1 /* Thread edges through blocks and update the control flow and SSA graphs.
2    Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "fold-const.h"
30 #include "cfganal.h"
31 #include "gimple-iterator.h"
32 #include "tree-ssa.h"
33 #include "tree-ssa-threadupdate.h"
34 #include "cfgloop.h"
35 #include "dbgcnt.h"
36 #include "tree-cfg.h"
37 #include "tree-vectorizer.h"
38 
39 /* Given a block B, update the CFG and SSA graph to reflect redirecting
40    one or more in-edges to B to instead reach the destination of an
41    out-edge from B while preserving any side effects in B.
42 
43    i.e., given A->B and B->C, change A->B to be A->C yet still preserve the
44    side effects of executing B.
45 
46      1. Make a copy of B (including its outgoing edges and statements).  Call
47 	the copy B'.  Note B' has no incoming edges or PHIs at this time.
48 
49      2. Remove the control statement at the end of B' and all outgoing edges
50 	except B'->C.
51 
52      3. Add a new argument to each PHI in C with the same value as the existing
53 	argument associated with edge B->C.  Associate the new PHI arguments
54 	with the edge B'->C.
55 
56      4. For each PHI in B, find or create a PHI in B' with an identical
57 	PHI_RESULT.  Add an argument to the PHI in B' which has the same
58 	value as the PHI in B associated with the edge A->B.  Associate
59 	the new argument in the PHI in B' with the edge A->B.
60 
61      5. Change the edge A->B to A->B'.
62 
63 	5a. This automatically deletes any PHI arguments associated with the
64 	    edge A->B in B.
65 
66 	5b. This automatically associates each new argument added in step 4
67 	    with the edge A->B'.
68 
69      6. Repeat for other incoming edges into B.
70 
71      7. Put the duplicated resources in B and all the B' blocks into SSA form.
72 
73    Note that block duplication can be minimized by first collecting the
74    set of unique destination blocks that the incoming edges should
75    be threaded to.
76 
77    We reduce the number of edges and statements we create by not copying all
78    the outgoing edges and the control statement in step #1.  We instead create
79    a template block without the outgoing edges and duplicate the template.
80 
81    Another case this code handles is threading through a "joiner" block.  In
82    this case, we do not know the destination of the joiner block, but one
83    of the outgoing edges from the joiner block leads to a threadable path.  This
84    case largely works as outlined above, except the duplicate of the joiner
85    block still contains a full set of outgoing edges and its control statement.
86    We just redirect one of its outgoing edges to our jump threading path.  */
87 
88 
89 /* Steps #5 and #6 of the above algorithm are best implemented by walking
90    all the incoming edges which thread to the same destination edge at
91    the same time.  That avoids lots of table lookups to get information
92    for the destination edge.
93 
94    To realize that implementation we create a list of incoming edges
95    which thread to the same outgoing edge.  Thus to implement steps
96    #5 and #6 we traverse our hash table of outgoing edge information.
97    For each entry we walk the list of incoming edges which thread to
98    the current outgoing edge.  */
99 
100 struct el
101 {
102   edge e;
103   struct el *next;
104 };
105 
106 /* Main data structure recording information regarding B's duplicate
107    blocks.  */
108 
109 /* We need to efficiently record the unique thread destinations of this
110    block and specific information associated with those destinations.  We
111    may have many incoming edges threaded to the same outgoing edge.  This
112    can be naturally implemented with a hash table.  */
113 
114 struct redirection_data : free_ptr_hash<redirection_data>
115 {
116   /* We support wiring up two block duplicates in a jump threading path.
117 
118      One is a normal block copy where we remove the control statement
119      and wire up its single remaining outgoing edge to the thread path.
120 
121      The other is a joiner block where we leave the control statement
122      in place, but wire one of the outgoing edges to a thread path.
123 
124      In theory we could have multiple block duplicates in a jump
125      threading path, but I haven't tried that.
126 
127      The duplicate blocks appear in this array in the same order in
128      which they appear in the jump thread path.  */
129   basic_block dup_blocks[2];
130 
131   /* The jump threading path.  */
132   vec<jump_thread_edge *> *path;
133 
134   /* A list of incoming edges which we want to thread to the
135      same path.  */
136   struct el *incoming_edges;
137 
138   /* hash_table support.  */
139   static inline hashval_t hash (const redirection_data *);
140   static inline int equal (const redirection_data *, const redirection_data *);
141 };
142 
143 /* Dump a jump threading path, including annotations about each
144    edge in the path.  */
145 
146 static void
dump_jump_thread_path(FILE * dump_file,vec<jump_thread_edge * > path,bool registering)147 dump_jump_thread_path (FILE *dump_file, vec<jump_thread_edge *> path,
148 		       bool registering)
149 {
150   fprintf (dump_file,
151 	   "  %s%s jump thread: (%d, %d) incoming edge; ",
152 	   (registering ? "Registering" : "Cancelling"),
153 	   (path[0]->type == EDGE_FSM_THREAD ? " FSM": ""),
154 	   path[0]->e->src->index, path[0]->e->dest->index);
155 
156   for (unsigned int i = 1; i < path.length (); i++)
157     {
158       /* We can get paths with a NULL edge when the final destination
159 	 of a jump thread turns out to be a constant address.  We dump
160 	 those paths when debugging, so we have to be prepared for that
161 	 possibility here.  */
162       if (path[i]->e == NULL)
163 	continue;
164 
165       if (path[i]->type == EDGE_COPY_SRC_JOINER_BLOCK)
166 	fprintf (dump_file, " (%d, %d) joiner; ",
167 		 path[i]->e->src->index, path[i]->e->dest->index);
168       if (path[i]->type == EDGE_COPY_SRC_BLOCK)
169        fprintf (dump_file, " (%d, %d) normal;",
170 		 path[i]->e->src->index, path[i]->e->dest->index);
171       if (path[i]->type == EDGE_NO_COPY_SRC_BLOCK)
172        fprintf (dump_file, " (%d, %d) nocopy;",
173 		 path[i]->e->src->index, path[i]->e->dest->index);
174       if (path[0]->type == EDGE_FSM_THREAD)
175 	fprintf (dump_file, " (%d, %d) ",
176 		 path[i]->e->src->index, path[i]->e->dest->index);
177     }
178   fputc ('\n', dump_file);
179 }
180 
181 /* Simple hashing function.  For any given incoming edge E, we're going
182    to be most concerned with the final destination of its jump thread
183    path.  So hash on the block index of the final edge in the path.  */
184 
185 inline hashval_t
hash(const redirection_data * p)186 redirection_data::hash (const redirection_data *p)
187 {
188   vec<jump_thread_edge *> *path = p->path;
189   return path->last ()->e->dest->index;
190 }
191 
192 /* Given two hash table entries, return true if they have the same
193    jump threading path.  */
194 inline int
equal(const redirection_data * p1,const redirection_data * p2)195 redirection_data::equal (const redirection_data *p1, const redirection_data *p2)
196 {
197   vec<jump_thread_edge *> *path1 = p1->path;
198   vec<jump_thread_edge *> *path2 = p2->path;
199 
200   if (path1->length () != path2->length ())
201     return false;
202 
203   for (unsigned int i = 1; i < path1->length (); i++)
204     {
205       if ((*path1)[i]->type != (*path2)[i]->type
206 	  || (*path1)[i]->e != (*path2)[i]->e)
207 	return false;
208     }
209 
210   return true;
211 }
212 
213 /* Rather than search all the edges in jump thread paths each time
214    DOM is able to simply if control statement, we build a hash table
215    with the deleted edges.  We only care about the address of the edge,
216    not its contents.  */
217 struct removed_edges : nofree_ptr_hash<edge_def>
218 {
hashremoved_edges219   static hashval_t hash (edge e) { return htab_hash_pointer (e); }
equalremoved_edges220   static bool equal (edge e1, edge e2) { return e1 == e2; }
221 };
222 
223 static hash_table<removed_edges> *removed_edges;
224 
225 /* Data structure of information to pass to hash table traversal routines.  */
226 struct ssa_local_info_t
227 {
228   /* The current block we are working on.  */
229   basic_block bb;
230 
231   /* We only create a template block for the first duplicated block in a
232      jump threading path as we may need many duplicates of that block.
233 
234      The second duplicate block in a path is specific to that path.  Creating
235      and sharing a template for that block is considerably more difficult.  */
236   basic_block template_block;
237 
238   /* If we append debug stmts to the template block after creating it,
239      this iterator won't be the last one in the block, and further
240      copies of the template block shouldn't get debug stmts after
241      it.  */
242   gimple_stmt_iterator template_last_to_copy;
243 
244   /* Blocks duplicated for the thread.  */
245   bitmap duplicate_blocks;
246 
247   /* TRUE if we thread one or more jumps, FALSE otherwise.  */
248   bool jumps_threaded;
249 
250   /* When we have multiple paths through a joiner which reach different
251      final destinations, then we may need to correct for potential
252      profile insanities.  */
253   bool need_profile_correction;
254 };
255 
256 /* Passes which use the jump threading code register jump threading
257    opportunities as they are discovered.  We keep the registered
258    jump threading opportunities in this vector as edge pairs
259    (original_edge, target_edge).  */
260 static vec<vec<jump_thread_edge *> *> paths;
261 
262 /* When we start updating the CFG for threading, data necessary for jump
263    threading is attached to the AUX field for the incoming edge.  Use these
264    macros to access the underlying structure attached to the AUX field.  */
265 #define THREAD_PATH(E) ((vec<jump_thread_edge *> *)(E)->aux)
266 
267 /* Jump threading statistics.  */
268 
269 struct thread_stats_d
270 {
271   unsigned long num_threaded_edges;
272 };
273 
274 struct thread_stats_d thread_stats;
275 
276 
277 /* Remove the last statement in block BB if it is a control statement
278    Also remove all outgoing edges except the edge which reaches DEST_BB.
279    If DEST_BB is NULL, then remove all outgoing edges.  */
280 
281 void
remove_ctrl_stmt_and_useless_edges(basic_block bb,basic_block dest_bb)282 remove_ctrl_stmt_and_useless_edges (basic_block bb, basic_block dest_bb)
283 {
284   gimple_stmt_iterator gsi;
285   edge e;
286   edge_iterator ei;
287 
288   gsi = gsi_last_bb (bb);
289 
290   /* If the duplicate ends with a control statement, then remove it.
291 
292      Note that if we are duplicating the template block rather than the
293      original basic block, then the duplicate might not have any real
294      statements in it.  */
295   if (!gsi_end_p (gsi)
296       && gsi_stmt (gsi)
297       && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND
298 	  || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO
299 	  || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH))
300     gsi_remove (&gsi, true);
301 
302   for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
303     {
304       if (e->dest != dest_bb)
305 	{
306 	  free_dom_edge_info (e);
307 	  remove_edge (e);
308 	}
309       else
310 	{
311 	  e->probability = profile_probability::always ();
312 	  ei_next (&ei);
313 	}
314     }
315 
316   /* If the remaining edge is a loop exit, there must have
317      a removed edge that was not a loop exit.
318 
319      In that case BB and possibly other blocks were previously
320      in the loop, but are now outside the loop.  Thus, we need
321      to update the loop structures.  */
322   if (single_succ_p (bb)
323       && loop_outer (bb->loop_father)
324       && loop_exit_edge_p (bb->loop_father, single_succ_edge (bb)))
325     loops_state_set (LOOPS_NEED_FIXUP);
326 }
327 
328 /* Create a duplicate of BB.  Record the duplicate block in an array
329    indexed by COUNT stored in RD.  */
330 
331 static void
create_block_for_threading(basic_block bb,struct redirection_data * rd,unsigned int count,bitmap * duplicate_blocks)332 create_block_for_threading (basic_block bb,
333 			    struct redirection_data *rd,
334 			    unsigned int count,
335 			    bitmap *duplicate_blocks)
336 {
337   edge_iterator ei;
338   edge e;
339 
340   /* We can use the generic block duplication code and simply remove
341      the stuff we do not need.  */
342   rd->dup_blocks[count] = duplicate_block (bb, NULL, NULL);
343 
344   FOR_EACH_EDGE (e, ei, rd->dup_blocks[count]->succs)
345     {
346       e->aux = NULL;
347 
348       /* If we duplicate a block with an outgoing edge marked as
349 	 EDGE_IGNORE, we must clear EDGE_IGNORE so that it doesn't
350 	 leak out of the current pass.
351 
352 	 It would be better to simplify switch statements and remove
353 	 the edges before we get here, but the sequencing is nontrivial.  */
354       e->flags &= ~EDGE_IGNORE;
355     }
356 
357   /* Zero out the profile, since the block is unreachable for now.  */
358   rd->dup_blocks[count]->count = profile_count::uninitialized ();
359   if (duplicate_blocks)
360     bitmap_set_bit (*duplicate_blocks, rd->dup_blocks[count]->index);
361 }
362 
363 /* Main data structure to hold information for duplicates of BB.  */
364 
365 static hash_table<redirection_data> *redirection_data;
366 
367 /* Given an outgoing edge E lookup and return its entry in our hash table.
368 
369    If INSERT is true, then we insert the entry into the hash table if
370    it is not already present.  INCOMING_EDGE is added to the list of incoming
371    edges associated with E in the hash table.  */
372 
373 static struct redirection_data *
lookup_redirection_data(edge e,enum insert_option insert)374 lookup_redirection_data (edge e, enum insert_option insert)
375 {
376   struct redirection_data **slot;
377   struct redirection_data *elt;
378   vec<jump_thread_edge *> *path = THREAD_PATH (e);
379 
380   /* Build a hash table element so we can see if E is already
381      in the table.  */
382   elt = XNEW (struct redirection_data);
383   elt->path = path;
384   elt->dup_blocks[0] = NULL;
385   elt->dup_blocks[1] = NULL;
386   elt->incoming_edges = NULL;
387 
388   slot = redirection_data->find_slot (elt, insert);
389 
390   /* This will only happen if INSERT is false and the entry is not
391      in the hash table.  */
392   if (slot == NULL)
393     {
394       free (elt);
395       return NULL;
396     }
397 
398   /* This will only happen if E was not in the hash table and
399      INSERT is true.  */
400   if (*slot == NULL)
401     {
402       *slot = elt;
403       elt->incoming_edges = XNEW (struct el);
404       elt->incoming_edges->e = e;
405       elt->incoming_edges->next = NULL;
406       return elt;
407     }
408   /* E was in the hash table.  */
409   else
410     {
411       /* Free ELT as we do not need it anymore, we will extract the
412 	 relevant entry from the hash table itself.  */
413       free (elt);
414 
415       /* Get the entry stored in the hash table.  */
416       elt = *slot;
417 
418       /* If insertion was requested, then we need to add INCOMING_EDGE
419 	 to the list of incoming edges associated with E.  */
420       if (insert)
421 	{
422 	  struct el *el = XNEW (struct el);
423 	  el->next = elt->incoming_edges;
424 	  el->e = e;
425 	  elt->incoming_edges = el;
426 	}
427 
428       return elt;
429     }
430 }
431 
432 /* Similar to copy_phi_args, except that the PHI arg exists, it just
433    does not have a value associated with it.  */
434 
435 static void
copy_phi_arg_into_existing_phi(edge src_e,edge tgt_e)436 copy_phi_arg_into_existing_phi (edge src_e, edge tgt_e)
437 {
438   int src_idx = src_e->dest_idx;
439   int tgt_idx = tgt_e->dest_idx;
440 
441   /* Iterate over each PHI in e->dest.  */
442   for (gphi_iterator gsi = gsi_start_phis (src_e->dest),
443 			   gsi2 = gsi_start_phis (tgt_e->dest);
444        !gsi_end_p (gsi);
445        gsi_next (&gsi), gsi_next (&gsi2))
446     {
447       gphi *src_phi = gsi.phi ();
448       gphi *dest_phi = gsi2.phi ();
449       tree val = gimple_phi_arg_def (src_phi, src_idx);
450       location_t locus = gimple_phi_arg_location (src_phi, src_idx);
451 
452       SET_PHI_ARG_DEF (dest_phi, tgt_idx, val);
453       gimple_phi_arg_set_location (dest_phi, tgt_idx, locus);
454     }
455 }
456 
457 /* Given ssa_name DEF, backtrack jump threading PATH from node IDX
458    to see if it has constant value in a flow sensitive manner.  Set
459    LOCUS to location of the constant phi arg and return the value.
460    Return DEF directly if either PATH or idx is ZERO.  */
461 
462 static tree
get_value_locus_in_path(tree def,vec<jump_thread_edge * > * path,basic_block bb,int idx,location_t * locus)463 get_value_locus_in_path (tree def, vec<jump_thread_edge *> *path,
464 			 basic_block bb, int idx, location_t *locus)
465 {
466   tree arg;
467   gphi *def_phi;
468   basic_block def_bb;
469 
470   if (path == NULL || idx == 0)
471     return def;
472 
473   def_phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (def));
474   if (!def_phi)
475     return def;
476 
477   def_bb = gimple_bb (def_phi);
478   /* Don't propagate loop invariants into deeper loops.  */
479   if (!def_bb || bb_loop_depth (def_bb) < bb_loop_depth (bb))
480     return def;
481 
482   /* Backtrack jump threading path from IDX to see if def has constant
483      value.  */
484   for (int j = idx - 1; j >= 0; j--)
485     {
486       edge e = (*path)[j]->e;
487       if (e->dest == def_bb)
488 	{
489 	  arg = gimple_phi_arg_def (def_phi, e->dest_idx);
490 	  if (is_gimple_min_invariant (arg))
491 	    {
492 	      *locus = gimple_phi_arg_location (def_phi, e->dest_idx);
493 	      return arg;
494 	    }
495 	  break;
496 	}
497     }
498 
499   return def;
500 }
501 
502 /* For each PHI in BB, copy the argument associated with SRC_E to TGT_E.
503    Try to backtrack jump threading PATH from node IDX to see if the arg
504    has constant value, copy constant value instead of argument itself
505    if yes.  */
506 
507 static void
copy_phi_args(basic_block bb,edge src_e,edge tgt_e,vec<jump_thread_edge * > * path,int idx)508 copy_phi_args (basic_block bb, edge src_e, edge tgt_e,
509 	       vec<jump_thread_edge *> *path, int idx)
510 {
511   gphi_iterator gsi;
512   int src_indx = src_e->dest_idx;
513 
514   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
515     {
516       gphi *phi = gsi.phi ();
517       tree def = gimple_phi_arg_def (phi, src_indx);
518       location_t locus = gimple_phi_arg_location (phi, src_indx);
519 
520       if (TREE_CODE (def) == SSA_NAME
521 	  && !virtual_operand_p (gimple_phi_result (phi)))
522 	def = get_value_locus_in_path (def, path, bb, idx, &locus);
523 
524       add_phi_arg (phi, def, tgt_e, locus);
525     }
526 }
527 
528 /* We have recently made a copy of ORIG_BB, including its outgoing
529    edges.  The copy is NEW_BB.  Every PHI node in every direct successor of
530    ORIG_BB has a new argument associated with edge from NEW_BB to the
531    successor.  Initialize the PHI argument so that it is equal to the PHI
532    argument associated with the edge from ORIG_BB to the successor.
533    PATH and IDX are used to check if the new PHI argument has constant
534    value in a flow sensitive manner.  */
535 
536 static void
update_destination_phis(basic_block orig_bb,basic_block new_bb,vec<jump_thread_edge * > * path,int idx)537 update_destination_phis (basic_block orig_bb, basic_block new_bb,
538 			 vec<jump_thread_edge *> *path, int idx)
539 {
540   edge_iterator ei;
541   edge e;
542 
543   FOR_EACH_EDGE (e, ei, orig_bb->succs)
544     {
545       edge e2 = find_edge (new_bb, e->dest);
546       copy_phi_args (e->dest, e, e2, path, idx);
547     }
548 }
549 
550 /* Given a duplicate block and its single destination (both stored
551    in RD).  Create an edge between the duplicate and its single
552    destination.
553 
554    Add an additional argument to any PHI nodes at the single
555    destination.  IDX is the start node in jump threading path
556    we start to check to see if the new PHI argument has constant
557    value along the jump threading path.  */
558 
559 static void
create_edge_and_update_destination_phis(struct redirection_data * rd,basic_block bb,int idx)560 create_edge_and_update_destination_phis (struct redirection_data *rd,
561 					 basic_block bb, int idx)
562 {
563   edge e = make_single_succ_edge (bb, rd->path->last ()->e->dest, EDGE_FALLTHRU);
564 
565   rescan_loop_exit (e, true, false);
566 
567   /* We used to copy the thread path here.  That was added in 2007
568      and dutifully updated through the representation changes in 2013.
569 
570      In 2013 we added code to thread from an interior node through
571      the backedge to another interior node.  That runs after the code
572      to thread through loop headers from outside the loop.
573 
574      The latter may delete edges in the CFG, including those
575      which appeared in the jump threading path we copied here.  Thus
576      we'd end up using a dangling pointer.
577 
578      After reviewing the 2007/2011 code, I can't see how anything
579      depended on copying the AUX field and clearly copying the jump
580      threading path is problematical due to embedded edge pointers.
581      It has been removed.  */
582   e->aux = NULL;
583 
584   /* If there are any PHI nodes at the destination of the outgoing edge
585      from the duplicate block, then we will need to add a new argument
586      to them.  The argument should have the same value as the argument
587      associated with the outgoing edge stored in RD.  */
588   copy_phi_args (e->dest, rd->path->last ()->e, e, rd->path, idx);
589 }
590 
591 /* Look through PATH beginning at START and return TRUE if there are
592    any additional blocks that need to be duplicated.  Otherwise,
593    return FALSE.  */
594 static bool
any_remaining_duplicated_blocks(vec<jump_thread_edge * > * path,unsigned int start)595 any_remaining_duplicated_blocks (vec<jump_thread_edge *> *path,
596 				 unsigned int start)
597 {
598   for (unsigned int i = start + 1; i < path->length (); i++)
599     {
600       if ((*path)[i]->type == EDGE_COPY_SRC_JOINER_BLOCK
601 	  || (*path)[i]->type == EDGE_COPY_SRC_BLOCK)
602 	return true;
603     }
604   return false;
605 }
606 
607 
608 /* Compute the amount of profile count coming into the jump threading
609    path stored in RD that we are duplicating, returned in PATH_IN_COUNT_PTR and
610    PATH_IN_FREQ_PTR, as well as the amount of counts flowing out of the
611    duplicated path, returned in PATH_OUT_COUNT_PTR.  LOCAL_INFO is used to
612    identify blocks duplicated for jump threading, which have duplicated
613    edges that need to be ignored in the analysis.  Return true if path contains
614    a joiner, false otherwise.
615 
616    In the non-joiner case, this is straightforward - all the counts
617    flowing into the jump threading path should flow through the duplicated
618    block and out of the duplicated path.
619 
620    In the joiner case, it is very tricky.  Some of the counts flowing into
621    the original path go offpath at the joiner.  The problem is that while
622    we know how much total count goes off-path in the original control flow,
623    we don't know how many of the counts corresponding to just the jump
624    threading path go offpath at the joiner.
625 
626    For example, assume we have the following control flow and identified
627    jump threading paths:
628 
629 		A     B     C
630 		 \    |    /
631 	       Ea \   |Eb / Ec
632 		   \  |  /
633 		    v v v
634 		      J       <-- Joiner
635 		     / \
636 		Eoff/   \Eon
637 		   /     \
638 		  v       v
639 		Soff     Son  <--- Normal
640 			 /\
641 		      Ed/  \ Ee
642 		       /    \
643 		      v     v
644 		      D      E
645 
646 	    Jump threading paths: A -> J -> Son -> D (path 1)
647 				  C -> J -> Son -> E (path 2)
648 
649    Note that the control flow could be more complicated:
650    - Each jump threading path may have more than one incoming edge.  I.e. A and
651    Ea could represent multiple incoming blocks/edges that are included in
652    path 1.
653    - There could be EDGE_NO_COPY_SRC_BLOCK edges after the joiner (either
654    before or after the "normal" copy block).  These are not duplicated onto
655    the jump threading path, as they are single-successor.
656    - Any of the blocks along the path may have other incoming edges that
657    are not part of any jump threading path, but add profile counts along
658    the path.
659 
660    In the above example, after all jump threading is complete, we will
661    end up with the following control flow:
662 
663 		A	   B	       C
664 		|	   |	       |
665 	      Ea|	   |Eb	       |Ec
666 		|	   |	       |
667 		v	   v	       v
668 	       Ja	   J	      Jc
669 	       / \	  / \Eon'     / \
670 	  Eona/   \   ---/---\--------   \Eonc
671 	     /     \ /  /     \		  \
672 	    v       v  v       v	  v
673 	   Sona     Soff      Son	Sonc
674 	     \		       /\	  /
675 	      \___________    /  \  _____/
676 			  \  /    \/
677 			   vv      v
678 			    D      E
679 
680    The main issue to notice here is that when we are processing path 1
681    (A->J->Son->D) we need to figure out the outgoing edge weights to
682    the duplicated edges Ja->Sona and Ja->Soff, while ensuring that the
683    sum of the incoming weights to D remain Ed.  The problem with simply
684    assuming that Ja (and Jc when processing path 2) has the same outgoing
685    probabilities to its successors as the original block J, is that after
686    all paths are processed and other edges/counts removed (e.g. none
687    of Ec will reach D after processing path 2), we may end up with not
688    enough count flowing along duplicated edge Sona->D.
689 
690    Therefore, in the case of a joiner, we keep track of all counts
691    coming in along the current path, as well as from predecessors not
692    on any jump threading path (Eb in the above example).  While we
693    first assume that the duplicated Eona for Ja->Sona has the same
694    probability as the original, we later compensate for other jump
695    threading paths that may eliminate edges.  We do that by keep track
696    of all counts coming into the original path that are not in a jump
697    thread (Eb in the above example, but as noted earlier, there could
698    be other predecessors incoming to the path at various points, such
699    as at Son).  Call this cumulative non-path count coming into the path
700    before D as Enonpath.  We then ensure that the count from Sona->D is as at
701    least as big as (Ed - Enonpath), but no bigger than the minimum
702    weight along the jump threading path.  The probabilities of both the
703    original and duplicated joiner block J and Ja will be adjusted
704    accordingly after the updates.  */
705 
706 static bool
compute_path_counts(struct redirection_data * rd,ssa_local_info_t * local_info,profile_count * path_in_count_ptr,profile_count * path_out_count_ptr)707 compute_path_counts (struct redirection_data *rd,
708 		     ssa_local_info_t *local_info,
709 		     profile_count *path_in_count_ptr,
710 		     profile_count *path_out_count_ptr)
711 {
712   edge e = rd->incoming_edges->e;
713   vec<jump_thread_edge *> *path = THREAD_PATH (e);
714   edge elast = path->last ()->e;
715   profile_count nonpath_count = profile_count::zero ();
716   bool has_joiner = false;
717   profile_count path_in_count = profile_count::zero ();
718 
719   /* Start by accumulating incoming edge counts to the path's first bb
720      into a couple buckets:
721 	path_in_count: total count of incoming edges that flow into the
722 		  current path.
723 	nonpath_count: total count of incoming edges that are not
724 		  flowing along *any* path.  These are the counts
725 		  that will still flow along the original path after
726 		  all path duplication is done by potentially multiple
727 		  calls to this routine.
728      (any other incoming edge counts are for a different jump threading
729      path that will be handled by a later call to this routine.)
730      To make this easier, start by recording all incoming edges that flow into
731      the current path in a bitmap.  We could add up the path's incoming edge
732      counts here, but we still need to walk all the first bb's incoming edges
733      below to add up the counts of the other edges not included in this jump
734      threading path.  */
735   struct el *next, *el;
736   auto_bitmap in_edge_srcs;
737   for (el = rd->incoming_edges; el; el = next)
738     {
739       next = el->next;
740       bitmap_set_bit (in_edge_srcs, el->e->src->index);
741     }
742   edge ein;
743   edge_iterator ei;
744   FOR_EACH_EDGE (ein, ei, e->dest->preds)
745     {
746       vec<jump_thread_edge *> *ein_path = THREAD_PATH (ein);
747       /* Simply check the incoming edge src against the set captured above.  */
748       if (ein_path
749 	  && bitmap_bit_p (in_edge_srcs, (*ein_path)[0]->e->src->index))
750 	{
751 	  /* It is necessary but not sufficient that the last path edges
752 	     are identical.  There may be different paths that share the
753 	     same last path edge in the case where the last edge has a nocopy
754 	     source block.  */
755 	  gcc_assert (ein_path->last ()->e == elast);
756 	  path_in_count += ein->count ();
757 	}
758       else if (!ein_path)
759 	{
760 	  /* Keep track of the incoming edges that are not on any jump-threading
761 	     path.  These counts will still flow out of original path after all
762 	     jump threading is complete.  */
763 	    nonpath_count += ein->count ();
764 	}
765     }
766 
767   /* Now compute the fraction of the total count coming into the first
768      path bb that is from the current threading path.  */
769   profile_count total_count = e->dest->count;
770   /* Handle incoming profile insanities.  */
771   if (total_count < path_in_count)
772     path_in_count = total_count;
773   profile_probability onpath_scale = path_in_count.probability_in (total_count);
774 
775   /* Walk the entire path to do some more computation in order to estimate
776      how much of the path_in_count will flow out of the duplicated threading
777      path.  In the non-joiner case this is straightforward (it should be
778      the same as path_in_count, although we will handle incoming profile
779      insanities by setting it equal to the minimum count along the path).
780 
781      In the joiner case, we need to estimate how much of the path_in_count
782      will stay on the threading path after the joiner's conditional branch.
783      We don't really know for sure how much of the counts
784      associated with this path go to each successor of the joiner, but we'll
785      estimate based on the fraction of the total count coming into the path
786      bb was from the threading paths (computed above in onpath_scale).
787      Afterwards, we will need to do some fixup to account for other threading
788      paths and possible profile insanities.
789 
790      In order to estimate the joiner case's counts we also need to update
791      nonpath_count with any additional counts coming into the path.  Other
792      blocks along the path may have additional predecessors from outside
793      the path.  */
794   profile_count path_out_count = path_in_count;
795   profile_count min_path_count = path_in_count;
796   for (unsigned int i = 1; i < path->length (); i++)
797     {
798       edge epath = (*path)[i]->e;
799       profile_count cur_count = epath->count ();
800       if ((*path)[i]->type == EDGE_COPY_SRC_JOINER_BLOCK)
801 	{
802 	  has_joiner = true;
803 	  cur_count = cur_count.apply_probability (onpath_scale);
804 	}
805       /* In the joiner case we need to update nonpath_count for any edges
806 	 coming into the path that will contribute to the count flowing
807 	 into the path successor.  */
808       if (has_joiner && epath != elast)
809 	{
810 	  /* Look for other incoming edges after joiner.  */
811 	  FOR_EACH_EDGE (ein, ei, epath->dest->preds)
812 	    {
813 	      if (ein != epath
814 		  /* Ignore in edges from blocks we have duplicated for a
815 		     threading path, which have duplicated edge counts until
816 		     they are redirected by an invocation of this routine.  */
817 		  && !bitmap_bit_p (local_info->duplicate_blocks,
818 				    ein->src->index))
819 		nonpath_count += ein->count ();
820 	    }
821 	}
822       if (cur_count < path_out_count)
823 	path_out_count = cur_count;
824       if (epath->count () < min_path_count)
825 	min_path_count = epath->count ();
826     }
827 
828   /* We computed path_out_count above assuming that this path targeted
829      the joiner's on-path successor with the same likelihood as it
830      reached the joiner.  However, other thread paths through the joiner
831      may take a different path through the normal copy source block
832      (i.e. they have a different elast), meaning that they do not
833      contribute any counts to this path's elast.  As a result, it may
834      turn out that this path must have more count flowing to the on-path
835      successor of the joiner.  Essentially, all of this path's elast
836      count must be contributed by this path and any nonpath counts
837      (since any path through the joiner with a different elast will not
838      include a copy of this elast in its duplicated path).
839      So ensure that this path's path_out_count is at least the
840      difference between elast->count () and nonpath_count.  Otherwise the edge
841      counts after threading will not be sane.  */
842   if (local_info->need_profile_correction
843       && has_joiner && path_out_count < elast->count () - nonpath_count)
844     {
845       path_out_count = elast->count () - nonpath_count;
846       /* But neither can we go above the minimum count along the path
847 	 we are duplicating.  This can be an issue due to profile
848 	 insanities coming in to this pass.  */
849       if (path_out_count > min_path_count)
850 	path_out_count = min_path_count;
851     }
852 
853   *path_in_count_ptr = path_in_count;
854   *path_out_count_ptr = path_out_count;
855   return has_joiner;
856 }
857 
858 
859 /* Update the counts and frequencies for both an original path
860    edge EPATH and its duplicate EDUP.  The duplicate source block
861    will get a count of PATH_IN_COUNT and PATH_IN_FREQ,
862    and the duplicate edge EDUP will have a count of PATH_OUT_COUNT.  */
863 static void
update_profile(edge epath,edge edup,profile_count path_in_count,profile_count path_out_count)864 update_profile (edge epath, edge edup, profile_count path_in_count,
865 		profile_count path_out_count)
866 {
867 
868   /* First update the duplicated block's count.  */
869   if (edup)
870     {
871       basic_block dup_block = edup->src;
872 
873       /* Edup's count is reduced by path_out_count.  We need to redistribute
874          probabilities to the remaining edges.  */
875 
876       edge esucc;
877       edge_iterator ei;
878       profile_probability edup_prob
879 	 = path_out_count.probability_in (path_in_count);
880 
881       /* Either scale up or down the remaining edges.
882 	 probabilities are always in range <0,1> and thus we can't do
883 	 both by same loop.  */
884       if (edup->probability > edup_prob)
885 	{
886 	   profile_probability rev_scale
887 	     = (profile_probability::always () - edup->probability)
888 	       / (profile_probability::always () - edup_prob);
889 	   FOR_EACH_EDGE (esucc, ei, dup_block->succs)
890 	     if (esucc != edup)
891 	       esucc->probability /= rev_scale;
892 	}
893       else if (edup->probability < edup_prob)
894 	{
895 	   profile_probability scale
896 	     = (profile_probability::always () - edup_prob)
897 	       / (profile_probability::always () - edup->probability);
898 	  FOR_EACH_EDGE (esucc, ei, dup_block->succs)
899 	    if (esucc != edup)
900 	      esucc->probability *= scale;
901 	}
902       if (edup_prob.initialized_p ())
903         edup->probability = edup_prob;
904 
905       gcc_assert (!dup_block->count.initialized_p ());
906       dup_block->count = path_in_count;
907     }
908 
909   if (path_in_count == profile_count::zero ())
910     return;
911 
912   profile_count final_count = epath->count () - path_out_count;
913 
914   /* Now update the original block's count in the
915      opposite manner - remove the counts/freq that will flow
916      into the duplicated block.  Handle underflow due to precision/
917      rounding issues.  */
918   epath->src->count -= path_in_count;
919 
920   /* Next update this path edge's original and duplicated counts.  We know
921      that the duplicated path will have path_out_count flowing
922      out of it (in the joiner case this is the count along the duplicated path
923      out of the duplicated joiner).  This count can then be removed from the
924      original path edge.  */
925 
926   edge esucc;
927   edge_iterator ei;
928   profile_probability epath_prob = final_count.probability_in (epath->src->count);
929 
930   if (epath->probability > epath_prob)
931     {
932        profile_probability rev_scale
933 	 = (profile_probability::always () - epath->probability)
934 	   / (profile_probability::always () - epath_prob);
935        FOR_EACH_EDGE (esucc, ei, epath->src->succs)
936 	 if (esucc != epath)
937 	   esucc->probability /= rev_scale;
938     }
939   else if (epath->probability < epath_prob)
940     {
941        profile_probability scale
942 	 = (profile_probability::always () - epath_prob)
943 	   / (profile_probability::always () - epath->probability);
944       FOR_EACH_EDGE (esucc, ei, epath->src->succs)
945 	if (esucc != epath)
946 	  esucc->probability *= scale;
947     }
948   if (epath_prob.initialized_p ())
949     epath->probability = epath_prob;
950 }
951 
952 /* Wire up the outgoing edges from the duplicate blocks and
953    update any PHIs as needed.  Also update the profile counts
954    on the original and duplicate blocks and edges.  */
955 void
ssa_fix_duplicate_block_edges(struct redirection_data * rd,ssa_local_info_t * local_info)956 ssa_fix_duplicate_block_edges (struct redirection_data *rd,
957 			       ssa_local_info_t *local_info)
958 {
959   bool multi_incomings = (rd->incoming_edges->next != NULL);
960   edge e = rd->incoming_edges->e;
961   vec<jump_thread_edge *> *path = THREAD_PATH (e);
962   edge elast = path->last ()->e;
963   profile_count path_in_count = profile_count::zero ();
964   profile_count path_out_count = profile_count::zero ();
965 
966   /* First determine how much profile count to move from original
967      path to the duplicate path.  This is tricky in the presence of
968      a joiner (see comments for compute_path_counts), where some portion
969      of the path's counts will flow off-path from the joiner.  In the
970      non-joiner case the path_in_count and path_out_count should be the
971      same.  */
972   bool has_joiner = compute_path_counts (rd, local_info,
973 					 &path_in_count, &path_out_count);
974 
975   for (unsigned int count = 0, i = 1; i < path->length (); i++)
976     {
977       edge epath = (*path)[i]->e;
978 
979       /* If we were threading through an joiner block, then we want
980 	 to keep its control statement and redirect an outgoing edge.
981 	 Else we want to remove the control statement & edges, then create
982 	 a new outgoing edge.  In both cases we may need to update PHIs.  */
983       if ((*path)[i]->type == EDGE_COPY_SRC_JOINER_BLOCK)
984 	{
985 	  edge victim;
986 	  edge e2;
987 
988 	  gcc_assert (has_joiner);
989 
990 	  /* This updates the PHIs at the destination of the duplicate
991 	     block.  Pass 0 instead of i if we are threading a path which
992 	     has multiple incoming edges.  */
993 	  update_destination_phis (local_info->bb, rd->dup_blocks[count],
994 				   path, multi_incomings ? 0 : i);
995 
996 	  /* Find the edge from the duplicate block to the block we're
997 	     threading through.  That's the edge we want to redirect.  */
998 	  victim = find_edge (rd->dup_blocks[count], (*path)[i]->e->dest);
999 
1000 	  /* If there are no remaining blocks on the path to duplicate,
1001 	     then redirect VICTIM to the final destination of the jump
1002 	     threading path.  */
1003 	  if (!any_remaining_duplicated_blocks (path, i))
1004 	    {
1005 	      e2 = redirect_edge_and_branch (victim, elast->dest);
1006 	      /* If we redirected the edge, then we need to copy PHI arguments
1007 		 at the target.  If the edge already existed (e2 != victim
1008 		 case), then the PHIs in the target already have the correct
1009 		 arguments.  */
1010 	      if (e2 == victim)
1011 		copy_phi_args (e2->dest, elast, e2,
1012 			       path, multi_incomings ? 0 : i);
1013 	    }
1014 	  else
1015 	    {
1016 	      /* Redirect VICTIM to the next duplicated block in the path.  */
1017 	      e2 = redirect_edge_and_branch (victim, rd->dup_blocks[count + 1]);
1018 
1019 	      /* We need to update the PHIs in the next duplicated block.  We
1020 		 want the new PHI args to have the same value as they had
1021 		 in the source of the next duplicate block.
1022 
1023 		 Thus, we need to know which edge we traversed into the
1024 		 source of the duplicate.  Furthermore, we may have
1025 		 traversed many edges to reach the source of the duplicate.
1026 
1027 		 Walk through the path starting at element I until we
1028 		 hit an edge marked with EDGE_COPY_SRC_BLOCK.  We want
1029 		 the edge from the prior element.  */
1030 	      for (unsigned int j = i + 1; j < path->length (); j++)
1031 		{
1032 		  if ((*path)[j]->type == EDGE_COPY_SRC_BLOCK)
1033 		    {
1034 		      copy_phi_arg_into_existing_phi ((*path)[j - 1]->e, e2);
1035 		      break;
1036 		    }
1037 		}
1038 	    }
1039 
1040 	  /* Update the counts of both the original block
1041 	     and path edge, and the duplicates.  The path duplicate's
1042 	     incoming count are the totals for all edges
1043 	     incoming to this jump threading path computed earlier.
1044 	     And we know that the duplicated path will have path_out_count
1045 	     flowing out of it (i.e. along the duplicated path out of the
1046 	     duplicated joiner).  */
1047 	  update_profile (epath, e2, path_in_count, path_out_count);
1048 	}
1049       else if ((*path)[i]->type == EDGE_COPY_SRC_BLOCK)
1050 	{
1051 	  remove_ctrl_stmt_and_useless_edges (rd->dup_blocks[count], NULL);
1052 	  create_edge_and_update_destination_phis (rd, rd->dup_blocks[count],
1053 						   multi_incomings ? 0 : i);
1054 	  if (count == 1)
1055 	    single_succ_edge (rd->dup_blocks[1])->aux = NULL;
1056 
1057 	  /* Update the counts of both the original block
1058 	     and path edge, and the duplicates.  Since we are now after
1059 	     any joiner that may have existed on the path, the count
1060 	     flowing along the duplicated threaded path is path_out_count.
1061 	     If we didn't have a joiner, then cur_path_freq was the sum
1062 	     of the total frequencies along all incoming edges to the
1063 	     thread path (path_in_freq).  If we had a joiner, it would have
1064 	     been updated at the end of that handling to the edge frequency
1065 	     along the duplicated joiner path edge.  */
1066 	  update_profile (epath, EDGE_SUCC (rd->dup_blocks[count], 0),
1067 			  path_out_count, path_out_count);
1068 	}
1069       else
1070 	{
1071 	  /* No copy case.  In this case we don't have an equivalent block
1072 	     on the duplicated thread path to update, but we do need
1073 	     to remove the portion of the counts/freqs that were moved
1074 	     to the duplicated path from the counts/freqs flowing through
1075 	     this block on the original path.  Since all the no-copy edges
1076 	     are after any joiner, the removed count is the same as
1077 	     path_out_count.
1078 
1079 	     If we didn't have a joiner, then cur_path_freq was the sum
1080 	     of the total frequencies along all incoming edges to the
1081 	     thread path (path_in_freq).  If we had a joiner, it would have
1082 	     been updated at the end of that handling to the edge frequency
1083 	     along the duplicated joiner path edge.  */
1084 	   update_profile (epath, NULL, path_out_count, path_out_count);
1085 	}
1086 
1087       /* Increment the index into the duplicated path when we processed
1088 	 a duplicated block.  */
1089       if ((*path)[i]->type == EDGE_COPY_SRC_JOINER_BLOCK
1090 	  || (*path)[i]->type == EDGE_COPY_SRC_BLOCK)
1091 	{
1092 	  count++;
1093 	}
1094     }
1095 }
1096 
1097 /* Hash table traversal callback routine to create duplicate blocks.  */
1098 
1099 int
ssa_create_duplicates(struct redirection_data ** slot,ssa_local_info_t * local_info)1100 ssa_create_duplicates (struct redirection_data **slot,
1101 		       ssa_local_info_t *local_info)
1102 {
1103   struct redirection_data *rd = *slot;
1104 
1105   /* The second duplicated block in a jump threading path is specific
1106      to the path.  So it gets stored in RD rather than in LOCAL_DATA.
1107 
1108      Each time we're called, we have to look through the path and see
1109      if a second block needs to be duplicated.
1110 
1111      Note the search starts with the third edge on the path.  The first
1112      edge is the incoming edge, the second edge always has its source
1113      duplicated.  Thus we start our search with the third edge.  */
1114   vec<jump_thread_edge *> *path = rd->path;
1115   for (unsigned int i = 2; i < path->length (); i++)
1116     {
1117       if ((*path)[i]->type == EDGE_COPY_SRC_BLOCK
1118 	  || (*path)[i]->type == EDGE_COPY_SRC_JOINER_BLOCK)
1119 	{
1120 	  create_block_for_threading ((*path)[i]->e->src, rd, 1,
1121 				      &local_info->duplicate_blocks);
1122 	  break;
1123 	}
1124     }
1125 
1126   /* Create a template block if we have not done so already.  Otherwise
1127      use the template to create a new block.  */
1128   if (local_info->template_block == NULL)
1129     {
1130       create_block_for_threading ((*path)[1]->e->src, rd, 0,
1131 				  &local_info->duplicate_blocks);
1132       local_info->template_block = rd->dup_blocks[0];
1133       local_info->template_last_to_copy
1134 	= gsi_last_bb (local_info->template_block);
1135 
1136       /* We do not create any outgoing edges for the template.  We will
1137 	 take care of that in a later traversal.  That way we do not
1138 	 create edges that are going to just be deleted.  */
1139     }
1140   else
1141     {
1142       gimple_seq seq = NULL;
1143       if (gsi_stmt (local_info->template_last_to_copy)
1144 	  != gsi_stmt (gsi_last_bb (local_info->template_block)))
1145 	{
1146 	  if (gsi_end_p (local_info->template_last_to_copy))
1147 	    {
1148 	      seq = bb_seq (local_info->template_block);
1149 	      set_bb_seq (local_info->template_block, NULL);
1150 	    }
1151 	  else
1152 	    seq = gsi_split_seq_after (local_info->template_last_to_copy);
1153 	}
1154       create_block_for_threading (local_info->template_block, rd, 0,
1155 				  &local_info->duplicate_blocks);
1156       if (seq)
1157 	{
1158 	  if (gsi_end_p (local_info->template_last_to_copy))
1159 	    set_bb_seq (local_info->template_block, seq);
1160 	  else
1161 	    gsi_insert_seq_after (&local_info->template_last_to_copy,
1162 				  seq, GSI_SAME_STMT);
1163 	}
1164 
1165       /* Go ahead and wire up outgoing edges and update PHIs for the duplicate
1166 	 block.   */
1167       ssa_fix_duplicate_block_edges (rd, local_info);
1168     }
1169 
1170   if (MAY_HAVE_DEBUG_STMTS)
1171     {
1172       /* Copy debug stmts from each NO_COPY src block to the block
1173 	 that would have been its predecessor, if we can append to it
1174 	 (we can't add stmts after a block-ending stmt), or prepending
1175 	 to the duplicate of the successor, if there is one.  If
1176 	 there's no duplicate successor, we'll mostly drop the blocks
1177 	 on the floor; propagate_threaded_block_debug_into, called
1178 	 elsewhere, will consolidate and preserve the effects of the
1179 	 binds, but none of the markers.  */
1180       gimple_stmt_iterator copy_to = gsi_last_bb (rd->dup_blocks[0]);
1181       if (!gsi_end_p (copy_to))
1182 	{
1183 	  if (stmt_ends_bb_p (gsi_stmt (copy_to)))
1184 	    {
1185 	      if (rd->dup_blocks[1])
1186 		copy_to = gsi_after_labels (rd->dup_blocks[1]);
1187 	      else
1188 		copy_to = gsi_none ();
1189 	    }
1190 	  else
1191 	    gsi_next (&copy_to);
1192 	}
1193       for (unsigned int i = 2, j = 0; i < path->length (); i++)
1194 	if ((*path)[i]->type == EDGE_NO_COPY_SRC_BLOCK
1195 	    && gsi_bb (copy_to))
1196 	  {
1197 	    for (gimple_stmt_iterator gsi = gsi_start_bb ((*path)[i]->e->src);
1198 		 !gsi_end_p (gsi); gsi_next (&gsi))
1199 	      {
1200 		if (!is_gimple_debug (gsi_stmt (gsi)))
1201 		  continue;
1202 		gimple *stmt = gsi_stmt (gsi);
1203 		gimple *copy = gimple_copy (stmt);
1204 		gsi_insert_before (&copy_to, copy, GSI_SAME_STMT);
1205 	      }
1206 	  }
1207 	else if ((*path)[i]->type == EDGE_COPY_SRC_BLOCK
1208 		 || (*path)[i]->type == EDGE_COPY_SRC_JOINER_BLOCK)
1209 	  {
1210 	    j++;
1211 	    gcc_assert (j < 2);
1212 	    copy_to = gsi_last_bb (rd->dup_blocks[j]);
1213 	    if (!gsi_end_p (copy_to))
1214 	      {
1215 		if (stmt_ends_bb_p (gsi_stmt (copy_to)))
1216 		  copy_to = gsi_none ();
1217 		else
1218 		  gsi_next (&copy_to);
1219 	      }
1220 	  }
1221     }
1222 
1223   /* Keep walking the hash table.  */
1224   return 1;
1225 }
1226 
1227 /* We did not create any outgoing edges for the template block during
1228    block creation.  This hash table traversal callback creates the
1229    outgoing edge for the template block.  */
1230 
1231 inline int
ssa_fixup_template_block(struct redirection_data ** slot,ssa_local_info_t * local_info)1232 ssa_fixup_template_block (struct redirection_data **slot,
1233 			  ssa_local_info_t *local_info)
1234 {
1235   struct redirection_data *rd = *slot;
1236 
1237   /* If this is the template block halt the traversal after updating
1238      it appropriately.
1239 
1240      If we were threading through an joiner block, then we want
1241      to keep its control statement and redirect an outgoing edge.
1242      Else we want to remove the control statement & edges, then create
1243      a new outgoing edge.  In both cases we may need to update PHIs.  */
1244   if (rd->dup_blocks[0] && rd->dup_blocks[0] == local_info->template_block)
1245     {
1246       ssa_fix_duplicate_block_edges (rd, local_info);
1247       return 0;
1248     }
1249 
1250   return 1;
1251 }
1252 
1253 /* Hash table traversal callback to redirect each incoming edge
1254    associated with this hash table element to its new destination.  */
1255 
1256 int
ssa_redirect_edges(struct redirection_data ** slot,ssa_local_info_t * local_info)1257 ssa_redirect_edges (struct redirection_data **slot,
1258 		    ssa_local_info_t *local_info)
1259 {
1260   struct redirection_data *rd = *slot;
1261   struct el *next, *el;
1262 
1263   /* Walk over all the incoming edges associated with this hash table
1264      entry.  */
1265   for (el = rd->incoming_edges; el; el = next)
1266     {
1267       edge e = el->e;
1268       vec<jump_thread_edge *> *path = THREAD_PATH (e);
1269 
1270       /* Go ahead and free this element from the list.  Doing this now
1271 	 avoids the need for another list walk when we destroy the hash
1272 	 table.  */
1273       next = el->next;
1274       free (el);
1275 
1276       thread_stats.num_threaded_edges++;
1277 
1278       if (rd->dup_blocks[0])
1279 	{
1280 	  edge e2;
1281 
1282 	  if (dump_file && (dump_flags & TDF_DETAILS))
1283 	    fprintf (dump_file, "  Threaded jump %d --> %d to %d\n",
1284 		     e->src->index, e->dest->index, rd->dup_blocks[0]->index);
1285 
1286 	  /* Redirect the incoming edge (possibly to the joiner block) to the
1287 	     appropriate duplicate block.  */
1288 	  e2 = redirect_edge_and_branch (e, rd->dup_blocks[0]);
1289 	  gcc_assert (e == e2);
1290 	  flush_pending_stmts (e2);
1291 	}
1292 
1293       /* Go ahead and clear E->aux.  It's not needed anymore and failure
1294 	 to clear it will cause all kinds of unpleasant problems later.  */
1295       delete_jump_thread_path (path);
1296       e->aux = NULL;
1297 
1298     }
1299 
1300   /* Indicate that we actually threaded one or more jumps.  */
1301   if (rd->incoming_edges)
1302     local_info->jumps_threaded = true;
1303 
1304   return 1;
1305 }
1306 
1307 /* Return true if this block has no executable statements other than
1308    a simple ctrl flow instruction.  When the number of outgoing edges
1309    is one, this is equivalent to a "forwarder" block.  */
1310 
1311 static bool
redirection_block_p(basic_block bb)1312 redirection_block_p (basic_block bb)
1313 {
1314   gimple_stmt_iterator gsi;
1315 
1316   /* Advance to the first executable statement.  */
1317   gsi = gsi_start_bb (bb);
1318   while (!gsi_end_p (gsi)
1319 	 && (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL
1320 	     || is_gimple_debug (gsi_stmt (gsi))
1321 	     || gimple_nop_p (gsi_stmt (gsi))
1322 	     || gimple_clobber_p (gsi_stmt (gsi))))
1323     gsi_next (&gsi);
1324 
1325   /* Check if this is an empty block.  */
1326   if (gsi_end_p (gsi))
1327     return true;
1328 
1329   /* Test that we've reached the terminating control statement.  */
1330   return gsi_stmt (gsi)
1331 	 && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND
1332 	     || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO
1333 	     || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH);
1334 }
1335 
1336 /* BB is a block which ends with a COND_EXPR or SWITCH_EXPR and when BB
1337    is reached via one or more specific incoming edges, we know which
1338    outgoing edge from BB will be traversed.
1339 
1340    We want to redirect those incoming edges to the target of the
1341    appropriate outgoing edge.  Doing so avoids a conditional branch
1342    and may expose new optimization opportunities.  Note that we have
1343    to update dominator tree and SSA graph after such changes.
1344 
1345    The key to keeping the SSA graph update manageable is to duplicate
1346    the side effects occurring in BB so that those side effects still
1347    occur on the paths which bypass BB after redirecting edges.
1348 
1349    We accomplish this by creating duplicates of BB and arranging for
1350    the duplicates to unconditionally pass control to one specific
1351    successor of BB.  We then revector the incoming edges into BB to
1352    the appropriate duplicate of BB.
1353 
1354    If NOLOOP_ONLY is true, we only perform the threading as long as it
1355    does not affect the structure of the loops in a nontrivial way.
1356 
1357    If JOINERS is true, then thread through joiner blocks as well.  */
1358 
1359 static bool
thread_block_1(basic_block bb,bool noloop_only,bool joiners)1360 thread_block_1 (basic_block bb, bool noloop_only, bool joiners)
1361 {
1362   /* E is an incoming edge into BB that we may or may not want to
1363      redirect to a duplicate of BB.  */
1364   edge e, e2;
1365   edge_iterator ei;
1366   ssa_local_info_t local_info;
1367 
1368   local_info.duplicate_blocks = BITMAP_ALLOC (NULL);
1369   local_info.need_profile_correction = false;
1370 
1371   /* To avoid scanning a linear array for the element we need we instead
1372      use a hash table.  For normal code there should be no noticeable
1373      difference.  However, if we have a block with a large number of
1374      incoming and outgoing edges such linear searches can get expensive.  */
1375   redirection_data
1376     = new hash_table<struct redirection_data> (EDGE_COUNT (bb->succs));
1377 
1378   /* Record each unique threaded destination into a hash table for
1379      efficient lookups.  */
1380   edge last = NULL;
1381   FOR_EACH_EDGE (e, ei, bb->preds)
1382     {
1383       if (e->aux == NULL)
1384 	continue;
1385 
1386       vec<jump_thread_edge *> *path = THREAD_PATH (e);
1387 
1388       if (((*path)[1]->type == EDGE_COPY_SRC_JOINER_BLOCK && !joiners)
1389 	  || ((*path)[1]->type == EDGE_COPY_SRC_BLOCK && joiners))
1390 	continue;
1391 
1392       e2 = path->last ()->e;
1393       if (!e2 || noloop_only)
1394 	{
1395 	  /* If NOLOOP_ONLY is true, we only allow threading through the
1396 	     header of a loop to exit edges.  */
1397 
1398 	  /* One case occurs when there was loop header buried in a jump
1399 	     threading path that crosses loop boundaries.  We do not try
1400 	     and thread this elsewhere, so just cancel the jump threading
1401 	     request by clearing the AUX field now.  */
1402 	  if (bb->loop_father != e2->src->loop_father
1403 	      && (!loop_exit_edge_p (e2->src->loop_father, e2)
1404 		  || flow_loop_nested_p (bb->loop_father,
1405 					 e2->dest->loop_father)))
1406 	    {
1407 	      /* Since this case is not handled by our special code
1408 		 to thread through a loop header, we must explicitly
1409 		 cancel the threading request here.  */
1410 	      delete_jump_thread_path (path);
1411 	      e->aux = NULL;
1412 	      continue;
1413 	    }
1414 
1415 	  /* Another case occurs when trying to thread through our
1416 	     own loop header, possibly from inside the loop.  We will
1417 	     thread these later.  */
1418 	  unsigned int i;
1419 	  for (i = 1; i < path->length (); i++)
1420 	    {
1421 	      if ((*path)[i]->e->src == bb->loop_father->header
1422 		  && (!loop_exit_edge_p (bb->loop_father, e2)
1423 		      || (*path)[1]->type == EDGE_COPY_SRC_JOINER_BLOCK))
1424 		break;
1425 	    }
1426 
1427 	  if (i != path->length ())
1428 	    continue;
1429 
1430 	  /* Loop parallelization can be confused by the result of
1431 	     threading through the loop exit test back into the loop.
1432 	     However, theading those jumps seems to help other codes.
1433 
1434 	     I have been unable to find anything related to the shape of
1435 	     the CFG, the contents of the affected blocks, etc which would
1436 	     allow a more sensible test than what we're using below which
1437 	     merely avoids the optimization when parallelizing loops.  */
1438 	  if (flag_tree_parallelize_loops > 1)
1439 	    {
1440 	      for (i = 1; i < path->length (); i++)
1441 	        if (bb->loop_father == e2->src->loop_father
1442 		    && loop_exits_from_bb_p (bb->loop_father,
1443 					     (*path)[i]->e->src)
1444 		    && !loop_exit_edge_p (bb->loop_father, e2))
1445 		  break;
1446 
1447 	      if (i != path->length ())
1448 		{
1449 		  delete_jump_thread_path (path);
1450 		  e->aux = NULL;
1451 		  continue;
1452 		}
1453 	    }
1454 	}
1455 
1456       /* Insert the outgoing edge into the hash table if it is not
1457 	 already in the hash table.  */
1458       lookup_redirection_data (e, INSERT);
1459 
1460       /* When we have thread paths through a common joiner with different
1461 	 final destinations, then we may need corrections to deal with
1462 	 profile insanities.  See the big comment before compute_path_counts.  */
1463       if ((*path)[1]->type == EDGE_COPY_SRC_JOINER_BLOCK)
1464 	{
1465 	  if (!last)
1466 	    last = e2;
1467 	  else if (e2 != last)
1468 	    local_info.need_profile_correction = true;
1469 	}
1470     }
1471 
1472   /* We do not update dominance info.  */
1473   free_dominance_info (CDI_DOMINATORS);
1474 
1475   /* We know we only thread through the loop header to loop exits.
1476      Let the basic block duplication hook know we are not creating
1477      a multiple entry loop.  */
1478   if (noloop_only
1479       && bb == bb->loop_father->header)
1480     set_loop_copy (bb->loop_father, loop_outer (bb->loop_father));
1481 
1482   /* Now create duplicates of BB.
1483 
1484      Note that for a block with a high outgoing degree we can waste
1485      a lot of time and memory creating and destroying useless edges.
1486 
1487      So we first duplicate BB and remove the control structure at the
1488      tail of the duplicate as well as all outgoing edges from the
1489      duplicate.  We then use that duplicate block as a template for
1490      the rest of the duplicates.  */
1491   local_info.template_block = NULL;
1492   local_info.bb = bb;
1493   local_info.jumps_threaded = false;
1494   redirection_data->traverse <ssa_local_info_t *, ssa_create_duplicates>
1495 			    (&local_info);
1496 
1497   /* The template does not have an outgoing edge.  Create that outgoing
1498      edge and update PHI nodes as the edge's target as necessary.
1499 
1500      We do this after creating all the duplicates to avoid creating
1501      unnecessary edges.  */
1502   redirection_data->traverse <ssa_local_info_t *, ssa_fixup_template_block>
1503 			    (&local_info);
1504 
1505   /* The hash table traversals above created the duplicate blocks (and the
1506      statements within the duplicate blocks).  This loop creates PHI nodes for
1507      the duplicated blocks and redirects the incoming edges into BB to reach
1508      the duplicates of BB.  */
1509   redirection_data->traverse <ssa_local_info_t *, ssa_redirect_edges>
1510 			    (&local_info);
1511 
1512   /* Done with this block.  Clear REDIRECTION_DATA.  */
1513   delete redirection_data;
1514   redirection_data = NULL;
1515 
1516   if (noloop_only
1517       && bb == bb->loop_father->header)
1518     set_loop_copy (bb->loop_father, NULL);
1519 
1520   BITMAP_FREE (local_info.duplicate_blocks);
1521   local_info.duplicate_blocks = NULL;
1522 
1523   /* Indicate to our caller whether or not any jumps were threaded.  */
1524   return local_info.jumps_threaded;
1525 }
1526 
1527 /* Wrapper for thread_block_1 so that we can first handle jump
1528    thread paths which do not involve copying joiner blocks, then
1529    handle jump thread paths which have joiner blocks.
1530 
1531    By doing things this way we can be as aggressive as possible and
1532    not worry that copying a joiner block will create a jump threading
1533    opportunity.  */
1534 
1535 static bool
thread_block(basic_block bb,bool noloop_only)1536 thread_block (basic_block bb, bool noloop_only)
1537 {
1538   bool retval;
1539   retval = thread_block_1 (bb, noloop_only, false);
1540   retval |= thread_block_1 (bb, noloop_only, true);
1541   return retval;
1542 }
1543 
1544 /* Callback for dfs_enumerate_from.  Returns true if BB is different
1545    from STOP and DBDS_CE_STOP.  */
1546 
1547 static basic_block dbds_ce_stop;
1548 static bool
dbds_continue_enumeration_p(const_basic_block bb,const void * stop)1549 dbds_continue_enumeration_p (const_basic_block bb, const void *stop)
1550 {
1551   return (bb != (const_basic_block) stop
1552 	  && bb != dbds_ce_stop);
1553 }
1554 
1555 /* Evaluates the dominance relationship of latch of the LOOP and BB, and
1556    returns the state.  */
1557 
1558 enum bb_dom_status
determine_bb_domination_status(class loop * loop,basic_block bb)1559 determine_bb_domination_status (class loop *loop, basic_block bb)
1560 {
1561   basic_block *bblocks;
1562   unsigned nblocks, i;
1563   bool bb_reachable = false;
1564   edge_iterator ei;
1565   edge e;
1566 
1567   /* This function assumes BB is a successor of LOOP->header.
1568      If that is not the case return DOMST_NONDOMINATING which
1569      is always safe.  */
1570     {
1571       bool ok = false;
1572 
1573       FOR_EACH_EDGE (e, ei, bb->preds)
1574 	{
1575      	  if (e->src == loop->header)
1576 	    {
1577 	      ok = true;
1578 	      break;
1579 	    }
1580 	}
1581 
1582       if (!ok)
1583 	return DOMST_NONDOMINATING;
1584     }
1585 
1586   if (bb == loop->latch)
1587     return DOMST_DOMINATING;
1588 
1589   /* Check that BB dominates LOOP->latch, and that it is back-reachable
1590      from it.  */
1591 
1592   bblocks = XCNEWVEC (basic_block, loop->num_nodes);
1593   dbds_ce_stop = loop->header;
1594   nblocks = dfs_enumerate_from (loop->latch, 1, dbds_continue_enumeration_p,
1595 				bblocks, loop->num_nodes, bb);
1596   for (i = 0; i < nblocks; i++)
1597     FOR_EACH_EDGE (e, ei, bblocks[i]->preds)
1598       {
1599 	if (e->src == loop->header)
1600 	  {
1601 	    free (bblocks);
1602 	    return DOMST_NONDOMINATING;
1603 	  }
1604 	if (e->src == bb)
1605 	  bb_reachable = true;
1606       }
1607 
1608   free (bblocks);
1609   return (bb_reachable ? DOMST_DOMINATING : DOMST_LOOP_BROKEN);
1610 }
1611 
1612 /* Thread jumps through the header of LOOP.  Returns true if cfg changes.
1613    If MAY_PEEL_LOOP_HEADERS is false, we avoid threading from entry edges
1614    to the inside of the loop.  */
1615 
1616 static bool
thread_through_loop_header(class loop * loop,bool may_peel_loop_headers)1617 thread_through_loop_header (class loop *loop, bool may_peel_loop_headers)
1618 {
1619   basic_block header = loop->header;
1620   edge e, tgt_edge, latch = loop_latch_edge (loop);
1621   edge_iterator ei;
1622   basic_block tgt_bb, atgt_bb;
1623   enum bb_dom_status domst;
1624 
1625   /* We have already threaded through headers to exits, so all the threading
1626      requests now are to the inside of the loop.  We need to avoid creating
1627      irreducible regions (i.e., loops with more than one entry block), and
1628      also loop with several latch edges, or new subloops of the loop (although
1629      there are cases where it might be appropriate, it is difficult to decide,
1630      and doing it wrongly may confuse other optimizers).
1631 
1632      We could handle more general cases here.  However, the intention is to
1633      preserve some information about the loop, which is impossible if its
1634      structure changes significantly, in a way that is not well understood.
1635      Thus we only handle few important special cases, in which also updating
1636      of the loop-carried information should be feasible:
1637 
1638      1) Propagation of latch edge to a block that dominates the latch block
1639 	of a loop.  This aims to handle the following idiom:
1640 
1641 	first = 1;
1642 	while (1)
1643 	  {
1644 	    if (first)
1645 	      initialize;
1646 	    first = 0;
1647 	    body;
1648 	  }
1649 
1650 	After threading the latch edge, this becomes
1651 
1652 	first = 1;
1653 	if (first)
1654 	  initialize;
1655 	while (1)
1656 	  {
1657 	    first = 0;
1658 	    body;
1659 	  }
1660 
1661 	The original header of the loop is moved out of it, and we may thread
1662 	the remaining edges through it without further constraints.
1663 
1664      2) All entry edges are propagated to a single basic block that dominates
1665 	the latch block of the loop.  This aims to handle the following idiom
1666 	(normally created for "for" loops):
1667 
1668 	i = 0;
1669 	while (1)
1670 	  {
1671 	    if (i >= 100)
1672 	      break;
1673 	    body;
1674 	    i++;
1675 	  }
1676 
1677 	This becomes
1678 
1679 	i = 0;
1680 	while (1)
1681 	  {
1682 	    body;
1683 	    i++;
1684 	    if (i >= 100)
1685 	      break;
1686 	  }
1687      */
1688 
1689   /* Threading through the header won't improve the code if the header has just
1690      one successor.  */
1691   if (single_succ_p (header))
1692     goto fail;
1693 
1694   if (!may_peel_loop_headers && !redirection_block_p (loop->header))
1695     goto fail;
1696   else
1697     {
1698       tgt_bb = NULL;
1699       tgt_edge = NULL;
1700       FOR_EACH_EDGE (e, ei, header->preds)
1701 	{
1702 	  if (!e->aux)
1703 	    {
1704 	      if (e == latch)
1705 		continue;
1706 
1707 	      /* If latch is not threaded, and there is a header
1708 		 edge that is not threaded, we would create loop
1709 		 with multiple entries.  */
1710 	      goto fail;
1711 	    }
1712 
1713 	  vec<jump_thread_edge *> *path = THREAD_PATH (e);
1714 
1715 	  if ((*path)[1]->type == EDGE_COPY_SRC_JOINER_BLOCK)
1716 	    goto fail;
1717 	  tgt_edge = (*path)[1]->e;
1718 	  atgt_bb = tgt_edge->dest;
1719 	  if (!tgt_bb)
1720 	    tgt_bb = atgt_bb;
1721 	  /* Two targets of threading would make us create loop
1722 	     with multiple entries.  */
1723 	  else if (tgt_bb != atgt_bb)
1724 	    goto fail;
1725 	}
1726 
1727       if (!tgt_bb)
1728 	{
1729 	  /* There are no threading requests.  */
1730 	  return false;
1731 	}
1732 
1733       /* Redirecting to empty loop latch is useless.  */
1734       if (tgt_bb == loop->latch
1735 	  && empty_block_p (loop->latch))
1736 	goto fail;
1737     }
1738 
1739   /* The target block must dominate the loop latch, otherwise we would be
1740      creating a subloop.  */
1741   domst = determine_bb_domination_status (loop, tgt_bb);
1742   if (domst == DOMST_NONDOMINATING)
1743     goto fail;
1744   if (domst == DOMST_LOOP_BROKEN)
1745     {
1746       /* If the loop ceased to exist, mark it as such, and thread through its
1747 	 original header.  */
1748       mark_loop_for_removal (loop);
1749       return thread_block (header, false);
1750     }
1751 
1752   if (tgt_bb->loop_father->header == tgt_bb)
1753     {
1754       /* If the target of the threading is a header of a subloop, we need
1755 	 to create a preheader for it, so that the headers of the two loops
1756 	 do not merge.  */
1757       if (EDGE_COUNT (tgt_bb->preds) > 2)
1758 	{
1759 	  tgt_bb = create_preheader (tgt_bb->loop_father, 0);
1760 	  gcc_assert (tgt_bb != NULL);
1761 	}
1762       else
1763 	tgt_bb = split_edge (tgt_edge);
1764     }
1765 
1766   basic_block new_preheader;
1767 
1768   /* Now consider the case entry edges are redirected to the new entry
1769      block.  Remember one entry edge, so that we can find the new
1770      preheader (its destination after threading).  */
1771   FOR_EACH_EDGE (e, ei, header->preds)
1772     {
1773       if (e->aux)
1774 	break;
1775     }
1776 
1777   /* The duplicate of the header is the new preheader of the loop.  Ensure
1778      that it is placed correctly in the loop hierarchy.  */
1779   set_loop_copy (loop, loop_outer (loop));
1780 
1781   thread_block (header, false);
1782   set_loop_copy (loop, NULL);
1783   new_preheader = e->dest;
1784 
1785   /* Create the new latch block.  This is always necessary, as the latch
1786      must have only a single successor, but the original header had at
1787      least two successors.  */
1788   loop->latch = NULL;
1789   mfb_kj_edge = single_succ_edge (new_preheader);
1790   loop->header = mfb_kj_edge->dest;
1791   latch = make_forwarder_block (tgt_bb, mfb_keep_just, NULL);
1792   loop->header = latch->dest;
1793   loop->latch = latch->src;
1794   return true;
1795 
1796 fail:
1797   /* We failed to thread anything.  Cancel the requests.  */
1798   FOR_EACH_EDGE (e, ei, header->preds)
1799     {
1800       vec<jump_thread_edge *> *path = THREAD_PATH (e);
1801 
1802       if (path)
1803 	{
1804 	  delete_jump_thread_path (path);
1805 	  e->aux = NULL;
1806 	}
1807     }
1808   return false;
1809 }
1810 
1811 /* E1 and E2 are edges into the same basic block.  Return TRUE if the
1812    PHI arguments associated with those edges are equal or there are no
1813    PHI arguments, otherwise return FALSE.  */
1814 
1815 static bool
phi_args_equal_on_edges(edge e1,edge e2)1816 phi_args_equal_on_edges (edge e1, edge e2)
1817 {
1818   gphi_iterator gsi;
1819   int indx1 = e1->dest_idx;
1820   int indx2 = e2->dest_idx;
1821 
1822   for (gsi = gsi_start_phis (e1->dest); !gsi_end_p (gsi); gsi_next (&gsi))
1823     {
1824       gphi *phi = gsi.phi ();
1825 
1826       if (!operand_equal_p (gimple_phi_arg_def (phi, indx1),
1827 			    gimple_phi_arg_def (phi, indx2), 0))
1828 	return false;
1829     }
1830   return true;
1831 }
1832 
1833 /* Return the number of non-debug statements and non-virtual PHIs in a
1834    block.  */
1835 
1836 static unsigned int
count_stmts_and_phis_in_block(basic_block bb)1837 count_stmts_and_phis_in_block (basic_block bb)
1838 {
1839   unsigned int num_stmts = 0;
1840 
1841   gphi_iterator gpi;
1842   for (gpi = gsi_start_phis (bb); !gsi_end_p (gpi); gsi_next (&gpi))
1843     if (!virtual_operand_p (PHI_RESULT (gpi.phi ())))
1844       num_stmts++;
1845 
1846   gimple_stmt_iterator gsi;
1847   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1848     {
1849       gimple *stmt = gsi_stmt (gsi);
1850       if (!is_gimple_debug (stmt))
1851         num_stmts++;
1852     }
1853 
1854   return num_stmts;
1855 }
1856 
1857 
1858 /* Walk through the registered jump threads and convert them into a
1859    form convenient for this pass.
1860 
1861    Any block which has incoming edges threaded to outgoing edges
1862    will have its entry in THREADED_BLOCK set.
1863 
1864    Any threaded edge will have its new outgoing edge stored in the
1865    original edge's AUX field.
1866 
1867    This form avoids the need to walk all the edges in the CFG to
1868    discover blocks which need processing and avoids unnecessary
1869    hash table lookups to map from threaded edge to new target.  */
1870 
1871 static void
mark_threaded_blocks(bitmap threaded_blocks)1872 mark_threaded_blocks (bitmap threaded_blocks)
1873 {
1874   unsigned int i;
1875   bitmap_iterator bi;
1876   auto_bitmap tmp;
1877   basic_block bb;
1878   edge e;
1879   edge_iterator ei;
1880 
1881   /* It is possible to have jump threads in which one is a subpath
1882      of the other.  ie, (A, B), (B, C), (C, D) where B is a joiner
1883      block and (B, C), (C, D) where no joiner block exists.
1884 
1885      When this occurs ignore the jump thread request with the joiner
1886      block.  It's totally subsumed by the simpler jump thread request.
1887 
1888      This results in less block copying, simpler CFGs.  More importantly,
1889      when we duplicate the joiner block, B, in this case we will create
1890      a new threading opportunity that we wouldn't be able to optimize
1891      until the next jump threading iteration.
1892 
1893      So first convert the jump thread requests which do not require a
1894      joiner block.  */
1895   for (i = 0; i < paths.length (); i++)
1896     {
1897       vec<jump_thread_edge *> *path = paths[i];
1898 
1899       if (path->length () > 1
1900 	  && (*path)[1]->type != EDGE_COPY_SRC_JOINER_BLOCK)
1901 	{
1902 	  edge e = (*path)[0]->e;
1903 	  e->aux = (void *)path;
1904 	  bitmap_set_bit (tmp, e->dest->index);
1905 	}
1906     }
1907 
1908   /* Now iterate again, converting cases where we want to thread
1909      through a joiner block, but only if no other edge on the path
1910      already has a jump thread attached to it.  We do this in two passes,
1911      to avoid situations where the order in the paths vec can hide overlapping
1912      threads (the path is recorded on the incoming edge, so we would miss
1913      cases where the second path starts at a downstream edge on the same
1914      path).  First record all joiner paths, deleting any in the unexpected
1915      case where there is already a path for that incoming edge.  */
1916   for (i = 0; i < paths.length ();)
1917     {
1918       vec<jump_thread_edge *> *path = paths[i];
1919 
1920       if (path->length () > 1
1921 	  && (*path)[1]->type == EDGE_COPY_SRC_JOINER_BLOCK)
1922 	{
1923 	  /* Attach the path to the starting edge if none is yet recorded.  */
1924 	  if ((*path)[0]->e->aux == NULL)
1925 	    {
1926 	      (*path)[0]->e->aux = path;
1927 	      i++;
1928 	    }
1929 	  else
1930 	    {
1931 	      paths.unordered_remove (i);
1932 	      if (dump_file && (dump_flags & TDF_DETAILS))
1933 		dump_jump_thread_path (dump_file, *path, false);
1934 	      delete_jump_thread_path (path);
1935 	    }
1936 	}
1937       else
1938 	{
1939 	  i++;
1940 	}
1941     }
1942 
1943   /* Second, look for paths that have any other jump thread attached to
1944      them, and either finish converting them or cancel them.  */
1945   for (i = 0; i < paths.length ();)
1946     {
1947       vec<jump_thread_edge *> *path = paths[i];
1948       edge e = (*path)[0]->e;
1949 
1950       if (path->length () > 1
1951 	  && (*path)[1]->type == EDGE_COPY_SRC_JOINER_BLOCK && e->aux == path)
1952 	{
1953 	  unsigned int j;
1954 	  for (j = 1; j < path->length (); j++)
1955 	    if ((*path)[j]->e->aux != NULL)
1956 	      break;
1957 
1958 	  /* If we iterated through the entire path without exiting the loop,
1959 	     then we are good to go, record it.  */
1960 	  if (j == path->length ())
1961 	    {
1962 	      bitmap_set_bit (tmp, e->dest->index);
1963 	      i++;
1964 	    }
1965 	  else
1966 	    {
1967 	      e->aux = NULL;
1968 	      paths.unordered_remove (i);
1969 	      if (dump_file && (dump_flags & TDF_DETAILS))
1970 		dump_jump_thread_path (dump_file, *path, false);
1971 	      delete_jump_thread_path (path);
1972 	    }
1973 	}
1974       else
1975 	{
1976 	  i++;
1977 	}
1978     }
1979 
1980   /* When optimizing for size, prune all thread paths where statement
1981      duplication is necessary.
1982 
1983      We walk the jump thread path looking for copied blocks.  There's
1984      two types of copied blocks.
1985 
1986        EDGE_COPY_SRC_JOINER_BLOCK is always copied and thus we will
1987        cancel the jump threading request when optimizing for size.
1988 
1989        EDGE_COPY_SRC_BLOCK which is copied, but some of its statements
1990        will be killed by threading.  If threading does not kill all of
1991        its statements, then we should cancel the jump threading request
1992        when optimizing for size.  */
1993   if (optimize_function_for_size_p (cfun))
1994     {
1995       EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
1996 	{
1997 	  FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, i)->preds)
1998 	    if (e->aux)
1999 	      {
2000 		vec<jump_thread_edge *> *path = THREAD_PATH (e);
2001 
2002 		unsigned int j;
2003 		for (j = 1; j < path->length (); j++)
2004 		  {
2005 		    bb = (*path)[j]->e->src;
2006 		    if (redirection_block_p (bb))
2007 		      ;
2008 		    else if ((*path)[j]->type == EDGE_COPY_SRC_JOINER_BLOCK
2009 			     || ((*path)[j]->type == EDGE_COPY_SRC_BLOCK
2010 			         && (count_stmts_and_phis_in_block (bb)
2011 				     != estimate_threading_killed_stmts (bb))))
2012 		      break;
2013 		  }
2014 
2015 		if (j != path->length ())
2016 		  {
2017 		    if (dump_file && (dump_flags & TDF_DETAILS))
2018 		      dump_jump_thread_path (dump_file, *path, 0);
2019 		    delete_jump_thread_path (path);
2020 		    e->aux = NULL;
2021 		  }
2022 		else
2023 		  bitmap_set_bit (threaded_blocks, i);
2024 	      }
2025 	}
2026     }
2027   else
2028     bitmap_copy (threaded_blocks, tmp);
2029 
2030   /* If we have a joiner block (J) which has two successors S1 and S2 and
2031      we are threading though S1 and the final destination of the thread
2032      is S2, then we must verify that any PHI nodes in S2 have the same
2033      PHI arguments for the edge J->S2 and J->S1->...->S2.
2034 
2035      We used to detect this prior to registering the jump thread, but
2036      that prohibits propagation of edge equivalences into non-dominated
2037      PHI nodes as the equivalency test might occur before propagation.
2038 
2039      This must also occur after we truncate any jump threading paths
2040      as this scenario may only show up after truncation.
2041 
2042      This works for now, but will need improvement as part of the FSA
2043      optimization.
2044 
2045      Note since we've moved the thread request data to the edges,
2046      we have to iterate on those rather than the threaded_edges vector.  */
2047   EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2048     {
2049       bb = BASIC_BLOCK_FOR_FN (cfun, i);
2050       FOR_EACH_EDGE (e, ei, bb->preds)
2051 	{
2052 	  if (e->aux)
2053 	    {
2054 	      vec<jump_thread_edge *> *path = THREAD_PATH (e);
2055 	      bool have_joiner = ((*path)[1]->type == EDGE_COPY_SRC_JOINER_BLOCK);
2056 
2057 	      if (have_joiner)
2058 		{
2059 		  basic_block joiner = e->dest;
2060 		  edge final_edge = path->last ()->e;
2061 		  basic_block final_dest = final_edge->dest;
2062 		  edge e2 = find_edge (joiner, final_dest);
2063 
2064 		  if (e2 && !phi_args_equal_on_edges (e2, final_edge))
2065 		    {
2066 		      delete_jump_thread_path (path);
2067 		      e->aux = NULL;
2068 		    }
2069 		}
2070 	    }
2071 	}
2072     }
2073 
2074   /* Look for jump threading paths which cross multiple loop headers.
2075 
2076      The code to thread through loop headers will change the CFG in ways
2077      that invalidate the cached loop iteration information.  So we must
2078      detect that case and wipe the cached information.  */
2079   EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2080     {
2081       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
2082       FOR_EACH_EDGE (e, ei, bb->preds)
2083 	{
2084 	  if (e->aux)
2085 	    {
2086 	      vec<jump_thread_edge *> *path = THREAD_PATH (e);
2087 
2088 	      for (unsigned int i = 0, crossed_headers = 0;
2089 		   i < path->length ();
2090 		   i++)
2091 		{
2092 		  basic_block dest = (*path)[i]->e->dest;
2093 		  basic_block src = (*path)[i]->e->src;
2094 		  /* If we enter a loop.  */
2095 		  if (flow_loop_nested_p (src->loop_father, dest->loop_father))
2096 		    ++crossed_headers;
2097 		  /* If we step from a block outside an irreducible region
2098 		     to a block inside an irreducible region, then we have
2099 		     crossed into a loop.  */
2100 		  else if (! (src->flags & BB_IRREDUCIBLE_LOOP)
2101 			   && (dest->flags & BB_IRREDUCIBLE_LOOP))
2102 		      ++crossed_headers;
2103 		  if (crossed_headers > 1)
2104 		    {
2105 		      vect_free_loop_info_assumptions
2106 			((*path)[path->length () - 1]->e->dest->loop_father);
2107 		      break;
2108 		    }
2109 		}
2110 	    }
2111 	}
2112     }
2113 }
2114 
2115 
2116 /* Verify that the REGION is a valid jump thread.  A jump thread is a special
2117    case of SEME Single Entry Multiple Exits region in which all nodes in the
2118    REGION have exactly one incoming edge.  The only exception is the first block
2119    that may not have been connected to the rest of the cfg yet.  */
2120 
2121 DEBUG_FUNCTION void
verify_jump_thread(basic_block * region,unsigned n_region)2122 verify_jump_thread (basic_block *region, unsigned n_region)
2123 {
2124   for (unsigned i = 0; i < n_region; i++)
2125     gcc_assert (EDGE_COUNT (region[i]->preds) <= 1);
2126 }
2127 
2128 /* Return true when BB is one of the first N items in BBS.  */
2129 
2130 static inline bool
bb_in_bbs(basic_block bb,basic_block * bbs,int n)2131 bb_in_bbs (basic_block bb, basic_block *bbs, int n)
2132 {
2133   for (int i = 0; i < n; i++)
2134     if (bb == bbs[i])
2135       return true;
2136 
2137   return false;
2138 }
2139 
2140 DEBUG_FUNCTION void
debug_path(FILE * dump_file,int pathno)2141 debug_path (FILE *dump_file, int pathno)
2142 {
2143   vec<jump_thread_edge *> *p = paths[pathno];
2144   fprintf (dump_file, "path: ");
2145   for (unsigned i = 0; i < p->length (); ++i)
2146     fprintf (dump_file, "%d -> %d, ",
2147 	     (*p)[i]->e->src->index, (*p)[i]->e->dest->index);
2148   fprintf (dump_file, "\n");
2149 }
2150 
2151 DEBUG_FUNCTION void
debug_all_paths()2152 debug_all_paths ()
2153 {
2154   for (unsigned i = 0; i < paths.length (); ++i)
2155     debug_path (stderr, i);
2156 }
2157 
2158 /* Rewire a jump_thread_edge so that the source block is now a
2159    threaded source block.
2160 
2161    PATH_NUM is an index into the global path table PATHS.
2162    EDGE_NUM is the jump thread edge number into said path.
2163 
2164    Returns TRUE if we were able to successfully rewire the edge.  */
2165 
2166 static bool
rewire_first_differing_edge(unsigned path_num,unsigned edge_num)2167 rewire_first_differing_edge (unsigned path_num, unsigned edge_num)
2168 {
2169   vec<jump_thread_edge *> *path = paths[path_num];
2170   edge &e = (*path)[edge_num]->e;
2171   if (dump_file && (dump_flags & TDF_DETAILS))
2172     fprintf (dump_file, "rewiring edge candidate: %d -> %d\n",
2173 	     e->src->index, e->dest->index);
2174   basic_block src_copy = get_bb_copy (e->src);
2175   if (src_copy == NULL)
2176     {
2177       if (dump_file && (dump_flags & TDF_DETAILS))
2178 	fprintf (dump_file, "ignoring candidate: there is no src COPY\n");
2179       return false;
2180     }
2181   edge new_edge = find_edge (src_copy, e->dest);
2182   /* If the previously threaded paths created a flow graph where we
2183      can no longer figure out where to go, give up.  */
2184   if (new_edge == NULL)
2185     {
2186       if (dump_file && (dump_flags & TDF_DETAILS))
2187 	fprintf (dump_file, "ignoring candidate: we lost our way\n");
2188       return false;
2189     }
2190   e = new_edge;
2191   return true;
2192 }
2193 
2194 /* After an FSM path has been jump threaded, adjust the remaining FSM
2195    paths that are subsets of this path, so these paths can be safely
2196    threaded within the context of the new threaded path.
2197 
2198    For example, suppose we have just threaded:
2199 
2200    5 -> 6 -> 7 -> 8 -> 12	=>	5 -> 6' -> 7' -> 8' -> 12'
2201 
2202    And we have an upcoming threading candidate:
2203    5 -> 6 -> 7 -> 8 -> 15 -> 20
2204 
2205    This function adjusts the upcoming path into:
2206    8' -> 15 -> 20
2207 
2208    CURR_PATH_NUM is an index into the global paths table.  It
2209    specifies the path that was just threaded.  */
2210 
2211 static void
adjust_paths_after_duplication(unsigned curr_path_num)2212 adjust_paths_after_duplication (unsigned curr_path_num)
2213 {
2214   vec<jump_thread_edge *> *curr_path = paths[curr_path_num];
2215   gcc_assert ((*curr_path)[0]->type == EDGE_FSM_THREAD);
2216 
2217   if (dump_file && (dump_flags & TDF_DETAILS))
2218     {
2219       fprintf (dump_file, "just threaded: ");
2220       debug_path (dump_file, curr_path_num);
2221     }
2222 
2223   /* Iterate through all the other paths and adjust them.  */
2224   for (unsigned cand_path_num = 0; cand_path_num < paths.length (); )
2225     {
2226       if (cand_path_num == curr_path_num)
2227 	{
2228 	  ++cand_path_num;
2229 	  continue;
2230 	}
2231       /* Make sure the candidate to adjust starts with the same path
2232 	 as the recently threaded path and is an FSM thread.  */
2233       vec<jump_thread_edge *> *cand_path = paths[cand_path_num];
2234       if ((*cand_path)[0]->type != EDGE_FSM_THREAD
2235 	  || (*cand_path)[0]->e != (*curr_path)[0]->e)
2236 	{
2237 	  ++cand_path_num;
2238 	  continue;
2239 	}
2240       if (dump_file && (dump_flags & TDF_DETAILS))
2241 	{
2242 	  fprintf (dump_file, "adjusting candidate: ");
2243 	  debug_path (dump_file, cand_path_num);
2244 	}
2245 
2246       /* Chop off from the candidate path any prefix it shares with
2247 	 the recently threaded path.  */
2248       unsigned minlength = MIN (curr_path->length (), cand_path->length ());
2249       unsigned j;
2250       for (j = 0; j < minlength; ++j)
2251 	{
2252 	  edge cand_edge = (*cand_path)[j]->e;
2253 	  edge curr_edge = (*curr_path)[j]->e;
2254 
2255 	  /* Once the prefix no longer matches, adjust the first
2256 	     non-matching edge to point from an adjusted edge to
2257 	     wherever it was going.  */
2258 	  if (cand_edge != curr_edge)
2259 	    {
2260 	      gcc_assert (cand_edge->src == curr_edge->src);
2261 	      if (!rewire_first_differing_edge (cand_path_num, j))
2262 		goto remove_candidate_from_list;
2263 	      break;
2264 	    }
2265 	}
2266       if (j == minlength)
2267 	{
2268 	  /* If we consumed the max subgraph we could look at, and
2269 	     still didn't find any different edges, it's the
2270 	     last edge after MINLENGTH.  */
2271 	  if (cand_path->length () > minlength)
2272 	    {
2273 	      if (!rewire_first_differing_edge (cand_path_num, j))
2274 		goto remove_candidate_from_list;
2275 	    }
2276 	  else if (dump_file && (dump_flags & TDF_DETAILS))
2277 	    fprintf (dump_file, "adjusting first edge after MINLENGTH.\n");
2278 	}
2279       if (j > 0)
2280 	{
2281 	  /* If we are removing everything, delete the entire candidate.  */
2282 	  if (j == cand_path->length ())
2283 	    {
2284 	    remove_candidate_from_list:
2285 	      if (dump_file && (dump_flags & TDF_DETAILS))
2286 		fprintf (dump_file, "adjusted candidate: [EMPTY]\n");
2287 	      delete_jump_thread_path (cand_path);
2288 	      paths.unordered_remove (cand_path_num);
2289 	      continue;
2290 	    }
2291 	  /* Otherwise, just remove the redundant sub-path.  */
2292 	  cand_path->block_remove (0, j);
2293 	}
2294       if (dump_file && (dump_flags & TDF_DETAILS))
2295 	{
2296 	  fprintf (dump_file, "adjusted candidate: ");
2297 	  debug_path (dump_file, cand_path_num);
2298 	}
2299       ++cand_path_num;
2300     }
2301 }
2302 
2303 /* Duplicates a jump-thread path of N_REGION basic blocks.
2304    The ENTRY edge is redirected to the duplicate of the region.
2305 
2306    Remove the last conditional statement in the last basic block in the REGION,
2307    and create a single fallthru edge pointing to the same destination as the
2308    EXIT edge.
2309 
2310    CURRENT_PATH_NO is an index into the global paths[] table
2311    specifying the jump-thread path.
2312 
2313    Returns false if it is unable to copy the region, true otherwise.  */
2314 
2315 static bool
duplicate_thread_path(edge entry,edge exit,basic_block * region,unsigned n_region,unsigned current_path_no)2316 duplicate_thread_path (edge entry, edge exit, basic_block *region,
2317 		       unsigned n_region, unsigned current_path_no)
2318 {
2319   unsigned i;
2320   class loop *loop = entry->dest->loop_father;
2321   edge exit_copy;
2322   edge redirected;
2323   profile_count curr_count;
2324 
2325   if (!can_copy_bbs_p (region, n_region))
2326     return false;
2327 
2328   if (dump_file && (dump_flags & TDF_DETAILS))
2329     {
2330       fprintf (dump_file, "\nabout to thread: ");
2331       debug_path (dump_file, current_path_no);
2332     }
2333 
2334   /* Some sanity checking.  Note that we do not check for all possible
2335      missuses of the functions.  I.e. if you ask to copy something weird,
2336      it will work, but the state of structures probably will not be
2337      correct.  */
2338   for (i = 0; i < n_region; i++)
2339     {
2340       /* We do not handle subloops, i.e. all the blocks must belong to the
2341 	 same loop.  */
2342       if (region[i]->loop_father != loop)
2343 	return false;
2344     }
2345 
2346   initialize_original_copy_tables ();
2347 
2348   set_loop_copy (loop, loop);
2349 
2350   basic_block *region_copy = XNEWVEC (basic_block, n_region);
2351   copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
2352 	    split_edge_bb_loc (entry), false);
2353 
2354   /* Fix up: copy_bbs redirects all edges pointing to copied blocks.  The
2355      following code ensures that all the edges exiting the jump-thread path are
2356      redirected back to the original code: these edges are exceptions
2357      invalidating the property that is propagated by executing all the blocks of
2358      the jump-thread path in order.  */
2359 
2360   curr_count = entry->count ();
2361 
2362   for (i = 0; i < n_region; i++)
2363     {
2364       edge e;
2365       edge_iterator ei;
2366       basic_block bb = region_copy[i];
2367 
2368       /* Watch inconsistent profile.  */
2369       if (curr_count > region[i]->count)
2370 	curr_count = region[i]->count;
2371       /* Scale current BB.  */
2372       if (region[i]->count.nonzero_p () && curr_count.initialized_p ())
2373 	{
2374 	  /* In the middle of the path we only scale the frequencies.
2375 	     In last BB we need to update probabilities of outgoing edges
2376 	     because we know which one is taken at the threaded path.  */
2377 	  if (i + 1 != n_region)
2378 	    scale_bbs_frequencies_profile_count (region + i, 1,
2379 					         region[i]->count - curr_count,
2380 					         region[i]->count);
2381 	  else
2382 	    update_bb_profile_for_threading (region[i],
2383 					     curr_count,
2384 					     exit);
2385 	  scale_bbs_frequencies_profile_count (region_copy + i, 1, curr_count,
2386 					       region_copy[i]->count);
2387 	}
2388 
2389       if (single_succ_p (bb))
2390 	{
2391 	  /* Make sure the successor is the next node in the path.  */
2392 	  gcc_assert (i + 1 == n_region
2393 		      || region_copy[i + 1] == single_succ_edge (bb)->dest);
2394 	  if (i + 1 != n_region)
2395 	    {
2396 	      curr_count = single_succ_edge (bb)->count ();
2397 	    }
2398 	  continue;
2399 	}
2400 
2401       /* Special case the last block on the path: make sure that it does not
2402 	 jump back on the copied path, including back to itself.  */
2403       if (i + 1 == n_region)
2404 	{
2405 	  FOR_EACH_EDGE (e, ei, bb->succs)
2406 	    if (bb_in_bbs (e->dest, region_copy, n_region))
2407 	      {
2408 		basic_block orig = get_bb_original (e->dest);
2409 		if (orig)
2410 		  redirect_edge_and_branch_force (e, orig);
2411 	      }
2412 	  continue;
2413 	}
2414 
2415       /* Redirect all other edges jumping to non-adjacent blocks back to the
2416 	 original code.  */
2417       FOR_EACH_EDGE (e, ei, bb->succs)
2418 	if (region_copy[i + 1] != e->dest)
2419 	  {
2420 	    basic_block orig = get_bb_original (e->dest);
2421 	    if (orig)
2422 	      redirect_edge_and_branch_force (e, orig);
2423 	  }
2424 	else
2425 	  {
2426 	    curr_count = e->count ();
2427 	  }
2428     }
2429 
2430 
2431   if (flag_checking)
2432     verify_jump_thread (region_copy, n_region);
2433 
2434   /* Remove the last branch in the jump thread path.  */
2435   remove_ctrl_stmt_and_useless_edges (region_copy[n_region - 1], exit->dest);
2436 
2437   /* And fixup the flags on the single remaining edge.  */
2438   edge fix_e = find_edge (region_copy[n_region - 1], exit->dest);
2439   fix_e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL);
2440   fix_e->flags |= EDGE_FALLTHRU;
2441 
2442   edge e = make_edge (region_copy[n_region - 1], exit->dest, EDGE_FALLTHRU);
2443 
2444   if (e)
2445     {
2446       rescan_loop_exit (e, true, false);
2447       e->probability = profile_probability::always ();
2448     }
2449 
2450   /* Redirect the entry and add the phi node arguments.  */
2451   if (entry->dest == loop->header)
2452     mark_loop_for_removal (loop);
2453   redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
2454   gcc_assert (redirected != NULL);
2455   flush_pending_stmts (entry);
2456 
2457   /* Add the other PHI node arguments.  */
2458   add_phi_args_after_copy (region_copy, n_region, NULL);
2459 
2460   free (region_copy);
2461 
2462   adjust_paths_after_duplication (current_path_no);
2463 
2464   free_original_copy_tables ();
2465   return true;
2466 }
2467 
2468 /* Return true when PATH is a valid jump-thread path.  */
2469 
2470 static bool
valid_jump_thread_path(vec<jump_thread_edge * > * path)2471 valid_jump_thread_path (vec<jump_thread_edge *> *path)
2472 {
2473   unsigned len = path->length ();
2474 
2475   /* Check that the path is connected.  */
2476   for (unsigned int j = 0; j < len - 1; j++)
2477     {
2478       edge e = (*path)[j]->e;
2479       if (e->dest != (*path)[j+1]->e->src)
2480 	return false;
2481     }
2482   return true;
2483 }
2484 
2485 /* Remove any queued jump threads that include edge E.
2486 
2487    We don't actually remove them here, just record the edges into ax
2488    hash table.  That way we can do the search once per iteration of
2489    DOM/VRP rather than for every case where DOM optimizes away a COND_EXPR.  */
2490 
2491 void
remove_jump_threads_including(edge_def * e)2492 remove_jump_threads_including (edge_def *e)
2493 {
2494   if (!paths.exists ())
2495     return;
2496 
2497   if (!removed_edges)
2498     removed_edges = new hash_table<struct removed_edges> (17);
2499 
2500   edge *slot = removed_edges->find_slot (e, INSERT);
2501   *slot = e;
2502 }
2503 
2504 /* Walk through all blocks and thread incoming edges to the appropriate
2505    outgoing edge for each edge pair recorded in THREADED_EDGES.
2506 
2507    It is the caller's responsibility to fix the dominance information
2508    and rewrite duplicated SSA_NAMEs back into SSA form.
2509 
2510    If MAY_PEEL_LOOP_HEADERS is false, we avoid threading edges through
2511    loop headers if it does not simplify the loop.
2512 
2513    Returns true if one or more edges were threaded, false otherwise.  */
2514 
2515 bool
thread_through_all_blocks(bool may_peel_loop_headers)2516 thread_through_all_blocks (bool may_peel_loop_headers)
2517 {
2518   bool retval = false;
2519   unsigned int i;
2520   class loop *loop;
2521   auto_bitmap threaded_blocks;
2522   hash_set<edge> visited_starting_edges;
2523 
2524   if (!paths.exists ())
2525     {
2526       retval = false;
2527       goto out;
2528     }
2529 
2530   memset (&thread_stats, 0, sizeof (thread_stats));
2531 
2532   /* Remove any paths that referenced removed edges.  */
2533   if (removed_edges)
2534     for (i = 0; i < paths.length (); )
2535       {
2536 	unsigned int j;
2537 	vec<jump_thread_edge *> *path = paths[i];
2538 
2539 	for (j = 0; j < path->length (); j++)
2540 	  {
2541 	    edge e = (*path)[j]->e;
2542 	    if (removed_edges->find_slot (e, NO_INSERT))
2543 	      break;
2544 	  }
2545 
2546 	if (j != path->length ())
2547 	  {
2548 	    delete_jump_thread_path (path);
2549 	    paths.unordered_remove (i);
2550 	    continue;
2551 	  }
2552 	i++;
2553       }
2554 
2555   /* Jump-thread all FSM threads before other jump-threads.  */
2556   for (i = 0; i < paths.length ();)
2557     {
2558       vec<jump_thread_edge *> *path = paths[i];
2559       edge entry = (*path)[0]->e;
2560 
2561       /* Only code-generate FSM jump-threads in this loop.  */
2562       if ((*path)[0]->type != EDGE_FSM_THREAD)
2563 	{
2564 	  i++;
2565 	  continue;
2566 	}
2567 
2568       /* Do not jump-thread twice from the same starting edge.
2569 
2570 	 Previously we only checked that we weren't threading twice
2571 	 from the same BB, but that was too restrictive.  Imagine a
2572 	 path that starts from GIMPLE_COND(x_123 == 0,...), where both
2573 	 edges out of this conditional yield paths that can be
2574 	 threaded (for example, both lead to an x_123==0 or x_123!=0
2575 	 conditional further down the line.  */
2576       if (visited_starting_edges.contains (entry)
2577 	  /* We may not want to realize this jump thread path for
2578 	     various reasons.  So check it first.  */
2579 	  || !valid_jump_thread_path (path))
2580 	{
2581 	  /* Remove invalid FSM jump-thread paths.  */
2582 	  delete_jump_thread_path (path);
2583 	  paths.unordered_remove (i);
2584 	  continue;
2585 	}
2586 
2587       unsigned len = path->length ();
2588       edge exit = (*path)[len - 1]->e;
2589       basic_block *region = XNEWVEC (basic_block, len - 1);
2590 
2591       for (unsigned int j = 0; j < len - 1; j++)
2592 	region[j] = (*path)[j]->e->dest;
2593 
2594       if (duplicate_thread_path (entry, exit, region, len - 1, i))
2595 	{
2596 	  /* We do not update dominance info.  */
2597 	  free_dominance_info (CDI_DOMINATORS);
2598 	  visited_starting_edges.add (entry);
2599 	  retval = true;
2600 	  thread_stats.num_threaded_edges++;
2601 	}
2602 
2603       delete_jump_thread_path (path);
2604       paths.unordered_remove (i);
2605       free (region);
2606     }
2607 
2608   /* Remove from PATHS all the jump-threads starting with an edge already
2609      jump-threaded.  */
2610   for (i = 0; i < paths.length ();)
2611     {
2612       vec<jump_thread_edge *> *path = paths[i];
2613       edge entry = (*path)[0]->e;
2614 
2615       /* Do not jump-thread twice from the same block.  */
2616       if (visited_starting_edges.contains (entry))
2617 	{
2618 	  delete_jump_thread_path (path);
2619 	  paths.unordered_remove (i);
2620 	}
2621       else
2622 	i++;
2623     }
2624 
2625   mark_threaded_blocks (threaded_blocks);
2626 
2627   initialize_original_copy_tables ();
2628 
2629   /* The order in which we process jump threads can be important.
2630 
2631      Consider if we have two jump threading paths A and B.  If the
2632      target edge of A is the starting edge of B and we thread path A
2633      first, then we create an additional incoming edge into B->dest that
2634      we cannot discover as a jump threading path on this iteration.
2635 
2636      If we instead thread B first, then the edge into B->dest will have
2637      already been redirected before we process path A and path A will
2638      natually, with no further work, target the redirected path for B.
2639 
2640      An post-order is sufficient here.  Compute the ordering first, then
2641      process the blocks.  */
2642   if (!bitmap_empty_p (threaded_blocks))
2643     {
2644       int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2645       unsigned int postorder_num = post_order_compute (postorder, false, false);
2646       for (unsigned int i = 0; i < postorder_num; i++)
2647 	{
2648 	  unsigned int indx = postorder[i];
2649 	  if (bitmap_bit_p (threaded_blocks, indx))
2650 	    {
2651 	      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, indx);
2652 	      retval |= thread_block (bb, true);
2653 	    }
2654 	}
2655       free (postorder);
2656     }
2657 
2658   /* Then perform the threading through loop headers.  We start with the
2659      innermost loop, so that the changes in cfg we perform won't affect
2660      further threading.  */
2661   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2662     {
2663       if (!loop->header
2664 	  || !bitmap_bit_p (threaded_blocks, loop->header->index))
2665 	continue;
2666 
2667       retval |= thread_through_loop_header (loop, may_peel_loop_headers);
2668     }
2669 
2670   /* All jump threading paths should have been resolved at this
2671      point.  Verify that is the case.  */
2672   basic_block bb;
2673   FOR_EACH_BB_FN (bb, cfun)
2674     {
2675       edge_iterator ei;
2676       edge e;
2677       FOR_EACH_EDGE (e, ei, bb->preds)
2678 	gcc_assert (e->aux == NULL);
2679     }
2680 
2681   statistics_counter_event (cfun, "Jumps threaded",
2682 			    thread_stats.num_threaded_edges);
2683 
2684   free_original_copy_tables ();
2685 
2686   paths.release ();
2687 
2688   if (retval)
2689     loops_state_set (LOOPS_NEED_FIXUP);
2690 
2691  out:
2692   delete removed_edges;
2693   removed_edges = NULL;
2694   return retval;
2695 }
2696 
2697 /* Delete the jump threading path PATH.  We have to explicitly delete
2698    each entry in the vector, then the container.  */
2699 
2700 void
delete_jump_thread_path(vec<jump_thread_edge * > * path)2701 delete_jump_thread_path (vec<jump_thread_edge *> *path)
2702 {
2703   for (unsigned int i = 0; i < path->length (); i++)
2704     delete (*path)[i];
2705   path->release();
2706   delete path;
2707 }
2708 
2709 /* Register a jump threading opportunity.  We queue up all the jump
2710    threading opportunities discovered by a pass and update the CFG
2711    and SSA form all at once.
2712 
2713    E is the edge we can thread, E2 is the new target edge, i.e., we
2714    are effectively recording that E->dest can be changed to E2->dest
2715    after fixing the SSA graph.  */
2716 
2717 void
register_jump_thread(vec<jump_thread_edge * > * path)2718 register_jump_thread (vec<jump_thread_edge *> *path)
2719 {
2720   if (!dbg_cnt (registered_jump_thread))
2721     {
2722       delete_jump_thread_path (path);
2723       return;
2724     }
2725 
2726   /* First make sure there are no NULL outgoing edges on the jump threading
2727      path.  That can happen for jumping to a constant address.  */
2728   for (unsigned int i = 0; i < path->length (); i++)
2729     {
2730       if ((*path)[i]->e == NULL)
2731 	{
2732 	  if (dump_file && (dump_flags & TDF_DETAILS))
2733 	    {
2734 	      fprintf (dump_file,
2735 		       "Found NULL edge in jump threading path.  Cancelling jump thread:\n");
2736 	      dump_jump_thread_path (dump_file, *path, false);
2737 	    }
2738 
2739 	  delete_jump_thread_path (path);
2740 	  return;
2741 	}
2742 
2743       /* Only the FSM threader is allowed to thread across
2744 	 backedges in the CFG.  */
2745       if (flag_checking
2746 	  && (*path)[0]->type != EDGE_FSM_THREAD)
2747 	gcc_assert (((*path)[i]->e->flags & EDGE_DFS_BACK) == 0);
2748     }
2749 
2750   if (dump_file && (dump_flags & TDF_DETAILS))
2751     dump_jump_thread_path (dump_file, *path, true);
2752 
2753   if (!paths.exists ())
2754     paths.create (5);
2755 
2756   paths.safe_push (path);
2757 }
2758 
2759 /* Return how many uses of T there are within BB, as long as there
2760    aren't any uses outside BB.  If there are any uses outside BB,
2761    return -1 if there's at most one use within BB, or -2 if there is
2762    more than one use within BB.  */
2763 
2764 static int
uses_in_bb(tree t,basic_block bb)2765 uses_in_bb (tree t, basic_block bb)
2766 {
2767   int uses = 0;
2768   bool outside_bb = false;
2769 
2770   imm_use_iterator iter;
2771   use_operand_p use_p;
2772   FOR_EACH_IMM_USE_FAST (use_p, iter, t)
2773     {
2774       if (is_gimple_debug (USE_STMT (use_p)))
2775 	continue;
2776 
2777       if (gimple_bb (USE_STMT (use_p)) != bb)
2778 	outside_bb = true;
2779       else
2780 	uses++;
2781 
2782       if (outside_bb && uses > 1)
2783 	return -2;
2784     }
2785 
2786   if (outside_bb)
2787     return -1;
2788 
2789   return uses;
2790 }
2791 
2792 /* Starting from the final control flow stmt in BB, assuming it will
2793    be removed, follow uses in to-be-removed stmts back to their defs
2794    and count how many defs are to become dead and be removed as
2795    well.  */
2796 
2797 unsigned int
estimate_threading_killed_stmts(basic_block bb)2798 estimate_threading_killed_stmts (basic_block bb)
2799 {
2800   int killed_stmts = 0;
2801   hash_map<tree, int> ssa_remaining_uses;
2802   auto_vec<gimple *, 4> dead_worklist;
2803 
2804   /* If the block has only two predecessors, threading will turn phi
2805      dsts into either src, so count them as dead stmts.  */
2806   bool drop_all_phis = EDGE_COUNT (bb->preds) == 2;
2807 
2808   if (drop_all_phis)
2809     for (gphi_iterator gsi = gsi_start_phis (bb);
2810 	 !gsi_end_p (gsi); gsi_next (&gsi))
2811       {
2812 	gphi *phi = gsi.phi ();
2813 	tree dst = gimple_phi_result (phi);
2814 
2815 	/* We don't count virtual PHIs as stmts in
2816 	   record_temporary_equivalences_from_phis.  */
2817 	if (virtual_operand_p (dst))
2818 	  continue;
2819 
2820 	killed_stmts++;
2821       }
2822 
2823   if (gsi_end_p (gsi_last_bb (bb)))
2824     return killed_stmts;
2825 
2826   gimple *stmt = gsi_stmt (gsi_last_bb (bb));
2827   if (gimple_code (stmt) != GIMPLE_COND
2828       && gimple_code (stmt) != GIMPLE_GOTO
2829       && gimple_code (stmt) != GIMPLE_SWITCH)
2830     return killed_stmts;
2831 
2832   /* The control statement is always dead.  */
2833   killed_stmts++;
2834   dead_worklist.quick_push (stmt);
2835   while (!dead_worklist.is_empty ())
2836     {
2837       stmt = dead_worklist.pop ();
2838 
2839       ssa_op_iter iter;
2840       use_operand_p use_p;
2841       FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2842 	{
2843 	  tree t = USE_FROM_PTR (use_p);
2844 	  gimple *def = SSA_NAME_DEF_STMT (t);
2845 
2846 	  if (gimple_bb (def) == bb
2847 	      && (gimple_code (def) != GIMPLE_PHI
2848 		  || !drop_all_phis)
2849 	      && !gimple_has_side_effects (def))
2850 	    {
2851 	      int *usesp = ssa_remaining_uses.get (t);
2852 	      int uses;
2853 
2854 	      if (usesp)
2855 		uses = *usesp;
2856 	      else
2857 		uses = uses_in_bb (t, bb);
2858 
2859 	      gcc_assert (uses);
2860 
2861 	      /* Don't bother recording the expected use count if we
2862 		 won't find any further uses within BB.  */
2863 	      if (!usesp && (uses < -1 || uses > 1))
2864 		{
2865 		  usesp = &ssa_remaining_uses.get_or_insert (t);
2866 		  *usesp = uses;
2867 		}
2868 
2869 	      if (uses < 0)
2870 		continue;
2871 
2872 	      --uses;
2873 	      if (usesp)
2874 		*usesp = uses;
2875 
2876 	      if (!uses)
2877 		{
2878 		  killed_stmts++;
2879 		  if (usesp)
2880 		    ssa_remaining_uses.remove (t);
2881 		  if (gimple_code (def) != GIMPLE_PHI)
2882 		    dead_worklist.safe_push (def);
2883 		}
2884 	    }
2885 	}
2886     }
2887 
2888   if (dump_file)
2889     fprintf (dump_file, "threading bb %i kills %i stmts\n",
2890 	     bb->index, killed_stmts);
2891 
2892   return killed_stmts;
2893 }
2894