
129     (N      : Node_Id;
130      Larray : Entity_Id;
131      Rarray : Entity_Id;
132      L_Type : Entity_Id;
133      R_Type : Entity_Id;
134      Ndim   : Pos;
135      Rev    : Boolean) return Node_Id;
136   --  Calls either Expand_Assign_Array_Loop or Expand_Assign_Array_Bitfield as
137   --  appropriate.
138
139   procedure Expand_Assign_Record (N : Node_Id);
140   --  N is an assignment of an untagged record value. This routine handles
141   --  the case where the assignment must be made component by component,
142   --  either because the target is not byte aligned, or there is a change
143   --  of representation, or when we have a tagged type with a representation
144   --  clause (this last case is required because holes in the tagged type
145   --  might be filled with components from child types).
146
147   procedure Expand_Assign_With_Target_Names (N : Node_Id);
148   --  (AI12-0125): N is an assignment statement whose RHS contains occurrences
149   --  of @ that designate the value of the LHS of the assignment. If the LHS
150   --  is side-effect free the target names can be replaced with a copy of the
151   --  LHS; otherwise the semantics of the assignment is described in terms of
152   --  a procedure with an in-out parameter, and expanded as such.
153
154   procedure Expand_Formal_Container_Loop (N : Node_Id);
155   --  Use the primitives specified in an Iterable aspect to expand a loop
156   --  over a so-called formal container, primarily for SPARK usage.
157
158   procedure Expand_Formal_Container_Element_Loop (N : Node_Id);
159   --  Same, for an iterator of the form " For E of C". In this case the
160   --  iterator provides the name of the element, and the cursor is generated
161   --  internally.
162
163   procedure Expand_Iterator_Loop (N : Node_Id);
164   --  Expand loop over arrays and containers that uses the form "for X of C"
165   --  with an optional subtype mark, or "for Y in C".
166
167   procedure Expand_Iterator_Loop_Over_Container
168     (N             : Node_Id;
169      Isc           : Node_Id;
170      I_Spec        : Node_Id;
171      Container     : Node_Id;
172      Container_Typ : Entity_Id);
173   --  Expand loop over containers that uses the form "for X of C" with an
174   --  optional subtype mark, or "for Y in C". Isc is the iteration scheme.
175   --  I_Spec is the iterator specification and Container is either the
176   --  Container (for OF) or the iterator (for IN).
177
178   procedure Expand_Predicated_Loop (N : Node_Id);
179   --  Expand for loop over predicated subtype
180
181   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
182   --  Generate the necessary code for controlled and tagged assignment, that
183   --  is to say, finalization of the target before, adjustment of the target
184   --  after and save and restore of the tag and finalization pointers which
185   --  are not 'part of the value' and must not be changed upon assignment. N
186   --  is the original Assignment node.
187
188   --------------------------------------
189   -- Build_Formal_Container_Iteration --
190   --------------------------------------
191
192   procedure Build_Formal_Container_Iteration
193     (N         : Node_Id;
194      Container : Entity_Id;
195      Cursor    : Entity_Id;
196      Init      : out Node_Id;
197      Advance   : out Node_Id;
198      New_Loop  : out Node_Id)
199   is
200      Loc   : constant Source_Ptr := Sloc (N);
201      Stats : constant List_Id    := Statements (N);
202      Typ   : constant Entity_Id  := Base_Type (Etype (Container));
203
204      Has_Element_Op : constant Entity_Id :=
205                         Get_Iterable_Type_Primitive (Typ, Name_Has_Element);
206
207      First_Op : Entity_Id;
208      Next_Op  : Entity_Id;
209
210   begin
211      --  Use the proper set of primitives depending on the direction of
212      --  iteration. The legality of a reverse iteration has been checked
213      --  during analysis.
214
215      if Reverse_Present (Iterator_Specification (Iteration_Scheme (N))) then
216         First_Op := Get_Iterable_Type_Primitive (Typ, Name_Last);
217         Next_Op  := Get_Iterable_Type_Primitive (Typ, Name_Previous);
218
219      else
220         First_Op := Get_Iterable_Type_Primitive (Typ, Name_First);
221         Next_Op  := Get_Iterable_Type_Primitive (Typ, Name_Next);
222      end if;
223
224      --  Declaration for Cursor
225
226      Init :=
227        Make_Object_Declaration (Loc,
228          Defining_Identifier => Cursor,
229          Object_Definition   => New_Occurrence_Of (Etype (First_Op),  Loc),
230          Expression          =>
231            Make_Function_Call (Loc,
232              Name                   => New_Occurrence_Of (First_Op, Loc),
233              Parameter_Associations => New_List (
234                Convert_To_Iterable_Type (Container, Loc))));
235
236      --  Statement that advances (in the right direction) cursor in loop
237
238      Advance :=
239        Make_Assignment_Statement (Loc,
240          Name       => New_Occurrence_Of (Cursor, Loc),
241          Expression =>
242            Make_Function_Call (Loc,
243              Name                   => New_Occurrence_Of (Next_Op, Loc),
244              Parameter_Associations => New_List (
245                Convert_To_Iterable_Type (Container, Loc),
246                New_Occurrence_Of (Cursor, Loc))));
247
248      --  Iterator is rewritten as a while_loop
249
250      New_Loop :=
251        Make_Loop_Statement (Loc,
252          Iteration_Scheme =>
253            Make_Iteration_Scheme (Loc,
254              Condition =>
255                Make_Function_Call (Loc,
256                  Name => New_Occurrence_Of (Has_Element_Op, Loc),
257                  Parameter_Associations => New_List (
258                    Convert_To_Iterable_Type (Container, Loc),
259                    New_Occurrence_Of (Cursor, Loc)))),
260          Statements => Stats,
261          End_Label  => Empty);
262
263      --  If the contruct has a specified loop name, preserve it in the new
264      --  loop, for possible use in exit statements.
265
266      if Present (Identifier (N))
267        and then Comes_From_Source (Identifier (N))
268      then
269         Set_Identifier (New_Loop, Identifier (N));
270      end if;
271   end Build_Formal_Container_Iteration;
272
273   ------------------------------
274   -- Change_Of_Representation --
275   ------------------------------
276
277   function Change_Of_Representation (N : Node_Id) return Boolean is
278      Rhs : constant Node_Id := Expression (N);
279   begin
280      return
281        Nkind (Rhs) = N_Type_Conversion
282          and then
283            not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
284   end Change_Of_Representation;
285
286   ------------------------------
287   -- Convert_To_Iterable_Type --
288   ------------------------------
289
290   function Convert_To_Iterable_Type
291     (Container : Entity_Id;
292      Loc       : Source_Ptr) return Node_Id
293   is
294      Typ    : constant Entity_Id := Base_Type (Etype (Container));
295      Aspect : constant Node_Id   := Find_Aspect (Typ, Aspect_Iterable);
296      Result : Node_Id;
297
298   begin
299      Result := New_Occurrence_Of (Container, Loc);
300
301      if Entity (Aspect) /= Typ then
302         Result :=
303           Make_Type_Conversion (Loc,
304             Subtype_Mark => New_Occurrence_Of (Entity (Aspect), Loc),
305             Expression   => Result);
306      end if;
307
308      return Result;
309   end Convert_To_Iterable_Type;
310
311   -------------------------
312   -- Expand_Assign_Array --
313   -------------------------
314
315   --  There are two issues here. First, do we let Gigi do a block move, or
316   --  do we expand out into a loop? Second, we need to set the two flags
317   --  Forwards_OK and Backwards_OK which show whether the block move (or
318   --  corresponding loops) can be legitimately done in a forwards (low to
319   --  high) or backwards (high to low) manner.
320
321   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
322      Loc : constant Source_Ptr := Sloc (N);
323
324      Lhs : constant Node_Id := Name (N);
325
326      Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
327      Act_Rhs : Node_Id          := Get_Referenced_Object (Rhs);
328
329      L_Type : constant Entity_Id :=
330                 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
331      R_Type : Entity_Id :=
332                 Underlying_Type (Get_Actual_Subtype (Act_Rhs));
333
334      L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
335      R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
336
337      Crep : constant Boolean := Change_Of_Representation (N);
338
339      pragma Assert
340        (Crep
341          or else Is_Bit_Packed_Array (L_Type) = Is_Bit_Packed_Array (R_Type));
342
343      Larray  : Node_Id;
344      Rarray  : Node_Id;
345
346      Ndim : constant Pos := Number_Dimensions (L_Type);
347
348      Loop_Required : Boolean := False;
349      --  This switch is set to True if the array move must be done using
350      --  an explicit front end generated loop.
351
352      procedure Apply_Dereference (Arg : Node_Id);
353      --  If the argument is an access to an array, and the assignment is
354      --  converted into a procedure call, apply explicit dereference.
355
356      function Has_Address_Clause (Exp : Node_Id) return Boolean;
357      --  Test if Exp is a reference to an array whose declaration has
358      --  an address clause, or it is a slice of such an array.
359
360      function Is_Formal_Array (Exp : Node_Id) return Boolean;
361      --  Test if Exp is a reference to an array which is either a formal
362      --  parameter or a slice of a formal parameter. These are the cases
363      --  where hidden aliasing can occur.
364
365      function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
366      --  Determine if Exp is a reference to an array variable which is other
367      --  than an object defined in the current scope, or a component or a
368      --  slice of such an object. Such objects can be aliased to parameters
369      --  (unlike local array references).
370
371      -----------------------
372      -- Apply_Dereference --
373      -----------------------
374
375      procedure Apply_Dereference (Arg : Node_Id) is
376         Typ : constant Entity_Id := Etype (Arg);
377      begin
378         if Is_Access_Type (Typ) then
379            Rewrite (Arg, Make_Explicit_Dereference (Loc,
380              Prefix => Relocate_Node (Arg)));
381            Analyze_And_Resolve (Arg, Designated_Type (Typ));
382         end if;
383      end Apply_Dereference;
384
385      ------------------------
386      -- Has_Address_Clause --
387      ------------------------
388
389      function Has_Address_Clause (Exp : Node_Id) return Boolean is
390      begin
391         return
392           (Is_Entity_Name (Exp) and then
393                              Present (Address_Clause (Entity (Exp))))
394             or else
395           (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
396      end Has_Address_Clause;
397
398      ---------------------
399      -- Is_Formal_Array --
400      ---------------------
401
402      function Is_Formal_Array (Exp : Node_Id) return Boolean is
403      begin
404         return
405           (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
406             or else
407           (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
408      end Is_Formal_Array;
409
410      ------------------------
411      -- Is_Non_Local_Array --
412      ------------------------
413
414      function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
415      begin
416         case Nkind (Exp) is
417            when N_Indexed_Component
418               | N_Selected_Component
419               | N_Slice
420            =>
421               return Is_Non_Local_Array (Prefix (Exp));
422
423            when others =>
424               return
425                 not (Is_Entity_Name (Exp)
426                       and then Scope (Entity (Exp)) = Current_Scope);
427         end case;
428      end Is_Non_Local_Array;
429
430      --  Determine if Lhs, Rhs are formal arrays or nonlocal arrays
431
432      Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
433      Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
434
435      Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
436      Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
437
438   --  Start of processing for Expand_Assign_Array
439
440   begin
441      --  Deal with length check. Note that the length check is done with
442      --  respect to the right-hand side as given, not a possible underlying
443      --  renamed object, since this would generate incorrect extra checks.
444
445      Apply_Length_Check (Rhs, L_Type);
446
447      --  We start by assuming that the move can be done in either direction,
448      --  i.e. that the two sides are completely disjoint.
449
450      Set_Forwards_OK  (N, True);
451      Set_Backwards_OK (N, True);
452
453      --  Normally it is only the slice case that can lead to overlap, and
454      --  explicit checks for slices are made below. But there is one case
455      --  where the slice can be implicit and invisible to us: when we have a
456      --  one dimensional array, and either both operands are parameters, or
457      --  one is a parameter (which can be a slice passed by reference) and the
458      --  other is a non-local variable. In this case the parameter could be a
459      --  slice that overlaps with the other operand.
460
461      --  However, if the array subtype is a constrained first subtype in the
462      --  parameter case, then we don't have to worry about overlap, since
463      --  slice assignments aren't possible (other than for a slice denoting
464      --  the whole array).
465
466      --  Note: No overlap is possible if there is a change of representation,
467      --  so we can exclude this case.
468
469      if Ndim = 1
470        and then not Crep
471        and then
472           ((Lhs_Formal and Rhs_Formal)
473              or else
474            (Lhs_Formal and Rhs_Non_Local_Var)
475              or else
476            (Rhs_Formal and Lhs_Non_Local_Var))
477        and then
478           (not Is_Constrained (Etype (Lhs))
479             or else not Is_First_Subtype (Etype (Lhs)))
480      then
481         Set_Forwards_OK  (N, False);
482         Set_Backwards_OK (N, False);
483
484         --  Note: the bit-packed case is not worrisome here, since if we have
485         --  a slice passed as a parameter, it is always aligned on a byte
486         --  boundary, and if there are no explicit slices, the assignment
487         --  can be performed directly.
488      end if;
489
490      --  If either operand has an address clause clear Backwards_OK and
491      --  Forwards_OK, since we cannot tell if the operands overlap. We
492      --  exclude this treatment when Rhs is an aggregate, since we know
493      --  that overlap can't occur.
494
495      if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate)
496        or else Has_Address_Clause (Rhs)
497      then
498         Set_Forwards_OK  (N, False);
499         Set_Backwards_OK (N, False);
500      end if;
501
502      --  We certainly must use a loop for change of representation and also
503      --  we use the operand of the conversion on the right-hand side as the
504      --  effective right-hand side (the component types must match in this
505      --  situation).
506
507      if Crep then
508         Act_Rhs := Get_Referenced_Object (Rhs);
509         R_Type  := Get_Actual_Subtype (Act_Rhs);
510         Loop_Required := True;
511
512      --  We require a loop if the left side is possibly bit unaligned
513
514      elsif Possible_Bit_Aligned_Component (Lhs)
515              or else
516            Possible_Bit_Aligned_Component (Rhs)
517      then
518         Loop_Required := True;
519
520      --  Arrays with controlled components are expanded into a loop to force
521      --  calls to Adjust at the component level.
522
523      elsif Has_Controlled_Component (L_Type) then
524         Loop_Required := True;
525
526      --  If object is atomic/VFA, we cannot tolerate a loop
527
528      elsif Is_Atomic_Or_VFA_Object (Act_Lhs)
529              or else
530            Is_Atomic_Or_VFA_Object (Act_Rhs)
531      then
532         return;
533
534      --  Loop is required if we have atomic components since we have to
535      --  be sure to do any accesses on an element by element basis.
536
537      elsif Has_Atomic_Components (L_Type)
538        or else Has_Atomic_Components (R_Type)
539        or else Is_Atomic_Or_VFA (Component_Type (L_Type))
540        or else Is_Atomic_Or_VFA (Component_Type (R_Type))
541      then
542         Loop_Required := True;
543
544      --  Case where no slice is involved
545
546      elsif not L_Slice and not R_Slice then
547
548         --  The following code deals with the case of unconstrained bit packed
549         --  arrays. The problem is that the template for such arrays contains
550         --  the bounds of the actual source level array, but the copy of an
551         --  entire array requires the bounds of the underlying array. It would
552         --  be nice if the back end could take care of this, but right now it
553         --  does not know how, so if we have such a type, then we expand out
554         --  into a loop, which is inefficient but works correctly. If we don't
555         --  do this, we get the wrong length computed for the array to be
556         --  moved. The two cases we need to worry about are:
557
558         --  Explicit dereference of an unconstrained packed array type as in
559         --  the following example:
560
561         --    procedure C52 is
562         --       type BITS is array(INTEGER range <>) of BOOLEAN;
563         --       pragma PACK(BITS);
564         --       type A is access BITS;
565         --       P1,P2 : A;
566         --    begin
567         --       P1 := new BITS (1 .. 65_535);
568         --       P2 := new BITS (1 .. 65_535);
569         --       P2.ALL := P1.ALL;
570         --    end C52;
571
572         --  A formal parameter reference with an unconstrained bit array type
573         --  is the other case we need to worry about (here we assume the same
574         --  BITS type declared above):
575
576         --    procedure Write_All (File : out BITS; Contents : BITS);
577         --    begin
578         --       File.Storage := Contents;
579         --    end Write_All;
580
581         --  We expand to a loop in either of these two cases
582
583         --  Question for future thought. Another potentially more efficient
584         --  approach would be to create the actual subtype, and then do an
585         --  unchecked conversion to this actual subtype ???
586
587         Check_Unconstrained_Bit_Packed_Array : declare
588
589            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
590            --  Function to perform required test for the first case, above
591            --  (dereference of an unconstrained bit packed array).
592
593            -----------------------
594            -- Is_UBPA_Reference --
595            -----------------------
596
597            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
598               Typ      : constant Entity_Id := Underlying_Type (Etype (Opnd));
599               P_Type   : Entity_Id;
600               Des_Type : Entity_Id;
601
602            begin
603               if Present (Packed_Array_Impl_Type (Typ))
604                 and then Is_Array_Type (Packed_Array_Impl_Type (Typ))
605                 and then not Is_Constrained (Packed_Array_Impl_Type (Typ))
606               then
607                  return True;
608
609               elsif Nkind (Opnd) = N_Explicit_Dereference then
610                  P_Type := Underlying_Type (Etype (Prefix (Opnd)));
611
612                  if not Is_Access_Type (P_Type) then
613                     return False;
614
615                  else
616                     Des_Type := Designated_Type (P_Type);
617                     return
618                       Is_Bit_Packed_Array (Des_Type)
619                         and then not Is_Constrained (Des_Type);
620                  end if;
621
622               else
623                  return False;
624               end if;
625            end Is_UBPA_Reference;
626
627         --  Start of processing for Check_Unconstrained_Bit_Packed_Array
628
629         begin
630            if Is_UBPA_Reference (Lhs)
631                 or else
632               Is_UBPA_Reference (Rhs)
633            then
634               Loop_Required := True;
635
636            --  Here if we do not have the case of a reference to a bit packed
637            --  unconstrained array case. In this case gigi can most certainly
638            --  handle the assignment if a forwards move is allowed.
639
640            --  (could it handle the backwards case also???)
641
642            elsif Forwards_OK (N) then
643               return;
644            end if;
645         end Check_Unconstrained_Bit_Packed_Array;
646
647      --  The back end can always handle the assignment if the right side is a
648      --  string literal (note that overlap is definitely impossible in this
649      --  case). If the type is packed, a string literal is always converted
650      --  into an aggregate, except in the case of a null slice, for which no
651      --  aggregate can be written. In that case, rewrite the assignment as a
652      --  null statement, a length check has already been emitted to verify
653      --  that the range of the left-hand side is empty.
654
655      --  Note that this code is not executed if we have an assignment of a
656      --  string literal to a non-bit aligned component of a record, a case
657      --  which cannot be handled by the backend.
658
659      elsif Nkind (Rhs) = N_String_Literal then
660         if String_Length (Strval (Rhs)) = 0
661           and then Is_Bit_Packed_Array (L_Type)
662         then
663            Rewrite (N, Make_Null_Statement (Loc));
664            Analyze (N);
665         end if;
666
667         return;
668
669      --  If either operand is bit packed, then we need a loop, since we can't
670      --  be sure that the slice is byte aligned. Similarly, if either operand
671      --  is a possibly unaligned slice, then we need a loop (since the back
672      --  end cannot handle unaligned slices).
673
674      elsif Is_Bit_Packed_Array (L_Type)
675        or else Is_Bit_Packed_Array (R_Type)
676        or else Is_Possibly_Unaligned_Slice (Lhs)
677        or else Is_Possibly_Unaligned_Slice (Rhs)
678      then
679         Loop_Required := True;
680
681      --  If we are not bit-packed, and we have only one slice, then no overlap
682      --  is possible except in the parameter case, so we can let the back end
683      --  handle things.
684
685      elsif not (L_Slice and R_Slice) then
686         if Forwards_OK (N) then
687            return;
688         end if;
689      end if;
690
691      --  If the right-hand side is a string literal, introduce a temporary for
692      --  it, for use in the generated loop that will follow.
693
694      if Nkind (Rhs) = N_String_Literal then
695         declare
696            Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Rhs);
697            Decl : Node_Id;
698
699         begin
700            Decl :=
701              Make_Object_Declaration (Loc,
702                 Defining_Identifier => Temp,
703                 Object_Definition => New_Occurrence_Of (L_Type, Loc),
704                 Expression => Relocate_Node (Rhs));
705
706            Insert_Action (N, Decl);
707            Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
708            R_Type := Etype (Temp);
709         end;
710      end if;
711
712      --  Come here to complete the analysis
713
714      --    Loop_Required: Set to True if we know that a loop is required
715      --                   regardless of overlap considerations.
716
717      --    Forwards_OK:   Set to False if we already know that a forwards
718      --                   move is not safe, else set to True.
719
720      --    Backwards_OK:  Set to False if we already know that a backwards
721      --                   move is not safe, else set to True
722
723      --  Our task at this stage is to complete the overlap analysis, which can
724      --  result in possibly setting Forwards_OK or Backwards_OK to False, and
725      --  then generating the final code, either by deciding that it is OK
726      --  after all to let Gigi handle it, or by generating appropriate code
727      --  in the front end.
728
729      declare
730         L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
731         R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
732
733         Left_Lo  : constant Node_Id := Type_Low_Bound  (L_Index_Typ);
734         Left_Hi  : constant Node_Id := Type_High_Bound (L_Index_Typ);
735         Right_Lo : constant Node_Id := Type_Low_Bound  (R_Index_Typ);
736         Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
737
738         Act_L_Array : Node_Id;
739         Act_R_Array : Node_Id;
740
741         Cleft_Lo  : Node_Id;
742         Cright_Lo : Node_Id;
743         Condition : Node_Id;
744
745         Cresult : Compare_Result;
746
747      begin
748         --  Get the expressions for the arrays. If we are dealing with a
749         --  private type, then convert to the underlying type. We can do
750         --  direct assignments to an array that is a private type, but we
751         --  cannot assign to elements of the array without this extra
752         --  unchecked conversion.
753
754         --  Note: We propagate Parent to the conversion nodes to generate
755         --  a well-formed subtree.
756
757         if Nkind (Act_Lhs) = N_Slice then
758            Larray := Prefix (Act_Lhs);
759         else
760            Larray := Act_Lhs;
761
762            if Is_Private_Type (Etype (Larray)) then
763               declare
764                  Par : constant Node_Id := Parent (Larray);
765               begin
766                  Larray :=
767                    Unchecked_Convert_To
768                      (Underlying_Type (Etype (Larray)), Larray);
769                  Set_Parent (Larray, Par);
770               end;
771            end if;
772         end if;
773
774         if Nkind (Act_Rhs) = N_Slice then
775            Rarray := Prefix (Act_Rhs);
776         else
777            Rarray := Act_Rhs;
778
779            if Is_Private_Type (Etype (Rarray)) then
780               declare
781                  Par : constant Node_Id := Parent (Rarray);
782               begin
783                  Rarray :=
784                    Unchecked_Convert_To
785                      (Underlying_Type (Etype (Rarray)), Rarray);
786                  Set_Parent (Rarray, Par);
787               end;
788            end if;
789         end if;
790
791         --  If both sides are slices, we must figure out whether it is safe
792         --  to do the move in one direction or the other. It is always safe
793         --  if there is a change of representation since obviously two arrays
794         --  with different representations cannot possibly overlap.
795
796         if (not Crep) and L_Slice and R_Slice then
797            Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
798            Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
799
800            --  If both left- and right-hand arrays are entity names, and refer
801            --  to different entities, then we know that the move is safe (the
802            --  two storage areas are completely disjoint).
803
804            if Is_Entity_Name (Act_L_Array)
805              and then Is_Entity_Name (Act_R_Array)
806              and then Entity (Act_L_Array) /= Entity (Act_R_Array)
807            then
808               null;
809
810            --  Otherwise, we assume the worst, which is that the two arrays
811            --  are the same array. There is no need to check if we know that
812            --  is the case, because if we don't know it, we still have to
813            --  assume it.
814
815            --  Generally if the same array is involved, then we have an
816            --  overlapping case. We will have to really assume the worst (i.e.
817            --  set neither of the OK flags) unless we can determine the lower
818            --  or upper bounds at compile time and compare them.
819
820            else
821               Cresult :=
822                 Compile_Time_Compare
823                   (Left_Lo, Right_Lo, Assume_Valid => True);
824
825               if Cresult = Unknown then
826                  Cresult :=
827                    Compile_Time_Compare
828                      (Left_Hi, Right_Hi, Assume_Valid => True);
829               end if;
830
831               case Cresult is
832                  when EQ | LE | LT =>
833                     Set_Backwards_OK (N, False);
834
835                  when GE | GT =>
836                     Set_Forwards_OK  (N, False);
837
838                  when NE | Unknown =>
839                     Set_Backwards_OK (N, False);
840                     Set_Forwards_OK  (N, False);
841               end case;
842            end if;
843         end if;
844
845         --  If after that analysis Loop_Required is False, meaning that we
846         --  have not discovered some non-overlap reason for requiring a loop,
847         --  then the outcome depends on the capabilities of the back end.
848
849         if not Loop_Required then
850            --  Assume the back end can deal with all cases of overlap by
851            --  falling back to memmove if it cannot use a more efficient
852            --  approach.
853
854            return;
855         end if;
856
857         --  At this stage we have to generate an explicit loop, and we have
858         --  the following cases:
859
860         --  Forwards_OK = True
861
862         --    Rnn : right_index := right_index'First;
863         --    for Lnn in left-index loop
864         --       left (Lnn) := right (Rnn);
865         --       Rnn := right_index'Succ (Rnn);
866         --    end loop;
867
868         --    Note: the above code MUST be analyzed with checks off, because
869         --    otherwise the Succ could overflow. But in any case this is more
870         --    efficient.
871
872         --  Forwards_OK = False, Backwards_OK = True
873
874         --    Rnn : right_index := right_index'Last;
875         --    for Lnn in reverse left-index loop
876         --       left (Lnn) := right (Rnn);
877         --       Rnn := right_index'Pred (Rnn);
878         --    end loop;
879
880         --    Note: the above code MUST be analyzed with checks off, because
881         --    otherwise the Pred could overflow. But in any case this is more
882         --    efficient.
883
884         --  Forwards_OK = Backwards_OK = False
885
886         --    This only happens if we have the same array on each side. It is
887         --    possible to create situations using overlays that violate this,
888         --    but we simply do not promise to get this "right" in this case.
889
890         --    There are two possible subcases. If the No_Implicit_Conditionals
891         --    restriction is set, then we generate the following code:
892
893         --      declare
894         --        T : constant <operand-type> := rhs;
895         --      begin
896         --        lhs := T;
897         --      end;
898
899         --    If implicit conditionals are permitted, then we generate:
900
901         --      if Left_Lo <= Right_Lo then
902         --         <code for Forwards_OK = True above>
903         --      else
904         --         <code for Backwards_OK = True above>
905         --      end if;
906
907         --  In order to detect possible aliasing, we examine the renamed
908         --  expression when the source or target is a renaming. However,
909         --  the renaming may be intended to capture an address that may be
910         --  affected by subsequent code, and therefore we must recover
911         --  the actual entity for the expansion that follows, not the
912         --  object it renames. In particular, if source or target designate
913         --  a portion of a dynamically allocated object, the pointer to it
914         --  may be reassigned but the renaming preserves the proper location.
915
916         if Is_Entity_Name (Rhs)
917           and then
918             Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
919           and then Nkind (Act_Rhs) = N_Slice
920         then
921            Rarray := Rhs;
922         end if;
923
924         if Is_Entity_Name (Lhs)
925           and then
926             Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
927           and then Nkind (Act_Lhs) = N_Slice
928         then
929            Larray := Lhs;
930         end if;
931
932         --  Cases where either Forwards_OK or Backwards_OK is true
933
934         if Forwards_OK (N) or else Backwards_OK (N) then
935            if Needs_Finalization (Component_Type (L_Type))
936              and then Base_Type (L_Type) = Base_Type (R_Type)
937              and then Ndim = 1
938              and then not No_Ctrl_Actions (N)
939            then
940               declare
941                  Proc    : constant Entity_Id :=
942                              TSS (Base_Type (L_Type), TSS_Slice_Assign);
943                  Actuals : List_Id;
944
945               begin
946                  Apply_Dereference (Larray);
947                  Apply_Dereference (Rarray);
948                  Actuals := New_List (
949                    Duplicate_Subexpr (Larray,   Name_Req => True),
950                    Duplicate_Subexpr (Rarray,   Name_Req => True),
951                    Duplicate_Subexpr (Left_Lo,  Name_Req => True),
952                    Duplicate_Subexpr (Left_Hi,  Name_Req => True),
953                    Duplicate_Subexpr (Right_Lo, Name_Req => True),
954                    Duplicate_Subexpr (Right_Hi, Name_Req => True));
955
956                  Append_To (Actuals,
957                    New_Occurrence_Of (
958                      Boolean_Literals (not Forwards_OK (N)), Loc));
959
960                  Rewrite (N,
961                    Make_Procedure_Call_Statement (Loc,
962                      Name => New_Occurrence_Of (Proc, Loc),
963                      Parameter_Associations => Actuals));
964               end;
965
966            else
967               Rewrite (N,
968                 Expand_Assign_Array_Loop_Or_Bitfield
969                   (N, Larray, Rarray, L_Type, R_Type, Ndim,
970                    Rev => not Forwards_OK (N)));
971            end if;
972
973         --  Case of both are false with No_Implicit_Conditionals
974
975         elsif Restriction_Active (No_Implicit_Conditionals) then
976            declare
977                  T : constant Entity_Id :=
978                        Make_Defining_Identifier (Loc, Chars => Name_T);
979
980            begin
981               Rewrite (N,
982                 Make_Block_Statement (Loc,
983                  Declarations => New_List (
984                    Make_Object_Declaration (Loc,
985                      Defining_Identifier => T,
986                      Constant_Present  => True,
987                      Object_Definition =>
988                        New_Occurrence_Of (Etype (Rhs), Loc),
989                      Expression        => Relocate_Node (Rhs))),
990
991                    Handled_Statement_Sequence =>
992                      Make_Handled_Sequence_Of_Statements (Loc,
993                        Statements => New_List (
994                          Make_Assignment_Statement (Loc,
995                            Name       => Relocate_Node (Lhs),
996                            Expression => New_Occurrence_Of (T, Loc))))));
997            end;
998
999         --  Case of both are false with implicit conditionals allowed
1000
1001         else
1002            --  Before we generate this code, we must ensure that the left and
1003            --  right side array types are defined. They may be itypes, and we
1004            --  cannot let them be defined inside the if, since the first use
1005            --  in the then may not be executed.
1006
1007            Ensure_Defined (L_Type, N);
1008            Ensure_Defined (R_Type, N);
1009
1010            --  We normally compare addresses to find out which way round to
1011            --  do the loop, since this is reliable, and handles the cases of
1012            --  parameters, conversions etc. But we can't do that in the bit
1013            --  packed case, because addresses don't work there.
1014
1015            if not Is_Bit_Packed_Array (L_Type) then
1016               Condition :=
1017                 Make_Op_Le (Loc,
1018                   Left_Opnd =>
1019                     Unchecked_Convert_To (RTE (RE_Integer_Address),
1020                       Make_Attribute_Reference (Loc,
1021                         Prefix =>
1022                           Make_Indexed_Component (Loc,
1023                             Prefix =>
1024                               Duplicate_Subexpr_Move_Checks (Larray, True),
1025                             Expressions => New_List (
1026                               Make_Attribute_Reference (Loc,
1027                                 Prefix =>
1028                                   New_Occurrence_Of
1029                                     (L_Index_Typ, Loc),
1030                                 Attribute_Name => Name_First))),
1031                         Attribute_Name => Name_Address)),
1032
1033                   Right_Opnd =>
1034                     Unchecked_Convert_To (RTE (RE_Integer_Address),
1035                       Make_Attribute_Reference (Loc,
1036                         Prefix =>
1037                           Make_Indexed_Component (Loc,
1038                             Prefix =>
1039                               Duplicate_Subexpr_Move_Checks (Rarray, True),
1040                             Expressions => New_List (
1041                               Make_Attribute_Reference (Loc,
1042                                 Prefix =>
1043                                   New_Occurrence_Of
1044                                     (R_Index_Typ, Loc),
1045                                 Attribute_Name => Name_First))),
1046                         Attribute_Name => Name_Address)));
1047
1048            --  For the bit packed and VM cases we use the bounds. That's OK,
1049            --  because we don't have to worry about parameters, since they
1050            --  cannot cause overlap. Perhaps we should worry about weird slice
1051            --  conversions ???
1052
1053            else
1054               --  Copy the bounds
1055
1056               Cleft_Lo  := New_Copy_Tree (Left_Lo);
1057               Cright_Lo := New_Copy_Tree (Right_Lo);
1058
1059               --  If the types do not match we add an implicit conversion
1060               --  here to ensure proper match
1061
1062               if Etype (Left_Lo) /= Etype (Right_Lo) then
1063                  Cright_Lo :=
1064                    Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo);
1065               end if;
1066
1067               --  Reset the Analyzed flag, because the bounds of the index
1068               --  type itself may be universal, and must be reanalyzed to
1069               --  acquire the proper type for the back end.
1070
1071               Set_Analyzed (Cleft_Lo, False);
1072               Set_Analyzed (Cright_Lo, False);
1073
1074               Condition :=
1075                 Make_Op_Le (Loc,
1076                   Left_Opnd  => Cleft_Lo,
1077                   Right_Opnd => Cright_Lo);
1078            end if;
1079
1080            if Needs_Finalization (Component_Type (L_Type))
1081              and then Base_Type (L_Type) = Base_Type (R_Type)
1082              and then Ndim = 1
1083              and then not No_Ctrl_Actions (N)
1084            then
1085
1086               --  Call TSS procedure for array assignment, passing the
1087               --  explicit bounds of right- and left-hand sides.
1088
1089               declare
1090                  Proc    : constant Entity_Id :=
1091                              TSS (Base_Type (L_Type), TSS_Slice_Assign);
1092                  Actuals : List_Id;
1093
1094               begin
1095                  Apply_Dereference (Larray);
1096                  Apply_Dereference (Rarray);
1097                  Actuals := New_List (
1098                    Duplicate_Subexpr (Larray,   Name_Req => True),
1099                    Duplicate_Subexpr (Rarray,   Name_Req => True),
1100                    Duplicate_Subexpr (Left_Lo,  Name_Req => True),
1101                    Duplicate_Subexpr (Left_Hi,  Name_Req => True),
1102                    Duplicate_Subexpr (Right_Lo, Name_Req => True),
1103                    Duplicate_Subexpr (Right_Hi, Name_Req => True));
1104
1105                  Append_To (Actuals,
1106                     Make_Op_Not (Loc,
1107                       Right_Opnd => Condition));
1108
1109                  Rewrite (N,
1110                    Make_Procedure_Call_Statement (Loc,
1111                      Name => New_Occurrence_Of (Proc, Loc),
1112                      Parameter_Associations => Actuals));
1113               end;
1114
1115            else
1116               Rewrite (N,
1117                 Make_Implicit_If_Statement (N,
1118                   Condition => Condition,
1119
1120                   Then_Statements => New_List (
1121                     Expand_Assign_Array_Loop_Or_Bitfield
1122                      (N, Larray, Rarray, L_Type, R_Type, Ndim,
1123                       Rev => False)),
1124
1125                   Else_Statements => New_List (
1126                     Expand_Assign_Array_Loop_Or_Bitfield
1127                      (N, Larray, Rarray, L_Type, R_Type, Ndim,
1128                       Rev => True))));
1129            end if;
1130         end if;
1131
1132         Analyze (N, Suppress => All_Checks);
1133      end;
1134
1135   exception
1136      when RE_Not_Available =>
1137         return;
1138   end Expand_Assign_Array;
1139
1140   ------------------------------
1141   -- Expand_Assign_Array_Loop --
1142   ------------------------------
1143
1144   --  The following is an example of the loop generated for the case of a
1145   --  two-dimensional array:
1146
1147   --    declare
1148   --       R2b : Tm1X1 := 1;
1149   --    begin
1150   --       for L1b in 1 .. 100 loop
1151   --          declare
1152   --             R4b : Tm1X2 := 1;
1153   --          begin
1154   --             for L3b in 1 .. 100 loop
1155   --                vm1 (L1b, L3b) := vm2 (R2b, R4b);
1156   --                R4b := Tm1X2'succ(R4b);
1157   --             end loop;
1158   --          end;
1159   --          R2b := Tm1X1'succ(R2b);
1160   --       end loop;
1161   --    end;
1162
1163   --  Here Rev is False, and Tm1Xn are the subscript types for the right-hand
1164   --  side. The declarations of R2b and R4b are inserted before the original
1165   --  assignment statement.
1166
1167   function Expand_Assign_Array_Loop
1168     (N      : Node_Id;
1169      Larray : Entity_Id;
1170      Rarray : Entity_Id;
1171      L_Type : Entity_Id;
1172      R_Type : Entity_Id;
1173      Ndim   : Pos;
1174      Rev    : Boolean) return Node_Id
1175   is
1176      Loc  : constant Source_Ptr := Sloc (N);
1177
1178      Lnn : array (1 .. Ndim) of Entity_Id;
1179      Rnn : array (1 .. Ndim) of Entity_Id;
1180      --  Entities used as subscripts on left and right sides
1181
1182      L_Index_Type : array (1 .. Ndim) of Entity_Id;
1183      R_Index_Type : array (1 .. Ndim) of Entity_Id;
1184      --  Left and right index types
1185
1186      Assign : Node_Id;
1187
1188      F_Or_L : Name_Id;
1189      S_Or_P : Name_Id;
1190
1191      function Build_Step (J : Nat) return Node_Id;
1192      --  The increment step for the index of the right-hand side is written
1193      --  as an attribute reference (Succ or Pred). This function returns
1194      --  the corresponding node, which is placed at the end of the loop body.
1195
1196      ----------------
1197      -- Build_Step --
1198      ----------------
1199
1200      function Build_Step (J : Nat) return Node_Id is
1201         Step : Node_Id;
1202         Lim  : Name_Id;
1203
1204      begin
1205         if Rev then
1206            Lim := Name_First;
1207         else
1208            Lim := Name_Last;
1209         end if;
1210
1211         Step :=
1212            Make_Assignment_Statement (Loc,
1213               Name => New_Occurrence_Of (Rnn (J), Loc),
1214               Expression =>
1215                 Make_Attribute_Reference (Loc,
1216                   Prefix =>
1217                     New_Occurrence_Of (R_Index_Type (J), Loc),
1218                   Attribute_Name => S_Or_P,
1219                   Expressions => New_List (
1220                     New_Occurrence_Of (Rnn (J), Loc))));
1221
1222      --  Note that on the last iteration of the loop, the index is increased
1223      --  (or decreased) past the corresponding bound. This is consistent with
1224      --  the C semantics of the back-end, where such an off-by-one value on a
1225      --  dead index variable is OK. However, in CodePeer mode this leads to
1226      --  spurious warnings, and thus we place a guard around the attribute
1227      --  reference. For obvious reasons we only do this for CodePeer.
1228
1229         if CodePeer_Mode then
1230            Step :=
1231              Make_If_Statement (Loc,
1232                 Condition =>
1233                    Make_Op_Ne (Loc,
1234                       Left_Opnd  => New_Occurrence_Of (Lnn (J), Loc),
1235                       Right_Opnd =>
1236                         Make_Attribute_Reference (Loc,
1237                           Prefix => New_Occurrence_Of (L_Index_Type (J), Loc),
1238                           Attribute_Name => Lim)),
1239                 Then_Statements => New_List (Step));
1240         end if;
1241
1242         return Step;
1243      end Build_Step;
1244
1245   --  Start of processing for Expand_Assign_Array_Loop
1246
1247   begin
1248      if Rev then
1249         F_Or_L := Name_Last;
1250         S_Or_P := Name_Pred;
1251      else
1252         F_Or_L := Name_First;
1253         S_Or_P := Name_Succ;
1254      end if;
1255
1256      --  Setup index types and subscript entities
1257
1258      declare
1259         L_Index : Node_Id;
1260         R_Index : Node_Id;
1261
1262      begin
1263         L_Index := First_Index (L_Type);
1264         R_Index := First_Index (R_Type);
1265
1266         for J in 1 .. Ndim loop
1267            Lnn (J) := Make_Temporary (Loc, 'L');
1268            Rnn (J) := Make_Temporary (Loc, 'R');
1269
1270            L_Index_Type (J) := Etype (L_Index);
1271            R_Index_Type (J) := Etype (R_Index);
1272
1273            Next_Index (L_Index);
1274            Next_Index (R_Index);
1275         end loop;
1276      end;
1277
1278      --  Now construct the assignment statement
1279
1280      declare
1281         ExprL : constant List_Id := New_List;
1282         ExprR : constant List_Id := New_List;
1283
1284      begin
1285         for J in 1 .. Ndim loop
1286            Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
1287            Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
1288         end loop;
1289
1290         Assign :=
1291           Make_Assignment_Statement (Loc,
1292             Name =>
1293               Make_Indexed_Component (Loc,
1294                 Prefix      => Duplicate_Subexpr (Larray, Name_Req => True),
1295                 Expressions => ExprL),
1296             Expression =>
1297               Make_Indexed_Component (Loc,
1298                 Prefix      => Duplicate_Subexpr (Rarray, Name_Req => True),
1299                 Expressions => ExprR));
1300
1301         --  We set assignment OK, since there are some cases, e.g. in object
1302         --  declarations, where we are actually assigning into a constant.
1303         --  If there really is an illegality, it was caught long before now,
1304         --  and was flagged when the original assignment was analyzed.
1305
1306         Set_Assignment_OK (Name (Assign));
1307
1308         --  Propagate the No_Ctrl_Actions flag to individual assignments
1309
1310         Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
1311      end;
1312
1313      --  Now construct the loop from the inside out, with the last subscript
1314      --  varying most rapidly. Note that Assign is first the raw assignment
1315      --  statement, and then subsequently the loop that wraps it up.
1316
1317      for J in reverse 1 .. Ndim loop
1318         Assign :=
1319           Make_Block_Statement (Loc,
1320             Declarations => New_List (
1321              Make_Object_Declaration (Loc,
1322                Defining_Identifier => Rnn (J),
1323                Object_Definition =>
1324                  New_Occurrence_Of (R_Index_Type (J), Loc),
1325                Expression =>
1326                  Make_Attribute_Reference (Loc,
1327                    Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
1328                    Attribute_Name => F_Or_L))),
1329
1330           Handled_Statement_Sequence =>
1331             Make_Handled_Sequence_Of_Statements (Loc,
1332               Statements => New_List (
1333                 Make_Implicit_Loop_Statement (N,
1334                   Iteration_Scheme =>
1335                     Make_Iteration_Scheme (Loc,
1336                       Loop_Parameter_Specification =>
1337                         Make_Loop_Parameter_Specification (Loc,
1338                           Defining_Identifier => Lnn (J),
1339                           Reverse_Present => Rev,
1340                           Discrete_Subtype_Definition =>
1341                             New_Occurrence_Of (L_Index_Type (J), Loc))),
1342
1343                   Statements => New_List (Assign, Build_Step (J))))));
1344      end loop;
1345
1346      return Assign;
1347   end Expand_Assign_Array_Loop;
1348
1349   ----------------------------------
1350   -- Expand_Assign_Array_Bitfield --
1351   ----------------------------------
1352
1353   function Expand_Assign_Array_Bitfield
1354     (N      : Node_Id;
1355      Larray : Entity_Id;
1356      Rarray : Entity_Id;
1357      L_Type : Entity_Id;
1358      R_Type : Entity_Id;
1359      Rev    : Boolean) return Node_Id
1360   is
1361      pragma Assert (not Rev);
1362      --  Reverse copying is not yet supported by Copy_Bitfield.
1363
1364      pragma Assert (not Change_Of_Representation (N));
1365      --  This won't work, for example, to copy a packed array to an unpacked
1366      --  array.
1367
1368      Loc  : constant Source_Ptr := Sloc (N);
1369
1370      L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
1371      R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
1372      Left_Lo  : constant Node_Id := Type_Low_Bound  (L_Index_Typ);
1373      Right_Lo : constant Node_Id := Type_Low_Bound  (R_Index_Typ);
1374
1375      L_Addr : constant Node_Id :=
1376        Make_Attribute_Reference (Loc,
1377          Prefix =>
1378            Make_Indexed_Component (Loc,
1379              Prefix =>
1380                Duplicate_Subexpr (Larray, True),
1381              Expressions => New_List (New_Copy_Tree (Left_Lo))),
1382          Attribute_Name => Name_Address);
1383
1384      L_Bit : constant Node_Id :=
1385        Make_Attribute_Reference (Loc,
1386          Prefix =>
1387            Make_Indexed_Component (Loc,
1388              Prefix =>
1389                Duplicate_Subexpr (Larray, True),
1390              Expressions => New_List (New_Copy_Tree (Left_Lo))),
1391          Attribute_Name => Name_Bit);
1392
1393      R_Addr : constant Node_Id :=
1394        Make_Attribute_Reference (Loc,
1395          Prefix =>
1396            Make_Indexed_Component (Loc,
1397              Prefix =>
1398                Duplicate_Subexpr (Rarray, True),
1399              Expressions => New_List (New_Copy_Tree (Right_Lo))),
1400          Attribute_Name => Name_Address);
1401
1402      R_Bit : constant Node_Id :=
1403        Make_Attribute_Reference (Loc,
1404          Prefix =>
1405            Make_Indexed_Component (Loc,
1406              Prefix =>
1407                Duplicate_Subexpr (Rarray, True),
1408              Expressions => New_List (New_Copy_Tree (Right_Lo))),
1409          Attribute_Name => Name_Bit);
1410
1411      --  Compute the Size of the bitfield
1412
1413      --  Note that the length check has already been done, so we can use the
1414      --  size of either L or R; they are equal. We can't use 'Size here,
1415      --  because sometimes bit fields get copied into a temp, and the 'Size
1416      --  ends up being the size of the temp (e.g. an 8-bit temp containing
1417      --  a 4-bit bit field).
1418
1419      Size : constant Node_Id :=
1420        Make_Op_Multiply (Loc,
1421          Make_Attribute_Reference (Loc,
1422            Prefix =>
1423              Duplicate_Subexpr (Name (N), True),
1424            Attribute_Name => Name_Length),
1425          Make_Attribute_Reference (Loc,
1426            Prefix =>
1427              Duplicate_Subexpr (Name (N), True),
1428            Attribute_Name => Name_Component_Size));
1429
1430   begin
1431      return Make_Procedure_Call_Statement (Loc,
1432        Name => New_Occurrence_Of (RTE (RE_Copy_Bitfield), Loc),
1433        Parameter_Associations => New_List (
1434          R_Addr, R_Bit, L_Addr, L_Bit, Size));
1435   end Expand_Assign_Array_Bitfield;
1436
1437   ------------------------------------------
1438   -- Expand_Assign_Array_Loop_Or_Bitfield --
1439   ------------------------------------------
1440
1441   function Expand_Assign_Array_Loop_Or_Bitfield
1442     (N      : Node_Id;
1443      Larray : Entity_Id;
1444      Rarray : Entity_Id;
1445      L_Type : Entity_Id;
1446      R_Type : Entity_Id;
1447      Ndim   : Pos;
1448      Rev    : Boolean) return Node_Id
1449   is
1450      Slices : constant Boolean :=
1451        Nkind (Name (N)) = N_Slice or else Nkind (Expression (N)) = N_Slice;
1452      L_Prefix_Comp : constant Boolean :=
1453        --  True if the left-hand side is a slice of a component or slice
1454        Nkind (Name (N)) = N_Slice
1455        and then Nkind_In (Prefix (Name (N)),
1456                           N_Selected_Component,
1457                           N_Indexed_Component,
1458                           N_Slice);
1459      R_Prefix_Comp : constant Boolean :=
1460        --  Likewise for the right-hand side
1461        Nkind (Expression (N)) = N_Slice
1462        and then Nkind_In (Prefix (Expression (N)),
1463                           N_Selected_Component,
1464                           N_Indexed_Component,
1465                           N_Slice);
1466   begin
1467      --  Determine whether Copy_Bitfield is appropriate (will work, and will
1468      --  be more efficient than component-by-component copy). Copy_Bitfield
1469      --  doesn't work for reversed storage orders. It is efficient for slices
1470      --  of bit-packed arrays. Copy_Bitfield can read and write bits that are
1471      --  not part of the objects being copied, so we don't want to use it if
1472      --  there are volatile or independent components. If the Prefix of the
1473      --  slice is a component or slice, then it might be a part of an object
1474      --  with some other volatile or independent components, so we disable the
1475      --  optimization in that case as well.  We could complicate this code by
1476      --  actually looking for such volatile and independent components.
1477
1478      if Is_Bit_Packed_Array (L_Type)
1479        and then Is_Bit_Packed_Array (R_Type)
1480        and then not Reverse_Storage_Order (L_Type)
1481        and then not Reverse_Storage_Order (R_Type)
1482        and then Ndim = 1
1483        and then not Rev
1484        and then Slices
1485        and then not Has_Volatile_Component (L_Type)
1486        and then not Has_Volatile_Component (R_Type)
1487        and then not Has_Independent_Components (L_Type)
1488        and then not Has_Independent_Components (R_Type)
1489        and then not L_Prefix_Comp
1490        and then not R_Prefix_Comp
1491        and then RTE_Available (RE_Copy_Bitfield)
1492      then
1493         return Expand_Assign_Array_Bitfield
1494           (N, Larray, Rarray, L_Type, R_Type, Rev);
1495      else
1496         return Expand_Assign_Array_Loop
1497           (N, Larray, Rarray, L_Type, R_Type, Ndim, Rev);
1498      end if;
1499   end Expand_Assign_Array_Loop_Or_Bitfield;
1500
1501   --------------------------
1502   -- Expand_Assign_Record --
1503   --------------------------
1504
1505   procedure Expand_Assign_Record (N : Node_Id) is
1506      Lhs   : constant Node_Id    := Name (N);
1507      Rhs   : Node_Id             := Expression (N);
1508      L_Typ : constant Entity_Id  := Base_Type (Etype (Lhs));
1509
1510   begin
1511      --  If change of representation, then extract the real right-hand side
1512      --  from the type conversion, and proceed with component-wise assignment,
1513      --  since the two types are not the same as far as the back end is
1514      --  concerned.
1515
1516      if Change_Of_Representation (N) then
1517         Rhs := Expression (Rhs);
1518
1519      --  If this may be a case of a large bit aligned component, then proceed
1520      --  with component-wise assignment, to avoid possible clobbering of other
1521      --  components sharing bits in the first or last byte of the component to
1522      --  be assigned.
1523
1524      elsif Possible_Bit_Aligned_Component (Lhs)
1525              or
1526            Possible_Bit_Aligned_Component (Rhs)
1527      then
1528         null;
1529
1530      --  If we have a tagged type that has a complete record representation
1531      --  clause, we must do we must do component-wise assignments, since child
1532      --  types may have used gaps for their components, and we might be
1533      --  dealing with a view conversion.
1534
1535      elsif Is_Fully_Repped_Tagged_Type (L_Typ) then
1536         null;
1537
1538      --  If neither condition met, then nothing special to do, the back end
1539      --  can handle assignment of the entire component as a single entity.
1540
1541      else
1542         return;
1543      end if;
1544
1545      --  At this stage we know that we must do a component wise assignment
1546
1547      declare
1548         Loc   : constant Source_Ptr := Sloc (N);
1549         R_Typ : constant Entity_Id  := Base_Type (Etype (Rhs));
1550         Decl  : constant Node_Id    := Declaration_Node (R_Typ);
1551         RDef  : Node_Id;
1552         F     : Entity_Id;
1553
1554         function Find_Component
1555           (Typ  : Entity_Id;
1556            Comp : Entity_Id) return Entity_Id;
1557         --  Find the component with the given name in the underlying record
1558         --  declaration for Typ. We need to use the actual entity because the
1559         --  type may be private and resolution by identifier alone would fail.
1560
1561         function Make_Component_List_Assign
1562           (CL  : Node_Id;
1563            U_U : Boolean := False) return List_Id;
1564         --  Returns a sequence of statements to assign the components that
1565         --  are referenced in the given component list. The flag U_U is
1566         --  used to force the usage of the inferred value of the variant
1567         --  part expression as the switch for the generated case statement.
1568
1569         function Make_Field_Assign
1570           (C   : Entity_Id;
1571            U_U : Boolean := False) return Node_Id;
1572         --  Given C, the entity for a discriminant or component, build an
1573         --  assignment for the corresponding field values. The flag U_U
1574         --  signals the presence of an Unchecked_Union and forces the usage
1575         --  of the inferred discriminant value of C as the right-hand side
1576         --  of the assignment.
1577
1578         function Make_Field_Assigns (CI : List_Id) return List_Id;
1579         --  Given CI, a component items list, construct series of statements
1580         --  for fieldwise assignment of the corresponding components.
1581
1582         --------------------
1583         -- Find_Component --
1584         --------------------
1585
1586         function Find_Component
1587           (Typ  : Entity_Id;
1588            Comp : Entity_Id) return Entity_Id
1589         is
1590            Utyp : constant Entity_Id := Underlying_Type (Typ);
1591            C    : Entity_Id;
1592
1593         begin
1594            C := First_Entity (Utyp);
1595            while Present (C) loop
1596               if Chars (C) = Chars (Comp) then
1597                  return C;
1598               end if;
1599
1600               Next_Entity (C);
1601            end loop;
1602
1603            raise Program_Error;
1604         end Find_Component;
1605
1606         --------------------------------
1607         -- Make_Component_List_Assign --
1608         --------------------------------
1609
1610         function Make_Component_List_Assign
1611           (CL  : Node_Id;
1612            U_U : Boolean := False) return List_Id
1613         is
1614            CI : constant List_Id := Component_Items (CL);
1615            VP : constant Node_Id := Variant_Part (CL);
1616
1617            Alts   : List_Id;
1618            DC     : Node_Id;
1619            DCH    : List_Id;
1620            Expr   : Node_Id;
1621            Result : List_Id;
1622            V      : Node_Id;
1623
1624         begin
1625            Result := Make_Field_Assigns (CI);
1626
1627            if Present (VP) then
1628               V := First_Non_Pragma (Variants (VP));
1629               Alts := New_List;
1630               while Present (V) loop
1631                  DCH := New_List;
1632                  DC := First (Discrete_Choices (V));
1633                  while Present (DC) loop
1634                     Append_To (DCH, New_Copy_Tree (DC));
1635                     Next (DC);
1636                  end loop;
1637
1638                  Append_To (Alts,
1639                    Make_Case_Statement_Alternative (Loc,
1640                      Discrete_Choices => DCH,
1641                      Statements =>
1642                        Make_Component_List_Assign (Component_List (V))));
1643                  Next_Non_Pragma (V);
1644               end loop;
1645
1646               --  If we have an Unchecked_Union, use the value of the inferred
1647               --  discriminant of the variant part expression as the switch
1648               --  for the case statement. The case statement may later be
1649               --  folded.
1650
1651               if U_U then
1652                  Expr :=
1653                    New_Copy (Get_Discriminant_Value (
1654                      Entity (Name (VP)),
1655                      Etype (Rhs),
1656                      Discriminant_Constraint (Etype (Rhs))));
1657               else
1658                  Expr :=
1659                    Make_Selected_Component (Loc,
1660                      Prefix        => Duplicate_Subexpr (Rhs),
1661                      Selector_Name =>
1662                        Make_Identifier (Loc, Chars (Name (VP))));
1663               end if;
1664
1665               Append_To (Result,
1666                 Make_Case_Statement (Loc,
1667                   Expression => Expr,
1668                   Alternatives => Alts));
1669            end if;
1670
1671            return Result;
1672         end Make_Component_List_Assign;
1673
1674         -----------------------
1675         -- Make_Field_Assign --
1676         -----------------------
1677
1678         function Make_Field_Assign
1679           (C   : Entity_Id;
1680            U_U : Boolean := False) return Node_Id
1681         is
1682            A    : Node_Id;
1683            Disc : Entity_Id;
1684            Expr : Node_Id;
1685
1686         begin
1687            --  The discriminant entity to be used in the retrieval below must
1688            --  be one in the corresponding type, given that the assignment may
1689            --  be between derived and parent types.
1690
1691            if Is_Derived_Type (Etype (Rhs)) then
1692               Disc := Find_Component (R_Typ, C);
1693            else
1694               Disc := C;
1695            end if;
1696
1697            --  In the case of an Unchecked_Union, use the discriminant
1698            --  constraint value as on the right-hand side of the assignment.
1699
1700            if U_U then
1701               Expr :=
1702                 New_Copy (Get_Discriminant_Value (C,
1703                   Etype (Rhs),
1704                   Discriminant_Constraint (Etype (Rhs))));
1705            else
1706               Expr :=
1707                 Make_Selected_Component (Loc,
1708                   Prefix        => Duplicate_Subexpr (Rhs),
1709                   Selector_Name => New_Occurrence_Of (Disc, Loc));
1710            end if;
1711
1712            --  Generate the assignment statement. When the left-hand side
1713            --  is an object with an address clause present, force generated
1714            --  temporaries to be renamings so as to correctly assign to any
1715            --  overlaid objects.
1716
1717            A :=
1718              Make_Assignment_Statement (Loc,
1719                Name       =>
1720                  Make_Selected_Component (Loc,
1721                    Prefix        =>
1722                      Duplicate_Subexpr
1723                        (Exp          => Lhs,
1724                         Name_Req     => False,
1725                         Renaming_Req =>
1726                           Is_Entity_Name (Lhs)
1727                             and then Present (Address_Clause (Entity (Lhs)))),
1728                    Selector_Name =>
1729                      New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
1730                Expression => Expr);
1731
1732            --  Set Assignment_OK, so discriminants can be assigned
1733
1734            Set_Assignment_OK (Name (A), True);
1735
1736            if Componentwise_Assignment (N)
1737              and then Nkind (Name (A)) = N_Selected_Component
1738              and then Chars (Selector_Name (Name (A))) = Name_uParent
1739            then
1740               Set_Componentwise_Assignment (A);
1741            end if;
1742
1743            return A;
1744         end Make_Field_Assign;
1745
1746         ------------------------
1747         -- Make_Field_Assigns --
1748         ------------------------
1749
1750         function Make_Field_Assigns (CI : List_Id) return List_Id is
1751            Item   : Node_Id;
1752            Result : List_Id;
1753
1754         begin
1755            Item := First (CI);
1756            Result := New_List;
1757
1758            while Present (Item) loop
1759
1760               --  Look for components, but exclude _tag field assignment if
1761               --  the special Componentwise_Assignment flag is set.
1762
1763               if Nkind (Item) = N_Component_Declaration
1764                 and then not (Is_Tag (Defining_Identifier (Item))
1765                                 and then Componentwise_Assignment (N))
1766               then
1767                  Append_To
1768                    (Result, Make_Field_Assign (Defining_Identifier (Item)));
1769               end if;
1770
1771               Next (Item);
1772            end loop;
1773
1774            return Result;
1775         end Make_Field_Assigns;
1776
1777      --  Start of processing for Expand_Assign_Record
1778
1779      begin
1780         --  Note that we use the base types for this processing. This results
1781         --  in some extra work in the constrained case, but the change of
1782         --  representation case is so unusual that it is not worth the effort.
1783
1784         --  First copy the discriminants. This is done unconditionally. It
1785         --  is required in the unconstrained left side case, and also in the
1786         --  case where this assignment was constructed during the expansion
1787         --  of a type conversion (since initialization of discriminants is
1788         --  suppressed in this case). It is unnecessary but harmless in
1789         --  other cases.
1790
1791         --  Special case: no copy if the target has no discriminants
1792
1793         if Has_Discriminants (L_Typ)
1794           and then Is_Unchecked_Union (Base_Type (L_Typ))
1795         then
1796            null;
1797
1798         elsif Has_Discriminants (L_Typ) then
1799            F := First_Discriminant (R_Typ);
1800            while Present (F) loop
1801
1802               --  If we are expanding the initialization of a derived record
1803               --  that constrains or renames discriminants of the parent, we
1804               --  must use the corresponding discriminant in the parent.
1805
1806               declare
1807                  CF : Entity_Id;
1808
1809               begin
1810                  if Inside_Init_Proc
1811                    and then Present (Corresponding_Discriminant (F))
1812                  then
1813                     CF := Corresponding_Discriminant (F);
1814                  else
1815                     CF := F;
1816                  end if;
1817
1818                  if Is_Unchecked_Union (Base_Type (R_Typ)) then
1819
1820                     --  Within an initialization procedure this is the
1821                     --  assignment to an unchecked union component, in which
1822                     --  case there is no discriminant to initialize.
1823
1824                     if Inside_Init_Proc then
1825                        null;
1826
1827                     else
1828                        --  The assignment is part of a conversion from a
1829                        --  derived unchecked union type with an inferable
1830                        --  discriminant, to a parent type.
1831
1832                        Insert_Action (N, Make_Field_Assign (CF, True));
1833                     end if;
1834
1835                  else
1836                     Insert_Action (N, Make_Field_Assign (CF));
1837                  end if;
1838
1839                  Next_Discriminant (F);
1840               end;
1841            end loop;
1842
1843            --  If the derived type has a stored constraint, assign the value
1844            --  of the corresponding discriminants explicitly, skipping those
1845            --  that are renamed discriminants. We cannot just retrieve them
1846            --  from the Rhs by selected component because they are invisible
1847            --  in the type of the right-hand side.
1848
1849            if Stored_Constraint (R_Typ) /= No_Elist then
1850               declare
1851                  Assign    : Node_Id;
1852                  Discr_Val : Elmt_Id;
1853
1854               begin
1855                  Discr_Val := First_Elmt (Stored_Constraint (R_Typ));
1856                  F := First_Entity (R_Typ);
1857                  while Present (F) loop
1858                     if Ekind (F) = E_Discriminant
1859                       and then Is_Completely_Hidden (F)
1860                       and then Present (Corresponding_Record_Component (F))
1861                       and then
1862                         (not Is_Entity_Name (Node (Discr_Val))
1863                           or else Ekind (Entity (Node (Discr_Val))) /=
1864                                     E_Discriminant)
1865                     then
1866                        Assign :=
1867                          Make_Assignment_Statement (Loc,
1868                            Name       =>
1869                              Make_Selected_Component (Loc,
1870                                Prefix        => Duplicate_Subexpr (Lhs),
1871                                Selector_Name =>
1872                                  New_Occurrence_Of
1873                                    (Corresponding_Record_Component (F), Loc)),
1874                            Expression => New_Copy (Node (Discr_Val)));
1875
1876                        Set_Assignment_OK (Name (Assign));
1877                        Insert_Action (N, Assign);
1878                        Next_Elmt (Discr_Val);
1879                     end if;
1880
1881                     Next_Entity (F);
1882                  end loop;
1883               end;
1884            end if;
1885         end if;
1886
1887         --  We know the underlying type is a record, but its current view
1888         --  may be private. We must retrieve the usable record declaration.
1889
1890         if Nkind_In (Decl, N_Private_Type_Declaration,
1891                            N_Private_Extension_Declaration)
1892           and then Present (Full_View (R_Typ))
1893         then
1894            RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
1895         else
1896            RDef := Type_Definition (Decl);
1897         end if;
1898
1899         if Nkind (RDef) = N_Derived_Type_Definition then
1900            RDef := Record_Extension_Part (RDef);
1901         end if;
1902
1903         if Nkind (RDef) = N_Record_Definition
1904           and then Present (Component_List (RDef))
1905         then
1906            if Is_Unchecked_Union (R_Typ) then
1907               Insert_Actions (N,
1908                 Make_Component_List_Assign (Component_List (RDef), True));
1909            else
1910               Insert_Actions
1911                 (N, Make_Component_List_Assign (Component_List (RDef)));
1912            end if;
1913
1914            Rewrite (N, Make_Null_Statement (Loc));
1915         end if;
1916      end;
1917   end Expand_Assign_Record;
1918
1919   -------------------------------------
1920   -- Expand_Assign_With_Target_Names --
1921   -------------------------------------
1922
1923   procedure Expand_Assign_With_Target_Names (N : Node_Id) is
1924      LHS     : constant Node_Id    := Name (N);
1925      LHS_Typ : constant Entity_Id  := Etype (LHS);
1926      Loc     : constant Source_Ptr := Sloc (N);
1927      RHS     : constant Node_Id    := Expression (N);
1928
1929      Ent : Entity_Id;
1930      --  The entity of the left-hand side
1931
1932      function Replace_Target (N : Node_Id) return Traverse_Result;
1933      --  Replace occurrences of the target name by the proper entity: either
1934      --  the entity of the LHS in simple cases, or the formal of the
1935      --  constructed procedure otherwise.
1936
1937      --------------------
1938      -- Replace_Target --
1939      --------------------
1940
1941      function Replace_Target (N : Node_Id) return Traverse_Result is
1942      begin
1943         if Nkind (N) = N_Target_Name then
1944            Rewrite (N, New_Occurrence_Of (Ent, Sloc (N)));
1945
1946         --  The expression will be reanalyzed when the enclosing assignment
1947         --  is reanalyzed, so reset the entity, which may be a temporary
1948         --  created during analysis, e.g. a loop variable for an iterated
1949         --  component association. However, if entity is callable then
1950         --  resolution has established its proper identity (including in
1951         --  rewritten prefixed calls) so we must preserve it.
1952
1953         elsif Is_Entity_Name (N) then
1954            if Present (Entity (N))
1955              and then not Is_Overloadable (Entity (N))
1956            then
1957               Set_Entity (N, Empty);
1958            end if;
1959         end if;
1960
1961         Set_Analyzed (N, False);
1962         return OK;
1963      end Replace_Target;
1964
1965      procedure Replace_Target_Name is new Traverse_Proc (Replace_Target);
1966
1967      --  Local variables
1968
1969      New_RHS : Node_Id;
1970      Proc_Id : Entity_Id;
1971
1972   --  Start of processing for Expand_Assign_With_Target_Names
1973
1974   begin
1975      New_RHS := New_Copy_Tree (RHS);
1976
1977      --  The left-hand side is a direct name
1978
1979      if Is_Entity_Name (LHS)
1980        and then not Is_Renaming_Of_Object (Entity (LHS))
1981      then
1982         Ent := Entity (LHS);
1983         Replace_Target_Name (New_RHS);
1984
1985         --  Generate:
1986         --    LHS := ... LHS ...;
1987
1988         Rewrite (N,
1989           Make_Assignment_Statement (Loc,
1990             Name       => Relocate_Node (LHS),
1991             Expression => New_RHS));
1992
1993      --  The left-hand side is not a direct name, but is side-effect free.
1994      --  Capture its value in a temporary to avoid multiple evaluations.
1995
1996      elsif Side_Effect_Free (LHS) then
1997         Ent := Make_Temporary (Loc, 'T');
1998         Replace_Target_Name (New_RHS);
1999
2000         --  Generate:
2001         --    T : LHS_Typ := LHS;
2002
2003         Insert_Before_And_Analyze (N,
2004           Make_Object_Declaration (Loc,
2005             Defining_Identifier => Ent,
2006             Object_Definition   => New_Occurrence_Of (LHS_Typ, Loc),
2007             Expression          => New_Copy_Tree (LHS)));
2008
2009         --  Generate:
2010         --    LHS := ... T ...;
2011
2012         Rewrite (N,
2013           Make_Assignment_Statement (Loc,
2014             Name       => Relocate_Node (LHS),
2015             Expression => New_RHS));
2016
2017      --  Otherwise wrap the whole assignment statement in a procedure with an
2018      --  IN OUT parameter. The original assignment then becomes a call to the
2019      --  procedure with the left-hand side as an actual.
2020
2021      else
2022         Ent := Make_Temporary (Loc, 'T');
2023         Replace_Target_Name (New_RHS);
2024
2025         --  Generate:
2026         --    procedure P (T : in out LHS_Typ) is
2027         --    begin
2028         --       T := ... T ...;
2029         --    end P;
2030
2031         Proc_Id := Make_Temporary (Loc, 'P');
2032
2033         Insert_Before_And_Analyze (N,
2034           Make_Subprogram_Body (Loc,
2035             Specification              =>
2036               Make_Procedure_Specification (Loc,
2037                 Defining_Unit_Name       => Proc_Id,
2038                 Parameter_Specifications => New_List (
2039                   Make_Parameter_Specification (Loc,
2040                     Defining_Identifier => Ent,
2041                     In_Present          => True,
2042                     Out_Present         => True,
2043                     Parameter_Type      =>
2044                       New_Occurrence_Of (LHS_Typ, Loc)))),
2045
2046             Declarations               => Empty_List,
2047
2048             Handled_Statement_Sequence =>
2049               Make_Handled_Sequence_Of_Statements (Loc,
2050                 Statements => New_List (
2051                   Make_Assignment_Statement (Loc,
2052                     Name       => New_Occurrence_Of (Ent, Loc),
2053                     Expression => New_RHS)))));
2054
2055         --  Generate:
2056         --    P (LHS);
2057
2058         Rewrite (N,
2059           Make_Procedure_Call_Statement (Loc,
2060             Name                   => New_Occurrence_Of (Proc_Id, Loc),
2061             Parameter_Associations => New_List (Relocate_Node (LHS))));
2062      end if;
2063
2064      --  Analyze rewritten node, either as assignment or procedure call
2065
2066      Analyze (N);
2067   end Expand_Assign_With_Target_Names;
2068
2069   -----------------------------------
2070   -- Expand_N_Assignment_Statement --
2071   -----------------------------------
2072
2073   --  This procedure implements various cases where an assignment statement
2074   --  cannot just be passed on to the back end in untransformed state.
2075
2076   procedure Expand_N_Assignment_Statement (N : Node_Id) is
2077      Crep : constant Boolean    := Change_Of_Representation (N);
2078      Lhs  : constant Node_Id    := Name (N);
2079      Loc  : constant Source_Ptr := Sloc (N);
2080      Rhs  : constant Node_Id    := Expression (N);
2081      Typ  : constant Entity_Id  := Underlying_Type (Etype (Lhs));
2082      Exp  : Node_Id;
2083
2084   begin
2085      --  Special case to check right away, if the Componentwise_Assignment
2086      --  flag is set, this is a reanalysis from the expansion of the primitive
2087      --  assignment procedure for a tagged type, and all we need to do is to
2088      --  expand to assignment of components, because otherwise, we would get
2089      --  infinite recursion (since this looks like a tagged assignment which
2090      --  would normally try to *call* the primitive assignment procedure).
2091
2092      if Componentwise_Assignment (N) then
2093         Expand_Assign_Record (N);
2094         return;
2095      end if;
2096
2097      --  Defend against invalid subscripts on left side if we are in standard
2098      --  validity checking mode. No need to do this if we are checking all
2099      --  subscripts.
2100
2101      --  Note that we do this right away, because there are some early return
2102      --  paths in this procedure, and this is required on all paths.
2103
2104      if Validity_Checks_On
2105        and then Validity_Check_Default
2106        and then not Validity_Check_Subscripts
2107      then
2108         Check_Valid_Lvalue_Subscripts (Lhs);
2109      end if;
2110
2111      --  Separate expansion if RHS contain target names. Note that assignment
2112      --  may already have been expanded if RHS is aggregate.
2113
2114      if Nkind (N) = N_Assignment_Statement and then Has_Target_Names (N) then
2115         Expand_Assign_With_Target_Names (N);
2116         return;
2117      end if;
2118
2119      --  Ada 2005 (AI-327): Handle assignment to priority of protected object
2120
2121      --  Rewrite an assignment to X'Priority into a run-time call
2122
2123      --   For example:         X'Priority := New_Prio_Expr;
2124      --   ...is expanded into  Set_Ceiling (X._Object, New_Prio_Expr);
2125
2126      --  Note that although X'Priority is notionally an object, it is quite
2127      --  deliberately not defined as an aliased object in the RM. This means
2128      --  that it works fine to rewrite it as a call, without having to worry
2129      --  about complications that would other arise from X'Priority'Access,
2130      --  which is illegal, because of the lack of aliasing.
2131
2132      if Ada_Version >= Ada_2005 then
2133         declare
2134            Call           : Node_Id;
2135            Conctyp        : Entity_Id;
2136            Ent            : Entity_Id;
2137            Subprg         : Entity_Id;
2138            RT_Subprg_Name : Node_Id;
2139
2140         begin
2141            --  Handle chains of renamings
2142
2143            Ent := Name (N);
2144            while Nkind (Ent) in N_Has_Entity
2145              and then Present (Entity (Ent))
2146              and then Present (Renamed_Object (Entity (Ent)))
2147            loop
2148               Ent := Renamed_Object (Entity (Ent));
2149            end loop;
2150
2151            --  The attribute Priority applied to protected objects has been
2152            --  previously expanded into a call to the Get_Ceiling run-time
2153            --  subprogram. In restricted profiles this is not available.
2154
2155            if Is_Expanded_Priority_Attribute (Ent) then
2156
2157               --  Look for the enclosing concurrent type
2158
2159               Conctyp := Current_Scope;
2160               while not Is_Concurrent_Type (Conctyp) loop
2161                  Conctyp := Scope (Conctyp);
2162               end loop;
2163
2164               pragma Assert (Is_Protected_Type (Conctyp));
2165
2166               --  Generate the first actual of the call
2167
2168               Subprg := Current_Scope;
2169               while not Present (Protected_Body_Subprogram (Subprg)) loop
2170                  Subprg := Scope (Subprg);
2171               end loop;
2172
2173               --  Select the appropriate run-time call
2174
2175               if Number_Entries (Conctyp) = 0 then
2176                  RT_Subprg_Name :=
2177                    New_Occurrence_Of (RTE (RE_Set_Ceiling), Loc);
2178               else
2179                  RT_Subprg_Name :=
2180                    New_Occurrence_Of (RTE (RO_PE_Set_Ceiling), Loc);
2181               end if;
2182
2183               Call :=
2184                 Make_Procedure_Call_Statement (Loc,
2185                   Name => RT_Subprg_Name,
2186                   Parameter_Associations => New_List (
2187                     New_Copy_Tree (First (Parameter_Associations (Ent))),
2188                     Relocate_Node (Expression (N))));
2189
2190               Rewrite (N, Call);
2191               Analyze (N);
2192
2193               return;
2194            end if;
2195         end;
2196      end if;
2197
2198      --  Deal with assignment checks unless suppressed
2199
2200      if not Suppress_Assignment_Checks (N) then
2201
2202         --  First deal with generation of range check if required,
2203         --  and then predicate checks if the type carries a predicate.
2204         --  If the Rhs is an expression these tests may have been applied
2205         --  already. This is the case if the RHS is a type conversion.
2206         --  Other such redundant checks could be removed ???
2207
2208         if Nkind (Rhs) /= N_Type_Conversion
2209           or else Entity (Subtype_Mark (Rhs)) /= Typ
2210         then
2211            if Do_Range_Check (Rhs) then
2212               Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
2213            end if;
2214
2215            Apply_Predicate_Check (Rhs, Typ);
2216         end if;
2217      end if;
2218
2219      --  Check for a special case where a high level transformation is
2220      --  required. If we have either of:
2221
2222      --    P.field := rhs;
2223      --    P (sub) := rhs;
2224
2225      --  where P is a reference to a bit packed array, then we have to unwind
2226      --  the assignment. The exact meaning of being a reference to a bit
2227      --  packed array is as follows:
2228
2229      --    An indexed component whose prefix is a bit packed array is a
2230      --    reference to a bit packed array.
2231
2232      --    An indexed component or selected component whose prefix is a
2233      --    reference to a bit packed array is itself a reference ot a
2234      --    bit packed array.
2235
2236      --  The required transformation is
2237
2238      --     Tnn : prefix_type := P;
2239      --     Tnn.field := rhs;
2240      --     P := Tnn;
2241
2242      --  or
2243
2244      --     Tnn : prefix_type := P;
2245      --     Tnn (subscr) := rhs;
2246      --     P := Tnn;
2247
2248      --  Since P is going to be evaluated more than once, any subscripts
2249      --  in P must have their evaluation forced.
2250
2251      if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
2252        and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
2253      then
2254         declare
2255            BPAR_Expr : constant Node_Id   := Relocate_Node (Prefix (Lhs));
2256            BPAR_Typ  : constant Entity_Id := Etype (BPAR_Expr);
2257            Tnn       : constant Entity_Id :=
2258                          Make_Temporary (Loc, 'T', BPAR_Expr);
2259
2260         begin
2261            --  Insert the post assignment first, because we want to copy the
2262            --  BPAR_Expr tree before it gets analyzed in the context of the
2263            --  pre assignment. Note that we do not analyze the post assignment
2264            --  yet (we cannot till we have completed the analysis of the pre
2265            --  assignment). As usual, the analysis of this post assignment
2266            --  will happen on its own when we "run into" it after finishing
2267            --  the current assignment.
2268
2269            Insert_After (N,
2270              Make_Assignment_Statement (Loc,
2271                Name       => New_Copy_Tree (BPAR_Expr),
2272                Expression => New_Occurrence_Of (Tnn, Loc)));
2273
2274            --  At this stage BPAR_Expr is a reference to a bit packed array
2275            --  where the reference was not expanded in the original tree,
2276            --  since it was on the left side of an assignment. But in the
2277            --  pre-assignment statement (the object definition), BPAR_Expr
2278            --  will end up on the right-hand side, and must be reexpanded. To
2279            --  achieve this, we reset the analyzed flag of all selected and
2280            --  indexed components down to the actual indexed component for
2281            --  the packed array.
2282
2283            Exp := BPAR_Expr;
2284            loop
2285               Set_Analyzed (Exp, False);
2286
2287               if Nkind_In (Exp, N_Indexed_Component,
2288                                 N_Selected_Component)
2289               then
2290                  Exp := Prefix (Exp);
2291               else
2292                  exit;
2293               end if;
2294            end loop;
2295
2296            --  Now we can insert and analyze the pre-assignment
2297
2298            --  If the right-hand side requires a transient scope, it has
2299            --  already been placed on the stack. However, the declaration is
2300            --  inserted in the tree outside of this scope, and must reflect
2301            --  the proper scope for its variable. This awkward bit is forced
2302            --  by the stricter scope discipline imposed by GCC 2.97.
2303
2304            declare
2305               Uses_Transient_Scope : constant Boolean :=
2306                                        Scope_Is_Transient
2307                                          and then N = Node_To_Be_Wrapped;
2308
2309            begin
2310               if Uses_Transient_Scope then
2311                  Push_Scope (Scope (Current_Scope));
2312               end if;
2313
2314               Insert_Before_And_Analyze (N,
2315                 Make_Object_Declaration (Loc,
2316                   Defining_Identifier => Tnn,
2317                   Object_Definition   => New_Occurrence_Of (BPAR_Typ, Loc),
2318                   Expression          => BPAR_Expr));
2319
2320               if Uses_Transient_Scope then
2321                  Pop_Scope;
2322               end if;
2323            end;
2324
2325            --  Now fix up the original assignment and continue processing
2326
2327            Rewrite (Prefix (Lhs),
2328              New_Occurrence_Of (Tnn, Loc));
2329
2330            --  We do not need to reanalyze that assignment, and we do not need
2331            --  to worry about references to the temporary, but we do need to
2332            --  make sure that the temporary is not marked as a true constant
2333            --  since we now have a generated assignment to it.
2334
2335            Set_Is_True_Constant (Tnn, False);
2336         end;
2337      end if;
2338
2339      --  When we have the appropriate type of aggregate in the expression (it
2340      --  has been determined during analysis of the aggregate by setting the
2341      --  delay flag), let's perform in place assignment and thus avoid
2342      --  creating a temporary.
2343
2344      if Is_Delayed_Aggregate (Rhs) then
2345         Convert_Aggr_In_Assignment (N);
2346         Rewrite (N, Make_Null_Statement (Loc));
2347         Analyze (N);
2348
2349         return;
2350      end if;
2351
2352      --  Apply discriminant check if required. If Lhs is an access type to a
2353      --  designated type with discriminants, we must always check. If the
2354      --  type has unknown discriminants, more elaborate processing below.
2355
2356      if Has_Discriminants (Etype (Lhs))
2357        and then not Has_Unknown_Discriminants (Etype (Lhs))
2358      then
2359         --  Skip discriminant check if change of representation. Will be
2360         --  done when the change of representation is expanded out.
2361
2362         if not Crep then
2363            Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
2364         end if;
2365
2366      --  If the type is private without discriminants, and the full type
2367      --  has discriminants (necessarily with defaults) a check may still be
2368      --  necessary if the Lhs is aliased. The private discriminants must be
2369      --  visible to build the discriminant constraints.
2370
2371      --  Only an explicit dereference that comes from source indicates
2372      --  aliasing. Access to formals of protected operations and entries
2373      --  create dereferences but are not semantic aliasings.
2374
2375      elsif Is_Private_Type (Etype (Lhs))
2376        and then Has_Discriminants (Typ)
2377        and then Nkind (Lhs) = N_Explicit_Dereference
2378        and then Comes_From_Source (Lhs)
2379      then
2380         declare
2381            Lt  : constant Entity_Id := Etype (Lhs);
2382            Ubt : Entity_Id          := Base_Type (Typ);
2383
2384         begin
2385            --  In the case of an expander-generated record subtype whose base
2386            --  type still appears private, Typ will have been set to that
2387            --  private type rather than the underlying record type (because
2388            --  Underlying type will have returned the record subtype), so it's
2389            --  necessary to apply Underlying_Type again to the base type to
2390            --  get the record type we need for the discriminant check. Such
2391            --  subtypes can be created for assignments in certain cases, such
2392            --  as within an instantiation passed this kind of private type.
2393            --  It would be good to avoid this special test, but making changes
2394            --  to prevent this odd form of record subtype seems difficult. ???
2395
2396            if Is_Private_Type (Ubt) then
2397               Ubt := Underlying_Type (Ubt);
2398            end if;
2399
2400            Set_Etype (Lhs, Ubt);
2401            Rewrite (Rhs, OK_Convert_To (Base_Type (Ubt), Rhs));
2402            Apply_Discriminant_Check (Rhs, Ubt, Lhs);
2403            Set_Etype (Lhs, Lt);
2404         end;
2405
2406      --  If the Lhs has a private type with unknown discriminants, it may
2407      --  have a full view with discriminants, but those are nameable only
2408      --  in the underlying type, so convert the Rhs to it before potential
2409      --  checking. Convert Lhs as well, otherwise the actual subtype might
2410      --  not be constructible. If the discriminants have defaults the type
2411      --  is unconstrained and there is nothing to check.
2412      --  Ditto if a private type with unknown discriminants has a full view
2413      --  that is an unconstrained array, in which case a length check is
2414      --  needed.
2415
2416      elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs))) then
2417         if Has_Discriminants (Typ)
2418           and then not Has_Defaulted_Discriminants (Typ)
2419         then
2420            Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
2421            Rewrite (Lhs, OK_Convert_To (Base_Type (Typ), Lhs));
2422            Apply_Discriminant_Check (Rhs, Typ, Lhs);
2423
2424         elsif Is_Array_Type (Typ) and then Is_Constrained (Typ)  then
2425            Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
2426            Rewrite (Lhs, OK_Convert_To (Base_Type (Typ), Lhs));
2427            Apply_Length_Check (Rhs, Typ);
2428         end if;
2429
2430      --  In the access type case, we need the same discriminant check, and
2431      --  also range checks if we have an access to constrained array.
2432
2433      elsif Is_Access_Type (Etype (Lhs))
2434        and then Is_Constrained (Designated_Type (Etype (Lhs)))
2435      then
2436         if Has_Discriminants (Designated_Type (Etype (Lhs))) then
2437
2438            --  Skip discriminant check if change of representation. Will be
2439            --  done when the change of representation is expanded out.
2440
2441            if not Crep then
2442               Apply_Discriminant_Check (Rhs, Etype (Lhs));
2443            end if;
2444
2445         elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
2446            Apply_Range_Check (Rhs, Etype (Lhs));
2447
2448            if Is_Constrained (Etype (Lhs)) then
2449               Apply_Length_Check (Rhs, Etype (Lhs));
2450            end if;
2451
2452            if Nkind (Rhs) = N_Allocator then
2453               declare
2454                  Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
2455                  C_Es       : Check_Result;
2456
2457               begin
2458                  C_Es :=
2459                    Get_Range_Checks
2460                      (Lhs,
2461                       Target_Typ,
2462                       Etype (Designated_Type (Etype (Lhs))));
2463
2464                  Insert_Range_Checks
2465                    (C_Es,
2466                     N,
2467                     Target_Typ,
2468                     Sloc (Lhs),
2469                     Lhs);
2470               end;
2471            end if;
2472         end if;
2473
2474      --  Apply range check for access type case
2475
2476      elsif Is_Access_Type (Etype (Lhs))
2477        and then Nkind (Rhs) = N_Allocator
2478        and then Nkind (Expression (Rhs)) = N_Qualified_Expression
2479      then
2480         Analyze_And_Resolve (Expression (Rhs));
2481         Apply_Range_Check
2482           (Expression (Rhs), Designated_Type (Etype (Lhs)));
2483      end if;
2484
2485      --  Ada 2005 (AI-231): Generate the run-time check
2486
2487      if Is_Access_Type (Typ)
2488        and then Can_Never_Be_Null (Etype (Lhs))
2489        and then not Can_Never_Be_Null (Etype (Rhs))
2490
2491        --  If an actual is an out parameter of a null-excluding access
2492        --  type, there is access check on entry, so we set the flag
2493        --  Suppress_Assignment_Checks on the generated statement to
2494        --  assign the actual to the parameter block, and we do not want
2495        --  to generate an additional check at this point.
2496
2497        and then not Suppress_Assignment_Checks (N)
2498      then
2499         Apply_Constraint_Check (Rhs, Etype (Lhs));
2500      end if;
2501
2502      --  Ada 2012 (AI05-148): Update current accessibility level if Rhs is a
2503      --  stand-alone obj of an anonymous access type. Do not install the check
2504      --  when the Lhs denotes a container cursor and the Next function employs
2505      --  an access type, because this can never result in a dangling pointer.
2506
2507      if Is_Access_Type (Typ)
2508        and then Is_Entity_Name (Lhs)
2509        and then Ekind (Entity (Lhs)) /= E_Loop_Parameter
2510        and then Present (Effective_Extra_Accessibility (Entity (Lhs)))
2511      then
2512         declare
2513            function Lhs_Entity return Entity_Id;
2514            --  Look through renames to find the underlying entity.
2515            --  For assignment to a rename, we don't care about the
2516            --  Enclosing_Dynamic_Scope of the rename declaration.
2517
2518            ----------------
2519            -- Lhs_Entity --
2520            ----------------
2521
2522            function Lhs_Entity return Entity_Id is
2523               Result : Entity_Id := Entity (Lhs);
2524
2525            begin
2526               while Present (Renamed_Object (Result)) loop
2527
2528                  --  Renamed_Object must return an Entity_Name here
2529                  --  because of preceding "Present (E_E_A (...))" test.
2530
2531                  Result := Entity (Renamed_Object (Result));
2532               end loop;
2533
2534               return Result;
2535            end Lhs_Entity;
2536
2537            --  Local Declarations
2538
2539            Access_Check : constant Node_Id :=
2540                             Make_Raise_Program_Error (Loc,
2541                               Condition =>
2542                                 Make_Op_Gt (Loc,
2543                                   Left_Opnd  =>
2544                                     Dynamic_Accessibility_Level (Rhs),
2545                                   Right_Opnd =>
2546                                     Make_Integer_Literal (Loc,
2547                                       Intval =>
2548                                         Scope_Depth
2549                                           (Enclosing_Dynamic_Scope
2550                                             (Lhs_Entity)))),
2551                               Reason => PE_Accessibility_Check_Failed);
2552
2553            Access_Level_Update : constant Node_Id :=
2554                                    Make_Assignment_Statement (Loc,
2555                                     Name       =>
2556                                       New_Occurrence_Of
2557                                         (Effective_Extra_Accessibility
2558                                            (Entity (Lhs)), Loc),
2559                                     Expression =>
2560                                        Dynamic_Accessibility_Level (Rhs));
2561
2562         begin
2563            if not Accessibility_Checks_Suppressed (Entity (Lhs)) then
2564               Insert_Action (N, Access_Check);
2565            end if;
2566
2567            Insert_Action (N, Access_Level_Update);
2568         end;
2569      end if;
2570
2571      --  Case of assignment to a bit packed array element. If there is a
2572      --  change of representation this must be expanded into components,
2573      --  otherwise this is a bit-field assignment.
2574
2575      if Nkind (Lhs) = N_Indexed_Component
2576        and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
2577      then
2578         --  Normal case, no change of representation
2579
2580         if not Crep then
2581            Expand_Bit_Packed_Element_Set (N);
2582            return;
2583
2584         --  Change of representation case
2585
2586         else
2587            --  Generate the following, to force component-by-component
2588            --  assignments in an efficient way. Otherwise each component
2589            --  will require a temporary and two bit-field manipulations.
2590
2591            --  T1 : Elmt_Type;
2592            --  T1 := RhS;
2593            --  Lhs := T1;
2594
2595            declare
2596               Tnn : constant Entity_Id := Make_Temporary (Loc, 'T');
2597               Stats : List_Id;
2598
2599            begin
2600               Stats :=
2601                 New_List (
2602                   Make_Object_Declaration (Loc,
2603                     Defining_Identifier => Tnn,
2604                     Object_Definition   =>
2605                       New_Occurrence_Of (Etype (Lhs), Loc)),
2606                   Make_Assignment_Statement (Loc,
2607                     Name       => New_Occurrence_Of (Tnn, Loc),
2608                     Expression => Relocate_Node (Rhs)),
2609                   Make_Assignment_Statement (Loc,
2610                     Name       => Relocate_Node (Lhs),
2611                     Expression => New_Occurrence_Of (Tnn, Loc)));
2612
2613               Insert_Actions (N, Stats);
2614               Rewrite (N, Make_Null_Statement (Loc));
2615               Analyze (N);
2616            end;
2617         end if;
2618
2619      --  Build-in-place function call case. This is for assignment statements
2620      --  that come from aggregate component associations or from init procs.
2621      --  User-written assignment statements with b-i-p calls are handled
2622      --  elsewhere.
2623
2624      elsif Is_Build_In_Place_Function_Call (Rhs) then
2625         pragma Assert (not Comes_From_Source (N));
2626         Make_Build_In_Place_Call_In_Assignment (N, Rhs);
2627
2628      elsif Is_Tagged_Type (Typ)
2629        or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
2630      then
2631         Tagged_Case : declare
2632            L                   : List_Id := No_List;
2633            Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
2634
2635         begin
2636            --  In the controlled case, we ensure that function calls are
2637            --  evaluated before finalizing the target. In all cases, it makes
2638            --  the expansion easier if the side effects are removed first.
2639
2640            Remove_Side_Effects (Lhs);
2641            Remove_Side_Effects (Rhs);
2642
2643            --  Avoid recursion in the mechanism
2644
2645            Set_Analyzed (N);
2646
2647            --  If dispatching assignment, we need to dispatch to _assign
2648
2649            if Is_Class_Wide_Type (Typ)
2650
2651               --  If the type is tagged, we may as well use the predefined
2652               --  primitive assignment. This avoids inlining a lot of code
2653               --  and in the class-wide case, the assignment is replaced
2654               --  by a dispatching call to _assign. It is suppressed in the
2655               --  case of assignments created by the expander that correspond
2656               --  to initializations, where we do want to copy the tag
2657               --  (Expand_Ctrl_Actions flag is set False in this case). It is
2658               --  also suppressed if restriction No_Dispatching_Calls is in
2659               --  force because in that case predefined primitives are not
2660               --  generated.
2661
2662               or else (Is_Tagged_Type (Typ)
2663                         and then Chars (Current_Scope) /= Name_uAssign
2664                         and then Expand_Ctrl_Actions
2665                         and then
2666                           not Restriction_Active (No_Dispatching_Calls))
2667            then
2668               if Is_Limited_Type (Typ) then
2669
2670                  --  This can happen in an instance when the formal is an
2671                  --  extension of a limited interface, and the actual is
2672                  --  limited. This is an error according to AI05-0087, but
2673                  --  is not caught at the point of instantiation in earlier
2674                  --  versions. We also must verify that the limited type does
2675                  --  not come from source as corner cases may exist where
2676                  --  an assignment was not intended like the pathological case
2677                  --  of a raise expression within a return statement.
2678
2679                  --  This is wrong, error messages cannot be issued during
2680                  --  expansion, since they would be missed in -gnatc mode ???
2681
2682                  if Comes_From_Source (N) then
2683                     Error_Msg_N
2684                       ("assignment not available on limited type", N);
2685                  end if;
2686
2687                  return;
2688               end if;
2689
2690               --  Fetch the primitive op _assign and proper type to call it.
2691               --  Because of possible conflicts between private and full view,
2692               --  fetch the proper type directly from the operation profile.
2693
2694               declare
2695                  Op    : constant Entity_Id :=
2696                            Find_Prim_Op (Typ, Name_uAssign);
2697                  F_Typ : Entity_Id := Etype (First_Formal (Op));
2698
2699               begin
2700                  --  If the assignment is dispatching, make sure to use the
2701                  --  proper type.
2702
2703                  if Is_Class_Wide_Type (Typ) then
2704                     F_Typ := Class_Wide_Type (F_Typ);
2705                  end if;
2706
2707                  L := New_List;
2708
2709                  --  In case of assignment to a class-wide tagged type, before
2710                  --  the assignment we generate run-time check to ensure that
2711                  --  the tags of source and target match.
2712
2713                  if not Tag_Checks_Suppressed (Typ)
2714                    and then Is_Class_Wide_Type (Typ)
2715                    and then Is_Tagged_Type (Typ)
2716                    and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
2717                  then
2718                     declare
2719                        Lhs_Tag : Node_Id;
2720                        Rhs_Tag : Node_Id;
2721
2722                     begin
2723                        if not Is_Interface (Typ) then
2724                           Lhs_Tag :=
2725                             Make_Selected_Component (Loc,
2726                               Prefix        => Duplicate_Subexpr (Lhs),
2727                               Selector_Name =>
2728                                 Make_Identifier (Loc, Name_uTag));
2729                           Rhs_Tag :=
2730                             Make_Selected_Component (Loc,
2731                               Prefix        => Duplicate_Subexpr (Rhs),
2732                               Selector_Name =>
2733                                 Make_Identifier (Loc, Name_uTag));
2734                        else
2735                           --  Displace the pointer to the base of the objects
2736                           --  applying 'Address, which is later expanded into
2737                           --  a call to RE_Base_Address.
2738
2739                           Lhs_Tag :=
2740                             Make_Explicit_Dereference (Loc,
2741                               Prefix =>
2742                                 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
2743                                   Make_Attribute_Reference (Loc,
2744                                     Prefix         => Duplicate_Subexpr (Lhs),
2745                                     Attribute_Name => Name_Address)));
2746                           Rhs_Tag :=
2747                             Make_Explicit_Dereference (Loc,
2748                               Prefix =>
2749                                 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
2750                                   Make_Attribute_Reference (Loc,
2751                                     Prefix         => Duplicate_Subexpr (Rhs),
2752                                     Attribute_Name => Name_Address)));
2753                        end if;
2754
2755                        Append_To (L,
2756                          Make_Raise_Constraint_Error (Loc,
2757                            Condition =>
2758                              Make_Op_Ne (Loc,
2759                                Left_Opnd  => Lhs_Tag,
2760                                Right_Opnd => Rhs_Tag),
2761                            Reason    => CE_Tag_Check_Failed));
2762                     end;
2763                  end if;
2764
2765                  declare
2766                     Left_N  : Node_Id := Duplicate_Subexpr (Lhs);
2767                     Right_N : Node_Id := Duplicate_Subexpr (Rhs);
2768
2769                  begin
2770                     --  In order to dispatch the call to _assign the type of
2771                     --  the actuals must match. Add conversion (if required).
2772
2773                     if Etype (Lhs) /= F_Typ then
2774                        Left_N := Unchecked_Convert_To (F_Typ, Left_N);
2775                     end if;
2776
2777                     if Etype (Rhs) /= F_Typ then
2778                        Right_N := Unchecked_Convert_To (F_Typ, Right_N);
2779                     end if;
2780
2781                     Append_To (L,
2782                       Make_Procedure_Call_Statement (Loc,
2783                         Name => New_Occurrence_Of (Op, Loc),
2784                         Parameter_Associations => New_List (
2785                           Node1 => Left_N,
2786                           Node2 => Right_N)));
2787                  end;
2788               end;
2789
2790            else
2791               L := Make_Tag_Ctrl_Assignment (N);
2792
2793               --  We can't afford to have destructive Finalization Actions in
2794               --  the Self assignment case, so if the target and the source
2795               --  are not obviously different, code is generated to avoid the
2796               --  self assignment case:
2797
2798               --    if lhs'address /= rhs'address then
2799               --       <code for controlled and/or tagged assignment>
2800               --    end if;
2801
2802               --  Skip this if Restriction (No_Finalization) is active
2803
2804               if not Statically_Different (Lhs, Rhs)
2805                 and then Expand_Ctrl_Actions
2806                 and then not Restriction_Active (No_Finalization)
2807               then
2808                  L := New_List (
2809                    Make_Implicit_If_Statement (N,
2810                      Condition =>
2811                        Make_Op_Ne (Loc,
2812                          Left_Opnd =>
2813                            Make_Attribute_Reference (Loc,
2814                              Prefix         => Duplicate_Subexpr (Lhs),
2815                              Attribute_Name => Name_Address),
2816
2817                           Right_Opnd =>
2818                            Make_Attribute_Reference (Loc,
2819                              Prefix         => Duplicate_Subexpr (Rhs),
2820                              Attribute_Name => Name_Address)),
2821
2822                      Then_Statements => L));
2823               end if;
2824
2825               --  We need to set up an exception handler for implementing
2826               --  7.6.1(18). The remaining adjustments are tackled by the
2827               --  implementation of adjust for record_controllers (see
2828               --  s-finimp.adb).
2829
2830               --  This is skipped if we have no finalization
2831
2832               if Expand_Ctrl_Actions
2833                 and then not Restriction_Active (No_Finalization)
2834               then
2835                  L := New_List (
2836                    Make_Block_Statement (Loc,
2837                      Handled_Statement_Sequence =>
2838                        Make_Handled_Sequence_Of_Statements (Loc,
2839                          Statements => L,
2840                          Exception_Handlers => New_List (
2841                            Make_Handler_For_Ctrl_Operation (Loc)))));
2842               end if;
2843            end if;
2844
2845            Rewrite (N,
2846              Make_Block_Statement (Loc,
2847                Handled_Statement_Sequence =>
2848                  Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
2849
2850            --  If no restrictions on aborts, protect the whole assignment
2851            --  for controlled objects as per 9.8(11).
2852
2853            if Needs_Finalization (Typ)
2854              and then Expand_Ctrl_Actions
2855              and then Abort_Allowed
2856            then
2857               declare
2858                  Blk : constant Entity_Id :=
2859                          New_Internal_Entity
2860                            (E_Block, Current_Scope, Sloc (N), 'B');
2861                  AUD : constant Entity_Id := RTE (RE_Abort_Undefer_Direct);
2862
2863               begin
2864                  Set_Is_Abort_Block (N);
2865
2866                  Set_Scope (Blk, Current_Scope);
2867                  Set_Etype (Blk, Standard_Void_Type);
2868                  Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
2869
2870                  Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
2871                  Set_At_End_Proc (Handled_Statement_Sequence (N),
2872                    New_Occurrence_Of (AUD, Loc));
2873
2874                  --  Present the Abort_Undefer_Direct function to the backend
2875                  --  so that it can inline the call to the function.
2876
2877                  Add_Inlined_Body (AUD, N);
2878
2879                  Expand_At_End_Handler
2880                    (Handled_Statement_Sequence (N), Blk);
2881               end;
2882            end if;
2883
2884            --  N has been rewritten to a block statement for which it is
2885            --  known by construction that no checks are necessary: analyze
2886            --  it with all checks suppressed.
2887
2888            Analyze (N, Suppress => All_Checks);
2889            return;
2890         end Tagged_Case;
2891
2892      --  Array types
2893
2894      elsif Is_Array_Type (Typ) then
2895         declare
2896            Actual_Rhs : Node_Id := Rhs;
2897
2898         begin
2899            while Nkind_In (Actual_Rhs, N_Type_Conversion,
2900                                        N_Qualified_Expression)
2901            loop
2902               Actual_Rhs := Expression (Actual_Rhs);
2903            end loop;
2904
2905            Expand_Assign_Array (N, Actual_Rhs);
2906            return;
2907         end;
2908
2909      --  Record types
2910
2911      elsif Is_Record_Type (Typ) then
2912         Expand_Assign_Record (N);
2913         return;
2914
2915      --  Scalar types. This is where we perform the processing related to the
2916      --  requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
2917      --  scalar values.
2918
2919      elsif Is_Scalar_Type (Typ) then
2920
2921         --  Case where right side is known valid
2922
2923         if Expr_Known_Valid (Rhs) then
2924
2925            --  Here the right side is valid, so it is fine. The case to deal
2926            --  with is when the left side is a local variable reference whose
2927            --  value is not currently known to be valid. If this is the case,
2928            --  and the assignment appears in an unconditional context, then
2929            --  we can mark the left side as now being valid if one of these
2930            --  conditions holds:
2931
2932            --    The expression of the right side has Do_Range_Check set so
2933            --    that we know a range check will be performed. Note that it
2934            --    can be the case that a range check is omitted because we
2935            --    make the assumption that we can assume validity for operands
2936            --    appearing in the right side in determining whether a range
2937            --    check is required
2938
2939            --    The subtype of the right side matches the subtype of the
2940            --    left side. In this case, even though we have not checked
2941            --    the range of the right side, we know it is in range of its
2942            --    subtype if the expression is valid.
2943
2944            if Is_Local_Variable_Reference (Lhs)
2945              and then not Is_Known_Valid (Entity (Lhs))
2946              and then In_Unconditional_Context (N)
2947            then
2948               if Do_Range_Check (Rhs)
2949                 or else Etype (Lhs) = Etype (Rhs)
2950               then
2951                  Set_Is_Known_Valid (Entity (Lhs), True);
2952               end if;
2953            end if;
2954
2955         --  Case where right side may be invalid in the sense of the RM
2956         --  reference above. The RM does not require that we check for the
2957         --  validity on an assignment, but it does require that the assignment
2958         --  of an invalid value not cause erroneous behavior.
2959
2960         --  The general approach in GNAT is to use the Is_Known_Valid flag
2961         --  to avoid the need for validity checking on assignments. However
2962         --  in some cases, we have to do validity checking in order to make
2963         --  sure that the setting of this flag is correct.
2964
2965         else
2966            --  Validate right side if we are validating copies
2967
2968            if Validity_Checks_On
2969              and then Validity_Check_Copies
2970            then
2971               --  Skip this if left-hand side is an array or record component
2972               --  and elementary component validity checks are suppressed.
2973
2974               if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
2975                 and then not Validity_Check_Components
2976               then
2977                  null;
2978               else
2979                  Ensure_Valid (Rhs);
2980               end if;
2981
2982               --  We can propagate this to the left side where appropriate
2983
2984               if Is_Local_Variable_Reference (Lhs)
2985                 and then not Is_Known_Valid (Entity (Lhs))
2986                 and then In_Unconditional_Context (N)
2987               then
2988                  Set_Is_Known_Valid (Entity (Lhs), True);
2989               end if;
2990
2991            --  Otherwise check to see what should be done
2992
2993            --  If left side is a local variable, then we just set its flag to
2994            --  indicate that its value may no longer be valid, since we are
2995            --  copying a potentially invalid value.
2996
2997            elsif Is_Local_Variable_Reference (Lhs) then
2998               Set_Is_Known_Valid (Entity (Lhs), False);
2999
3000            --  Check for case of a nonlocal variable on the left side which
3001            --  is currently known to be valid. In this case, we simply ensure
3002            --  that the right side is valid. We only play the game of copying
3003            --  validity status for local variables, since we are doing this
3004            --  statically, not by tracing the full flow graph.
3005
3006            elsif Is_Entity_Name (Lhs)
3007              and then Is_Known_Valid (Entity (Lhs))
3008            then
3009               --  Note: If Validity_Checking mode is set to none, we ignore
3010               --  the Ensure_Valid call so don't worry about that case here.
3011
3012               Ensure_Valid (Rhs);
3013
3014            --  In all other cases, we can safely copy an invalid value without
3015            --  worrying about the status of the left side. Since it is not a
3016            --  variable reference it will not be considered
3017            --  as being known to be valid in any case.
3018
3019            else
3020               null;
3021            end if;
3022         end if;
3023      end if;
3024
3025   exception
3026      when RE_Not_Available =>
3027         return;
3028   end Expand_N_Assignment_Statement;
3029
3030   ------------------------------
3031   -- Expand_N_Block_Statement --
3032   ------------------------------
3033
3034   --  Encode entity names defined in block statement
3035
3036   procedure Expand_N_Block_Statement (N : Node_Id) is
3037   begin
3038      Qualify_Entity_Names (N);
3039   end Expand_N_Block_Statement;
3040
3041   -----------------------------
3042   -- Expand_N_Case_Statement --
3043   -----------------------------
3044
3045   procedure Expand_N_Case_Statement (N : Node_Id) is
3046      Loc            : constant Source_Ptr := Sloc (N);
3047      Expr           : constant Node_Id    := Expression (N);
3048      From_Cond_Expr : constant Boolean    := From_Conditional_Expression (N);
3049      Alt            : Node_Id;
3050      Len            : Nat;
3051      Cond           : Node_Id;
3052      Choice         : Node_Id;
3053      Chlist         : List_Id;
3054
3055   begin
3056      --  Check for the situation where we know at compile time which branch
3057      --  will be taken.
3058
3059      --  If the value is static but its subtype is predicated and the value
3060      --  does not obey the predicate, the value is marked non-static, and
3061      --  there can be no corresponding static alternative. In that case we
3062      --  replace the case statement with an exception, regardless of whether
3063      --  assertions are enabled or not, unless predicates are ignored.
3064
3065      if Compile_Time_Known_Value (Expr)
3066        and then Has_Predicates (Etype (Expr))
3067        and then not Predicates_Ignored (Etype (Expr))
3068        and then not Is_OK_Static_Expression (Expr)
3069      then
3070         Rewrite (N,
3071           Make_Raise_Constraint_Error (Loc, Reason => CE_Invalid_Data));
3072         Analyze (N);
3073         return;
3074
3075      elsif Compile_Time_Known_Value (Expr)
3076        and then (not Has_Predicates (Etype (Expr))
3077                   or else Is_Static_Expression (Expr))
3078      then
3079         Alt := Find_Static_Alternative (N);
3080
3081         --  Do not consider controlled objects found in a case statement which
3082         --  actually models a case expression because their early finalization
3083         --  will affect the result of the expression.
3084
3085         if not From_Conditional_Expression (N) then
3086            Process_Statements_For_Controlled_Objects (Alt);
3087         end if;
3088
3089         --  Move statements from this alternative after the case statement.
3090         --  They are already analyzed, so will be skipped by the analyzer.
3091
3092         Insert_List_After (N, Statements (Alt));
3093
3094         --  That leaves the case statement as a shell. So now we can kill all
3095         --  other alternatives in the case statement.
3096
3097         Kill_Dead_Code (Expression (N));
3098
3099         declare
3100            Dead_Alt : Node_Id;
3101
3102         begin
3103            --  Loop through case alternatives, skipping pragmas, and skipping
3104            --  the one alternative that we select (and therefore retain).
3105
3106            Dead_Alt := First (Alternatives (N));
3107            while Present (Dead_Alt) loop
3108               if Dead_Alt /= Alt
3109                 and then Nkind (Dead_Alt) = N_Case_Statement_Alternative
3110               then
3111                  Kill_Dead_Code (Statements (Dead_Alt), Warn_On_Deleted_Code);
3112               end if;
3113
3114               Next (Dead_Alt);
3115            end loop;
3116         end;
3117
3118         Rewrite (N, Make_Null_Statement (Loc));
3119         return;
3120      end if;
3121
3122      --  Here if the choice is not determined at compile time
3123
3124      declare
3125         Last_Alt : constant Node_Id := Last (Alternatives (N));
3126
3127         Others_Present : Boolean;
3128         Others_Node    : Node_Id;
3129
3130         Then_Stms : List_Id;
3131         Else_Stms : List_Id;
3132
3133      begin
3134         if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
3135            Others_Present := True;
3136            Others_Node    := Last_Alt;
3137         else
3138            Others_Present := False;
3139         end if;
3140
3141         --  First step is to worry about possible invalid argument. The RM
3142         --  requires (RM 5.4(13)) that if the result is invalid (e.g. it is
3143         --  outside the base range), then Constraint_Error must be raised.
3144
3145         --  Case of validity check required (validity checks are on, the
3146         --  expression is not known to be valid, and the case statement
3147         --  comes from source -- no need to validity check internally
3148         --  generated case statements).
3149
3150         if Validity_Check_Default
3151           and then not Predicates_Ignored (Etype (Expr))
3152         then
3153            Ensure_Valid (Expr);
3154         end if;
3155
3156         --  If there is only a single alternative, just replace it with the
3157         --  sequence of statements since obviously that is what is going to
3158         --  be executed in all cases.
3159
3160         Len := List_Length (Alternatives (N));
3161
3162         if Len = 1 then
3163
3164            --  We still need to evaluate the expression if it has any side
3165            --  effects.
3166
3167            Remove_Side_Effects (Expression (N));
3168            Alt := First (Alternatives (N));
3169
3170            --  Do not consider controlled objects found in a case statement
3171            --  which actually models a case expression because their early
3172            --  finalization will affect the result of the expression.
3173
3174            if not From_Conditional_Expression (N) then
3175               Process_Statements_For_Controlled_Objects (Alt);
3176            end if;
3177
3178            Insert_List_After (N, Statements (Alt));
3179
3180            --  That leaves the case statement as a shell. The alternative that
3181            --  will be executed is reset to a null list. So now we can kill
3182            --  the entire case statement.
3183
3184            Kill_Dead_Code (Expression (N));
3185            Rewrite (N, Make_Null_Statement (Loc));
3186            return;
3187
3188         --  An optimization. If there are only two alternatives, and only
3189         --  a single choice, then rewrite the whole case statement as an
3190         --  if statement, since this can result in subsequent optimizations.
3191         --  This helps not only with case statements in the source of a
3192         --  simple form, but also with generated code (discriminant check
3193         --  functions in particular).
3194
3195         --  Note: it is OK to do this before expanding out choices for any
3196         --  static predicates, since the if statement processing will handle
3197         --  the static predicate case fine.
3198
3199         elsif Len = 2 then
3200            Chlist := Discrete_Choices (First (Alternatives (N)));
3201
3202            if List_Length (Chlist) = 1 then
3203               Choice := First (Chlist);
3204
3205               Then_Stms := Statements (First (Alternatives (N)));
3206               Else_Stms := Statements (Last  (Alternatives (N)));
3207
3208               --  For TRUE, generate "expression", not expression = true
3209
3210               if Nkind (Choice) = N_Identifier
3211                 and then Entity (Choice) = Standard_True
3212               then
3213                  Cond := Expression (N);
3214
3215               --  For FALSE, generate "expression" and switch then/else
3216
3217               elsif Nkind (Choice) = N_Identifier
3218                 and then Entity (Choice) = Standard_False
3219               then
3220                  Cond := Expression (N);
3221                  Else_Stms := Statements (First (Alternatives (N)));
3222                  Then_Stms := Statements (Last  (Alternatives (N)));
3223
3224               --  For a range, generate "expression in range"
3225
3226               elsif Nkind (Choice) = N_Range
3227                 or else (Nkind (Choice) = N_Attribute_Reference
3228                           and then Attribute_Name (Choice) = Name_Range)
3229                 or else (Is_Entity_Name (Choice)
3230                           and then Is_Type (Entity (Choice)))
3231               then
3232                  Cond :=
3233                    Make_In (Loc,
3234                      Left_Opnd  => Expression (N),
3235                      Right_Opnd => Relocate_Node (Choice));
3236
3237               --  A subtype indication is not a legal operator in a membership
3238               --  test, so retrieve its range.
3239
3240               elsif Nkind (Choice) = N_Subtype_Indication then
3241                  Cond :=
3242                    Make_In (Loc,
3243                      Left_Opnd  => Expression (N),
3244                      Right_Opnd =>
3245                        Relocate_Node
3246                          (Range_Expression (Constraint (Choice))));
3247
3248               --  For any other subexpression "expression = value"
3249
3250               else
3251                  Cond :=
3252                    Make_Op_Eq (Loc,
3253                      Left_Opnd  => Expression (N),
3254                      Right_Opnd => Relocate_Node (Choice));
3255               end if;
3256
3257               --  Now rewrite the case as an IF
3258
3259               Rewrite (N,
3260                 Make_If_Statement (Loc,
3261                   Condition => Cond,
3262                   Then_Statements => Then_Stms,
3263                   Else_Statements => Else_Stms));
3264
3265               --  The rewritten if statement needs to inherit whether the
3266               --  case statement was expanded from a conditional expression,
3267               --  for proper handling of nested controlled objects.
3268
3269               Set_From_Conditional_Expression (N, From_Cond_Expr);
3270
3271               Analyze (N);
3272
3273               return;
3274            end if;
3275         end if;
3276
3277         --  If the last alternative is not an Others choice, replace it with
3278         --  an N_Others_Choice. Note that we do not bother to call Analyze on
3279         --  the modified case statement, since it's only effect would be to
3280         --  compute the contents of the Others_Discrete_Choices which is not
3281         --  needed by the back end anyway.
3282
3283         --  The reason for this is that the back end always needs some default
3284         --  for a switch, so if we have not supplied one in the processing
3285         --  above for validity checking, then we need to supply one here.
3286
3287         if not Others_Present then
3288            Others_Node := Make_Others_Choice (Sloc (Last_Alt));
3289
3290            --  If Predicates_Ignored is true the value does not satisfy the
3291            --  predicate, and there is no Others choice, Constraint_Error
3292            --  must be raised (4.5.7 (21/3)).
3293
3294            if Predicates_Ignored (Etype (Expr)) then
3295               declare
3296                  Except  : constant Node_Id :=
3297                              Make_Raise_Constraint_Error (Loc,
3298                                Reason => CE_Invalid_Data);
3299                  New_Alt : constant Node_Id :=
3300                              Make_Case_Statement_Alternative (Loc,
3301                                Discrete_Choices => New_List (
3302                                  Make_Others_Choice (Loc)),
3303                                Statements       => New_List (Except));
3304
3305               begin
3306                  Append (New_Alt, Alternatives (N));
3307                  Analyze_And_Resolve (Except);
3308               end;
3309
3310            else
3311               Set_Others_Discrete_Choices
3312                 (Others_Node, Discrete_Choices (Last_Alt));
3313               Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
3314            end if;
3315
3316         end if;
3317
3318         --  Deal with possible declarations of controlled objects, and also
3319         --  with rewriting choice sequences for static predicate references.
3320
3321         Alt := First_Non_Pragma (Alternatives (N));
3322         while Present (Alt) loop
3323
3324            --  Do not consider controlled objects found in a case statement
3325            --  which actually models a case expression because their early
3326            --  finalization will affect the result of the expression.
3327
3328            if not From_Conditional_Expression (N) then
3329               Process_Statements_For_Controlled_Objects (Alt);
3330            end if;
3331
3332            if Has_SP_Choice (Alt) then
3333               Expand_Static_Predicates_In_Choices (Alt);
3334            end if;
3335
3336            Next_Non_Pragma (Alt);
3337         end loop;
3338      end;
3339   end Expand_N_Case_Statement;
3340
3341   -----------------------------
3342   -- Expand_N_Exit_Statement --
3343   -----------------------------
3344
3345   --  The only processing required is to deal with a possible C/Fortran
3346   --  boolean value used as the condition for the exit statement.
3347
3348   procedure Expand_N_Exit_Statement (N : Node_Id) is
3349   begin
3350      Adjust_Condition (Condition (N));
3351   end Expand_N_Exit_Statement;
3352
3353   ----------------------------------
3354   -- Expand_Formal_Container_Loop --
3355   ----------------------------------
3356
3357   procedure Expand_Formal_Container_Loop (N : Node_Id) is
3358      Loc       : constant Source_Ptr := Sloc (N);
3359      Isc       : constant Node_Id    := Iteration_Scheme (N);
3360      I_Spec    : constant Node_Id    := Iterator_Specification (Isc);
3361      Cursor    : constant Entity_Id  := Defining_Identifier (I_Spec);
3362      Container : constant Node_Id    := Entity (Name (I_Spec));
3363      Stats     : constant List_Id    := Statements (N);
3364
3365      Advance   : Node_Id;
3366      Init_Decl : Node_Id;
3367      Init_Name : Entity_Id;
3368      New_Loop  : Node_Id;
3369
3370   begin
3371      --  The expansion of a formal container loop resembles the one for Ada
3372      --  containers. The only difference is that the primitives mention the
3373      --  domain of iteration explicitly, and function First applied to the
3374      --  container yields a cursor directly.
3375
3376      --    Cursor : Cursor_type := First (Container);
3377      --    while Has_Element (Cursor, Container) loop
3378      --          <original loop statements>
3379      --       Cursor := Next (Container, Cursor);
3380      --    end loop;
3381
3382      Build_Formal_Container_Iteration
3383        (N, Container, Cursor, Init_Decl, Advance, New_Loop);
3384
3385      Append_To (Stats, Advance);
3386
3387      --  Build a block to capture declaration of the cursor
3388
3389      Rewrite (N,
3390        Make_Block_Statement (Loc,
3391          Declarations               => New_List (Init_Decl),
3392          Handled_Statement_Sequence =>
3393            Make_Handled_Sequence_Of_Statements (Loc,
3394              Statements => New_List (New_Loop))));
3395
3396      --  The loop parameter is declared by an object declaration, but within
3397      --  the loop we must prevent user assignments to it, so we analyze the
3398      --  declaration and reset the entity kind, before analyzing the rest of
3399      --  the loop.
3400
3401      Analyze (Init_Decl);
3402      Init_Name := Defining_Identifier (Init_Decl);
3403      Set_Ekind (Init_Name, E_Loop_Parameter);
3404
3405      --  The cursor was marked as a loop parameter to prevent user assignments
3406      --  to it, however this renders the advancement step illegal as it is not
3407      --  possible to change the value of a constant. Flag the advancement step
3408      --  as a legal form of assignment to remedy this side effect.
3409
3410      Set_Assignment_OK (Name (Advance));
3411      Analyze (N);
3412
3413      --  Because we have to analyze the initial declaration of the loop
3414      --  parameter multiple times its scope is incorrectly set at this point
3415      --  to the one surrounding the block statement - so set the scope
3416      --  manually to be the actual block statement, and indicate that it is
3417      --  not visible after the block has been analyzed.
3418
3419      Set_Scope (Init_Name, Entity (Identifier (N)));
3420      Set_Is_Immediately_Visible (Init_Name, False);
3421   end Expand_Formal_Container_Loop;
3422
3423   ------------------------------------------
3424   -- Expand_Formal_Container_Element_Loop --
3425   ------------------------------------------
3426
3427   procedure Expand_Formal_Container_Element_Loop (N : Node_Id) is
3428      Loc           : constant Source_Ptr := Sloc (N);
3429      Isc           : constant Node_Id    := Iteration_Scheme (N);
3430      I_Spec        : constant Node_Id    := Iterator_Specification (Isc);
3431      Element       : constant Entity_Id  := Defining_Identifier (I_Spec);
3432      Container     : constant Node_Id    := Entity (Name (I_Spec));
3433      Container_Typ : constant Entity_Id  := Base_Type (Etype (Container));
3434      Stats         : constant List_Id    := Statements (N);
3435
3436      Cursor    : constant Entity_Id :=
3437                    Make_Defining_Identifier (Loc,
3438                      Chars => New_External_Name (Chars (Element), 'C'));
3439      Elmt_Decl : Node_Id;
3440      Elmt_Ref  : Node_Id;
3441
3442      Element_Op : constant Entity_Id :=
3443                     Get_Iterable_Type_Primitive (Container_Typ, Name_Element);
3444
3445      Advance   : Node_Id;
3446      Init      : Node_Id;
3447      New_Loop  : Node_Id;
3448
3449   begin
3450      --  For an element iterator, the Element aspect must be present,
3451      --  (this is checked during analysis) and the expansion takes the form:
3452
3453      --    Cursor : Cursor_Type := First (Container);
3454      --    Elmt : Element_Type;
3455      --    while Has_Element (Cursor, Container) loop
3456      --       Elmt := Element (Container, Cursor);
3457      --          <original loop statements>
3458      --       Cursor := Next (Container, Cursor);
3459      --    end loop;
3460
3461      --   However this expansion is not legal if the element is indefinite.
3462      --   In that case we create a block to hold a variable declaration
3463      --   initialized with a call to Element, and generate:
3464
3465      --    Cursor : Cursor_Type := First (Container);
3466      --    while Has_Element (Cursor, Container) loop
3467      --       declare
3468      --          Elmt : Element_Type := Element (Container, Cursor);
3469      --       begin
3470      --          <original loop statements>
3471      --          Cursor := Next (Container, Cursor);
3472      --       end;
3473      --    end loop;
3474
3475      Build_Formal_Container_Iteration
3476        (N, Container, Cursor, Init, Advance, New_Loop);
3477      Append_To (Stats, Advance);
3478
3479      Set_Ekind (Cursor, E_Variable);
3480      Insert_Action (N, Init);
3481
3482      --  The loop parameter is declared by an object declaration, but within
3483      --  the loop we must prevent user assignments to it; the following flag
3484      --  accomplishes that.
3485
3486      Set_Is_Loop_Parameter (Element);
3487
3488      --  Declaration for Element
3489
3490      Elmt_Decl :=
3491        Make_Object_Declaration (Loc,
3492          Defining_Identifier => Element,
3493          Object_Definition   => New_Occurrence_Of (Etype (Element_Op), Loc));
3494
3495      if not Is_Constrained (Etype (Element_Op)) then
3496         Set_Expression (Elmt_Decl,
3497           Make_Function_Call (Loc,
3498             Name                   => New_Occurrence_Of (Element_Op, Loc),
3499             Parameter_Associations => New_List (
3500               Convert_To_Iterable_Type (Container, Loc),
3501               New_Occurrence_Of (Cursor, Loc))));
3502
3503         Set_Statements (New_Loop,
3504           New_List
3505             (Make_Block_Statement (Loc,
3506                Declarations => New_List (Elmt_Decl),
3507                Handled_Statement_Sequence =>
3508                  Make_Handled_Sequence_Of_Statements (Loc,
3509                    Statements => Stats))));
3510
3511      else
3512         Elmt_Ref :=
3513           Make_Assignment_Statement (Loc,
3514             Name       => New_Occurrence_Of (Element, Loc),
3515             Expression =>
3516               Make_Function_Call (Loc,
3517                 Name                   => New_Occurrence_Of (Element_Op, Loc),
3518                 Parameter_Associations => New_List (
3519                   Convert_To_Iterable_Type (Container, Loc),
3520                   New_Occurrence_Of (Cursor, Loc))));
3521
3522         Prepend (Elmt_Ref, Stats);
3523
3524         --  The element is assignable in the expanded code
3525
3526         Set_Assignment_OK (Name (Elmt_Ref));
3527
3528         --  The loop is rewritten as a block, to hold the element declaration
3529
3530         New_Loop :=
3531           Make_Block_Statement (Loc,
3532             Declarations               => New_List (Elmt_Decl),
3533             Handled_Statement_Sequence =>
3534               Make_Handled_Sequence_Of_Statements (Loc,
3535                 Statements => New_List (New_Loop)));
3536      end if;
3537
3538      --  The element is only modified in expanded code, so it appears as
3539      --  unassigned to the warning machinery. We must suppress this spurious
3540      --  warning explicitly.
3541
3542      Set_Warnings_Off (Element);
3543
3544      Rewrite (N, New_Loop);
3545      Analyze (N);
3546   end Expand_Formal_Container_Element_Loop;
3547
3548   -----------------------------
3549   -- Expand_N_Goto_Statement --
3550   -----------------------------
3551
3552   --  Add poll before goto if polling active
3553
3554   procedure Expand_N_Goto_Statement (N : Node_Id) is
3555   begin
3556      Generate_Poll_Call (N);
3557   end Expand_N_Goto_Statement;
3558
3559   ---------------------------
3560   -- Expand_N_If_Statement --
3561   ---------------------------
3562
3563   --  First we deal with the case of C and Fortran convention boolean values,
3564   --  with zero/non-zero semantics.
3565
3566   --  Second, we deal with the obvious rewriting for the cases where the
3567   --  condition of the IF is known at compile time to be True or False.
3568
3569   --  Third, we remove elsif parts which have non-empty Condition_Actions and
3570   --  rewrite as independent if statements. For example:
3571
3572   --     if x then xs
3573   --     elsif y then ys
3574   --     ...
3575   --     end if;
3576
3577   --  becomes
3578   --
3579   --     if x then xs
3580   --     else
3581   --        <<condition actions of y>>
3582   --        if y then ys
3583   --        ...
3584   --        end if;
3585   --     end if;
3586
3587   --  This rewriting is needed if at least one elsif part has a non-empty
3588   --  Condition_Actions list. We also do the same processing if there is a
3589   --  constant condition in an elsif part (in conjunction with the first
3590   --  processing step mentioned above, for the recursive call made to deal
3591   --  with the created inner if, this deals with properly optimizing the
3592   --  cases of constant elsif conditions).
3593
3594   procedure Expand_N_If_Statement (N : Node_Id) is
3595      Loc    : constant Source_Ptr := Sloc (N);
3596      Hed    : Node_Id;
3597      E      : Node_Id;
3598      New_If : Node_Id;
3599
3600      Warn_If_Deleted : constant Boolean :=
3601                          Warn_On_Deleted_Code and then Comes_From_Source (N);
3602      --  Indicates whether we want warnings when we delete branches of the
3603      --  if statement based on constant condition analysis. We never want
3604      --  these warnings for expander generated code.
3605
3606   begin
3607      --  Do not consider controlled objects found in an if statement which
3608      --  actually models an if expression because their early finalization
3609      --  will affect the result of the expression.
3610
3611      if not From_Conditional_Expression (N) then
3612         Process_Statements_For_Controlled_Objects (N);
3613      end if;
3614
3615      Adjust_Condition (Condition (N));
3616
3617      --  The following loop deals with constant conditions for the IF. We
3618      --  need a loop because as we eliminate False conditions, we grab the
3619      --  first elsif condition and use it as the primary condition.
3620
3621      while Compile_Time_Known_Value (Condition (N)) loop
3622
3623         --  If condition is True, we can simply rewrite the if statement now
3624         --  by replacing it by the series of then statements.
3625
3626         if Is_True (Expr_Value (Condition (N))) then
3627
3628            --  All the else parts can be killed
3629
3630            Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
3631            Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);
3632
3633            Hed := Remove_Head (Then_Statements (N));
3634            Insert_List_After (N, Then_Statements (N));
3635            Rewrite (N, Hed);
3636            return;
3637
3638         --  If condition is False, then we can delete the condition and
3639         --  the Then statements
3640
3641         else
3642            --  We do not delete the condition if constant condition warnings
3643            --  are enabled, since otherwise we end up deleting the desired
3644            --  warning. Of course the backend will get rid of this True/False
3645            --  test anyway, so nothing is lost here.
3646
3647            if not Constant_Condition_Warnings then
3648               Kill_Dead_Code (Condition (N));
3649            end if;
3650
3651            Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);
3652
3653            --  If there are no elsif statements, then we simply replace the
3654            --  entire if statement by the sequence of else statements.
3655
3656            if No (Elsif_Parts (N)) then
3657               if No (Else_Statements (N))
3658                 or else Is_Empty_List (Else_Statements (N))
3659               then
3660                  Rewrite (N,
3661                    Make_Null_Statement (Sloc (N)));
3662               else
3663                  Hed := Remove_Head (Else_Statements (N));
3664                  Insert_List_After (N, Else_Statements (N));
3665                  Rewrite (N, Hed);
3666               end if;
3667
3668               return;
3669
3670            --  If there are elsif statements, the first of them becomes the
3671            --  if/then section of the rebuilt if statement This is the case
3672            --  where we loop to reprocess this copied condition.
3673
3674            else
3675               Hed := Remove_Head (Elsif_Parts (N));
3676               Insert_Actions      (N, Condition_Actions (Hed));
3677               Set_Condition       (N, Condition (Hed));
3678               Set_Then_Statements (N, Then_Statements (Hed));
3679
3680               --  Hed might have been captured as the condition determining
3681               --  the current value for an entity. Now it is detached from
3682               --  the tree, so a Current_Value pointer in the condition might
3683               --  need to be updated.
3684
3685               Set_Current_Value_Condition (N);
3686
3687               if Is_Empty_List (Elsif_Parts (N)) then
3688                  Set_Elsif_Parts (N, No_List);
3689               end if;
3690            end if;
3691         end if;
3692      end loop;
3693
3694      --  Loop through elsif parts, dealing with constant conditions and
3695      --  possible condition actions that are present.
3696
3697      if Present (Elsif_Parts (N)) then
3698         E := First (Elsif_Parts (N));
3699         while Present (E) loop
3700
3701            --  Do not consider controlled objects found in an if statement
3702            --  which actually models an if expression because their early
3703            --  finalization will affect the result of the expression.
3704
3705            if not From_Conditional_Expression (N) then
3706               Process_Statements_For_Controlled_Objects (E);
3707            end if;
3708
3709            Adjust_Condition (Condition (E));
3710
3711            --  If there are condition actions, then rewrite the if statement
3712            --  as indicated above. We also do the same rewrite for a True or
3713            --  False condition. The further processing of this constant
3714            --  condition is then done by the recursive call to expand the
3715            --  newly created if statement
3716
3717            if Present (Condition_Actions (E))
3718              or else Compile_Time_Known_Value (Condition (E))
3719            then
3720               New_If :=
3721                 Make_If_Statement (Sloc (E),
3722                   Condition       => Condition (E),
3723                   Then_Statements => Then_Statements (E),
3724                   Elsif_Parts     => No_List,
3725                   Else_Statements => Else_Statements (N));
3726
3727               --  Elsif parts for new if come from remaining elsif's of parent
3728
3729               while Present (Next (E)) loop
3730                  if No (Elsif_Parts (New_If)) then
3731                     Set_Elsif_Parts (New_If, New_List);
3732                  end if;
3733
3734                  Append (Remove_Next (E), Elsif_Parts (New_If));
3735               end loop;
3736
3737               Set_Else_Statements (N, New_List (New_If));
3738
3739               if Present (Condition_Actions (E)) then
3740                  Insert_List_Before (New_If, Condition_Actions (E));
3741               end if;
3742
3743               Remove (E);
3744
3745               if Is_Empty_List (Elsif_Parts (N)) then
3746                  Set_Elsif_Parts (N, No_List);
3747               end if;
3748
3749               Analyze (New_If);
3750
3751               --  Note this is not an implicit if statement, since it is part
3752               --  of an explicit if statement in the source (or of an implicit
3753               --  if statement that has already been tested). We set the flag
3754               --  after calling Analyze to avoid generating extra warnings
3755               --  specific to pure if statements, however (see
3756               --  Sem_Ch5.Analyze_If_Statement).
3757
3758               Set_Comes_From_Source (New_If, Comes_From_Source (N));
3759               return;
3760
3761            --  No special processing for that elsif part, move to next
3762
3763            else
3764               Next (E);
3765            end if;
3766         end loop;
3767      end if;
3768
3769      --  Some more optimizations applicable if we still have an IF statement
3770
3771      if Nkind (N) /= N_If_Statement then
3772         return;
3773      end if;
3774
3775      --  Another optimization, special cases that can be simplified
3776
3777      --     if expression then
3778      --        return true;
3779      --     else
3780      --        return false;
3781      --     end if;
3782
3783      --  can be changed to:
3784
3785      --     return expression;
3786
3787      --  and
3788
3789      --     if expression then
3790      --        return false;
3791      --     else
3792      --        return true;
3793      --     end if;
3794
3795      --  can be changed to:
3796
3797      --     return not (expression);
3798
3799      --  Only do these optimizations if we are at least at -O1 level and
3800      --  do not do them if control flow optimizations are suppressed.
3801
3802      if Optimization_Level > 0
3803        and then not Opt.Suppress_Control_Flow_Optimizations
3804      then
3805         if Nkind (N) = N_If_Statement
3806           and then No (Elsif_Parts (N))
3807           and then Present (Else_Statements (N))
3808           and then List_Length (Then_Statements (N)) = 1
3809           and then List_Length (Else_Statements (N)) = 1
3810         then
3811            declare
3812               Then_Stm : constant Node_Id := First (Then_Statements (N));
3813               Else_Stm : constant Node_Id := First (Else_Statements (N));
3814
3815            begin
3816               if Nkind (Then_Stm) = N_Simple_Return_Statement
3817                    and then
3818                  Nkind (Else_Stm) = N_Simple_Return_Statement
3819               then
3820                  declare
3821                     Then_Expr : constant Node_Id := Expression (Then_Stm);
3822                     Else_Expr : constant Node_Id := Expression (Else_Stm);
3823
3824                  begin
3825                     if Nkind (Then_Expr) = N_Identifier
3826                          and then
3827                        Nkind (Else_Expr) = N_Identifier
3828                     then
3829                        if Entity (Then_Expr) = Standard_True
3830                          and then Entity (Else_Expr) = Standard_False
3831                        then
3832                           Rewrite (N,
3833                             Make_Simple_Return_Statement (Loc,
3834                               Expression => Relocate_Node (Condition (N))));
3835                           Analyze (N);
3836                           return;
3837
3838                        elsif Entity (Then_Expr) = Standard_False
3839                          and then Entity (Else_Expr) = Standard_True
3840                        then
3841                           Rewrite (N,
3842                             Make_Simple_Return_Statement (Loc,
3843                               Expression =>
3844                                 Make_Op_Not (Loc,
3845                                   Right_Opnd =>
3846                                     Relocate_Node (Condition (N)))));
3847                           Analyze (N);
3848                           return;
3849                        end if;
3850                     end if;
3851                  end;
3852               end if;
3853            end;
3854         end if;
3855      end if;
3856   end Expand_N_If_Statement;
3857
3858   --------------------------
3859   -- Expand_Iterator_Loop --
3860   --------------------------
3861
3862   procedure Expand_Iterator_Loop (N : Node_Id) is
3863      Isc    : constant Node_Id    := Iteration_Scheme (N);
3864      I_Spec : constant Node_Id    := Iterator_Specification (Isc);
3865
3866      Container     : constant Node_Id     := Name (I_Spec);
3867      Container_Typ : constant Entity_Id   := Base_Type (Etype (Container));
3868
3869   begin
3870      --  Processing for arrays
3871
3872      if Is_Array_Type (Container_Typ) then
3873         pragma Assert (Of_Present (I_Spec));
3874         Expand_Iterator_Loop_Over_Array (N);
3875
3876      elsif Has_Aspect (Container_Typ, Aspect_Iterable) then
3877         if Of_Present (I_Spec) then
3878            Expand_Formal_Container_Element_Loop (N);
3879         else
3880            Expand_Formal_Container_Loop (N);
3881         end if;
3882
3883      --  Processing for containers
3884
3885      else
3886         Expand_Iterator_Loop_Over_Container
3887           (N, Isc, I_Spec, Container, Container_Typ);
3888      end if;
3889   end Expand_Iterator_Loop;
3890
3891   -------------------------------------
3892   -- Expand_Iterator_Loop_Over_Array --
3893   -------------------------------------
3894
3895   procedure Expand_Iterator_Loop_Over_Array (N : Node_Id) is
3896      Isc        : constant Node_Id    := Iteration_Scheme (N);
3897      I_Spec     : constant Node_Id    := Iterator_Specification (Isc);
3898      Array_Node : constant Node_Id    := Name (I_Spec);
3899      Array_Typ  : constant Entity_Id  := Base_Type (Etype (Array_Node));
3900      Array_Dim  : constant Pos        := Number_Dimensions (Array_Typ);
3901      Id         : constant Entity_Id  := Defining_Identifier (I_Spec);
3902      Loc        : constant Source_Ptr := Sloc (Isc);
3903      Stats      : constant List_Id    := Statements (N);
3904      Core_Loop  : Node_Id;
3905      Dim1       : Int;
3906      Ind_Comp   : Node_Id;
3907      Iterator   : Entity_Id;
3908
3909   --  Start of processing for Expand_Iterator_Loop_Over_Array
3910
3911   begin
3912      --  for Element of Array loop
3913
3914      --  It requires an internally generated cursor to iterate over the array
3915
3916      pragma Assert (Of_Present (I_Spec));
3917
3918      Iterator := Make_Temporary (Loc, 'C');
3919
3920      --  Generate:
3921      --    Element : Component_Type renames Array (Iterator);
3922      --    Iterator is the index value, or a list of index values
3923      --    in the case of a multidimensional array.
3924
3925      Ind_Comp :=
3926        Make_Indexed_Component (Loc,
3927          Prefix      => New_Copy_Tree (Array_Node),
3928          Expressions => New_List (New_Occurrence_Of (Iterator, Loc)));
3929
3930      --  Propagate the original node to the copy since the analysis of the
3931      --  following object renaming declaration relies on the original node.
3932
3933      Set_Original_Node (Prefix (Ind_Comp), Original_Node (Array_Node));
3934
3935      Prepend_To (Stats,
3936        Make_Object_Renaming_Declaration (Loc,
3937          Defining_Identifier => Id,
3938          Subtype_Mark        =>
3939            New_Occurrence_Of (Component_Type (Array_Typ), Loc),
3940          Name                => Ind_Comp));
3941
3942      --  Mark the loop variable as needing debug info, so that expansion
3943      --  of the renaming will result in Materialize_Entity getting set via
3944      --  Debug_Renaming_Declaration. (This setting is needed here because
3945      --  the setting in Freeze_Entity comes after the expansion, which is
3946      --  too late. ???)
3947
3948      Set_Debug_Info_Needed (Id);
3949
3950      --  Generate:
3951
3952      --    for Iterator in [reverse] Array'Range (Array_Dim) loop
3953      --       Element : Component_Type renames Array (Iterator);
3954      --       <original loop statements>
3955      --    end loop;
3956
3957      --  If this is an iteration over a multidimensional array, the
3958      --  innermost loop is over the last dimension in Ada, and over
3959      --  the first dimension in Fortran.
3960
3961      if Convention (Array_Typ) = Convention_Fortran then
3962         Dim1 := 1;
3963      else
3964         Dim1 := Array_Dim;
3965      end if;
3966
3967      Core_Loop :=
3968        Make_Loop_Statement (Sloc (N),
3969          Iteration_Scheme =>
3970            Make_Iteration_Scheme (Loc,
3971              Loop_Parameter_Specification =>
3972                Make_Loop_Parameter_Specification (Loc,
3973                  Defining_Identifier         => Iterator,
3974                  Discrete_Subtype_Definition =>
3975                    Make_Attribute_Reference (Loc,
3976                      Prefix         => New_Copy_Tree (Array_Node),
3977                      Attribute_Name => Name_Range,
3978                      Expressions    => New_List (
3979                        Make_Integer_Literal (Loc, Dim1))),
3980                  Reverse_Present             => Reverse_Present (I_Spec))),
3981           Statements      => Stats,
3982           End_Label       => Empty);
3983
3984      --  Processing for multidimensional array. The body of each loop is
3985      --  a loop over a previous dimension, going in decreasing order in Ada
3986      --  and in increasing order in Fortran.
3987
3988      if Array_Dim > 1 then
3989         for Dim in 1 .. Array_Dim - 1 loop
3990            if Convention (Array_Typ) = Convention_Fortran then
3991               Dim1 := Dim + 1;
3992            else
3993               Dim1 := Array_Dim - Dim;
3994            end if;
3995
3996            Iterator := Make_Temporary (Loc, 'C');
3997
3998            --  Generate the dimension loops starting from the innermost one
3999
4000            --    for Iterator in [reverse] Array'Range (Array_Dim - Dim) loop
4001            --       <core loop>
4002            --    end loop;
4003
4004            Core_Loop :=
4005              Make_Loop_Statement (Sloc (N),
4006                Iteration_Scheme =>
4007                  Make_Iteration_Scheme (Loc,
4008                    Loop_Parameter_Specification =>
4009                      Make_Loop_Parameter_Specification (Loc,
4010                        Defining_Identifier         => Iterator,
4011                        Discrete_Subtype_Definition =>
4012                          Make_Attribute_Reference (Loc,
4013                            Prefix         => New_Copy_Tree (Array_Node),
4014                            Attribute_Name => Name_Range,
4015                            Expressions    => New_List (
4016                              Make_Integer_Literal (Loc, Dim1))),
4017                    Reverse_Present              => Reverse_Present (I_Spec))),
4018                Statements       => New_List (Core_Loop),
4019                End_Label        => Empty);
4020
4021            --  Update the previously created object renaming declaration with
4022            --  the new iterator, by adding the index of the next loop to the
4023            --  indexed component, in the order that corresponds to the
4024            --  convention.
4025
4026            if Convention (Array_Typ) = Convention_Fortran then
4027               Append_To (Expressions (Ind_Comp),
4028                 New_Occurrence_Of (Iterator, Loc));
4029            else
4030               Prepend_To (Expressions (Ind_Comp),
4031                 New_Occurrence_Of (Iterator, Loc));
4032            end if;
4033         end loop;
4034      end if;
4035
4036      --  Inherit the loop identifier from the original loop. This ensures that
4037      --  the scope stack is consistent after the rewriting.
4038
4039      if Present (Identifier (N)) then
4040         Set_Identifier (Core_Loop, Relocate_Node (Identifier (N)));
4041      end if;
4042
4043      Rewrite (N, Core_Loop);
4044      Analyze (N);
4045   end Expand_Iterator_Loop_Over_Array;
4046
4047   -----------------------------------------
4048   -- Expand_Iterator_Loop_Over_Container --
4049   -----------------------------------------
4050
4051   --  For a 'for ... in' loop, such as:
4052
4053   --      for Cursor in Iterator_Function (...) loop
4054   --          ...
4055   --      end loop;
4056
4057   --  we generate:
4058
4059   --    Iter : Iterator_Type := Iterator_Function (...);
4060   --    Cursor : Cursor_type := First (Iter); -- or Last for "reverse"
4061   --    while Has_Element (Cursor) loop
4062   --       ...
4063   --
4064   --       Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
4065   --    end loop;
4066
4067   --  For a 'for ... of' loop, such as:
4068
4069   --      for X of Container loop
4070   --          ...
4071   --      end loop;
4072
4073   --  the RM implies the generation of:
4074
4075   --    Iter : Iterator_Type := Container.Iterate; -- the Default_Iterator
4076   --    Cursor : Cursor_Type := First (Iter); -- or Last for "reverse"
4077   --    while Has_Element (Cursor) loop
4078   --       declare
4079   --          X : Element_Type renames Element (Cursor).Element.all;
4080   --          --  or Constant_Element
4081   --       begin
4082   --          ...
4083   --       end;
4084   --       Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
4085   --    end loop;
4086
4087   --  In the general case, we do what the RM says. However, the operations
4088   --  Element and Iter.Next are slow, which is bad inside a loop, because they
4089   --  involve dispatching via interfaces, secondary stack manipulation,
4090   --  Busy/Lock incr/decr, and adjust/finalization/at-end handling. So for the
4091   --  predefined containers, we use an equivalent but optimized expansion.
4092
4093   --  In the optimized case, we make use of these:
4094
4095   --     procedure Next (Position : in out Cursor); -- instead of Iter.Next
4096
4097   --     function Pseudo_Reference
4098   --       (Container : aliased Vector'Class) return Reference_Control_Type;
4099
4100   --     type Element_Access is access all Element_Type;
4101
4102   --     function Get_Element_Access
4103   --       (Position : Cursor) return not null Element_Access;
4104
4105   --  Next is declared in the visible part of the container packages.
4106   --  The other three are added in the private part. (We're not supposed to
4107   --  pollute the namespace for clients. The compiler has no trouble breaking
4108   --  privacy to call things in the private part of an instance.)
4109
4110   --  Source:
4111
4112   --      for X of My_Vector loop
4113   --          X.Count := X.Count + 1;
4114   --          ...
4115   --      end loop;
4116
4117   --  The compiler will generate:
4118
4119   --      Iter : Reversible_Iterator'Class := Iterate (My_Vector);
4120   --      --  Reversible_Iterator is an interface. Iterate is the
4121   --      --  Default_Iterator aspect of Vector. This increments Lock,
4122   --      --  disallowing tampering with cursors. Unfortunately, it does not
4123   --      --  increment Busy. The result of Iterate is Limited_Controlled;
4124   --      --  finalization will decrement Lock. This is a build-in-place
4125   --      --  dispatching call to Iterate.
4126
4127   --      Cur : Cursor := First (Iter); -- or Last
4128   --      --  Dispatching call via interface.
4129
4130   --      Control : Reference_Control_Type := Pseudo_Reference (My_Vector);
4131   --      --  Pseudo_Reference increments Busy, to detect tampering with
4132   --      --  elements, as required by RM. Also redundantly increment
4133   --      --  Lock. Finalization of Control will decrement both Busy and
4134   --      --  Lock. Pseudo_Reference returns a record containing a pointer to
4135   --      --  My_Vector, used by Finalize.
4136   --      --
4137   --      --  Control is not used below, except to finalize it -- it's purely
4138   --      --  an RAII thing. This is needed because we are eliminating the
4139   --      --  call to Reference within the loop.
4140
4141   --      while Has_Element (Cur) loop
4142   --          declare
4143   --              X : My_Element renames Get_Element_Access (Cur).all;
4144   --              --  Get_Element_Access returns a pointer to the element
4145   --              --  designated by Cur. No dispatching here, and no horsing
4146   --              --  around with access discriminants. This is instead of the
4147   --              --  existing
4148   --              --
4149   --              --    X : My_Element renames Reference (Cur).Element.all;
4150   --              --
4151   --              --  which creates a controlled object.
4152   --          begin
4153   --              --  Any attempt to tamper with My_Vector here in the loop
4154   --              --  will correctly raise Program_Error, because of the
4155   --              --  Control.
4156   --
4157   --              X.Count := X.Count + 1;
4158   --              ...
4159   --
4160   --              Next (Cur); -- or Prev
4161   --              --  This is instead of "Cur := Next (Iter, Cur);"
4162   --          end;
4163   --          --  No finalization here
4164   --      end loop;
4165   --      Finalize Iter and Control here, decrementing Lock twice and Busy
4166   --      once.
4167
4168   --  This optimization makes "for ... of" loops over 30 times faster in cases
4169   --  measured.
4170
4171   procedure Expand_Iterator_Loop_Over_Container
4172     (N             : Node_Id;
4173      Isc           : Node_Id;
4174      I_Spec        : Node_Id;
4175      Container     : Node_Id;
4176      Container_Typ : Entity_Id)
4177   is
4178      Id       : constant Entity_Id   := Defining_Identifier (I_Spec);
4179      Elem_Typ : constant Entity_Id   := Etype (Id);
4180      Id_Kind  : constant Entity_Kind := Ekind (Id);
4181      Loc      : constant Source_Ptr  := Sloc (N);
4182      Stats    : constant List_Id     := Statements (N);
4183
4184      Cursor    : Entity_Id;
4185      Decl      : Node_Id;
4186      Iter_Type : Entity_Id;
4187      Iterator  : Entity_Id;
4188      Name_Init : Name_Id;
4189      Name_Step : Name_Id;
4190      New_Loop  : Node_Id;
4191
4192      Fast_Element_Access_Op : Entity_Id := Empty;
4193      Fast_Step_Op           : Entity_Id := Empty;
4194      --  Only for optimized version of "for ... of"
4195
4196      Iter_Pack : Entity_Id;
4197      --  The package in which the iterator interface is instantiated. This is
4198      --  typically an instance within the container package.
4199
4200      Pack : Entity_Id;
4201      --  The package in which the container type is declared
4202
4203   begin
4204      --  Determine the advancement and initialization steps for the cursor.
4205      --  Analysis of the expanded loop will verify that the container has a
4206      --  reverse iterator.
4207
4208      if Reverse_Present (I_Spec) then
4209         Name_Init := Name_Last;
4210         Name_Step := Name_Previous;
4211      else
4212         Name_Init := Name_First;
4213         Name_Step := Name_Next;
4214      end if;
4215
4216      --  The type of the iterator is the return type of the Iterate function
4217      --  used. For the "of" form this is the default iterator for the type,
4218      --  otherwise it is the type of the explicit function used in the
4219      --  iterator specification. The most common case will be an Iterate
4220      --  function in the container package.
4221
4222      --  The Iterator type is declared in an instance within the container
4223      --  package itself, for example:
4224
4225      --    package Vector_Iterator_Interfaces is new
4226      --      Ada.Iterator_Interfaces (Cursor, Has_Element);
4227
4228      --  If the container type is a derived type, the cursor type is found in
4229      --  the package of the ultimate ancestor type.
4230
4231      if Is_Derived_Type (Container_Typ) then
4232         Pack := Scope (Root_Type (Container_Typ));
4233      else
4234         Pack := Scope (Container_Typ);
4235      end if;
4236
4237      if Of_Present (I_Spec) then
4238         Handle_Of : declare
4239            Container_Arg : Node_Id;
4240
4241            function Get_Default_Iterator
4242              (T : Entity_Id) return Entity_Id;
4243            --  Return the default iterator for a specific type. If the type is
4244            --  derived, we return the inherited or overridden one if
4245            --  appropriate.
4246
4247            --------------------------
4248            -- Get_Default_Iterator --
4249            --------------------------
4250
4251            function Get_Default_Iterator
4252              (T : Entity_Id) return Entity_Id
4253            is
4254               Iter : constant Entity_Id :=
4255                 Entity (Find_Value_Of_Aspect (T, Aspect_Default_Iterator));
4256               Prim : Elmt_Id;
4257               Op   : Entity_Id;
4258
4259            begin
4260               Container_Arg := New_Copy_Tree (Container);
4261
4262               --  A previous version of GNAT allowed indexing aspects to be
4263               --  redefined on derived container types, while the default
4264               --  iterator was inherited from the parent type. This
4265               --  nonstandard extension is preserved for use by the
4266               --  modeling project under debug flag -gnatd.X.
4267
4268               if Debug_Flag_Dot_XX then
4269                  if Base_Type (Etype (Container)) /=
4270                     Base_Type (Etype (First_Formal (Iter)))
4271                  then
4272                     Container_Arg :=
4273                       Make_Type_Conversion (Loc,
4274                         Subtype_Mark =>
4275                           New_Occurrence_Of
4276                             (Etype (First_Formal (Iter)), Loc),
4277                         Expression   => Container_Arg);
4278                  end if;
4279
4280                  return Iter;
4281
4282               elsif Is_Derived_Type (T) then
4283
4284                  --  The default iterator must be a primitive operation of the
4285                  --  type, at the same dispatch slot position. The DT position
4286                  --  may not be established if type is not frozen yet.
4287
4288                  Prim := First_Elmt (Primitive_Operations (T));
4289                  while Present (Prim) loop
4290                     Op := Node (Prim);
4291
4292                     if Alias (Op) = Iter
4293                       or else
4294                         (Chars (Op) = Chars (Iter)
4295                           and then Present (DTC_Entity (Op))
4296                           and then DT_Position (Op) = DT_Position (Iter))
4297                     then
4298                        return Op;
4299                     end if;
4300
4301                     Next_Elmt (Prim);
4302                  end loop;
4303
4304                  --  If we didn't find it, then our parent type is not
4305                  --  iterable, so we return the Default_Iterator aspect of
4306                  --  this type.
4307
4308                  return Iter;
4309
4310               --  Otherwise not a derived type
4311
4312               else
4313                  return Iter;
4314               end if;
4315            end Get_Default_Iterator;
4316
4317            --  Local variables
4318
4319            Default_Iter : Entity_Id;
4320            Ent          : Entity_Id;
4321
4322            Reference_Control_Type : Entity_Id := Empty;
4323            Pseudo_Reference       : Entity_Id := Empty;
4324
4325         --  Start of processing for Handle_Of
4326
4327         begin
4328            if Is_Class_Wide_Type (Container_Typ) then
4329               Default_Iter :=
4330                 Get_Default_Iterator (Etype (Base_Type (Container_Typ)));
4331            else
4332               Default_Iter := Get_Default_Iterator (Etype (Container));
4333            end if;
4334
4335            Cursor := Make_Temporary (Loc, 'C');
4336
4337            --  For a container element iterator, the iterator type is obtained
4338            --  from the corresponding aspect, whose return type is descended
4339            --  from the corresponding interface type in some instance of
4340            --  Ada.Iterator_Interfaces. The actuals of that instantiation
4341            --  are Cursor and Has_Element.
4342
4343            Iter_Type := Etype (Default_Iter);
4344
4345            --  The iterator type, which is a class-wide type, may itself be
4346            --  derived locally, so the desired instantiation is the scope of
4347            --  the root type of the iterator type.
4348
4349            Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));
4350
4351            --  Find declarations needed for "for ... of" optimization
4352
4353            Ent := First_Entity (Pack);
4354            while Present (Ent) loop
4355               if Chars (Ent) = Name_Get_Element_Access then
4356                  Fast_Element_Access_Op := Ent;
4357
4358               elsif Chars (Ent) = Name_Step
4359                 and then Ekind (Ent) = E_Procedure
4360               then
4361                  Fast_Step_Op := Ent;
4362
4363               elsif Chars (Ent) = Name_Reference_Control_Type then
4364                  Reference_Control_Type := Ent;
4365
4366               elsif Chars (Ent) = Name_Pseudo_Reference then
4367                  Pseudo_Reference := Ent;
4368               end if;
4369
4370               Next_Entity (Ent);
4371            end loop;
4372
4373            if Present (Reference_Control_Type)
4374              and then Present (Pseudo_Reference)
4375            then
4376               Insert_Action (N,
4377                 Make_Object_Declaration (Loc,
4378                   Defining_Identifier => Make_Temporary (Loc, 'D'),
4379                   Object_Definition   =>
4380                     New_Occurrence_Of (Reference_Control_Type, Loc),
4381                   Expression          =>
4382                     Make_Function_Call (Loc,
4383                       Name                   =>
4384                         New_Occurrence_Of (Pseudo_Reference, Loc),
4385                       Parameter_Associations =>
4386                         New_List (New_Copy_Tree (Container_Arg)))));
4387            end if;
4388
4389            --  Rewrite domain of iteration as a call to the default iterator
4390            --  for the container type. The formal may be an access parameter
4391            --  in which case we must build a reference to the container.
4392
4393            declare
4394               Arg : Node_Id;
4395            begin
4396               if Is_Access_Type (Etype (First_Entity (Default_Iter))) then
4397                  Arg :=
4398                    Make_Attribute_Reference (Loc,
4399                      Prefix         => Container_Arg,
4400                      Attribute_Name => Name_Unrestricted_Access);
4401               else
4402                  Arg := Container_Arg;
4403               end if;
4404
4405               Rewrite (Name (I_Spec),
4406                 Make_Function_Call (Loc,
4407                   Name                   =>
4408                     New_Occurrence_Of (Default_Iter, Loc),
4409                   Parameter_Associations => New_List (Arg)));
4410            end;
4411
4412            Analyze_And_Resolve (Name (I_Spec));
4413
4414            --  Find cursor type in proper iterator package, which is an
4415            --  instantiation of Iterator_Interfaces.
4416
4417            Ent := First_Entity (Iter_Pack);
4418            while Present (Ent) loop
4419               if Chars (Ent) = Name_Cursor then
4420                  Set_Etype (Cursor, Etype (Ent));
4421                  exit;
4422               end if;
4423
4424               Next_Entity (Ent);
4425            end loop;
4426
4427            if Present (Fast_Element_Access_Op) then
4428               Decl :=
4429                 Make_Object_Renaming_Declaration (Loc,
4430                   Defining_Identifier => Id,
4431                   Subtype_Mark        =>
4432                     New_Occurrence_Of (Elem_Typ, Loc),
4433                   Name                =>
4434                     Make_Explicit_Dereference (Loc,
4435                       Prefix =>
4436                         Make_Function_Call (Loc,
4437                           Name                   =>
4438                             New_Occurrence_Of (Fast_Element_Access_Op, Loc),
4439                           Parameter_Associations =>
4440                             New_List (New_Occurrence_Of (Cursor, Loc)))));
4441
4442            else
4443               Decl :=
4444                 Make_Object_Renaming_Declaration (Loc,
4445                   Defining_Identifier => Id,
4446                   Subtype_Mark        =>
4447                     New_Occurrence_Of (Elem_Typ, Loc),
4448                   Name                =>
4449                     Make_Indexed_Component (Loc,
4450                       Prefix      => Relocate_Node (Container_Arg),
4451                       Expressions =>
4452                         New_List (New_Occurrence_Of (Cursor, Loc))));
4453            end if;
4454
4455            --  The defining identifier in the iterator is user-visible and
4456            --  must be visible in the debugger.
4457
4458            Set_Debug_Info_Needed (Id);
4459
4460            --  If the container does not have a variable indexing aspect,
4461            --  the element is a constant in the loop. The container itself
4462            --  may be constant, in which case the element is a constant as
4463            --  well. The container has been rewritten as a call to Iterate,
4464            --  so examine original node.
4465
4466            if No (Find_Value_Of_Aspect
4467                     (Container_Typ, Aspect_Variable_Indexing))
4468              or else not Is_Variable (Original_Node (Container))
4469            then
4470               Set_Ekind (Id, E_Constant);
4471            end if;
4472
4473            Prepend_To (Stats, Decl);
4474         end Handle_Of;
4475
4476      --  X in Iterate (S) : type of iterator is type of explicitly given
4477      --  Iterate function, and the loop variable is the cursor. It will be
4478      --  assigned in the loop and must be a variable.
4479
4480      else
4481         Iter_Type := Etype (Name (I_Spec));
4482
4483         --  The iterator type, which is a class-wide type, may itself be
4484         --  derived locally, so the desired instantiation is the scope of
4485         --  the root type of the iterator type, as in the "of" case.
4486
4487         Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));
4488         Cursor := Id;
4489      end if;
4490
4491      Iterator := Make_Temporary (Loc, 'I');
4492
4493      --  For both iterator forms, add a call to the step operation to advance
4494      --  the cursor. Generate:
4495
4496      --     Cursor := Iterator.Next (Cursor);
4497
4498      --   or else
4499
4500      --     Cursor := Next (Cursor);
4501
4502      if Present (Fast_Element_Access_Op) and then Present (Fast_Step_Op) then
4503         declare
4504            Curs_Name : constant Node_Id := New_Occurrence_Of (Cursor, Loc);
4505            Step_Call : Node_Id;
4506
4507         begin
4508            Step_Call :=
4509              Make_Procedure_Call_Statement (Loc,
4510                Name                   =>
4511                  New_Occurrence_Of (Fast_Step_Op, Loc),
4512                Parameter_Associations => New_List (Curs_Name));
4513
4514            Append_To (Stats, Step_Call);
4515            Set_Assignment_OK (Curs_Name);
4516         end;
4517
4518      else
4519         declare
4520            Rhs : Node_Id;
4521
4522         begin
4523            Rhs :=
4524              Make_Function_Call (Loc,
4525                Name                   =>
4526                  Make_Selected_Component (Loc,
4527                    Prefix        => New_Occurrence_Of (Iterator, Loc),
4528                    Selector_Name => Make_Identifier (Loc, Name_Step)),
4529                Parameter_Associations => New_List (
4530                   New_Occurrence_Of (Cursor, Loc)));
4531
4532            Append_To (Stats,
4533              Make_Assignment_Statement (Loc,
4534                 Name       => New_Occurrence_Of (Cursor, Loc),
4535                 Expression => Rhs));
4536            Set_Assignment_OK (Name (Last (Stats)));
4537         end;
4538      end if;
4539
4540      --  Generate:
4541      --    while Has_Element (Cursor) loop
4542      --       <Stats>
4543      --    end loop;
4544
4545      --   Has_Element is the second actual in the iterator package
4546
4547      New_Loop :=
4548        Make_Loop_Statement (Loc,
4549          Iteration_Scheme =>
4550            Make_Iteration_Scheme (Loc,
4551              Condition =>
4552                Make_Function_Call (Loc,
4553                  Name                   =>
4554                    New_Occurrence_Of
4555                      (Next_Entity (First_Entity (Iter_Pack)), Loc),
4556                  Parameter_Associations => New_List (
4557                    New_Occurrence_Of (Cursor, Loc)))),
4558
4559          Statements => Stats,
4560          End_Label  => Empty);
4561
4562      --  If present, preserve identifier of loop, which can be used in an exit
4563      --  statement in the body.
4564
4565      if Present (Identifier (N)) then
4566         Set_Identifier (New_Loop, Relocate_Node (Identifier (N)));
4567      end if;
4568
4569      --  Create the declarations for Iterator and cursor and insert them
4570      --  before the source loop. Given that the domain of iteration is already
4571      --  an entity, the iterator is just a renaming of that entity. Possible
4572      --  optimization ???
4573
4574      Insert_Action (N,
4575        Make_Object_Renaming_Declaration (Loc,
4576          Defining_Identifier => Iterator,
4577          Subtype_Mark        => New_Occurrence_Of (Iter_Type, Loc),
4578          Name                => Relocate_Node (Name (I_Spec))));
4579
4580      --  Create declaration for cursor
4581
4582      declare
4583         Cursor_Decl : constant Node_Id :=
4584                         Make_Object_Declaration (Loc,
4585                           Defining_Identifier => Cursor,
4586                           Object_Definition   =>
4587                             New_Occurrence_Of (Etype (Cursor), Loc),
4588                           Expression          =>
4589                             Make_Selected_Component (Loc,
4590                               Prefix        =>
4591                                 New_Occurrence_Of (Iterator, Loc),
4592                               Selector_Name =>
4593                                 Make_Identifier (Loc, Name_Init)));
4594
4595      begin
4596         --  The cursor is only modified in expanded code, so it appears
4597         --  as unassigned to the warning machinery. We must suppress this
4598         --  spurious warning explicitly. The cursor's kind is that of the
4599         --  original loop parameter (it is a constant if the domain of
4600         --  iteration is constant).
4601
4602         Set_Warnings_Off (Cursor);
4603         Set_Assignment_OK (Cursor_Decl);
4604
4605         Insert_Action (N, Cursor_Decl);
4606         Set_Ekind (Cursor, Id_Kind);
4607      end;
4608
4609      --  If the range of iteration is given by a function call that returns
4610      --  a container, the finalization actions have been saved in the
4611      --  Condition_Actions of the iterator. Insert them now at the head of
4612      --  the loop.
4613
4614      if Present (Condition_Actions (Isc)) then
4615         Insert_List_Before (N, Condition_Actions (Isc));
4616      end if;
4617
4618      Rewrite (N, New_Loop);
4619      Analyze (N);
4620   end Expand_Iterator_Loop_Over_Container;
4621
4622   -----------------------------
4623   -- Expand_N_Loop_Statement --
4624   -----------------------------
4625
4626   --  1. Remove null loop entirely
4627   --  2. Deal with while condition for C/Fortran boolean
4628   --  3. Deal with loops with a non-standard enumeration type range
4629   --  4. Deal with while loops where Condition_Actions is set
4630   --  5. Deal with loops over predicated subtypes
4631   --  6. Deal with loops with iterators over arrays and containers
4632   --  7. Insert polling call if required
4633
4634   procedure Expand_N_Loop_Statement (N : Node_Id) is
4635      Loc    : constant Source_Ptr := Sloc (N);
4636      Scheme : constant Node_Id    := Iteration_Scheme (N);
4637      Stmt   : Node_Id;
4638
4639   begin
4640      --  Delete null loop
4641
4642      if Is_Null_Loop (N) then
4643         Rewrite (N, Make_Null_Statement (Loc));
4644         return;
4645      end if;
4646
4647      --  Deal with condition for C/Fortran Boolean
4648
4649      if Present (Scheme) then
4650         Adjust_Condition (Condition (Scheme));
4651      end if;
4652
4653      --  Generate polling call
4654
4655      if Is_Non_Empty_List (Statements (N)) then
4656         Generate_Poll_Call (First (Statements (N)));
4657      end if;
4658
4659      --  Nothing more to do for plain loop with no iteration scheme
4660
4661      if No (Scheme) then
4662         null;
4663
4664      --  Case of for loop (Loop_Parameter_Specification present)
4665
4666      --  Note: we do not have to worry about validity checking of the for loop
4667      --  range bounds here, since they were frozen with constant declarations
4668      --  and it is during that process that the validity checking is done.
4669
4670      elsif Present (Loop_Parameter_Specification (Scheme)) then
4671         declare
4672            LPS     : constant Node_Id   :=
4673                        Loop_Parameter_Specification (Scheme);
4674            Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
4675            Ltype   : constant Entity_Id := Etype (Loop_Id);
4676            Btype   : constant Entity_Id := Base_Type (Ltype);
4677            Expr    : Node_Id;
4678            Decls   : List_Id;
4679            New_Id  : Entity_Id;
4680
4681         begin
4682            --  Deal with loop over predicates
4683
4684            if Is_Discrete_Type (Ltype)
4685              and then Present (Predicate_Function (Ltype))
4686            then
4687               Expand_Predicated_Loop (N);
4688
4689            --  Handle the case where we have a for loop with the range type
4690            --  being an enumeration type with non-standard representation.
4691            --  In this case we expand:
4692
4693            --    for x in [reverse] a .. b loop
4694            --       ...
4695            --    end loop;
4696
4697            --  to
4698
4699            --    for xP in [reverse] integer
4700            --      range etype'Pos (a) .. etype'Pos (b)
4701            --    loop
4702            --       declare
4703            --          x : constant etype := Pos_To_Rep (xP);
4704            --       begin
4705            --          ...
4706            --       end;
4707            --    end loop;
4708
4709            elsif Is_Enumeration_Type (Btype)
4710              and then Present (Enum_Pos_To_Rep (Btype))
4711            then
4712               New_Id :=
4713                 Make_Defining_Identifier (Loc,
4714                   Chars => New_External_Name (Chars (Loop_Id), 'P'));
4715
4716               --  If the type has a contiguous representation, successive
4717               --  values can be generated as offsets from the first literal.
4718
4719               if Has_Contiguous_Rep (Btype) then
4720                  Expr :=
4721                     Unchecked_Convert_To (Btype,
4722                       Make_Op_Add (Loc,
4723                         Left_Opnd =>
4724                            Make_Integer_Literal (Loc,
4725                              Enumeration_Rep (First_Literal (Btype))),
4726                         Right_Opnd => New_Occurrence_Of (New_Id, Loc)));
4727               else
4728                  --  Use the constructed array Enum_Pos_To_Rep
4729
4730                  Expr :=
4731                    Make_Indexed_Component (Loc,
4732                      Prefix      =>
4733                        New_Occurrence_Of (Enum_Pos_To_Rep (Btype), Loc),
4734                      Expressions =>
4735                        New_List (New_Occurrence_Of (New_Id, Loc)));
4736               end if;
4737
4738               --  Build declaration for loop identifier
4739
4740               Decls :=
4741                 New_List (
4742                   Make_Object_Declaration (Loc,
4743                     Defining_Identifier => Loop_Id,
4744                     Constant_Present    => True,
4745                     Object_Definition   => New_Occurrence_Of (Ltype, Loc),
4746                     Expression          => Expr));
4747
4748               Rewrite (N,
4749                 Make_Loop_Statement (Loc,
4750                   Identifier => Identifier (N),
4751
4752                   Iteration_Scheme =>
4753                     Make_Iteration_Scheme (Loc,
4754                       Loop_Parameter_Specification =>
4755                         Make_Loop_Parameter_Specification (Loc,
4756                           Defining_Identifier => New_Id,
4757                           Reverse_Present => Reverse_Present (LPS),
4758
4759                           Discrete_Subtype_Definition =>
4760                             Make_Subtype_Indication (Loc,
4761
4762                               Subtype_Mark =>
4763                                 New_Occurrence_Of (Standard_Natural, Loc),
4764
4765                               Constraint =>
4766                                 Make_Range_Constraint (Loc,
4767                                   Range_Expression =>
4768                                     Make_Range (Loc,
4769
4770                                       Low_Bound =>
4771                                         Make_Attribute_Reference (Loc,
4772                                           Prefix =>
4773                                             New_Occurrence_Of (Btype, Loc),
4774
4775                                           Attribute_Name => Name_Pos,
4776
4777                                           Expressions => New_List (
4778                                             Relocate_Node
4779                                               (Type_Low_Bound (Ltype)))),
4780
4781                                       High_Bound =>
4782                                         Make_Attribute_Reference (Loc,
4783                                           Prefix =>
4784                                             New_Occurrence_Of (Btype, Loc),
4785
4786                                           Attribute_Name => Name_Pos,
4787
4788                                           Expressions => New_List (
4789                                             Relocate_Node
4790                                               (Type_High_Bound
4791                                                  (Ltype))))))))),
4792
4793                   Statements => New_List (
4794                     Make_Block_Statement (Loc,
4795                       Declarations => Decls,
4796                       Handled_Statement_Sequence =>
4797                         Make_Handled_Sequence_Of_Statements (Loc,
4798                           Statements => Statements (N)))),
4799
4800                   End_Label => End_Label (N)));
4801
4802               --  The loop parameter's entity must be removed from the loop
4803               --  scope's entity list and rendered invisible, since it will
4804               --  now be located in the new block scope. Any other entities
4805               --  already associated with the loop scope, such as the loop
4806               --  parameter's subtype, will remain there.
4807
4808               --  In an element loop, the loop will contain a declaration for
4809               --  a cursor variable; otherwise the loop id is the first entity
4810               --  in the scope constructed for the loop.
4811
4812               if Comes_From_Source (Loop_Id) then
4813                  pragma Assert (First_Entity (Scope (Loop_Id)) = Loop_Id);
4814                  null;
4815               end if;
4816
4817               Set_First_Entity (Scope (Loop_Id), Next_Entity (Loop_Id));
4818               Remove_Homonym (Loop_Id);
4819
4820               if Last_Entity (Scope (Loop_Id)) = Loop_Id then
4821                  Set_Last_Entity (Scope (Loop_Id), Empty);
4822               end if;
4823
4824               Analyze (N);
4825
4826            --  Nothing to do with other cases of for loops
4827
4828            else
4829               null;
4830            end if;
4831         end;
4832
4833      --  Second case, if we have a while loop with Condition_Actions set, then
4834      --  we change it into a plain loop:
4835
4836      --    while C loop
4837      --       ...
4838      --    end loop;
4839
4840      --  changed to:
4841
4842      --    loop
4843      --       <<condition actions>>
4844      --       exit when not C;
4845      --       ...
4846      --    end loop
4847
4848      elsif Present (Scheme)
4849        and then Present (Condition_Actions (Scheme))
4850        and then Present (Condition (Scheme))
4851      then
4852         declare
4853            ES : Node_Id;
4854
4855         begin
4856            ES :=
4857              Make_Exit_Statement (Sloc (Condition (Scheme)),
4858                Condition =>
4859                  Make_Op_Not (Sloc (Condition (Scheme)),
4860                    Right_Opnd => Condition (Scheme)));
4861
4862            Prepend (ES, Statements (N));
4863            Insert_List_Before (ES, Condition_Actions (Scheme));
4864
4865            --  This is not an implicit loop, since it is generated in response
4866            --  to the loop statement being processed. If this is itself
4867            --  implicit, the restriction has already been checked. If not,
4868            --  it is an explicit loop.
4869
4870            Rewrite (N,
4871              Make_Loop_Statement (Sloc (N),
4872                Identifier => Identifier (N),
4873                Statements => Statements (N),
4874                End_Label  => End_Label  (N)));
4875
4876            Analyze (N);
4877         end;
4878
4879      --  Here to deal with iterator case
4880
4881      elsif Present (Scheme)
4882        and then Present (Iterator_Specification (Scheme))
4883      then
4884         Expand_Iterator_Loop (N);
4885
4886         --  An iterator loop may generate renaming declarations for elements
4887         --  that require debug information. This is the case in particular
4888         --  with element iterators, where debug information must be generated
4889         --  for the temporary that holds the element value. These temporaries
4890         --  are created within a transient block whose local declarations are
4891         --  transferred to the loop, which now has nontrivial local objects.
4892
4893         if Nkind (N) = N_Loop_Statement
4894           and then Present (Identifier (N))
4895         then
4896            Qualify_Entity_Names (N);
4897         end if;
4898      end if;
4899
4900      --  When the iteration scheme mentiones attribute 'Loop_Entry, the loop
4901      --  is transformed into a conditional block where the original loop is
4902      --  the sole statement. Inspect the statements of the nested loop for
4903      --  controlled objects.
4904
4905      Stmt := N;
4906
4907      if Subject_To_Loop_Entry_Attributes (Stmt) then
4908         Stmt := Find_Loop_In_Conditional_Block (Stmt);
4909      end if;
4910
4911      Process_Statements_For_Controlled_Objects (Stmt);
4912   end Expand_N_Loop_Statement;
4913
4914   ----------------------------
4915   -- Expand_Predicated_Loop --
4916   ----------------------------
4917
4918   --  Note: the expander can handle generation of loops over predicated
4919   --  subtypes for both the dynamic and static cases. Depending on what
4920   --  we decide is allowed in Ada 2012 mode and/or extensions allowed
4921   --  mode, the semantic analyzer may disallow one or both forms.
4922
4923   procedure Expand_Predicated_Loop (N : Node_Id) is
4924      Loc     : constant Source_Ptr := Sloc (N);
4925      Isc     : constant Node_Id    := Iteration_Scheme (N);
4926      LPS     : constant Node_Id    := Loop_Parameter_Specification (Isc);
4927      Loop_Id : constant Entity_Id  := Defining_Identifier (LPS);
4928      Ltype   : constant Entity_Id  := Etype (Loop_Id);
4929      Stat    : constant List_Id    := Static_Discrete_Predicate (Ltype);
4930      Stmts   : constant List_Id    := Statements (N);
4931
4932   begin
4933      --  Case of iteration over non-static predicate, should not be possible
4934      --  since this is not allowed by the semantics and should have been
4935      --  caught during analysis of the loop statement.
4936
4937      if No (Stat) then
4938         raise Program_Error;
4939
4940      --  If the predicate list is empty, that corresponds to a predicate of
4941      --  False, in which case the loop won't run at all, and we rewrite the
4942      --  entire loop as a null statement.
4943
4944      elsif Is_Empty_List (Stat) then
4945         Rewrite (N, Make_Null_Statement (Loc));
4946         Analyze (N);
4947
4948      --  For expansion over a static predicate we generate the following
4949
4950      --     declare
4951      --        J : Ltype := min-val;
4952      --     begin
4953      --        loop
4954      --           body
4955      --           case J is
4956      --              when endpoint => J := startpoint;
4957      --              when endpoint => J := startpoint;
4958      --              ...
4959      --              when max-val  => exit;
4960      --              when others   => J := Lval'Succ (J);
4961      --           end case;
4962      --        end loop;
4963      --     end;
4964
4965      --  with min-val replaced by max-val and Succ replaced by Pred if the
4966      --  loop parameter specification carries a Reverse indicator.
4967
4968      --  To make this a little clearer, let's take a specific example:
4969
4970      --        type Int is range 1 .. 10;
4971      --        subtype StaticP is Int with
4972      --          predicate => StaticP in 3 | 10 | 5 .. 7;
4973      --          ...
4974      --        for L in StaticP loop
4975      --           Put_Line ("static:" & J'Img);
4976      --        end loop;
4977
4978      --  In this case, the loop is transformed into
4979
4980      --     begin
4981      --        J : L := 3;
4982      --        loop
4983      --           body
4984      --           case J is
4985      --              when 3  => J := 5;
4986      --              when 7  => J := 10;
4987      --              when 10 => exit;
4988      --              when others  => J := L'Succ (J);
4989      --           end case;
4990      --        end loop;
4991      --     end;
4992
4993      --  In addition, if the loop specification is given by a subtype
4994      --  indication that constrains a predicated type, the bounds of
4995      --  iteration are given by those of the subtype indication.
4996
4997      else
4998         Static_Predicate : declare
4999            S    : Node_Id;
5000            D    : Node_Id;
5001            P    : Node_Id;
5002            Alts : List_Id;
5003            Cstm : Node_Id;
5004
5005            --  If the domain is an itype, note the bounds of its range.
5006
5007            L_Hi  : Node_Id := Empty;
5008            L_Lo  : Node_Id := Empty;
5009
5010            function Lo_Val (N : Node_Id) return Node_Id;
5011            --  Given static expression or static range, returns an identifier
5012            --  whose value is the low bound of the expression value or range.
5013
5014            function Hi_Val (N : Node_Id) return Node_Id;
5015            --  Given static expression or static range, returns an identifier
5016            --  whose value is the high bound of the expression value or range.
5017
5018            ------------
5019            -- Hi_Val --
5020            ------------
5021
5022            function Hi_Val (N : Node_Id) return Node_Id is
5023            begin
5024               if Is_OK_Static_Expression (N) then
5025                  return New_Copy (N);
5026               else
5027                  pragma Assert (Nkind (N) = N_Range);
5028                  return New_Copy (High_Bound (N));
5029               end if;
5030            end Hi_Val;
5031
5032            ------------
5033            -- Lo_Val --
5034            ------------
5035
5036            function Lo_Val (N : Node_Id) return Node_Id is
5037            begin
5038               if Is_OK_Static_Expression (N) then
5039                  return New_Copy (N);
5040               else
5041                  pragma Assert (Nkind (N) = N_Range);
5042                  return New_Copy (Low_Bound (N));
5043               end if;
5044            end Lo_Val;
5045
5046         --  Start of processing for Static_Predicate
5047
5048         begin
5049            --  Convert loop identifier to normal variable and reanalyze it so
5050            --  that this conversion works. We have to use the same defining
5051            --  identifier, since there may be references in the loop body.
5052
5053            Set_Analyzed (Loop_Id, False);
5054            Set_Ekind    (Loop_Id, E_Variable);
5055
5056            --  In most loops the loop variable is assigned in various
5057            --  alternatives in the body. However, in the rare case when
5058            --  the range specifies a single element, the loop variable
5059            --  may trigger a spurious warning that is could be constant.
5060            --  This warning might as well be suppressed.
5061
5062            Set_Warnings_Off (Loop_Id);
5063
5064            if Is_Itype (Ltype) then
5065               L_Hi := High_Bound (Scalar_Range (Ltype));
5066               L_Lo := Low_Bound  (Scalar_Range (Ltype));
5067            end if;
5068
5069            --  Loop to create branches of case statement
5070
5071            Alts := New_List;
5072
5073            if Reverse_Present (LPS) then
5074
5075               --  Initial value is largest value in predicate.
5076
5077               if Is_Itype (Ltype) then
5078                  D :=
5079                    Make_Object_Declaration (Loc,
5080                      Defining_Identifier => Loop_Id,
5081                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
5082                      Expression          => L_Hi);
5083
5084               else
5085                  D :=
5086                    Make_Object_Declaration (Loc,
5087                      Defining_Identifier => Loop_Id,
5088                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
5089                      Expression          => Hi_Val (Last (Stat)));
5090               end if;
5091
5092               P := Last (Stat);
5093               while Present (P) loop
5094                  if No (Prev (P)) then
5095                     S := Make_Exit_Statement (Loc);
5096                  else
5097                     S :=
5098                       Make_Assignment_Statement (Loc,
5099                         Name       => New_Occurrence_Of (Loop_Id, Loc),
5100                         Expression => Hi_Val (Prev (P)));
5101                     Set_Suppress_Assignment_Checks (S);
5102                  end if;
5103
5104                  Append_To (Alts,
5105                    Make_Case_Statement_Alternative (Loc,
5106                      Statements       => New_List (S),
5107                      Discrete_Choices => New_List (Lo_Val (P))));
5108
5109                  Prev (P);
5110               end loop;
5111
5112               if Is_Itype (Ltype)
5113                 and then Is_OK_Static_Expression (L_Lo)
5114                 and then
5115                   Expr_Value (L_Lo) /= Expr_Value (Lo_Val (First (Stat)))
5116               then
5117                  Append_To (Alts,
5118                    Make_Case_Statement_Alternative (Loc,
5119                      Statements       => New_List (Make_Exit_Statement (Loc)),
5120                      Discrete_Choices => New_List (L_Lo)));
5121               end if;
5122
5123            else
5124               --  Initial value is smallest value in predicate
5125
5126               if Is_Itype (Ltype) then
5127                  D :=
5128                    Make_Object_Declaration (Loc,
5129                      Defining_Identifier => Loop_Id,
5130                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
5131                      Expression          => L_Lo);
5132               else
5133                  D :=
5134                    Make_Object_Declaration (Loc,
5135                      Defining_Identifier => Loop_Id,
5136                      Object_Definition   => New_Occurrence_Of (Ltype, Loc),
5137                      Expression          => Lo_Val (First (Stat)));
5138               end if;
5139
5140               P := First (Stat);
5141               while Present (P) loop
5142                  if No (Next (P)) then
5143                     S := Make_Exit_Statement (Loc);
5144                  else
5145                     S :=
5146                       Make_Assignment_Statement (Loc,
5147                         Name       => New_Occurrence_Of (Loop_Id, Loc),
5148                         Expression => Lo_Val (Next (P)));
5149                     Set_Suppress_Assignment_Checks (S);
5150                  end if;
5151
5152                  Append_To (Alts,
5153                    Make_Case_Statement_Alternative (Loc,
5154                      Statements       => New_List (S),
5155                      Discrete_Choices => New_List (Hi_Val (P))));
5156
5157                  Next (P);
5158               end loop;
5159
5160               if Is_Itype (Ltype)
5161                 and then Is_OK_Static_Expression (L_Hi)
5162                 and then
5163                   Expr_Value (L_Hi) /= Expr_Value (Lo_Val (Last (Stat)))
5164               then
5165                  Append_To (Alts,
5166                    Make_Case_Statement_Alternative (Loc,
5167                      Statements       => New_List (Make_Exit_Statement (Loc)),
5168                      Discrete_Choices => New_List (L_Hi)));
5169               end if;
5170            end if;
5171
5172            --  Add others choice
5173
5174            declare
5175               Name_Next : Name_Id;
5176
5177            begin
5178               if Reverse_Present (LPS) then
5179                  Name_Next := Name_Pred;
5180               else
5181                  Name_Next := Name_Succ;
5182               end if;
5183
5184               S :=
5185                 Make_Assignment_Statement (Loc,
5186                   Name       => New_Occurrence_Of (Loop_Id, Loc),
5187                   Expression =>
5188                     Make_Attribute_Reference (Loc,
5189                       Prefix         => New_Occurrence_Of (Ltype, Loc),
5190                       Attribute_Name => Name_Next,
5191                       Expressions    => New_List (
5192                         New_Occurrence_Of (Loop_Id, Loc))));
5193               Set_Suppress_Assignment_Checks (S);
5194            end;
5195
5196            Append_To (Alts,
5197              Make_Case_Statement_Alternative (Loc,
5198                Discrete_Choices => New_List (Make_Others_Choice (Loc)),
5199                Statements       => New_List (S)));
5200
5201            --  Construct case statement and append to body statements
5202
5203            Cstm :=
5204              Make_Case_Statement (Loc,
5205                Expression   => New_Occurrence_Of (Loop_Id, Loc),
5206                Alternatives => Alts);
5207            Append_To (Stmts, Cstm);
5208
5209            --  Rewrite the loop
5210
5211            Set_Suppress_Assignment_Checks (D);
5212
5213            Rewrite (N,
5214              Make_Block_Statement (Loc,
5215                Declarations               => New_List (D),
5216                Handled_Statement_Sequence =>
5217                  Make_Handled_Sequence_Of_Statements (Loc,
5218                    Statements => New_List (
5219                      Make_Loop_Statement (Loc,
5220                        Statements => Stmts,
5221                        End_Label  => Empty)))));
5222
5223            Analyze (N);
5224         end Static_Predicate;
5225      end if;
5226   end Expand_Predicated_Loop;
5227
5228   ------------------------------
5229   -- Make_Tag_Ctrl_Assignment --
5230   ------------------------------
5231
5232   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
5233      Asn : constant Node_Id    := Relocate_Node (N);
5234      L   : constant Node_Id    := Name (N);
5235      Loc : constant Source_Ptr := Sloc (N);
5236      Res : constant List_Id    := New_List;
5237      T   : constant Entity_Id  := Underlying_Type (Etype (L));
5238
5239      Comp_Asn : constant Boolean := Is_Fully_Repped_Tagged_Type (T);
5240      Ctrl_Act : constant Boolean := Needs_Finalization (T)
5241                                       and then not No_Ctrl_Actions (N);
5242      Save_Tag : constant Boolean := Is_Tagged_Type (T)
5243                                       and then not Comp_Asn
5244                                       and then not No_Ctrl_Actions (N)
5245                                       and then Tagged_Type_Expansion;
5246      Adj_Call : Node_Id;
5247      Fin_Call : Node_Id;
5248      Tag_Id   : Entity_Id;
5249
5250   begin
5251      --  Finalize the target of the assignment when controlled
5252
5253      --  We have two exceptions here:
5254
5255      --   1. If we are in an init proc since it is an initialization more
5256      --      than an assignment.
5257
5258      --   2. If the left-hand side is a temporary that was not initialized
5259      --      (or the parent part of a temporary since it is the case in
5260      --      extension aggregates). Such a temporary does not come from
5261      --      source. We must examine the original node for the prefix, because
5262      --      it may be a component of an entry formal, in which case it has
5263      --      been rewritten and does not appear to come from source either.
5264
5265      --  Case of init proc
5266
5267      if not Ctrl_Act then
5268         null;
5269
5270      --  The left-hand side is an uninitialized temporary object
5271
5272      elsif Nkind (L) = N_Type_Conversion
5273        and then Is_Entity_Name (Expression (L))
5274        and then Nkind (Parent (Entity (Expression (L)))) =
5275                                              N_Object_Declaration
5276        and then No_Initialization (Parent (Entity (Expression (L))))
5277      then
5278         null;
5279
5280      else
5281         Fin_Call :=
5282           Make_Final_Call
5283             (Obj_Ref => Duplicate_Subexpr_No_Checks (L),
5284              Typ     => Etype (L));
5285
5286         if Present (Fin_Call) then
5287            Append_To (Res, Fin_Call);
5288         end if;
5289      end if;
5290
5291      --  Save the Tag in a local variable Tag_Id
5292
5293      if Save_Tag then
5294         Tag_Id := Make_Temporary (Loc, 'A');
5295
5296         Append_To (Res,
5297           Make_Object_Declaration (Loc,
5298             Defining_Identifier => Tag_Id,
5299             Object_Definition   => New_Occurrence_Of (RTE (RE_Tag), Loc),
5300             Expression          =>
5301               Make_Selected_Component (Loc,
5302                 Prefix        => Duplicate_Subexpr_No_Checks (L),
5303                 Selector_Name =>
5304                   New_Occurrence_Of (First_Tag_Component (T), Loc))));
5305
5306      --  Otherwise Tag_Id is not used
5307
5308      else
5309         Tag_Id := Empty;
5310      end if;
5311
5312      --  If the tagged type has a full rep clause, expand the assignment into
5313      --  component-wise assignments. Mark the node as unanalyzed in order to
5314      --  generate the proper code and propagate this scenario by setting a
5315      --  flag to avoid infinite recursion.
5316
5317      if Comp_Asn then
5318         Set_Analyzed (Asn, False);
5319         Set_Componentwise_Assignment (Asn, True);
5320      end if;
5321
5322      Append_To (Res, Asn);
5323
5324      --  Restore the tag
5325
5326      if Save_Tag then
5327         Append_To (Res,
5328           Make_Assignment_Statement (Loc,
5329             Name       =>
5330               Make_Selected_Component (Loc,
5331                 Prefix        => Duplicate_Subexpr_No_Checks (L),
5332                 Selector_Name =>
5333                   New_Occurrence_Of (First_Tag_Component (T), Loc)),
5334             Expression => New_Occurrence_Of (Tag_Id, Loc)));
5335      end if;
5336
5337      --  Adjust the target after the assignment when controlled (not in the
5338      --  init proc since it is an initialization more than an assignment).
5339
5340      if Ctrl_Act then
5341         Adj_Call :=
5342           Make_Adjust_Call
5343             (Obj_Ref => Duplicate_Subexpr_Move_Checks (L),
5344              Typ     => Etype (L));
5345
5346         if Present (Adj_Call) then
5347            Append_To (Res, Adj_Call);
5348         end if;
5349      end if;
5350
5351      return Res;
5352
5353   exception
5354
5355      --  Could use comment here ???
5356
5357      when RE_Not_Available =>
5358         return Empty_List;
5359   end Make_Tag_Ctrl_Assignment;
5360
5361end Exp_Ch5;
5362