1 /****************************************************************************
2 * *
3 * GNAT COMPILER COMPONENTS *
4 * *
5 * M I S C *
6 * *
7 * C Implementation File *
8 * *
9 * Copyright (C) 1992-2019, Free Software Foundation, Inc. *
10 * *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License distributed with GNAT; see file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
20 * *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
23 * *
24 ****************************************************************************/
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "target.h"
30 #include "tree.h"
31 #include "diagnostic.h"
32 #include "opts.h"
33 #include "alias.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "print-tree.h"
37 #include "toplev.h"
38 #include "langhooks.h"
39 #include "langhooks-def.h"
40 #include "plugin.h"
41 #include "calls.h" /* For pass_by_reference. */
42 #include "dwarf2out.h"
43
44 #include "ada.h"
45 #include "adadecode.h"
46 #include "types.h"
47 #include "atree.h"
48 #include "namet.h"
49 #include "nlists.h"
50 #include "uintp.h"
51 #include "fe.h"
52 #include "sinfo.h"
53 #include "einfo.h"
54 #include "ada-tree.h"
55 #include "gigi.h"
56
57 /* Command-line argc and argv. These variables are global since they are
58 imported in back_end.adb. */
59 unsigned int save_argc;
60 const char **save_argv;
61
62 /* GNAT argc and argv generated by the binder for all Ada programs. */
63 extern int gnat_argc;
64 extern const char **gnat_argv;
65
66 /* Ada code requires variables for these settings rather than elements
67 of the global_options structure because they are imported. */
68 #undef gnat_encodings
69 enum dwarf_gnat_encodings gnat_encodings = DWARF_GNAT_ENCODINGS_DEFAULT;
70
71 #undef optimize
72 int optimize;
73
74 #undef optimize_size
75 int optimize_size;
76
77 #undef flag_short_enums
78 int flag_short_enums;
79
80 #undef flag_stack_check
81 enum stack_check_type flag_stack_check = NO_STACK_CHECK;
82
83 #ifdef __cplusplus
84 extern "C" {
85 #endif
86
87 /* Declare functions we use as part of startup. */
88 extern void __gnat_initialize (void *);
89 extern void __gnat_install_SEH_handler (void *);
90 extern void adainit (void);
91 extern void _ada_gnat1drv (void);
92
93 #ifdef __cplusplus
94 }
95 #endif
96
97 /* The parser for the language. For us, we process the GNAT tree. */
98
99 static void
gnat_parse_file(void)100 gnat_parse_file (void)
101 {
102 int seh[2];
103
104 /* Call the target specific initializations. */
105 __gnat_initialize (NULL);
106
107 /* ??? Call the SEH initialization routine. This is to workaround
108 a bootstrap path problem. The call below should be removed at some
109 point and the SEH pointer passed to __gnat_initialize above. */
110 __gnat_install_SEH_handler ((void *)seh);
111
112 /* Call the front-end elaboration procedures. */
113 adainit ();
114
115 /* Call the front end. */
116 _ada_gnat1drv ();
117
118 /* Write the global declarations. */
119 gnat_write_global_declarations ();
120 }
121
122 /* Return language mask for option processing. */
123
124 static unsigned int
gnat_option_lang_mask(void)125 gnat_option_lang_mask (void)
126 {
127 return CL_Ada;
128 }
129
130 /* Decode all the language specific options that cannot be decoded by GCC.
131 The option decoding phase of GCC calls this routine on the flags that
132 are marked as Ada-specific. Return true on success or false on failure. */
133
134 static bool
gnat_handle_option(size_t scode,const char * arg,HOST_WIDE_INT value,int kind,location_t loc,const struct cl_option_handlers * handlers)135 gnat_handle_option (size_t scode, const char *arg, HOST_WIDE_INT value,
136 int kind, location_t loc,
137 const struct cl_option_handlers *handlers)
138 {
139 enum opt_code code = (enum opt_code) scode;
140
141 switch (code)
142 {
143 case OPT_Wall:
144 handle_generated_option (&global_options, &global_options_set,
145 OPT_Wunused, NULL, value,
146 gnat_option_lang_mask (), kind, loc,
147 handlers, true, global_dc);
148 warn_uninitialized = value;
149 warn_maybe_uninitialized = value;
150 break;
151
152 case OPT_gant:
153 warning (0, "%<-gnat%> misspelled as %<-gant%>");
154
155 /* ... fall through ... */
156
157 case OPT_gnat:
158 case OPT_gnatO:
159 case OPT_fRTS_:
160 case OPT_I:
161 case OPT_fdump_scos:
162 case OPT_nostdinc:
163 case OPT_nostdlib:
164 /* These are handled by the front-end. */
165 break;
166
167 case OPT_fopenacc:
168 case OPT_fshort_enums:
169 case OPT_fsigned_char:
170 case OPT_funsigned_char:
171 /* These are handled by the middle-end. */
172 break;
173
174 case OPT_fbuiltin_printf:
175 /* This is ignored in Ada but needs to be accepted so it can be
176 defaulted. */
177 break;
178
179 default:
180 gcc_unreachable ();
181 }
182
183 Ada_handle_option_auto (&global_options, &global_options_set,
184 scode, arg, value,
185 gnat_option_lang_mask (), kind, loc,
186 handlers, global_dc);
187 return true;
188 }
189
190 /* Initialize options structure OPTS. */
191
192 static void
gnat_init_options_struct(struct gcc_options * opts)193 gnat_init_options_struct (struct gcc_options *opts)
194 {
195 /* Uninitialized really means uninitialized in Ada. */
196 opts->x_flag_zero_initialized_in_bss = 0;
197
198 /* We don't care about errno in Ada and it causes __builtin_sqrt to
199 call the libm function rather than do it inline. */
200 opts->x_flag_errno_math = 0;
201 opts->frontend_set_flag_errno_math = true;
202 }
203
204 /* Initialize for option processing. */
205
206 static void
gnat_init_options(unsigned int decoded_options_count,struct cl_decoded_option * decoded_options)207 gnat_init_options (unsigned int decoded_options_count,
208 struct cl_decoded_option *decoded_options)
209 {
210 /* Reconstruct an argv array for use of back_end.adb.
211
212 ??? back_end.adb should not rely on this; instead, it should work with
213 decoded options without such reparsing, to ensure consistency in how
214 options are decoded. */
215 save_argv = XNEWVEC (const char *, 2 * decoded_options_count + 1);
216 save_argc = 0;
217 for (unsigned int i = 0; i < decoded_options_count; i++)
218 {
219 size_t num_elements = decoded_options[i].canonical_option_num_elements;
220
221 if (decoded_options[i].errors
222 || decoded_options[i].opt_index == OPT_SPECIAL_unknown
223 || num_elements == 0)
224 continue;
225
226 /* Deal with -I- specially since it must be a single switch. */
227 if (decoded_options[i].opt_index == OPT_I
228 && num_elements == 2
229 && decoded_options[i].canonical_option[1][0] == '-'
230 && decoded_options[i].canonical_option[1][1] == '\0')
231 save_argv[save_argc++] = "-I-";
232 else
233 {
234 gcc_assert (num_elements >= 1 && num_elements <= 2);
235 save_argv[save_argc++] = decoded_options[i].canonical_option[0];
236 if (num_elements >= 2)
237 save_argv[save_argc++] = decoded_options[i].canonical_option[1];
238 }
239 }
240 save_argv[save_argc] = NULL;
241
242 /* Pass just the name of the command through the regular channel. */
243 gnat_argv = (const char **) xmalloc (sizeof (char *));
244 gnat_argv[0] = xstrdup (save_argv[0]);
245 gnat_argc = 1;
246 }
247
248 /* Settings adjustments after switches processing by the back-end.
249 Note that the front-end switches processing (Scan_Compiler_Arguments)
250 has not been done yet at this point! */
251
252 static bool
gnat_post_options(const char ** pfilename ATTRIBUTE_UNUSED)253 gnat_post_options (const char **pfilename ATTRIBUTE_UNUSED)
254 {
255 /* Excess precision other than "fast" requires front-end support. */
256 if (flag_excess_precision == EXCESS_PRECISION_STANDARD)
257 sorry ("%<-fexcess-precision=standard%> for Ada");
258 flag_excess_precision = EXCESS_PRECISION_FAST;
259
260 /* No psABI change warnings for Ada. */
261 warn_psabi = 0;
262
263 /* No return type warnings for Ada. */
264 warn_return_type = 0;
265
266 /* No string overflow warnings for Ada. */
267 warn_stringop_overflow = 0;
268
269 /* No caret by default for Ada. */
270 if (!global_options_set.x_flag_diagnostics_show_caret)
271 global_dc->show_caret = false;
272
273 /* Warn only if STABS is not the default: we don't want to emit a warning if
274 the user did not use a -gstabs option. */
275 if (PREFERRED_DEBUGGING_TYPE != DBX_DEBUG && write_symbols == DBX_DEBUG)
276 warning (0, "STABS debugging information for Ada is obsolete and not "
277 "supported anymore");
278
279 /* Copy global settings to local versions. */
280 gnat_encodings = global_options.x_gnat_encodings;
281 optimize = global_options.x_optimize;
282 optimize_size = global_options.x_optimize_size;
283 flag_stack_check = global_options.x_flag_stack_check;
284 flag_short_enums = global_options.x_flag_short_enums;
285
286 /* Unfortunately the post_options hook is called before the value of
287 flag_short_enums is autodetected, if need be. Mimic the process
288 for our private flag_short_enums. */
289 if (flag_short_enums == 2)
290 flag_short_enums = targetm.default_short_enums ();
291
292 return false;
293 }
294
295 /* Here is the function to handle the compiler error processing in GCC. */
296
297 static void
internal_error_function(diagnostic_context * context,const char * msgid,va_list * ap)298 internal_error_function (diagnostic_context *context, const char *msgid,
299 va_list *ap)
300 {
301 text_info tinfo;
302 char *buffer, *p, *loc;
303 String_Template temp, temp_loc;
304 String_Pointer sp, sp_loc;
305 expanded_location xloc;
306
307 /* Warn if plugins present. */
308 warn_if_plugins ();
309
310 /* Reset the pretty-printer. */
311 pp_clear_output_area (context->printer);
312
313 /* Format the message into the pretty-printer. */
314 tinfo.format_spec = msgid;
315 tinfo.args_ptr = ap;
316 tinfo.err_no = errno;
317 pp_format_verbatim (context->printer, &tinfo);
318
319 /* Extract a (writable) pointer to the formatted text. */
320 buffer = xstrdup (pp_formatted_text (context->printer));
321
322 /* Go up to the first newline. */
323 for (p = buffer; *p; p++)
324 if (*p == '\n')
325 {
326 *p = '\0';
327 break;
328 }
329
330 temp.Low_Bound = 1;
331 temp.High_Bound = p - buffer;
332 sp.Bounds = &temp;
333 sp.Array = buffer;
334
335 xloc = expand_location (input_location);
336 if (context->show_column && xloc.column != 0)
337 loc = xasprintf ("%s:%d:%d", xloc.file, xloc.line, xloc.column);
338 else
339 loc = xasprintf ("%s:%d", xloc.file, xloc.line);
340 temp_loc.Low_Bound = 1;
341 temp_loc.High_Bound = strlen (loc);
342 sp_loc.Bounds = &temp_loc;
343 sp_loc.Array = loc;
344
345 Compiler_Abort (sp, sp_loc, true);
346 }
347
348 /* Perform all the initialization steps that are language-specific. */
349
350 static bool
gnat_init(void)351 gnat_init (void)
352 {
353 /* Do little here, most of the standard declarations are set up after the
354 front-end has been run. Use the same `char' as C for Interfaces.C. */
355 build_common_tree_nodes (flag_signed_char);
356
357 /* In Ada, we use an unsigned 8-bit type for the default boolean type. */
358 boolean_type_node = make_unsigned_type (8);
359 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
360 SET_TYPE_RM_MAX_VALUE (boolean_type_node,
361 build_int_cst (boolean_type_node, 1));
362 SET_TYPE_RM_SIZE (boolean_type_node, bitsize_int (1));
363 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
364 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
365
366 sbitsize_one_node = sbitsize_int (1);
367 sbitsize_unit_node = sbitsize_int (BITS_PER_UNIT);
368
369 /* Register our internal error function. */
370 global_dc->internal_error = &internal_error_function;
371
372 return true;
373 }
374
375 /* Initialize the GCC support for exception handling. */
376
377 void
gnat_init_gcc_eh(void)378 gnat_init_gcc_eh (void)
379 {
380 /* We shouldn't do anything if the No_Exceptions_Handler pragma is set,
381 though. This could for instance lead to the emission of tables with
382 references to symbols (such as the Ada eh personality routine) within
383 libraries we won't link against. */
384 if (No_Exception_Handlers_Set ())
385 return;
386
387 /* Tell GCC we are handling cleanup actions through exception propagation.
388 This opens possibilities that we don't take advantage of yet, but is
389 nonetheless necessary to ensure that fixup code gets assigned to the
390 right exception regions. */
391 using_eh_for_cleanups ();
392
393 /* Turn on -fexceptions, -fnon-call-exceptions and -fdelete-dead-exceptions.
394 The first one activates the support for exceptions in the compiler.
395 The second one is useful for two reasons: 1/ we map some asynchronous
396 signals like SEGV to exceptions, so we need to ensure that the insns
397 which can lead to such signals are correctly attached to the exception
398 region they pertain to, 2/ some calls to pure subprograms are handled as
399 libcall blocks and then marked as "cannot trap" if the flag is not set
400 (see emit_libcall_block). We should not let this be since it is possible
401 for such calls to actually raise in Ada.
402 The third one is an optimization that makes it possible to delete dead
403 instructions that may throw exceptions, most notably loads and stores,
404 as permitted in Ada.
405 Turn off -faggressive-loop-optimizations because it may optimize away
406 out-of-bound array accesses that we want to be able to catch.
407 If checks are disabled, we use the same settings as the C++ compiler,
408 except for the runtime on platforms where S'Machine_Overflow is true
409 because the runtime depends on FP (hardware) checks being properly
410 handled despite being compiled in -gnatp mode. */
411 flag_exceptions = 1;
412 flag_delete_dead_exceptions = 1;
413 if (Suppress_Checks)
414 {
415 if (!global_options_set.x_flag_non_call_exceptions)
416 flag_non_call_exceptions = Machine_Overflows_On_Target && GNAT_Mode;
417 }
418 else
419 {
420 flag_non_call_exceptions = 1;
421 flag_aggressive_loop_optimizations = 0;
422 warn_aggressive_loop_optimizations = 0;
423 }
424
425 init_eh ();
426 }
427
428 /* Initialize the GCC support for floating-point operations. */
429
430 void
gnat_init_gcc_fp(void)431 gnat_init_gcc_fp (void)
432 {
433 /* Disable FP optimizations that ignore the signedness of zero if
434 S'Signed_Zeros is true, but don't override the user if not. */
435 if (Signed_Zeros_On_Target)
436 flag_signed_zeros = 1;
437 else if (!global_options_set.x_flag_signed_zeros)
438 flag_signed_zeros = 0;
439
440 /* Assume that FP operations can trap if S'Machine_Overflow is true,
441 but don't override the user if not. */
442 if (Machine_Overflows_On_Target)
443 flag_trapping_math = 1;
444 else if (!global_options_set.x_flag_trapping_math)
445 flag_trapping_math = 0;
446 }
447
448 /* Print language-specific items in declaration NODE. */
449
450 static void
gnat_print_decl(FILE * file,tree node,int indent)451 gnat_print_decl (FILE *file, tree node, int indent)
452 {
453 switch (TREE_CODE (node))
454 {
455 case CONST_DECL:
456 print_node (file, "corresponding var",
457 DECL_CONST_CORRESPONDING_VAR (node), indent + 4);
458 break;
459
460 case FIELD_DECL:
461 print_node (file, "original field", DECL_ORIGINAL_FIELD (node),
462 indent + 4);
463 break;
464
465 case VAR_DECL:
466 if (DECL_LOOP_PARM_P (node))
467 print_node (file, "induction var", DECL_INDUCTION_VAR (node),
468 indent + 4);
469 else
470 print_node (file, "renamed object", DECL_RENAMED_OBJECT (node),
471 indent + 4);
472 break;
473
474 default:
475 break;
476 }
477 }
478
479 /* Print language-specific items in type NODE. */
480
481 static void
gnat_print_type(FILE * file,tree node,int indent)482 gnat_print_type (FILE *file, tree node, int indent)
483 {
484 switch (TREE_CODE (node))
485 {
486 case FUNCTION_TYPE:
487 case METHOD_TYPE:
488 print_node (file, "ci/co list", TYPE_CI_CO_LIST (node), indent + 4);
489 break;
490
491 case INTEGER_TYPE:
492 if (TYPE_MODULAR_P (node))
493 print_node_brief (file, "modulus", TYPE_MODULUS (node), indent + 4);
494 else if (TYPE_FIXED_POINT_P (node))
495 print_node (file, "scale factor", TYPE_SCALE_FACTOR (node),
496 indent + 4);
497 else if (TYPE_HAS_ACTUAL_BOUNDS_P (node))
498 print_node (file, "actual bounds", TYPE_ACTUAL_BOUNDS (node),
499 indent + 4);
500 else
501 print_node (file, "index type", TYPE_INDEX_TYPE (node), indent + 4);
502
503 /* ... fall through ... */
504
505 case ENUMERAL_TYPE:
506 case BOOLEAN_TYPE:
507 print_node_brief (file, "RM size", TYPE_RM_SIZE (node), indent + 4);
508
509 /* ... fall through ... */
510
511 case REAL_TYPE:
512 print_node_brief (file, "RM min", TYPE_RM_MIN_VALUE (node), indent + 4);
513 print_node_brief (file, "RM max", TYPE_RM_MAX_VALUE (node), indent + 4);
514 break;
515
516 case ARRAY_TYPE:
517 print_node (file,"actual bounds", TYPE_ACTUAL_BOUNDS (node), indent + 4);
518 break;
519
520 case VECTOR_TYPE:
521 print_node (file,"representative array",
522 TYPE_REPRESENTATIVE_ARRAY (node), indent + 4);
523 break;
524
525 case RECORD_TYPE:
526 if (TYPE_FAT_POINTER_P (node) || TYPE_CONTAINS_TEMPLATE_P (node))
527 print_node (file, "unconstrained array",
528 TYPE_UNCONSTRAINED_ARRAY (node), indent + 4);
529 else
530 print_node (file, "Ada size", TYPE_ADA_SIZE (node), indent + 4);
531 break;
532
533 case UNION_TYPE:
534 case QUAL_UNION_TYPE:
535 print_node (file, "Ada size", TYPE_ADA_SIZE (node), indent + 4);
536 break;
537
538 default:
539 break;
540 }
541
542 if (TYPE_CAN_HAVE_DEBUG_TYPE_P (node) && TYPE_DEBUG_TYPE (node))
543 print_node_brief (file, "debug type", TYPE_DEBUG_TYPE (node), indent + 4);
544
545 if (TYPE_IMPL_PACKED_ARRAY_P (node) && TYPE_ORIGINAL_PACKED_ARRAY (node))
546 print_node_brief (file, "original packed array",
547 TYPE_ORIGINAL_PACKED_ARRAY (node), indent + 4);
548 }
549
550 /* Return the name to be printed for DECL. */
551
552 static const char *
gnat_printable_name(tree decl,int verbosity)553 gnat_printable_name (tree decl, int verbosity)
554 {
555 const char *coded_name = IDENTIFIER_POINTER (DECL_NAME (decl));
556 char *ada_name = (char *) ggc_alloc_atomic (strlen (coded_name) * 2 + 60);
557
558 __gnat_decode (coded_name, ada_name, 0);
559
560 if (verbosity == 2 && !DECL_IS_BUILTIN (decl))
561 {
562 Set_Identifier_Casing (ada_name, DECL_SOURCE_FILE (decl));
563 return ggc_strdup (Name_Buffer);
564 }
565
566 return ada_name;
567 }
568
569 /* Return the name to be used in DWARF debug info for DECL. */
570
571 static const char *
gnat_dwarf_name(tree decl,int verbosity ATTRIBUTE_UNUSED)572 gnat_dwarf_name (tree decl, int verbosity ATTRIBUTE_UNUSED)
573 {
574 gcc_assert (DECL_P (decl));
575 return (const char *) IDENTIFIER_POINTER (DECL_NAME (decl));
576 }
577
578 /* Return the descriptive type associated with TYPE, if any. */
579
580 static tree
gnat_descriptive_type(const_tree type)581 gnat_descriptive_type (const_tree type)
582 {
583 if (TYPE_STUB_DECL (type))
584 return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type));
585 else
586 return NULL_TREE;
587 }
588
589 /* Return the underlying base type of an enumeration type. */
590
591 static tree
gnat_enum_underlying_base_type(const_tree)592 gnat_enum_underlying_base_type (const_tree)
593 {
594 /* Enumeration types are base types in Ada. */
595 return void_type_node;
596 }
597
598 /* Return the type to be used for debugging information instead of TYPE or
599 NULL_TREE if TYPE is fine. */
600
601 static tree
gnat_get_debug_type(const_tree type)602 gnat_get_debug_type (const_tree type)
603 {
604 if (TYPE_CAN_HAVE_DEBUG_TYPE_P (type) && TYPE_DEBUG_TYPE (type))
605 {
606 type = TYPE_DEBUG_TYPE (type);
607
608 /* ??? The get_debug_type language hook is processed after the array
609 descriptor language hook, so if there is an array behind this type,
610 the latter is supposed to handle it. Still, we can get here with
611 a type we are not supposed to handle (e.g. when the DWARF back-end
612 processes the type of a variable), so keep this guard. */
613 if (type && TYPE_CAN_HAVE_DEBUG_TYPE_P (type))
614 return const_cast<tree> (type);
615 }
616
617 return NULL_TREE;
618 }
619
620 /* Provide information in INFO for debugging output about the TYPE fixed-point
621 type. Return whether TYPE is handled. */
622
623 static bool
gnat_get_fixed_point_type_info(const_tree type,struct fixed_point_type_info * info)624 gnat_get_fixed_point_type_info (const_tree type,
625 struct fixed_point_type_info *info)
626 {
627 tree scale_factor;
628
629 /* GDB cannot handle fixed-point types yet, so rely on GNAT encodings
630 instead for it. */
631 if (!TYPE_IS_FIXED_POINT_P (type)
632 || gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
633 return false;
634
635 scale_factor = TYPE_SCALE_FACTOR (type);
636
637 /* We expect here only a finite set of pattern. See fixed-point types
638 handling in gnat_to_gnu_entity. */
639
640 /* Put invalid values when compiler internals cannot represent the scale
641 factor. */
642 if (scale_factor == integer_zero_node)
643 {
644 info->scale_factor_kind = fixed_point_scale_factor_arbitrary;
645 info->scale_factor.arbitrary.numerator = 0;
646 info->scale_factor.arbitrary.denominator = 0;
647 return true;
648 }
649
650 if (TREE_CODE (scale_factor) == RDIV_EXPR)
651 {
652 const tree num = TREE_OPERAND (scale_factor, 0);
653 const tree den = TREE_OPERAND (scale_factor, 1);
654
655 /* See if we have a binary or decimal scale. */
656 if (TREE_CODE (den) == POWER_EXPR)
657 {
658 const tree base = TREE_OPERAND (den, 0);
659 const tree exponent = TREE_OPERAND (den, 1);
660
661 /* We expect the scale factor to be 1 / 2 ** N or 1 / 10 ** N. */
662 gcc_assert (num == integer_one_node
663 && TREE_CODE (base) == INTEGER_CST
664 && TREE_CODE (exponent) == INTEGER_CST);
665
666 switch (tree_to_shwi (base))
667 {
668 case 2:
669 info->scale_factor_kind = fixed_point_scale_factor_binary;
670 info->scale_factor.binary = -tree_to_shwi (exponent);
671 return true;
672
673 case 10:
674 info->scale_factor_kind = fixed_point_scale_factor_decimal;
675 info->scale_factor.decimal = -tree_to_shwi (exponent);
676 return true;
677
678 default:
679 gcc_unreachable ();
680 }
681 }
682
683 /* If we reach this point, we are handling an arbitrary scale factor. We
684 expect N / D with constant operands. */
685 gcc_assert (TREE_CODE (num) == INTEGER_CST
686 && TREE_CODE (den) == INTEGER_CST);
687
688 info->scale_factor_kind = fixed_point_scale_factor_arbitrary;
689 info->scale_factor.arbitrary.numerator = tree_to_uhwi (num);
690 info->scale_factor.arbitrary.denominator = tree_to_shwi (den);
691 return true;
692 }
693
694 gcc_unreachable ();
695 }
696
697 /* Return true if types T1 and T2 are identical for type hashing purposes.
698 Called only after doing all language independent checks. At present,
699 this is only called when both types are FUNCTION_TYPE or METHOD_TYPE. */
700
701 static bool
gnat_type_hash_eq(const_tree t1,const_tree t2)702 gnat_type_hash_eq (const_tree t1, const_tree t2)
703 {
704 gcc_assert (FUNC_OR_METHOD_TYPE_P (t1) && TREE_CODE (t1) == TREE_CODE (t2));
705 return fntype_same_flags_p (t1, TYPE_CI_CO_LIST (t2),
706 TYPE_RETURN_UNCONSTRAINED_P (t2),
707 TYPE_RETURN_BY_DIRECT_REF_P (t2),
708 TREE_ADDRESSABLE (t2));
709 }
710
711 /* Do nothing (return the tree node passed). */
712
713 static tree
gnat_return_tree(tree t)714 gnat_return_tree (tree t)
715 {
716 return t;
717 }
718
719 /* Get the alias set corresponding to a type or expression. */
720
721 static alias_set_type
gnat_get_alias_set(tree type)722 gnat_get_alias_set (tree type)
723 {
724 /* If this is a padding type, use the type of the first field. */
725 if (TYPE_IS_PADDING_P (type))
726 return get_alias_set (TREE_TYPE (TYPE_FIELDS (type)));
727
728 /* If this is an extra subtype, use the base type. */
729 else if (TYPE_IS_EXTRA_SUBTYPE_P (type))
730 return get_alias_set (get_base_type (type));
731
732 /* If the type is an unconstrained array, use the type of the
733 self-referential array we make. */
734 else if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE)
735 return
736 get_alias_set (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))));
737
738 /* If the type can alias any other types, return the alias set 0. */
739 else if (TYPE_P (type)
740 && !TYPE_IS_DUMMY_P (type)
741 && TYPE_UNIVERSAL_ALIASING_P (type))
742 return 0;
743
744 return -1;
745 }
746
747 /* GNU_TYPE is a type. Return its maximum size in bytes, if known,
748 as a constant when possible. */
749
750 static tree
gnat_type_max_size(const_tree gnu_type)751 gnat_type_max_size (const_tree gnu_type)
752 {
753 /* First see what we can get from TYPE_SIZE_UNIT, which might not
754 be constant even for simple expressions if it has already been
755 elaborated and possibly replaced by a VAR_DECL. */
756 tree max_size_unit = max_size (TYPE_SIZE_UNIT (gnu_type), true);
757
758 /* If we don't have a constant, see what we can get from TYPE_ADA_SIZE,
759 which should stay untouched. */
760 if (!tree_fits_uhwi_p (max_size_unit)
761 && RECORD_OR_UNION_TYPE_P (gnu_type)
762 && !TYPE_FAT_POINTER_P (gnu_type)
763 && TYPE_ADA_SIZE (gnu_type))
764 {
765 tree max_ada_size = max_size (TYPE_ADA_SIZE (gnu_type), true);
766
767 /* If we have succeeded in finding a constant, round it up to the
768 type's alignment and return the result in units. */
769 if (tree_fits_uhwi_p (max_ada_size))
770 max_size_unit
771 = size_binop (CEIL_DIV_EXPR,
772 round_up (max_ada_size, TYPE_ALIGN (gnu_type)),
773 bitsize_unit_node);
774 }
775
776 return max_size_unit;
777 }
778
779 static tree get_array_bit_stride (tree);
780
781 /* Provide information in INFO for debug output about the TYPE array type.
782 Return whether TYPE is handled. */
783
784 static bool
gnat_get_array_descr_info(const_tree const_type,struct array_descr_info * info)785 gnat_get_array_descr_info (const_tree const_type,
786 struct array_descr_info *info)
787 {
788 bool convention_fortran_p;
789 bool is_array = false;
790 bool is_fat_ptr = false;
791 bool is_packed_array = false;
792 tree type = const_cast<tree> (const_type);
793 const_tree first_dimen = NULL_TREE;
794 const_tree last_dimen = NULL_TREE;
795 const_tree dimen;
796 int i;
797
798 /* Temporaries created in the first pass and used in the second one for thin
799 pointers. The first one is an expression that yields the template record
800 from the base address (i.e. the PLACEHOLDER_EXPR). The second one is just
801 a cursor through this record's fields. */
802 tree thinptr_template_expr = NULL_TREE;
803 tree thinptr_bound_field = NULL_TREE;
804
805 /* ??? See gnat_get_debug_type. */
806 type = maybe_debug_type (type);
807
808 /* If we have an implementation type for a packed array, get the orignial
809 array type. */
810 if (TYPE_IMPL_PACKED_ARRAY_P (type) && TYPE_ORIGINAL_PACKED_ARRAY (type))
811 {
812 type = TYPE_ORIGINAL_PACKED_ARRAY (type);
813 is_packed_array = true;
814 }
815
816 /* First pass: gather all information about this array except everything
817 related to dimensions. */
818
819 /* Only handle ARRAY_TYPE nodes that come from GNAT. */
820 if (TREE_CODE (type) == ARRAY_TYPE
821 && TYPE_DOMAIN (type)
822 && TYPE_INDEX_TYPE (TYPE_DOMAIN (type)))
823 {
824 is_array = true;
825 first_dimen = type;
826 info->data_location = NULL_TREE;
827 }
828
829 else if (TYPE_IS_FAT_POINTER_P (type)
830 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
831 {
832 const tree ua_type = TYPE_UNCONSTRAINED_ARRAY (type);
833
834 /* This will be our base object address. */
835 const tree placeholder_expr = build0 (PLACEHOLDER_EXPR, type);
836
837 /* We assume below that maybe_unconstrained_array returns an INDIRECT_REF
838 node. */
839 const tree ua_val
840 = maybe_unconstrained_array (build_unary_op (INDIRECT_REF,
841 ua_type,
842 placeholder_expr));
843
844 is_fat_ptr = true;
845 first_dimen = TREE_TYPE (ua_val);
846
847 /* Get the *address* of the array, not the array itself. */
848 info->data_location = TREE_OPERAND (ua_val, 0);
849 }
850
851 /* Unlike fat pointers (which appear for unconstrained arrays passed in
852 argument), thin pointers are used only for array access types, so we want
853 them to appear in the debug info as pointers to an array type. That's why
854 we match only the RECORD_TYPE here instead of the POINTER_TYPE with the
855 TYPE_IS_THIN_POINTER_P predicate. */
856 else if (TREE_CODE (type) == RECORD_TYPE
857 && TYPE_CONTAINS_TEMPLATE_P (type)
858 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
859 {
860 /* This will be our base object address. Note that we assume that
861 pointers to these will actually point to the array field (thin
862 pointers are shifted). */
863 const tree placeholder_expr = build0 (PLACEHOLDER_EXPR, type);
864 const tree placeholder_addr
865 = build_unary_op (ADDR_EXPR, NULL_TREE, placeholder_expr);
866
867 const tree bounds_field = TYPE_FIELDS (type);
868 const tree bounds_type = TREE_TYPE (bounds_field);
869 const tree array_field = DECL_CHAIN (bounds_field);
870 const tree array_type = TREE_TYPE (array_field);
871
872 /* Shift the thin pointer address to get the address of the template. */
873 const tree shift_amount
874 = fold_build1 (NEGATE_EXPR, sizetype, byte_position (array_field));
875 tree template_addr
876 = build_binary_op (POINTER_PLUS_EXPR, TREE_TYPE (placeholder_addr),
877 placeholder_addr, shift_amount);
878 template_addr
879 = fold_convert (TYPE_POINTER_TO (bounds_type), template_addr);
880
881 first_dimen = array_type;
882
883 /* The thin pointer is already the pointer to the array data, so there's
884 no need for a specific "data location" expression. */
885 info->data_location = NULL_TREE;
886
887 thinptr_template_expr = build_unary_op (INDIRECT_REF,
888 bounds_type,
889 template_addr);
890 thinptr_bound_field = TYPE_FIELDS (bounds_type);
891 }
892 else
893 return false;
894
895 /* Second pass: compute the remaining information: dimensions and
896 corresponding bounds. */
897
898 if (TYPE_PACKED (first_dimen))
899 is_packed_array = true;
900 /* If this array has fortran convention, it's arranged in column-major
901 order, so our view here has reversed dimensions. */
902 convention_fortran_p = TYPE_CONVENTION_FORTRAN_P (first_dimen);
903 /* ??? For row major ordering, we probably want to emit nothing and
904 instead specify it as the default in Dw_TAG_compile_unit. */
905 info->ordering = (convention_fortran_p
906 ? array_descr_ordering_column_major
907 : array_descr_ordering_row_major);
908
909 /* Count how many dimensions this array has. */
910 for (i = 0, dimen = first_dimen; ; ++i, dimen = TREE_TYPE (dimen))
911 {
912 if (i > 0
913 && (TREE_CODE (dimen) != ARRAY_TYPE
914 || !TYPE_MULTI_ARRAY_P (dimen)))
915 break;
916 last_dimen = dimen;
917 }
918
919 info->ndimensions = i;
920 info->rank = NULL_TREE;
921
922 /* Too many dimensions? Give up generating proper description: yield instead
923 nested arrays. Note that in this case, this hook is invoked once on each
924 intermediate array type: be consistent and output nested arrays for all
925 dimensions. */
926 if (info->ndimensions > DWARF2OUT_ARRAY_DESCR_INFO_MAX_DIMEN
927 || TYPE_MULTI_ARRAY_P (first_dimen))
928 {
929 info->ndimensions = 1;
930 last_dimen = first_dimen;
931 }
932
933 info->element_type = TREE_TYPE (last_dimen);
934
935 /* Now iterate over all dimensions in source-order and fill the info
936 structure. */
937 for (i = (convention_fortran_p ? info->ndimensions - 1 : 0),
938 dimen = first_dimen;
939 IN_RANGE (i, 0, info->ndimensions - 1);
940 i += (convention_fortran_p ? -1 : 1),
941 dimen = TREE_TYPE (dimen))
942 {
943 /* We are interested in the stored bounds for the debug info. */
944 tree index_type = TYPE_INDEX_TYPE (TYPE_DOMAIN (dimen));
945
946 if (is_array || is_fat_ptr)
947 {
948 /* GDB does not handle very well the self-referencial bound
949 expressions we are able to generate here for XUA types (they are
950 used only by XUP encodings) so avoid them in this case. Note that
951 there are two cases where we generate self-referencial bound
952 expressions: arrays that are constrained by record discriminants
953 and XUA types. */
954 if (TYPE_CONTEXT (first_dimen)
955 && TREE_CODE (TYPE_CONTEXT (first_dimen)) != RECORD_TYPE
956 && CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (index_type))
957 && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
958 {
959 info->dimen[i].lower_bound = NULL_TREE;
960 info->dimen[i].upper_bound = NULL_TREE;
961 }
962 else
963 {
964 info->dimen[i].lower_bound
965 = maybe_character_value (TYPE_MIN_VALUE (index_type));
966 info->dimen[i].upper_bound
967 = maybe_character_value (TYPE_MAX_VALUE (index_type));
968 }
969 }
970
971 /* This is a thin pointer. */
972 else
973 {
974 info->dimen[i].lower_bound
975 = build_component_ref (thinptr_template_expr, thinptr_bound_field,
976 false);
977 thinptr_bound_field = DECL_CHAIN (thinptr_bound_field);
978
979 info->dimen[i].upper_bound
980 = build_component_ref (thinptr_template_expr, thinptr_bound_field,
981 false);
982 thinptr_bound_field = DECL_CHAIN (thinptr_bound_field);
983 }
984
985 /* The DWARF back-end will output BOUNDS_TYPE as the base type of
986 the array index, so get to the base type of INDEX_TYPE. */
987 while (TREE_TYPE (index_type))
988 index_type = TREE_TYPE (index_type);
989
990 info->dimen[i].bounds_type = maybe_debug_type (index_type);
991 info->dimen[i].stride = NULL_TREE;
992 }
993
994 /* These are Fortran-specific fields. They make no sense here. */
995 info->allocated = NULL_TREE;
996 info->associated = NULL_TREE;
997
998 if (gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
999 {
1000 /* When arrays contain dynamically-sized elements, we usually wrap them
1001 in padding types, or we create constrained types for them. Then, if
1002 such types are stripped in the debugging information output, the
1003 debugger needs a way to know the size that is reserved for each
1004 element. This is why we emit a stride in such situations. */
1005 tree source_element_type = info->element_type;
1006
1007 while (true)
1008 {
1009 if (TYPE_DEBUG_TYPE (source_element_type))
1010 source_element_type = TYPE_DEBUG_TYPE (source_element_type);
1011 else if (TYPE_IS_PADDING_P (source_element_type))
1012 source_element_type
1013 = TREE_TYPE (TYPE_FIELDS (source_element_type));
1014 else
1015 break;
1016 }
1017
1018 if (TREE_CODE (TYPE_SIZE_UNIT (source_element_type)) != INTEGER_CST)
1019 {
1020 info->stride = TYPE_SIZE_UNIT (info->element_type);
1021 info->stride_in_bits = false;
1022 }
1023
1024 /* We need to specify a bit stride when it does not correspond to the
1025 natural size of the contained elements. ??? Note that we do not
1026 support packed records and nested packed arrays. */
1027 else if (is_packed_array)
1028 {
1029 info->stride = get_array_bit_stride (info->element_type);
1030 info->stride_in_bits = true;
1031 }
1032 }
1033
1034 return true;
1035 }
1036
1037 /* Given the component type COMP_TYPE of a packed array, return an expression
1038 that computes the bit stride of this packed array. Return NULL_TREE when
1039 unsuccessful. */
1040
1041 static tree
get_array_bit_stride(tree comp_type)1042 get_array_bit_stride (tree comp_type)
1043 {
1044 struct array_descr_info info;
1045 tree stride;
1046
1047 /* Simple case: the array contains an integral type: return its RM size. */
1048 if (INTEGRAL_TYPE_P (comp_type))
1049 return TYPE_RM_SIZE (comp_type);
1050
1051 /* Otherwise, see if this is an array we can analyze; if it's not, punt. */
1052 memset (&info, 0, sizeof (info));
1053 if (!gnat_get_array_descr_info (comp_type, &info) || !info.stride)
1054 return NULL_TREE;
1055
1056 /* Otherwise, the array stride is the inner array's stride multiplied by the
1057 number of elements it contains. Note that if the inner array is not
1058 packed, then the stride is "natural" and thus does not deserve an
1059 attribute. */
1060 stride = info.stride;
1061 if (!info.stride_in_bits)
1062 {
1063 stride = fold_convert (bitsizetype, stride);
1064 stride = build_binary_op (MULT_EXPR, bitsizetype,
1065 stride, build_int_cst (bitsizetype, 8));
1066 }
1067
1068 for (int i = 0; i < info.ndimensions; ++i)
1069 {
1070 tree count;
1071
1072 if (!info.dimen[i].lower_bound || !info.dimen[i].upper_bound)
1073 return NULL_TREE;
1074
1075 /* Put in count an expression that computes the length of this
1076 dimension. */
1077 count = build_binary_op (MINUS_EXPR, sbitsizetype,
1078 fold_convert (sbitsizetype,
1079 info.dimen[i].upper_bound),
1080 fold_convert (sbitsizetype,
1081 info.dimen[i].lower_bound)),
1082 count = build_binary_op (PLUS_EXPR, sbitsizetype,
1083 count, build_int_cst (sbitsizetype, 1));
1084 count = build_binary_op (MAX_EXPR, sbitsizetype,
1085 count,
1086 build_int_cst (sbitsizetype, 0));
1087 count = fold_convert (bitsizetype, count);
1088 stride = build_binary_op (MULT_EXPR, bitsizetype, stride, count);
1089 }
1090
1091 return stride;
1092 }
1093
1094 /* GNU_TYPE is a subtype of an integral type. Set LOWVAL to the low bound
1095 and HIGHVAL to the high bound, respectively. */
1096
1097 static void
gnat_get_subrange_bounds(const_tree gnu_type,tree * lowval,tree * highval)1098 gnat_get_subrange_bounds (const_tree gnu_type, tree *lowval, tree *highval)
1099 {
1100 *lowval = TYPE_MIN_VALUE (gnu_type);
1101 *highval = TYPE_MAX_VALUE (gnu_type);
1102 }
1103
1104 /* Return the bias of GNU_TYPE, if any. */
1105
1106 static tree
gnat_get_type_bias(const_tree gnu_type)1107 gnat_get_type_bias (const_tree gnu_type)
1108 {
1109 if (TREE_CODE (gnu_type) == INTEGER_TYPE
1110 && TYPE_BIASED_REPRESENTATION_P (gnu_type)
1111 && gnat_encodings != DWARF_GNAT_ENCODINGS_ALL)
1112 return TYPE_RM_MIN_VALUE (gnu_type);
1113
1114 return NULL_TREE;
1115 }
1116
1117 /* GNU_TYPE is the type of a subprogram parameter. Determine if it should be
1118 passed by reference by default. */
1119
1120 bool
default_pass_by_ref(tree gnu_type)1121 default_pass_by_ref (tree gnu_type)
1122 {
1123 /* We pass aggregates by reference if they are sufficiently large for
1124 their alignment. The ratio is somewhat arbitrary. We also pass by
1125 reference if the target machine would either pass or return by
1126 reference. Strictly speaking, we need only check the return if this
1127 is an In Out parameter, but it's probably best to err on the side of
1128 passing more things by reference. */
1129
1130 if (AGGREGATE_TYPE_P (gnu_type)
1131 && (!valid_constant_size_p (TYPE_SIZE_UNIT (gnu_type))
1132 || compare_tree_int (TYPE_SIZE_UNIT (gnu_type),
1133 TYPE_ALIGN (gnu_type)) > 0))
1134 return true;
1135
1136 if (pass_by_reference (NULL, function_arg_info (gnu_type, /*named=*/true)))
1137 return true;
1138
1139 if (targetm.calls.return_in_memory (gnu_type, NULL_TREE))
1140 return true;
1141
1142 return false;
1143 }
1144
1145 /* GNU_TYPE is the type of a subprogram parameter. Determine if it must be
1146 passed by reference. */
1147
1148 bool
must_pass_by_ref(tree gnu_type)1149 must_pass_by_ref (tree gnu_type)
1150 {
1151 /* We pass only unconstrained objects, those required by the language
1152 to be passed by reference, and objects of variable size. The latter
1153 is more efficient, avoids problems with variable size temporaries,
1154 and does not produce compatibility problems with C, since C does
1155 not have such objects. */
1156 return (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
1157 || TYPE_IS_BY_REFERENCE_P (gnu_type)
1158 || (TYPE_SIZE_UNIT (gnu_type)
1159 && TREE_CODE (TYPE_SIZE_UNIT (gnu_type)) != INTEGER_CST));
1160 }
1161
1162 /* This function is called by the front-end to enumerate all the supported
1163 modes for the machine, as well as some predefined C types. F is a function
1164 which is called back with the parameters as listed below, first a string,
1165 then seven ints. The name is any arbitrary null-terminated string and has
1166 no particular significance, except for the case of predefined C types, where
1167 it should be the name of the C type. For integer types, only signed types
1168 should be listed, unsigned versions are assumed. The order of types should
1169 be in order of preference, with the smallest/cheapest types first.
1170
1171 In particular, C predefined types should be listed before other types,
1172 binary floating point types before decimal ones, and narrower/cheaper
1173 type versions before more expensive ones. In type selection the first
1174 matching variant will be used.
1175
1176 NAME pointer to first char of type name
1177 DIGS number of decimal digits for floating-point modes, else 0
1178 COMPLEX_P nonzero is this represents a complex mode
1179 COUNT count of number of items, nonzero for vector mode
1180 FLOAT_REP Float_Rep_Kind for FP, otherwise undefined
1181 PRECISION number of bits used to store data
1182 SIZE number of bits occupied by the mode
1183 ALIGN number of bits to which mode is aligned. */
1184
1185 void
enumerate_modes(void (* f)(const char *,int,int,int,int,int,int,int))1186 enumerate_modes (void (*f) (const char *, int, int, int, int, int, int, int))
1187 {
1188 const tree c_types[]
1189 = { float_type_node, double_type_node, long_double_type_node };
1190 const char *const c_names[]
1191 = { "float", "double", "long double" };
1192 int iloop;
1193
1194 /* We are going to compute it below. */
1195 fp_arith_may_widen = false;
1196
1197 for (iloop = 0; iloop < NUM_MACHINE_MODES; iloop++)
1198 {
1199 machine_mode i = (machine_mode) iloop;
1200 machine_mode inner_mode = i;
1201 bool float_p = false;
1202 bool complex_p = false;
1203 bool vector_p = false;
1204 bool skip_p = false;
1205 int digs = 0;
1206 unsigned int nameloop;
1207 Float_Rep_Kind float_rep = IEEE_Binary; /* Until proven otherwise */
1208
1209 switch (GET_MODE_CLASS (i))
1210 {
1211 case MODE_INT:
1212 break;
1213 case MODE_FLOAT:
1214 float_p = true;
1215 break;
1216 case MODE_COMPLEX_INT:
1217 complex_p = true;
1218 inner_mode = GET_MODE_INNER (i);
1219 break;
1220 case MODE_COMPLEX_FLOAT:
1221 float_p = true;
1222 complex_p = true;
1223 inner_mode = GET_MODE_INNER (i);
1224 break;
1225 case MODE_VECTOR_INT:
1226 vector_p = true;
1227 inner_mode = GET_MODE_INNER (i);
1228 break;
1229 case MODE_VECTOR_FLOAT:
1230 float_p = true;
1231 vector_p = true;
1232 inner_mode = GET_MODE_INNER (i);
1233 break;
1234 default:
1235 skip_p = true;
1236 }
1237
1238 if (float_p)
1239 {
1240 const struct real_format *fmt = REAL_MODE_FORMAT (inner_mode);
1241
1242 /* ??? Cope with the ghost XFmode of the ARM port. */
1243 if (!fmt)
1244 continue;
1245
1246 /* Be conservative and consider that floating-point arithmetics may
1247 use wider intermediate results as soon as there is an extended
1248 Motorola or Intel mode supported by the machine. */
1249 if (fmt == &ieee_extended_motorola_format
1250 || fmt == &ieee_extended_intel_96_format
1251 || fmt == &ieee_extended_intel_96_round_53_format
1252 || fmt == &ieee_extended_intel_128_format)
1253 {
1254 #ifdef TARGET_FPMATH_DEFAULT
1255 if (TARGET_FPMATH_DEFAULT == FPMATH_387)
1256 #endif
1257 fp_arith_may_widen = true;
1258 }
1259
1260 if (fmt->b == 2)
1261 digs = (fmt->p - 1) * 1233 / 4096; /* scale by log (2) */
1262
1263 else if (fmt->b == 10)
1264 digs = fmt->p;
1265
1266 else
1267 gcc_unreachable ();
1268 }
1269
1270 /* First register any C types for this mode that the front end
1271 may need to know about, unless the mode should be skipped. */
1272 if (!skip_p && !vector_p)
1273 for (nameloop = 0; nameloop < ARRAY_SIZE (c_types); nameloop++)
1274 {
1275 tree type = c_types[nameloop];
1276 const char *name = c_names[nameloop];
1277
1278 if (TYPE_MODE (type) == i)
1279 {
1280 f (name, digs, complex_p, 0, float_rep, TYPE_PRECISION (type),
1281 TREE_INT_CST_LOW (TYPE_SIZE (type)), TYPE_ALIGN (type));
1282 skip_p = true;
1283 }
1284 }
1285
1286 /* If no predefined C types were found, register the mode itself. */
1287 int nunits, precision, bitsize;
1288 if (!skip_p
1289 && GET_MODE_NUNITS (i).is_constant (&nunits)
1290 && GET_MODE_PRECISION (i).is_constant (&precision)
1291 && GET_MODE_BITSIZE (i).is_constant (&bitsize))
1292 f (GET_MODE_NAME (i), digs, complex_p,
1293 vector_p ? nunits : 0, float_rep,
1294 precision, bitsize, GET_MODE_ALIGNMENT (i));
1295 }
1296 }
1297
1298 /* Return the size of the FP mode with precision PREC. */
1299
1300 int
fp_prec_to_size(int prec)1301 fp_prec_to_size (int prec)
1302 {
1303 opt_scalar_float_mode opt_mode;
1304
1305 FOR_EACH_MODE_IN_CLASS (opt_mode, MODE_FLOAT)
1306 {
1307 scalar_float_mode mode = opt_mode.require ();
1308 if (GET_MODE_PRECISION (mode) == prec)
1309 return GET_MODE_BITSIZE (mode);
1310 }
1311
1312 gcc_unreachable ();
1313 }
1314
1315 /* Return the precision of the FP mode with size SIZE. */
1316
1317 int
fp_size_to_prec(int size)1318 fp_size_to_prec (int size)
1319 {
1320 opt_scalar_float_mode opt_mode;
1321
1322 FOR_EACH_MODE_IN_CLASS (opt_mode, MODE_FLOAT)
1323 {
1324 scalar_mode mode = opt_mode.require ();
1325 if (GET_MODE_BITSIZE (mode) == size)
1326 return GET_MODE_PRECISION (mode);
1327 }
1328
1329 gcc_unreachable ();
1330 }
1331
1332 static GTY(()) tree gnat_eh_personality_decl;
1333
1334 /* Return the GNAT personality function decl. */
1335
1336 static tree
gnat_eh_personality(void)1337 gnat_eh_personality (void)
1338 {
1339 if (!gnat_eh_personality_decl)
1340 gnat_eh_personality_decl = build_personality_function ("gnat");
1341 return gnat_eh_personality_decl;
1342 }
1343
1344 /* Initialize language-specific bits of tree_contains_struct. */
1345
1346 static void
gnat_init_ts(void)1347 gnat_init_ts (void)
1348 {
1349 MARK_TS_COMMON (UNCONSTRAINED_ARRAY_TYPE);
1350
1351 MARK_TS_TYPED (UNCONSTRAINED_ARRAY_REF);
1352 MARK_TS_TYPED (NULL_EXPR);
1353 MARK_TS_TYPED (PLUS_NOMOD_EXPR);
1354 MARK_TS_TYPED (MINUS_NOMOD_EXPR);
1355 MARK_TS_TYPED (POWER_EXPR);
1356 MARK_TS_TYPED (ATTR_ADDR_EXPR);
1357 MARK_TS_TYPED (STMT_STMT);
1358 MARK_TS_TYPED (LOOP_STMT);
1359 MARK_TS_TYPED (EXIT_STMT);
1360 }
1361
1362 /* Return the size of a tree with CODE, which is a language-specific tree code
1363 in category tcc_constant, tcc_exceptional or tcc_type. The default expects
1364 never to be called. */
1365
1366 static size_t
gnat_tree_size(enum tree_code code)1367 gnat_tree_size (enum tree_code code)
1368 {
1369 gcc_checking_assert (code >= NUM_TREE_CODES);
1370 switch (code)
1371 {
1372 case UNCONSTRAINED_ARRAY_TYPE:
1373 return sizeof (tree_type_non_common);
1374 default:
1375 gcc_unreachable ();
1376 }
1377 }
1378
1379 /* Return the lang specific structure attached to NODE. Allocate it (cleared)
1380 if needed. */
1381
1382 struct lang_type *
get_lang_specific(tree node)1383 get_lang_specific (tree node)
1384 {
1385 if (!TYPE_LANG_SPECIFIC (node))
1386 TYPE_LANG_SPECIFIC (node) = ggc_cleared_alloc<struct lang_type> ();
1387 return TYPE_LANG_SPECIFIC (node);
1388 }
1389
1390 /* Definitions for our language-specific hooks. */
1391
1392 #undef LANG_HOOKS_NAME
1393 #define LANG_HOOKS_NAME "GNU Ada"
1394 #undef LANG_HOOKS_IDENTIFIER_SIZE
1395 #define LANG_HOOKS_IDENTIFIER_SIZE sizeof (struct tree_identifier)
1396 #undef LANG_HOOKS_TREE_SIZE
1397 #define LANG_HOOKS_TREE_SIZE gnat_tree_size
1398 #undef LANG_HOOKS_INIT
1399 #define LANG_HOOKS_INIT gnat_init
1400 #undef LANG_HOOKS_OPTION_LANG_MASK
1401 #define LANG_HOOKS_OPTION_LANG_MASK gnat_option_lang_mask
1402 #undef LANG_HOOKS_INIT_OPTIONS_STRUCT
1403 #define LANG_HOOKS_INIT_OPTIONS_STRUCT gnat_init_options_struct
1404 #undef LANG_HOOKS_INIT_OPTIONS
1405 #define LANG_HOOKS_INIT_OPTIONS gnat_init_options
1406 #undef LANG_HOOKS_HANDLE_OPTION
1407 #define LANG_HOOKS_HANDLE_OPTION gnat_handle_option
1408 #undef LANG_HOOKS_POST_OPTIONS
1409 #define LANG_HOOKS_POST_OPTIONS gnat_post_options
1410 #undef LANG_HOOKS_PARSE_FILE
1411 #define LANG_HOOKS_PARSE_FILE gnat_parse_file
1412 #undef LANG_HOOKS_TYPE_HASH_EQ
1413 #define LANG_HOOKS_TYPE_HASH_EQ gnat_type_hash_eq
1414 #undef LANG_HOOKS_GETDECLS
1415 #define LANG_HOOKS_GETDECLS hook_tree_void_null
1416 #undef LANG_HOOKS_PUSHDECL
1417 #define LANG_HOOKS_PUSHDECL gnat_return_tree
1418 #undef LANG_HOOKS_WARN_UNUSED_GLOBAL_DECL
1419 #define LANG_HOOKS_WARN_UNUSED_GLOBAL_DECL hook_bool_const_tree_false
1420 #undef LANG_HOOKS_GET_ALIAS_SET
1421 #define LANG_HOOKS_GET_ALIAS_SET gnat_get_alias_set
1422 #undef LANG_HOOKS_PRINT_DECL
1423 #define LANG_HOOKS_PRINT_DECL gnat_print_decl
1424 #undef LANG_HOOKS_PRINT_TYPE
1425 #define LANG_HOOKS_PRINT_TYPE gnat_print_type
1426 #undef LANG_HOOKS_TYPE_MAX_SIZE
1427 #define LANG_HOOKS_TYPE_MAX_SIZE gnat_type_max_size
1428 #undef LANG_HOOKS_DECL_PRINTABLE_NAME
1429 #define LANG_HOOKS_DECL_PRINTABLE_NAME gnat_printable_name
1430 #undef LANG_HOOKS_DWARF_NAME
1431 #define LANG_HOOKS_DWARF_NAME gnat_dwarf_name
1432 #undef LANG_HOOKS_GIMPLIFY_EXPR
1433 #define LANG_HOOKS_GIMPLIFY_EXPR gnat_gimplify_expr
1434 #undef LANG_HOOKS_TYPE_FOR_MODE
1435 #define LANG_HOOKS_TYPE_FOR_MODE gnat_type_for_mode
1436 #undef LANG_HOOKS_TYPE_FOR_SIZE
1437 #define LANG_HOOKS_TYPE_FOR_SIZE gnat_type_for_size
1438 #undef LANG_HOOKS_TYPES_COMPATIBLE_P
1439 #define LANG_HOOKS_TYPES_COMPATIBLE_P gnat_types_compatible_p
1440 #undef LANG_HOOKS_GET_ARRAY_DESCR_INFO
1441 #define LANG_HOOKS_GET_ARRAY_DESCR_INFO gnat_get_array_descr_info
1442 #undef LANG_HOOKS_GET_SUBRANGE_BOUNDS
1443 #define LANG_HOOKS_GET_SUBRANGE_BOUNDS gnat_get_subrange_bounds
1444 #undef LANG_HOOKS_GET_TYPE_BIAS
1445 #define LANG_HOOKS_GET_TYPE_BIAS gnat_get_type_bias
1446 #undef LANG_HOOKS_DESCRIPTIVE_TYPE
1447 #define LANG_HOOKS_DESCRIPTIVE_TYPE gnat_descriptive_type
1448 #undef LANG_HOOKS_ENUM_UNDERLYING_BASE_TYPE
1449 #define LANG_HOOKS_ENUM_UNDERLYING_BASE_TYPE gnat_enum_underlying_base_type
1450 #undef LANG_HOOKS_GET_DEBUG_TYPE
1451 #define LANG_HOOKS_GET_DEBUG_TYPE gnat_get_debug_type
1452 #undef LANG_HOOKS_GET_FIXED_POINT_TYPE_INFO
1453 #define LANG_HOOKS_GET_FIXED_POINT_TYPE_INFO gnat_get_fixed_point_type_info
1454 #undef LANG_HOOKS_ATTRIBUTE_TABLE
1455 #define LANG_HOOKS_ATTRIBUTE_TABLE gnat_internal_attribute_table
1456 #undef LANG_HOOKS_BUILTIN_FUNCTION
1457 #define LANG_HOOKS_BUILTIN_FUNCTION gnat_builtin_function
1458 #undef LANG_HOOKS_INIT_TS
1459 #define LANG_HOOKS_INIT_TS gnat_init_ts
1460 #undef LANG_HOOKS_EH_PERSONALITY
1461 #define LANG_HOOKS_EH_PERSONALITY gnat_eh_personality
1462 #undef LANG_HOOKS_DEEP_UNSHARING
1463 #define LANG_HOOKS_DEEP_UNSHARING true
1464 #undef LANG_HOOKS_CUSTOM_FUNCTION_DESCRIPTORS
1465 #define LANG_HOOKS_CUSTOM_FUNCTION_DESCRIPTORS true
1466
1467 struct lang_hooks lang_hooks = LANG_HOOKS_INITIALIZER;
1468
1469 #include "gt-ada-misc.h"
1470