1------------------------------------------------------------------------------ 2-- -- 3-- GNAT COMPILER COMPONENTS -- 4-- -- 5-- S Y S T E M . B I G N U M S -- 6-- -- 7-- B o d y -- 8-- -- 9-- Copyright (C) 2012-2019, Free Software Foundation, Inc. -- 10-- -- 11-- GNAT is free software; you can redistribute it and/or modify it under -- 12-- terms of the GNU General Public License as published by the Free Soft- -- 13-- ware Foundation; either version 3, or (at your option) any later ver- -- 14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- 15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- 16-- or FITNESS FOR A PARTICULAR PURPOSE. -- 17-- -- 18-- As a special exception under Section 7 of GPL version 3, you are granted -- 19-- additional permissions described in the GCC Runtime Library Exception, -- 20-- version 3.1, as published by the Free Software Foundation. -- 21-- -- 22-- You should have received a copy of the GNU General Public License and -- 23-- a copy of the GCC Runtime Library Exception along with this program; -- 24-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- 25-- <http://www.gnu.org/licenses/>. -- 26-- -- 27-- GNAT was originally developed by the GNAT team at New York University. -- 28-- Extensive contributions were provided by Ada Core Technologies Inc. -- 29-- -- 30------------------------------------------------------------------------------ 31 32with System.Generic_Bignums; 33with Ada.Unchecked_Conversion; 34 35package body System.Bignums is 36 37 package Sec_Stack_Bignums is new 38 System.Generic_Bignums (Use_Secondary_Stack => True); 39 use Sec_Stack_Bignums; 40 41 function "+" is new Ada.Unchecked_Conversion 42 (Bignum, Sec_Stack_Bignums.Bignum); 43 44 function "-" is new Ada.Unchecked_Conversion 45 (Sec_Stack_Bignums.Bignum, Bignum); 46 47 function Big_Add (X, Y : Bignum) return Bignum is 48 (-Sec_Stack_Bignums.Big_Add (+X, +Y)); 49 50 function Big_Sub (X, Y : Bignum) return Bignum is 51 (-Sec_Stack_Bignums.Big_Sub (+X, +Y)); 52 53 function Big_Mul (X, Y : Bignum) return Bignum is 54 (-Sec_Stack_Bignums.Big_Mul (+X, +Y)); 55 56 function Big_Div (X, Y : Bignum) return Bignum is 57 (-Sec_Stack_Bignums.Big_Div (+X, +Y)); 58 59 function Big_Exp (X, Y : Bignum) return Bignum is 60 (-Sec_Stack_Bignums.Big_Exp (+X, +Y)); 61 62 function Big_Mod (X, Y : Bignum) return Bignum is 63 (-Sec_Stack_Bignums.Big_Mod (+X, +Y)); 64 65 function Big_Rem (X, Y : Bignum) return Bignum is 66 (-Sec_Stack_Bignums.Big_Rem (+X, +Y)); 67 68 function Big_Neg (X : Bignum) return Bignum is 69 (-Sec_Stack_Bignums.Big_Neg (+X)); 70 71 function Big_Abs (X : Bignum) return Bignum is 72 (-Sec_Stack_Bignums.Big_Abs (+X)); 73 74 function Big_EQ (X, Y : Bignum) return Boolean is 75 (Sec_Stack_Bignums.Big_EQ (+X, +Y)); 76 function Big_NE (X, Y : Bignum) return Boolean is 77 (Sec_Stack_Bignums.Big_NE (+X, +Y)); 78 function Big_GE (X, Y : Bignum) return Boolean is 79 (Sec_Stack_Bignums.Big_GE (+X, +Y)); 80 function Big_LE (X, Y : Bignum) return Boolean is 81 (Sec_Stack_Bignums.Big_LE (+X, +Y)); 82 function Big_GT (X, Y : Bignum) return Boolean is 83 (Sec_Stack_Bignums.Big_GT (+X, +Y)); 84 function Big_LT (X, Y : Bignum) return Boolean is 85 (Sec_Stack_Bignums.Big_LT (+X, +Y)); 86 87 function Bignum_In_LLI_Range (X : Bignum) return Boolean is 88 (Sec_Stack_Bignums.Bignum_In_LLI_Range (+X)); 89 90 function To_Bignum (X : Long_Long_Integer) return Bignum is 91 (-Sec_Stack_Bignums.To_Bignum (X)); 92 93 function From_Bignum (X : Bignum) return Long_Long_Integer is 94 (Sec_Stack_Bignums.From_Bignum (+X)); 95 96end System.Bignums; 97