1 /* Copyright (C) 2007-2020 Free Software Foundation, Inc.
2 
3 This file is part of GCC.
4 
5 GCC is free software; you can redistribute it and/or modify it under
6 the terms of the GNU General Public License as published by the Free
7 Software Foundation; either version 3, or (at your option) any later
8 version.
9 
10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11 WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 for more details.
14 
15 Under Section 7 of GPL version 3, you are granted additional
16 permissions described in the GCC Runtime Library Exception, version
17 3.1, as published by the Free Software Foundation.
18 
19 You should have received a copy of the GNU General Public License and
20 a copy of the GCC Runtime Library Exception along with this program;
21 see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22 <http://www.gnu.org/licenses/>.  */
23 
24 #include "bid_internal.h"
25 
26 /*****************************************************************************
27  *  BID64_to_uint64_rnint
28  ****************************************************************************/
29 
30 #if DECIMAL_CALL_BY_REFERENCE
31 void
bid64_to_uint64_rnint(UINT64 * pres,UINT64 * px _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM)32 bid64_to_uint64_rnint (UINT64 * pres, UINT64 * px
33 		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
34 		       _EXC_INFO_PARAM) {
35   UINT64 x = *px;
36 #else
37 UINT64
38 bid64_to_uint64_rnint (UINT64 x
39 		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
40 		       _EXC_INFO_PARAM) {
41 #endif
42   UINT64 res;
43   UINT64 x_sign;
44   UINT64 x_exp;
45   int exp;			// unbiased exponent
46   // Note: C1 represents x_significand (UINT64)
47   BID_UI64DOUBLE tmp1;
48   unsigned int x_nr_bits;
49   int q, ind, shift;
50   UINT64 C1;
51   UINT128 C;
52   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
53   UINT128 fstar;
54   UINT128 P128;
55 
56   // check for NaN or Infinity
57   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
58     // set invalid flag
59     *pfpsf |= INVALID_EXCEPTION;
60     // return Integer Indefinite
61     res = 0x8000000000000000ull;
62     BID_RETURN (res);
63   }
64   // unpack x
65   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
66   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
67   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
68     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
69     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
70     if (C1 > 9999999999999999ull) {	// non-canonical
71       x_exp = 0;
72       C1 = 0;
73     }
74   } else {
75     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
76     C1 = x & MASK_BINARY_SIG1;
77   }
78 
79   // check for zeros (possibly from non-canonical values)
80   if (C1 == 0x0ull) {
81     // x is 0
82     res = 0x0000000000000000ull;
83     BID_RETURN (res);
84   }
85   // x is not special and is not zero
86 
87   // q = nr. of decimal digits in x (1 <= q <= 54)
88   //  determine first the nr. of bits in x
89   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
90     // split the 64-bit value in two 32-bit halves to avoid rounding errors
91     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
92       tmp1.d = (double) (C1 >> 32);	// exact conversion
93       x_nr_bits =
94 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
95     } else {	// x < 2^32
96       tmp1.d = (double) C1;	// exact conversion
97       x_nr_bits =
98 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
99     }
100   } else {	// if x < 2^53
101     tmp1.d = (double) C1;	// exact conversion
102     x_nr_bits =
103       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
104   }
105   q = nr_digits[x_nr_bits - 1].digits;
106   if (q == 0) {
107     q = nr_digits[x_nr_bits - 1].digits1;
108     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
109       q++;
110   }
111   exp = x_exp - 398;	// unbiased exponent
112 
113   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
114     // set invalid flag
115     *pfpsf |= INVALID_EXCEPTION;
116     // return Integer Indefinite
117     res = 0x8000000000000000ull;
118     BID_RETURN (res);
119   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
120     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
121     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
122     // the cases that do not fit are identified here; the ones that fit
123     // fall through and will be handled with other cases further,
124     // under '1 <= q + exp <= 20'
125     if (x_sign) {	// if n < 0 and q + exp = 20 then x is much less than -1/2
126       // => set invalid flag
127       *pfpsf |= INVALID_EXCEPTION;
128       // return Integer Indefinite
129       res = 0x8000000000000000ull;
130       BID_RETURN (res);
131     } else {	// if n > 0 and q + exp = 20
132       // if n >= 2^64 - 1/2 then n is too large
133       // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
134       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
135       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
136       // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
137       if (q == 1) {
138 	// C * 10^20 >= 0x9fffffffffffffffb
139 	__mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
140 	if (C.w[1] > 0x09 ||
141 	    (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
142 	  // set invalid flag
143 	  *pfpsf |= INVALID_EXCEPTION;
144 	  // return Integer Indefinite
145 	  res = 0x8000000000000000ull;
146 	  BID_RETURN (res);
147 	}
148 	// else cases that can be rounded to a 64-bit int fall through
149 	// to '1 <= q + exp <= 20'
150       } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
151 	// Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
152 	// has 21 digits
153 	__mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
154 	if (C.w[1] > 0x09 ||
155 	    (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
156 	  // set invalid flag
157 	  *pfpsf |= INVALID_EXCEPTION;
158 	  // return Integer Indefinite
159 	  res = 0x8000000000000000ull;
160 	  BID_RETURN (res);
161 	}
162 	// else cases that can be rounded to a 64-bit int fall through
163 	// to '1 <= q + exp <= 20'
164       }
165     }
166   }
167   // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
168   // Note: some of the cases tested for above fall through to this point
169   if ((q + exp) < 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
170     // return 0
171     res = 0x0000000000000000ull;
172     BID_RETURN (res);
173   } else if ((q + exp) == 0) {	// n = +/-0.c(0)c(1)...c(q-1)
174     // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
175     //   res = 0
176     // else if x > 0
177     //   res = +1
178     // else // if x < 0
179     //   invalid exc
180     ind = q - 1;	// 0 <= ind <= 15
181     if (C1 <= midpoint64[ind]) {
182       res = 0x0000000000000000ull;	// return 0
183     } else if (!x_sign) {	// n > 0
184       res = 0x0000000000000001ull;	// return +1
185     } else {	// if n < 0
186       res = 0x8000000000000000ull;
187       *pfpsf |= INVALID_EXCEPTION;
188       BID_RETURN (res);
189     }
190   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
191     // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
192     // to nearest to a 64-bit unsigned signed integer
193     if (x_sign) {	// x <= -1
194       // set invalid flag
195       *pfpsf |= INVALID_EXCEPTION;
196       // return Integer Indefinite
197       res = 0x8000000000000000ull;
198       BID_RETURN (res);
199     }
200     // 1 <= x < 2^64-1/2 so x can be rounded
201     // to nearest to a 64-bit unsigned integer
202     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
203       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
204       // chop off ind digits from the lower part of C1
205       // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
206       C1 = C1 + midpoint64[ind - 1];
207       // calculate C* and f*
208       // C* is actually floor(C*) in this case
209       // C* and f* need shifting and masking, as shown by
210       // shiftright128[] and maskhigh128[]
211       // 1 <= x <= 15
212       // kx = 10^(-x) = ten2mk64[ind - 1]
213       // C* = (C1 + 1/2 * 10^x) * 10^(-x)
214       // the approximation of 10^(-x) was rounded up to 54 bits
215       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
216       Cstar = P128.w[1];
217       fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
218       fstar.w[0] = P128.w[0];
219       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
220       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
221       // if (0 < f* < 10^(-x)) then the result is a midpoint
222       //   if floor(C*) is even then C* = floor(C*) - logical right
223       //       shift; C* has p decimal digits, correct by Prop. 1)
224       //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
225       //       shift; C* has p decimal digits, correct by Pr. 1)
226       // else
227       //   C* = floor(C*) (logical right shift; C has p decimal digits,
228       //       correct by Property 1)
229       // n = C* * 10^(e+x)
230 
231       // shift right C* by Ex-64 = shiftright128[ind]
232       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
233       Cstar = Cstar >> shift;
234 
235       // if the result was a midpoint it was rounded away from zero, so
236       // it will need a correction
237       // check for midpoints
238       if ((fstar.w[1] == 0) && fstar.w[0] &&
239 	  (fstar.w[0] <= ten2mk128trunc[ind - 1].w[1])) {
240 	// ten2mk128trunc[ind -1].w[1] is identical to
241 	// ten2mk128[ind -1].w[1]
242 	// the result is a midpoint; round to nearest
243 	if (Cstar & 0x01) {	// Cstar is odd; MP in [EVEN, ODD]
244 	  // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
245 	  Cstar--;	// Cstar is now even
246 	}	// else MP in [ODD, EVEN]
247       }
248       res = Cstar;	// the result is positive
249     } else if (exp == 0) {
250       // 1 <= q <= 10
251       // res = +C (exact)
252       res = C1;	// the result is positive
253     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
254       // res = +C * 10^exp (exact)
255       res = C1 * ten2k64[exp];	// the result is positive
256     }
257   }
258   BID_RETURN (res);
259 }
260 
261 /*****************************************************************************
262  *  BID64_to_uint64_xrnint
263  ****************************************************************************/
264 
265 #if DECIMAL_CALL_BY_REFERENCE
266 void
267 bid64_to_uint64_xrnint (UINT64 * pres, UINT64 * px
268 			_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
269 			_EXC_INFO_PARAM) {
270   UINT64 x = *px;
271 #else
272 UINT64
273 bid64_to_uint64_xrnint (UINT64 x
274 			_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
275 			_EXC_INFO_PARAM) {
276 #endif
277   UINT64 res;
278   UINT64 x_sign;
279   UINT64 x_exp;
280   int exp;			// unbiased exponent
281   // Note: C1 represents x_significand (UINT64)
282   UINT64 tmp64;
283   BID_UI64DOUBLE tmp1;
284   unsigned int x_nr_bits;
285   int q, ind, shift;
286   UINT64 C1;
287   UINT128 C;
288   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
289   UINT128 fstar;
290   UINT128 P128;
291 
292   // check for NaN or Infinity
293   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
294     // set invalid flag
295     *pfpsf |= INVALID_EXCEPTION;
296     // return Integer Indefinite
297     res = 0x8000000000000000ull;
298     BID_RETURN (res);
299   }
300   // unpack x
301   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
302   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
303   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
304     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
305     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
306     if (C1 > 9999999999999999ull) {	// non-canonical
307       x_exp = 0;
308       C1 = 0;
309     }
310   } else {
311     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
312     C1 = x & MASK_BINARY_SIG1;
313   }
314 
315   // check for zeros (possibly from non-canonical values)
316   if (C1 == 0x0ull) {
317     // x is 0
318     res = 0x0000000000000000ull;
319     BID_RETURN (res);
320   }
321   // x is not special and is not zero
322 
323   // q = nr. of decimal digits in x (1 <= q <= 54)
324   //  determine first the nr. of bits in x
325   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
326     // split the 64-bit value in two 32-bit halves to avoid rounding errors
327     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
328       tmp1.d = (double) (C1 >> 32);	// exact conversion
329       x_nr_bits =
330 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
331     } else {	// x < 2^32
332       tmp1.d = (double) C1;	// exact conversion
333       x_nr_bits =
334 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
335     }
336   } else {	// if x < 2^53
337     tmp1.d = (double) C1;	// exact conversion
338     x_nr_bits =
339       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
340   }
341   q = nr_digits[x_nr_bits - 1].digits;
342   if (q == 0) {
343     q = nr_digits[x_nr_bits - 1].digits1;
344     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
345       q++;
346   }
347   exp = x_exp - 398;	// unbiased exponent
348 
349   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
350     // set invalid flag
351     *pfpsf |= INVALID_EXCEPTION;
352     // return Integer Indefinite
353     res = 0x8000000000000000ull;
354     BID_RETURN (res);
355   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
356     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
357     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
358     // the cases that do not fit are identified here; the ones that fit
359     // fall through and will be handled with other cases further,
360     // under '1 <= q + exp <= 20'
361     if (x_sign) {	// if n < 0 and q + exp = 20 then x is much less than -1/2
362       // => set invalid flag
363       *pfpsf |= INVALID_EXCEPTION;
364       // return Integer Indefinite
365       res = 0x8000000000000000ull;
366       BID_RETURN (res);
367     } else {	// if n > 0 and q + exp = 20
368       // if n >= 2^64 - 1/2 then n is too large
369       // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
370       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
371       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
372       // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
373       if (q == 1) {
374 	// C * 10^20 >= 0x9fffffffffffffffb
375 	__mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
376 	if (C.w[1] > 0x09 ||
377 	    (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
378 	  // set invalid flag
379 	  *pfpsf |= INVALID_EXCEPTION;
380 	  // return Integer Indefinite
381 	  res = 0x8000000000000000ull;
382 	  BID_RETURN (res);
383 	}
384 	// else cases that can be rounded to a 64-bit int fall through
385 	// to '1 <= q + exp <= 20'
386       } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
387 	// Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
388 	// has 21 digits
389 	__mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
390 	if (C.w[1] > 0x09 ||
391 	    (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
392 	  // set invalid flag
393 	  *pfpsf |= INVALID_EXCEPTION;
394 	  // return Integer Indefinite
395 	  res = 0x8000000000000000ull;
396 	  BID_RETURN (res);
397 	}
398 	// else cases that can be rounded to a 64-bit int fall through
399 	// to '1 <= q + exp <= 20'
400       }
401     }
402   }
403   // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
404   // Note: some of the cases tested for above fall through to this point
405   if ((q + exp) < 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
406     // set inexact flag
407     *pfpsf |= INEXACT_EXCEPTION;
408     // return 0
409     res = 0x0000000000000000ull;
410     BID_RETURN (res);
411   } else if ((q + exp) == 0) {	// n = +/-0.c(0)c(1)...c(q-1)
412     // if 0.c(0)c(1)...c(q-1) <= 0.5 <=> c(0)c(1)...c(q-1) <= 5 * 10^(q-1)
413     //   res = 0
414     // else if x > 0
415     //   res = +1
416     // else // if x < 0
417     //   invalid exc
418     ind = q - 1;	// 0 <= ind <= 15
419     if (C1 <= midpoint64[ind]) {
420       res = 0x0000000000000000ull;	// return 0
421     } else if (!x_sign) {	// n > 0
422       res = 0x0000000000000001ull;	// return +1
423     } else {	// if n < 0
424       res = 0x8000000000000000ull;
425       *pfpsf |= INVALID_EXCEPTION;
426       BID_RETURN (res);
427     }
428     // set inexact flag
429     *pfpsf |= INEXACT_EXCEPTION;
430   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
431     // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
432     // to nearest to a 64-bit unsigned signed integer
433     if (x_sign) {	// x <= -1
434       // set invalid flag
435       *pfpsf |= INVALID_EXCEPTION;
436       // return Integer Indefinite
437       res = 0x8000000000000000ull;
438       BID_RETURN (res);
439     }
440     // 1 <= x < 2^64-1/2 so x can be rounded
441     // to nearest to a 64-bit unsigned integer
442     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
443       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
444       // chop off ind digits from the lower part of C1
445       // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
446       C1 = C1 + midpoint64[ind - 1];
447       // calculate C* and f*
448       // C* is actually floor(C*) in this case
449       // C* and f* need shifting and masking, as shown by
450       // shiftright128[] and maskhigh128[]
451       // 1 <= x <= 15
452       // kx = 10^(-x) = ten2mk64[ind - 1]
453       // C* = (C1 + 1/2 * 10^x) * 10^(-x)
454       // the approximation of 10^(-x) was rounded up to 54 bits
455       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
456       Cstar = P128.w[1];
457       fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
458       fstar.w[0] = P128.w[0];
459       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
460       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
461       // if (0 < f* < 10^(-x)) then the result is a midpoint
462       //   if floor(C*) is even then C* = floor(C*) - logical right
463       //       shift; C* has p decimal digits, correct by Prop. 1)
464       //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
465       //       shift; C* has p decimal digits, correct by Pr. 1)
466       // else
467       //   C* = floor(C*) (logical right shift; C has p decimal digits,
468       //       correct by Property 1)
469       // n = C* * 10^(e+x)
470 
471       // shift right C* by Ex-64 = shiftright128[ind]
472       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
473       Cstar = Cstar >> shift;
474       // determine inexactness of the rounding of C*
475       // if (0 < f* - 1/2 < 10^(-x)) then
476       //   the result is exact
477       // else // if (f* - 1/2 > T*) then
478       //   the result is inexact
479       if (ind - 1 <= 2) {	// fstar.w[1] is 0
480 	if (fstar.w[0] > 0x8000000000000000ull) {
481 	  // f* > 1/2 and the result may be exact
482 	  tmp64 = fstar.w[0] - 0x8000000000000000ull;	// f* - 1/2
483 	  if ((tmp64 > ten2mk128trunc[ind - 1].w[1])) {
484 	    // ten2mk128trunc[ind -1].w[1] is identical to
485 	    // ten2mk128[ind -1].w[1]
486 	    // set the inexact flag
487 	    *pfpsf |= INEXACT_EXCEPTION;
488 	  }	// else the result is exact
489 	} else {	// the result is inexact; f2* <= 1/2
490 	  // set the inexact flag
491 	  *pfpsf |= INEXACT_EXCEPTION;
492 	}
493       } else {	// if 3 <= ind - 1 <= 14
494 	if (fstar.w[1] > onehalf128[ind - 1] ||
495 	    (fstar.w[1] == onehalf128[ind - 1] && fstar.w[0])) {
496 	  // f2* > 1/2 and the result may be exact
497 	  // Calculate f2* - 1/2
498 	  tmp64 = fstar.w[1] - onehalf128[ind - 1];
499 	  if (tmp64 || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
500 	    // ten2mk128trunc[ind -1].w[1] is identical to
501 	    // ten2mk128[ind -1].w[1]
502 	    // set the inexact flag
503 	    *pfpsf |= INEXACT_EXCEPTION;
504 	  }	// else the result is exact
505 	} else {	// the result is inexact; f2* <= 1/2
506 	  // set the inexact flag
507 	  *pfpsf |= INEXACT_EXCEPTION;
508 	}
509       }
510 
511       // if the result was a midpoint it was rounded away from zero, so
512       // it will need a correction
513       // check for midpoints
514       if ((fstar.w[1] == 0) && fstar.w[0] &&
515 	  (fstar.w[0] <= ten2mk128trunc[ind - 1].w[1])) {
516 	// ten2mk128trunc[ind -1].w[1] is identical to
517 	// ten2mk128[ind -1].w[1]
518 	// the result is a midpoint; round to nearest
519 	if (Cstar & 0x01) {	// Cstar is odd; MP in [EVEN, ODD]
520 	  // if floor(C*) is odd C = floor(C*) - 1; the result >= 1
521 	  Cstar--;	// Cstar is now even
522 	}	// else MP in [ODD, EVEN]
523       }
524       res = Cstar;	// the result is positive
525     } else if (exp == 0) {
526       // 1 <= q <= 10
527       // res = +C (exact)
528       res = C1;	// the result is positive
529     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
530       // res = +C * 10^exp (exact)
531       res = C1 * ten2k64[exp];	// the result is positive
532     }
533   }
534   BID_RETURN (res);
535 }
536 
537 /*****************************************************************************
538  *  BID64_to_uint64_floor
539  ****************************************************************************/
540 
541 #if DECIMAL_CALL_BY_REFERENCE
542 void
543 bid64_to_uint64_floor (UINT64 * pres, UINT64 * px
544 		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
545 		       _EXC_INFO_PARAM) {
546   UINT64 x = *px;
547 #else
548 UINT64
549 bid64_to_uint64_floor (UINT64 x
550 		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
551 		       _EXC_INFO_PARAM) {
552 #endif
553   UINT64 res;
554   UINT64 x_sign;
555   UINT64 x_exp;
556   int exp;			// unbiased exponent
557   // Note: C1 represents x_significand (UINT64)
558   BID_UI64DOUBLE tmp1;
559   unsigned int x_nr_bits;
560   int q, ind, shift;
561   UINT64 C1;
562   UINT128 C;
563   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
564   UINT128 P128;
565 
566   // check for NaN or Infinity
567   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
568     // set invalid flag
569     *pfpsf |= INVALID_EXCEPTION;
570     // return Integer Indefinite
571     res = 0x8000000000000000ull;
572     BID_RETURN (res);
573   }
574   // unpack x
575   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
576   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
577   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
578     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
579     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
580     if (C1 > 9999999999999999ull) {	// non-canonical
581       x_exp = 0;
582       C1 = 0;
583     }
584   } else {
585     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
586     C1 = x & MASK_BINARY_SIG1;
587   }
588 
589   // check for zeros (possibly from non-canonical values)
590   if (C1 == 0x0ull) {
591     // x is 0
592     res = 0x0000000000000000ull;
593     BID_RETURN (res);
594   }
595   // x is not special and is not zero
596 
597   if (x_sign) {	// if n < 0 the conversion is invalid
598     // set invalid flag
599     *pfpsf |= INVALID_EXCEPTION;
600     // return Integer Indefinite
601     res = 0x8000000000000000ull;
602     BID_RETURN (res);
603   }
604   // q = nr. of decimal digits in x (1 <= q <= 54)
605   //  determine first the nr. of bits in x
606   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
607     // split the 64-bit value in two 32-bit halves to avoid rounding errors
608     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
609       tmp1.d = (double) (C1 >> 32);	// exact conversion
610       x_nr_bits =
611 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
612     } else {	// x < 2^32
613       tmp1.d = (double) C1;	// exact conversion
614       x_nr_bits =
615 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
616     }
617   } else {	// if x < 2^53
618     tmp1.d = (double) C1;	// exact conversion
619     x_nr_bits =
620       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
621   }
622   q = nr_digits[x_nr_bits - 1].digits;
623   if (q == 0) {
624     q = nr_digits[x_nr_bits - 1].digits1;
625     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
626       q++;
627   }
628   exp = x_exp - 398;	// unbiased exponent
629 
630   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
631     // set invalid flag
632     *pfpsf |= INVALID_EXCEPTION;
633     // return Integer Indefinite
634     res = 0x8000000000000000ull;
635     BID_RETURN (res);
636   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
637     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
638     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
639     // the cases that do not fit are identified here; the ones that fit
640     // fall through and will be handled with other cases further,
641     // under '1 <= q + exp <= 20'
642     // n > 0 and q + exp = 20
643     // if n >= 2^64 then n is too large
644     // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
645     // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
646     // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
647     // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
648     if (q == 1) {
649       // C * 10^20 >= 0xa0000000000000000
650       __mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
651       if (C.w[1] >= 0x0a) {
652 	// actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
653 	// set invalid flag
654 	*pfpsf |= INVALID_EXCEPTION;
655 	// return Integer Indefinite
656 	res = 0x8000000000000000ull;
657 	BID_RETURN (res);
658       }
659       // else cases that can be rounded to a 64-bit int fall through
660       // to '1 <= q + exp <= 20'
661     } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
662       // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
663       // has 21 digits
664       __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
665       if (C.w[1] >= 0x0a) {
666 	// actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
667 	// set invalid flag
668 	*pfpsf |= INVALID_EXCEPTION;
669 	// return Integer Indefinite
670 	res = 0x8000000000000000ull;
671 	BID_RETURN (res);
672       }
673       // else cases that can be rounded to a 64-bit int fall through
674       // to '1 <= q + exp <= 20'
675     }
676   }
677   // n is not too large to be converted to int64 if -1 < n < 2^64
678   // Note: some of the cases tested for above fall through to this point
679   if ((q + exp) <= 0) {	// n = +0.[0...0]c(0)c(1)...c(q-1)
680     // return 0
681     res = 0x0000000000000000ull;
682     BID_RETURN (res);
683   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
684     // 1 <= x < 2^64 so x can be rounded
685     // to nearest to a 64-bit unsigned signed integer
686     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
687       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
688       // chop off ind digits from the lower part of C1
689       // C1 fits in 64 bits
690       // calculate C* and f*
691       // C* is actually floor(C*) in this case
692       // C* and f* need shifting and masking, as shown by
693       // shiftright128[] and maskhigh128[]
694       // 1 <= x <= 15
695       // kx = 10^(-x) = ten2mk64[ind - 1]
696       // C* = C1 * 10^(-x)
697       // the approximation of 10^(-x) was rounded up to 54 bits
698       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
699       Cstar = P128.w[1];
700       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
701       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
702       // C* = floor(C*) (logical right shift; C has p decimal digits,
703       //     correct by Property 1)
704       // n = C* * 10^(e+x)
705 
706       // shift right C* by Ex-64 = shiftright128[ind]
707       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
708       Cstar = Cstar >> shift;
709       res = Cstar;	// the result is positive
710     } else if (exp == 0) {
711       // 1 <= q <= 10
712       // res = +C (exact)
713       res = C1;	// the result is positive
714     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
715       // res = +C * 10^exp (exact)
716       res = C1 * ten2k64[exp];	// the result is positive
717     }
718   }
719   BID_RETURN (res);
720 }
721 
722 /*****************************************************************************
723  *  BID64_to_uint64_xfloor
724  ****************************************************************************/
725 
726 #if DECIMAL_CALL_BY_REFERENCE
727 void
728 bid64_to_uint64_xfloor (UINT64 * pres, UINT64 * px
729 			_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
730 			_EXC_INFO_PARAM) {
731   UINT64 x = *px;
732 #else
733 UINT64
734 bid64_to_uint64_xfloor (UINT64 x
735 			_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
736 			_EXC_INFO_PARAM) {
737 #endif
738   UINT64 res;
739   UINT64 x_sign;
740   UINT64 x_exp;
741   int exp;			// unbiased exponent
742   // Note: C1 represents x_significand (UINT64)
743   BID_UI64DOUBLE tmp1;
744   unsigned int x_nr_bits;
745   int q, ind, shift;
746   UINT64 C1;
747   UINT128 C;
748   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
749   UINT128 fstar;
750   UINT128 P128;
751 
752   // check for NaN or Infinity
753   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
754     // set invalid flag
755     *pfpsf |= INVALID_EXCEPTION;
756     // return Integer Indefinite
757     res = 0x8000000000000000ull;
758     BID_RETURN (res);
759   }
760   // unpack x
761   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
762   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
763   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
764     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
765     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
766     if (C1 > 9999999999999999ull) {	// non-canonical
767       x_exp = 0;
768       C1 = 0;
769     }
770   } else {
771     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
772     C1 = x & MASK_BINARY_SIG1;
773   }
774 
775   // check for zeros (possibly from non-canonical values)
776   if (C1 == 0x0ull) {
777     // x is 0
778     res = 0x0000000000000000ull;
779     BID_RETURN (res);
780   }
781   // x is not special and is not zero
782 
783   if (x_sign) {	// if n < 0 the conversion is invalid
784     // set invalid flag
785     *pfpsf |= INVALID_EXCEPTION;
786     // return Integer Indefinite
787     res = 0x8000000000000000ull;
788     BID_RETURN (res);
789   }
790   // q = nr. of decimal digits in x (1 <= q <= 54)
791   //  determine first the nr. of bits in x
792   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
793     // split the 64-bit value in two 32-bit halves to avoid rounding errors
794     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
795       tmp1.d = (double) (C1 >> 32);	// exact conversion
796       x_nr_bits =
797 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
798     } else {	// x < 2^32
799       tmp1.d = (double) C1;	// exact conversion
800       x_nr_bits =
801 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
802     }
803   } else {	// if x < 2^53
804     tmp1.d = (double) C1;	// exact conversion
805     x_nr_bits =
806       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
807   }
808   q = nr_digits[x_nr_bits - 1].digits;
809   if (q == 0) {
810     q = nr_digits[x_nr_bits - 1].digits1;
811     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
812       q++;
813   }
814   exp = x_exp - 398;	// unbiased exponent
815 
816   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
817     // set invalid flag
818     *pfpsf |= INVALID_EXCEPTION;
819     // return Integer Indefinite
820     res = 0x8000000000000000ull;
821     BID_RETURN (res);
822   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
823     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
824     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
825     // the cases that do not fit are identified here; the ones that fit
826     // fall through and will be handled with other cases further,
827     // under '1 <= q + exp <= 20'
828     // n > 0 and q + exp = 20
829     // if n >= 2^64 then n is too large
830     // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
831     // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
832     // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
833     // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
834     if (q == 1) {
835       // C * 10^20 >= 0xa0000000000000000
836       __mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
837       if (C.w[1] >= 0x0a) {
838 	// actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
839 	// set invalid flag
840 	*pfpsf |= INVALID_EXCEPTION;
841 	// return Integer Indefinite
842 	res = 0x8000000000000000ull;
843 	BID_RETURN (res);
844       }
845       // else cases that can be rounded to a 64-bit int fall through
846       // to '1 <= q + exp <= 20'
847     } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
848       // Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
849       // has 21 digits
850       __mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
851       if (C.w[1] >= 0x0a) {
852 	// actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
853 	// set invalid flag
854 	*pfpsf |= INVALID_EXCEPTION;
855 	// return Integer Indefinite
856 	res = 0x8000000000000000ull;
857 	BID_RETURN (res);
858       }
859       // else cases that can be rounded to a 64-bit int fall through
860       // to '1 <= q + exp <= 20'
861     }
862   }
863   // n is not too large to be converted to int64 if -1 < n < 2^64
864   // Note: some of the cases tested for above fall through to this point
865   if ((q + exp) <= 0) {	// n = +0.[0...0]c(0)c(1)...c(q-1)
866     // set inexact flag
867     *pfpsf |= INEXACT_EXCEPTION;
868     // return 0
869     res = 0x0000000000000000ull;
870     BID_RETURN (res);
871   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
872     // 1 <= x < 2^64 so x can be rounded
873     // to nearest to a 64-bit unsigned signed integer
874     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
875       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
876       // chop off ind digits from the lower part of C1
877       // C1 fits in 64 bits
878       // calculate C* and f*
879       // C* is actually floor(C*) in this case
880       // C* and f* need shifting and masking, as shown by
881       // shiftright128[] and maskhigh128[]
882       // 1 <= x <= 15
883       // kx = 10^(-x) = ten2mk64[ind - 1]
884       // C* = C1 * 10^(-x)
885       // the approximation of 10^(-x) was rounded up to 54 bits
886       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
887       Cstar = P128.w[1];
888       fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
889       fstar.w[0] = P128.w[0];
890       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
891       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
892       // C* = floor(C*) (logical right shift; C has p decimal digits,
893       //     correct by Property 1)
894       // n = C* * 10^(e+x)
895 
896       // shift right C* by Ex-64 = shiftright128[ind]
897       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
898       Cstar = Cstar >> shift;
899       // determine inexactness of the rounding of C*
900       // if (0 < f* < 10^(-x)) then
901       //   the result is exact
902       // else // if (f* > T*) then
903       //   the result is inexact
904       if (ind - 1 <= 2) {	// fstar.w[1] is 0
905 	if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
906 	  // ten2mk128trunc[ind -1].w[1] is identical to
907 	  // ten2mk128[ind -1].w[1]
908 	  // set the inexact flag
909 	  *pfpsf |= INEXACT_EXCEPTION;
910 	}	// else the result is exact
911       } else {	// if 3 <= ind - 1 <= 14
912 	if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
913 	  // ten2mk128trunc[ind -1].w[1] is identical to
914 	  // ten2mk128[ind -1].w[1]
915 	  // set the inexact flag
916 	  *pfpsf |= INEXACT_EXCEPTION;
917 	}	// else the result is exact
918       }
919 
920       res = Cstar;	// the result is positive
921     } else if (exp == 0) {
922       // 1 <= q <= 10
923       // res = +C (exact)
924       res = C1;	// the result is positive
925     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
926       // res = +C * 10^exp (exact)
927       res = C1 * ten2k64[exp];	// the result is positive
928     }
929   }
930   BID_RETURN (res);
931 }
932 
933 /*****************************************************************************
934  *  BID64_to_uint64_ceil
935  ****************************************************************************/
936 
937 #if DECIMAL_CALL_BY_REFERENCE
938 void
939 bid64_to_uint64_ceil (UINT64 * pres, UINT64 * px
940 		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
941 		      _EXC_INFO_PARAM) {
942   UINT64 x = *px;
943 #else
944 UINT64
945 bid64_to_uint64_ceil (UINT64 x
946 		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
947 		      _EXC_INFO_PARAM) {
948 #endif
949   UINT64 res;
950   UINT64 x_sign;
951   UINT64 x_exp;
952   int exp;			// unbiased exponent
953   // Note: C1 represents x_significand (UINT64)
954   BID_UI64DOUBLE tmp1;
955   unsigned int x_nr_bits;
956   int q, ind, shift;
957   UINT64 C1;
958   UINT128 C;
959   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
960   UINT128 fstar;
961   UINT128 P128;
962 
963   // check for NaN or Infinity
964   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
965     // set invalid flag
966     *pfpsf |= INVALID_EXCEPTION;
967     // return Integer Indefinite
968     res = 0x8000000000000000ull;
969     BID_RETURN (res);
970   }
971   // unpack x
972   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
973   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
974   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
975     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
976     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
977     if (C1 > 9999999999999999ull) {	// non-canonical
978       x_exp = 0;
979       C1 = 0;
980     }
981   } else {
982     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
983     C1 = x & MASK_BINARY_SIG1;
984   }
985 
986   // check for zeros (possibly from non-canonical values)
987   if (C1 == 0x0ull) {
988     // x is 0
989     res = 0x0000000000000000ull;
990     BID_RETURN (res);
991   }
992   // x is not special and is not zero
993 
994   // q = nr. of decimal digits in x (1 <= q <= 54)
995   //  determine first the nr. of bits in x
996   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
997     // split the 64-bit value in two 32-bit halves to avoid rounding errors
998     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
999       tmp1.d = (double) (C1 >> 32);	// exact conversion
1000       x_nr_bits =
1001 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1002     } else {	// x < 2^32
1003       tmp1.d = (double) C1;	// exact conversion
1004       x_nr_bits =
1005 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1006     }
1007   } else {	// if x < 2^53
1008     tmp1.d = (double) C1;	// exact conversion
1009     x_nr_bits =
1010       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1011   }
1012   q = nr_digits[x_nr_bits - 1].digits;
1013   if (q == 0) {
1014     q = nr_digits[x_nr_bits - 1].digits1;
1015     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
1016       q++;
1017   }
1018   exp = x_exp - 398;	// unbiased exponent
1019 
1020   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
1021     // set invalid flag
1022     *pfpsf |= INVALID_EXCEPTION;
1023     // return Integer Indefinite
1024     res = 0x8000000000000000ull;
1025     BID_RETURN (res);
1026   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
1027     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
1028     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
1029     // the cases that do not fit are identified here; the ones that fit
1030     // fall through and will be handled with other cases further,
1031     // under '1 <= q + exp <= 20'
1032     if (x_sign) {	// if n < 0 and q + exp = 20 then x is much less than -1
1033       // => set invalid flag
1034       *pfpsf |= INVALID_EXCEPTION;
1035       // return Integer Indefinite
1036       res = 0x8000000000000000ull;
1037       BID_RETURN (res);
1038     } else {	// if n > 0 and q + exp = 20
1039       // if n > 2^64 - 1 then n is too large
1040       // <=> c(0)c(1)...c(19).c(20)...c(q-1) > 2^64 - 1
1041       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 > 2^64 - 1
1042       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65 - 2)
1043       // <=> C * 10^(21-q) > 0x9fffffffffffffff6, 1<=q<=16
1044       if (q == 1) {
1045 	// C * 10^20 > 0x9fffffffffffffff6
1046 	__mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
1047 	if (C.w[1] > 0x09 ||
1048 	    (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
1049 	  // set invalid flag
1050 	  *pfpsf |= INVALID_EXCEPTION;
1051 	  // return Integer Indefinite
1052 	  res = 0x8000000000000000ull;
1053 	  BID_RETURN (res);
1054 	}
1055 	// else cases that can be rounded to a 64-bit int fall through
1056 	// to '1 <= q + exp <= 20'
1057       } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
1058 	// Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffff6
1059 	// has 21 digits
1060 	__mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
1061 	if (C.w[1] > 0x09 ||
1062 	    (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
1063 	  // set invalid flag
1064 	  *pfpsf |= INVALID_EXCEPTION;
1065 	  // return Integer Indefinite
1066 	  res = 0x8000000000000000ull;
1067 	  BID_RETURN (res);
1068 	}
1069 	// else cases that can be rounded to a 64-bit int fall through
1070 	// to '1 <= q + exp <= 20'
1071       }
1072     }
1073   }
1074   // n is not too large to be converted to int64 if -1 < n < 2^64
1075   // Note: some of the cases tested for above fall through to this point
1076   if ((q + exp) <= 0) {	// n = +/-0.[0...0]c(0)c(1)...c(q-1)
1077     // return 0 or 1
1078     if (x_sign)
1079       res = 0x0000000000000000ull;
1080     else
1081       res = 0x0000000000000001ull;
1082     BID_RETURN (res);
1083   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
1084     // x <= -1 or 1 <= x <= 2^64 - 1 so if positive x can be rounded
1085     // to nearest to a 64-bit unsigned signed integer
1086     if (x_sign) {	// x <= -1
1087       // set invalid flag
1088       *pfpsf |= INVALID_EXCEPTION;
1089       // return Integer Indefinite
1090       res = 0x8000000000000000ull;
1091       BID_RETURN (res);
1092     }
1093     // 1 <= x <= 2^64 - 1 so x can be rounded
1094     // to nearest to a 64-bit unsigned integer
1095     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
1096       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
1097       // chop off ind digits from the lower part of C1
1098       // C1 fits in 64 bits
1099       // calculate C* and f*
1100       // C* is actually floor(C*) in this case
1101       // C* and f* need shifting and masking, as shown by
1102       // shiftright128[] and maskhigh128[]
1103       // 1 <= x <= 15
1104       // kx = 10^(-x) = ten2mk64[ind - 1]
1105       // C* = C1 * 10^(-x)
1106       // the approximation of 10^(-x) was rounded up to 54 bits
1107       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
1108       Cstar = P128.w[1];
1109       fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
1110       fstar.w[0] = P128.w[0];
1111       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
1112       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
1113       // C* = floor(C*) (logical right shift; C has p decimal digits,
1114       //     correct by Property 1)
1115       // n = C* * 10^(e+x)
1116 
1117       // shift right C* by Ex-64 = shiftright128[ind]
1118       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
1119       Cstar = Cstar >> shift;
1120       // determine inexactness of the rounding of C*
1121       // if (0 < f* < 10^(-x)) then
1122       //   the result is exact
1123       // else // if (f* > T*) then
1124       //   the result is inexact
1125       if (ind - 1 <= 2) {	// fstar.w[1] is 0
1126 	if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
1127 	  // ten2mk128trunc[ind -1].w[1] is identical to
1128 	  // ten2mk128[ind -1].w[1]
1129 	  Cstar++;
1130 	}	// else the result is exact
1131       } else {	// if 3 <= ind - 1 <= 14
1132 	if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
1133 	  // ten2mk128trunc[ind -1].w[1] is identical to
1134 	  // ten2mk128[ind -1].w[1]
1135 	  Cstar++;
1136 	}	// else the result is exact
1137       }
1138 
1139       res = Cstar;	// the result is positive
1140     } else if (exp == 0) {
1141       // 1 <= q <= 10
1142       // res = +C (exact)
1143       res = C1;	// the result is positive
1144     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
1145       // res = +C * 10^exp (exact)
1146       res = C1 * ten2k64[exp];	// the result is positive
1147     }
1148   }
1149   BID_RETURN (res);
1150 }
1151 
1152 /*****************************************************************************
1153  *  BID64_to_uint64_xceil
1154  ****************************************************************************/
1155 
1156 #if DECIMAL_CALL_BY_REFERENCE
1157 void
1158 bid64_to_uint64_xceil (UINT64 * pres, UINT64 * px
1159 		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1160 		       _EXC_INFO_PARAM) {
1161   UINT64 x = *px;
1162 #else
1163 UINT64
1164 bid64_to_uint64_xceil (UINT64 x
1165 		       _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1166 		       _EXC_INFO_PARAM) {
1167 #endif
1168   UINT64 res;
1169   UINT64 x_sign;
1170   UINT64 x_exp;
1171   int exp;			// unbiased exponent
1172   // Note: C1 represents x_significand (UINT64)
1173   BID_UI64DOUBLE tmp1;
1174   unsigned int x_nr_bits;
1175   int q, ind, shift;
1176   UINT64 C1;
1177   UINT128 C;
1178   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
1179   UINT128 fstar;
1180   UINT128 P128;
1181 
1182   // check for NaN or Infinity
1183   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
1184     // set invalid flag
1185     *pfpsf |= INVALID_EXCEPTION;
1186     // return Integer Indefinite
1187     res = 0x8000000000000000ull;
1188     BID_RETURN (res);
1189   }
1190   // unpack x
1191   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
1192   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1193   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1194     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
1195     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1196     if (C1 > 9999999999999999ull) {	// non-canonical
1197       x_exp = 0;
1198       C1 = 0;
1199     }
1200   } else {
1201     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
1202     C1 = x & MASK_BINARY_SIG1;
1203   }
1204 
1205   // check for zeros (possibly from non-canonical values)
1206   if (C1 == 0x0ull) {
1207     // x is 0
1208     res = 0x0000000000000000ull;
1209     BID_RETURN (res);
1210   }
1211   // x is not special and is not zero
1212 
1213   // q = nr. of decimal digits in x (1 <= q <= 54)
1214   //  determine first the nr. of bits in x
1215   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
1216     // split the 64-bit value in two 32-bit halves to avoid rounding errors
1217     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
1218       tmp1.d = (double) (C1 >> 32);	// exact conversion
1219       x_nr_bits =
1220 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1221     } else {	// x < 2^32
1222       tmp1.d = (double) C1;	// exact conversion
1223       x_nr_bits =
1224 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1225     }
1226   } else {	// if x < 2^53
1227     tmp1.d = (double) C1;	// exact conversion
1228     x_nr_bits =
1229       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1230   }
1231   q = nr_digits[x_nr_bits - 1].digits;
1232   if (q == 0) {
1233     q = nr_digits[x_nr_bits - 1].digits1;
1234     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
1235       q++;
1236   }
1237   exp = x_exp - 398;	// unbiased exponent
1238 
1239   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
1240     // set invalid flag
1241     *pfpsf |= INVALID_EXCEPTION;
1242     // return Integer Indefinite
1243     res = 0x8000000000000000ull;
1244     BID_RETURN (res);
1245   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
1246     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
1247     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
1248     // the cases that do not fit are identified here; the ones that fit
1249     // fall through and will be handled with other cases further,
1250     // under '1 <= q + exp <= 20'
1251     if (x_sign) {	// if n < 0 and q + exp = 20 then x is much less than -1
1252       // => set invalid flag
1253       *pfpsf |= INVALID_EXCEPTION;
1254       // return Integer Indefinite
1255       res = 0x8000000000000000ull;
1256       BID_RETURN (res);
1257     } else {	// if n > 0 and q + exp = 20
1258       // if n > 2^64 - 1 then n is too large
1259       // <=> c(0)c(1)...c(19).c(20)...c(q-1) > 2^64 - 1
1260       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 > 2^64 - 1
1261       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65 - 2)
1262       // <=> C * 10^(21-q) > 0x9fffffffffffffff6, 1<=q<=16
1263       if (q == 1) {
1264 	// C * 10^20 > 0x9fffffffffffffff6
1265 	__mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
1266 	if (C.w[1] > 0x09 ||
1267 	    (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
1268 	  // set invalid flag
1269 	  *pfpsf |= INVALID_EXCEPTION;
1270 	  // return Integer Indefinite
1271 	  res = 0x8000000000000000ull;
1272 	  BID_RETURN (res);
1273 	}
1274 	// else cases that can be rounded to a 64-bit int fall through
1275 	// to '1 <= q + exp <= 20'
1276       } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
1277 	// Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffff6
1278 	// has 21 digits
1279 	__mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
1280 	if (C.w[1] > 0x09 ||
1281 	    (C.w[1] == 0x09 && C.w[0] > 0xfffffffffffffff6ull)) {
1282 	  // set invalid flag
1283 	  *pfpsf |= INVALID_EXCEPTION;
1284 	  // return Integer Indefinite
1285 	  res = 0x8000000000000000ull;
1286 	  BID_RETURN (res);
1287 	}
1288 	// else cases that can be rounded to a 64-bit int fall through
1289 	// to '1 <= q + exp <= 20'
1290       }
1291     }
1292   }
1293   // n is not too large to be converted to int64 if -1 < n < 2^64
1294   // Note: some of the cases tested for above fall through to this point
1295   if ((q + exp) <= 0) {	// n = +/-0.[0...0]c(0)c(1)...c(q-1)
1296     // set inexact flag
1297     *pfpsf |= INEXACT_EXCEPTION;
1298     // return 0 or 1
1299     if (x_sign)
1300       res = 0x0000000000000000ull;
1301     else
1302       res = 0x0000000000000001ull;
1303     BID_RETURN (res);
1304   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
1305     // x <= -1 or 1 <= x <= 2^64 - 1 so if positive x can be rounded
1306     // to nearest to a 64-bit unsigned signed integer
1307     if (x_sign) {	// x <= -1
1308       // set invalid flag
1309       *pfpsf |= INVALID_EXCEPTION;
1310       // return Integer Indefinite
1311       res = 0x8000000000000000ull;
1312       BID_RETURN (res);
1313     }
1314     // 1 <= x <= 2^64 - 1 so x can be rounded
1315     // to nearest to a 64-bit unsigned integer
1316     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
1317       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
1318       // chop off ind digits from the lower part of C1
1319       // C1 fits in 64 bits
1320       // calculate C* and f*
1321       // C* is actually floor(C*) in this case
1322       // C* and f* need shifting and masking, as shown by
1323       // shiftright128[] and maskhigh128[]
1324       // 1 <= x <= 15
1325       // kx = 10^(-x) = ten2mk64[ind - 1]
1326       // C* = C1 * 10^(-x)
1327       // the approximation of 10^(-x) was rounded up to 54 bits
1328       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
1329       Cstar = P128.w[1];
1330       fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
1331       fstar.w[0] = P128.w[0];
1332       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
1333       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
1334       // C* = floor(C*) (logical right shift; C has p decimal digits,
1335       //     correct by Property 1)
1336       // n = C* * 10^(e+x)
1337 
1338       // shift right C* by Ex-64 = shiftright128[ind]
1339       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
1340       Cstar = Cstar >> shift;
1341       // determine inexactness of the rounding of C*
1342       // if (0 < f* < 10^(-x)) then
1343       //   the result is exact
1344       // else // if (f* > T*) then
1345       //   the result is inexact
1346       if (ind - 1 <= 2) {	// fstar.w[1] is 0
1347 	if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
1348 	  // ten2mk128trunc[ind -1].w[1] is identical to
1349 	  // ten2mk128[ind -1].w[1]
1350 	  Cstar++;
1351 	  // set the inexact flag
1352 	  *pfpsf |= INEXACT_EXCEPTION;
1353 	}	// else the result is exact
1354       } else {	// if 3 <= ind - 1 <= 14
1355 	if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
1356 	  // ten2mk128trunc[ind -1].w[1] is identical to
1357 	  // ten2mk128[ind -1].w[1]
1358 	  Cstar++;
1359 	  // set the inexact flag
1360 	  *pfpsf |= INEXACT_EXCEPTION;
1361 	}	// else the result is exact
1362       }
1363 
1364       res = Cstar;	// the result is positive
1365     } else if (exp == 0) {
1366       // 1 <= q <= 10
1367       // res = +C (exact)
1368       res = C1;	// the result is positive
1369     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
1370       // res = +C * 10^exp (exact)
1371       res = C1 * ten2k64[exp];	// the result is positive
1372     }
1373   }
1374   BID_RETURN (res);
1375 }
1376 
1377 /*****************************************************************************
1378  *  BID64_to_uint64_int
1379  ****************************************************************************/
1380 
1381 #if DECIMAL_CALL_BY_REFERENCE
1382 void
1383 bid64_to_uint64_int (UINT64 * pres, UINT64 * px
1384 		     _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM)
1385 {
1386   UINT64 x = *px;
1387 #else
1388 UINT64
1389 bid64_to_uint64_int (UINT64 x
1390 		     _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM)
1391 {
1392 #endif
1393   UINT64 res;
1394   UINT64 x_sign;
1395   UINT64 x_exp;
1396   int exp;			// unbiased exponent
1397   // Note: C1 represents x_significand (UINT64)
1398   BID_UI64DOUBLE tmp1;
1399   unsigned int x_nr_bits;
1400   int q, ind, shift;
1401   UINT64 C1;
1402   UINT128 C;
1403   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
1404   UINT128 P128;
1405 
1406   // check for NaN or Infinity
1407   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
1408     // set invalid flag
1409     *pfpsf |= INVALID_EXCEPTION;
1410     // return Integer Indefinite
1411     res = 0x8000000000000000ull;
1412     BID_RETURN (res);
1413   }
1414   // unpack x
1415   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
1416   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1417   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1418     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
1419     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1420     if (C1 > 9999999999999999ull) {	// non-canonical
1421       x_exp = 0;
1422       C1 = 0;
1423     }
1424   } else {
1425     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
1426     C1 = x & MASK_BINARY_SIG1;
1427   }
1428 
1429   // check for zeros (possibly from non-canonical values)
1430   if (C1 == 0x0ull) {
1431     // x is 0
1432     res = 0x0000000000000000ull;
1433     BID_RETURN (res);
1434   }
1435   // x is not special and is not zero
1436 
1437   // q = nr. of decimal digits in x (1 <= q <= 54)
1438   //  determine first the nr. of bits in x
1439   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
1440     // split the 64-bit value in two 32-bit halves to avoid rounding errors
1441     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
1442       tmp1.d = (double) (C1 >> 32);	// exact conversion
1443       x_nr_bits =
1444 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1445     } else {	// x < 2^32
1446       tmp1.d = (double) C1;	// exact conversion
1447       x_nr_bits =
1448 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1449     }
1450   } else {	// if x < 2^53
1451     tmp1.d = (double) C1;	// exact conversion
1452     x_nr_bits =
1453       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1454   }
1455   q = nr_digits[x_nr_bits - 1].digits;
1456   if (q == 0) {
1457     q = nr_digits[x_nr_bits - 1].digits1;
1458     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
1459       q++;
1460   }
1461   exp = x_exp - 398;	// unbiased exponent
1462 
1463   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
1464     // set invalid flag
1465     *pfpsf |= INVALID_EXCEPTION;
1466     // return Integer Indefinite
1467     res = 0x8000000000000000ull;
1468     BID_RETURN (res);
1469   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
1470     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
1471     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
1472     // the cases that do not fit are identified here; the ones that fit
1473     // fall through and will be handled with other cases further,
1474     // under '1 <= q + exp <= 20'
1475     if (x_sign) {	// if n < 0 and q + exp = 20 then x is much less than -1
1476       // => set invalid flag
1477       *pfpsf |= INVALID_EXCEPTION;
1478       // return Integer Indefinite
1479       res = 0x8000000000000000ull;
1480       BID_RETURN (res);
1481     } else {	// if n > 0 and q + exp = 20
1482       // if n >= 2^64 then n is too large
1483       // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
1484       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
1485       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
1486       // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
1487       if (q == 1) {
1488 	// C * 10^20 >= 0xa0000000000000000
1489 	__mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
1490 	if (C.w[1] >= 0x0a) {
1491 	  // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
1492 	  // set invalid flag
1493 	  *pfpsf |= INVALID_EXCEPTION;
1494 	  // return Integer Indefinite
1495 	  res = 0x8000000000000000ull;
1496 	  BID_RETURN (res);
1497 	}
1498 	// else cases that can be rounded to a 64-bit int fall through
1499 	// to '1 <= q + exp <= 20'
1500       } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
1501 	// Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
1502 	// has 21 digits
1503 	__mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
1504 	if (C.w[1] >= 0x0a) {
1505 	  // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
1506 	  // set invalid flag
1507 	  *pfpsf |= INVALID_EXCEPTION;
1508 	  // return Integer Indefinite
1509 	  res = 0x8000000000000000ull;
1510 	  BID_RETURN (res);
1511 	}
1512 	// else cases that can be rounded to a 64-bit int fall through
1513 	// to '1 <= q + exp <= 20'
1514       }
1515     }
1516   }
1517   // n is not too large to be converted to int64 if -1 < n < 2^64
1518   // Note: some of the cases tested for above fall through to this point
1519   if ((q + exp) <= 0) {	// n = +/-0.[0...0]c(0)c(1)...c(q-1)
1520     // return 0
1521     res = 0x0000000000000000ull;
1522     BID_RETURN (res);
1523   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
1524     // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
1525     // to nearest to a 64-bit unsigned signed integer
1526     if (x_sign) {	// x <= -1
1527       // set invalid flag
1528       *pfpsf |= INVALID_EXCEPTION;
1529       // return Integer Indefinite
1530       res = 0x8000000000000000ull;
1531       BID_RETURN (res);
1532     }
1533     // 1 <= x < 2^64 so x can be rounded
1534     // to nearest to a 64-bit unsigned integer
1535     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
1536       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
1537       // chop off ind digits from the lower part of C1
1538       // C1 fits in 64 bits
1539       // calculate C* and f*
1540       // C* is actually floor(C*) in this case
1541       // C* and f* need shifting and masking, as shown by
1542       // shiftright128[] and maskhigh128[]
1543       // 1 <= x <= 15
1544       // kx = 10^(-x) = ten2mk64[ind - 1]
1545       // C* = C1 * 10^(-x)
1546       // the approximation of 10^(-x) was rounded up to 54 bits
1547       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
1548       Cstar = P128.w[1];
1549       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
1550       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
1551       // C* = floor(C*) (logical right shift; C has p decimal digits,
1552       //     correct by Property 1)
1553       // n = C* * 10^(e+x)
1554 
1555       // shift right C* by Ex-64 = shiftright128[ind]
1556       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
1557       Cstar = Cstar >> shift;
1558       res = Cstar;	// the result is positive
1559     } else if (exp == 0) {
1560       // 1 <= q <= 10
1561       // res = +C (exact)
1562       res = C1;	// the result is positive
1563     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
1564       // res = +C * 10^exp (exact)
1565       res = C1 * ten2k64[exp];	// the result is positive
1566     }
1567   }
1568   BID_RETURN (res);
1569 }
1570 
1571 /*****************************************************************************
1572  *  BID64_to_uint64_xint
1573  ****************************************************************************/
1574 
1575 #if DECIMAL_CALL_BY_REFERENCE
1576 void
1577 bid64_to_uint64_xint (UINT64 * pres, UINT64 * px
1578 		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1579 		      _EXC_INFO_PARAM) {
1580   UINT64 x = *px;
1581 #else
1582 UINT64
1583 bid64_to_uint64_xint (UINT64 x
1584 		      _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1585 		      _EXC_INFO_PARAM) {
1586 #endif
1587   UINT64 res;
1588   UINT64 x_sign;
1589   UINT64 x_exp;
1590   int exp;			// unbiased exponent
1591   // Note: C1 represents x_significand (UINT64)
1592   BID_UI64DOUBLE tmp1;
1593   unsigned int x_nr_bits;
1594   int q, ind, shift;
1595   UINT64 C1;
1596   UINT128 C;
1597   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
1598   UINT128 fstar;
1599   UINT128 P128;
1600 
1601   // check for NaN or Infinity
1602   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
1603     // set invalid flag
1604     *pfpsf |= INVALID_EXCEPTION;
1605     // return Integer Indefinite
1606     res = 0x8000000000000000ull;
1607     BID_RETURN (res);
1608   }
1609   // unpack x
1610   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
1611   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1612   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1613     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
1614     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1615     if (C1 > 9999999999999999ull) {	// non-canonical
1616       x_exp = 0;
1617       C1 = 0;
1618     }
1619   } else {
1620     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
1621     C1 = x & MASK_BINARY_SIG1;
1622   }
1623 
1624   // check for zeros (possibly from non-canonical values)
1625   if (C1 == 0x0ull) {
1626     // x is 0
1627     res = 0x0000000000000000ull;
1628     BID_RETURN (res);
1629   }
1630   // x is not special and is not zero
1631 
1632   // q = nr. of decimal digits in x (1 <= q <= 54)
1633   //  determine first the nr. of bits in x
1634   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
1635     // split the 64-bit value in two 32-bit halves to avoid rounding errors
1636     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
1637       tmp1.d = (double) (C1 >> 32);	// exact conversion
1638       x_nr_bits =
1639 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1640     } else {	// x < 2^32
1641       tmp1.d = (double) C1;	// exact conversion
1642       x_nr_bits =
1643 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1644     }
1645   } else {	// if x < 2^53
1646     tmp1.d = (double) C1;	// exact conversion
1647     x_nr_bits =
1648       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1649   }
1650   q = nr_digits[x_nr_bits - 1].digits;
1651   if (q == 0) {
1652     q = nr_digits[x_nr_bits - 1].digits1;
1653     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
1654       q++;
1655   }
1656   exp = x_exp - 398;	// unbiased exponent
1657 
1658   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
1659     // set invalid flag
1660     *pfpsf |= INVALID_EXCEPTION;
1661     // return Integer Indefinite
1662     res = 0x8000000000000000ull;
1663     BID_RETURN (res);
1664   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
1665     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
1666     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
1667     // the cases that do not fit are identified here; the ones that fit
1668     // fall through and will be handled with other cases further,
1669     // under '1 <= q + exp <= 20'
1670     if (x_sign) {	// if n < 0 and q + exp = 20 then x is much less than -1
1671       // => set invalid flag
1672       *pfpsf |= INVALID_EXCEPTION;
1673       // return Integer Indefinite
1674       res = 0x8000000000000000ull;
1675       BID_RETURN (res);
1676     } else {	// if n > 0 and q + exp = 20
1677       // if n >= 2^64 then n is too large
1678       // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64
1679       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64
1680       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65)
1681       // <=> C * 10^(21-q) >= 0xa0000000000000000, 1<=q<=16
1682       if (q == 1) {
1683 	// C * 10^20 >= 0xa0000000000000000
1684 	__mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
1685 	if (C.w[1] >= 0x0a) {
1686 	  // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
1687 	  // set invalid flag
1688 	  *pfpsf |= INVALID_EXCEPTION;
1689 	  // return Integer Indefinite
1690 	  res = 0x8000000000000000ull;
1691 	  BID_RETURN (res);
1692 	}
1693 	// else cases that can be rounded to a 64-bit int fall through
1694 	// to '1 <= q + exp <= 20'
1695       } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
1696 	// Note: C * 10^(21-q) has 20 or 21 digits; 0xa0000000000000000
1697 	// has 21 digits
1698 	__mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
1699 	if (C.w[1] >= 0x0a) {
1700 	  // actually C.w[1] == 0x0a && C.w[0] >= 0x0000000000000000ull) {
1701 	  // set invalid flag
1702 	  *pfpsf |= INVALID_EXCEPTION;
1703 	  // return Integer Indefinite
1704 	  res = 0x8000000000000000ull;
1705 	  BID_RETURN (res);
1706 	}
1707 	// else cases that can be rounded to a 64-bit int fall through
1708 	// to '1 <= q + exp <= 20'
1709       }
1710     }
1711   }
1712   // n is not too large to be converted to int64 if -1 < n < 2^64
1713   // Note: some of the cases tested for above fall through to this point
1714   if ((q + exp) <= 0) {	// n = +/-0.[0...0]c(0)c(1)...c(q-1)
1715     // set inexact flag
1716     *pfpsf |= INEXACT_EXCEPTION;
1717     // return 0
1718     res = 0x0000000000000000ull;
1719     BID_RETURN (res);
1720   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
1721     // x <= -1 or 1 <= x < 2^64 so if positive x can be rounded
1722     // to nearest to a 64-bit unsigned signed integer
1723     if (x_sign) {	// x <= -1
1724       // set invalid flag
1725       *pfpsf |= INVALID_EXCEPTION;
1726       // return Integer Indefinite
1727       res = 0x8000000000000000ull;
1728       BID_RETURN (res);
1729     }
1730     // 1 <= x < 2^64 so x can be rounded
1731     // to nearest to a 64-bit unsigned integer
1732     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
1733       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
1734       // chop off ind digits from the lower part of C1
1735       // C1 fits in 64 bits
1736       // calculate C* and f*
1737       // C* is actually floor(C*) in this case
1738       // C* and f* need shifting and masking, as shown by
1739       // shiftright128[] and maskhigh128[]
1740       // 1 <= x <= 15
1741       // kx = 10^(-x) = ten2mk64[ind - 1]
1742       // C* = C1 * 10^(-x)
1743       // the approximation of 10^(-x) was rounded up to 54 bits
1744       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
1745       Cstar = P128.w[1];
1746       fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
1747       fstar.w[0] = P128.w[0];
1748       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
1749       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
1750       // C* = floor(C*) (logical right shift; C has p decimal digits,
1751       //     correct by Property 1)
1752       // n = C* * 10^(e+x)
1753 
1754       // shift right C* by Ex-64 = shiftright128[ind]
1755       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
1756       Cstar = Cstar >> shift;
1757       // determine inexactness of the rounding of C*
1758       // if (0 < f* < 10^(-x)) then
1759       //   the result is exact
1760       // else // if (f* > T*) then
1761       //   the result is inexact
1762       if (ind - 1 <= 2) {	// fstar.w[1] is 0
1763 	if (fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
1764 	  // ten2mk128trunc[ind -1].w[1] is identical to
1765 	  // ten2mk128[ind -1].w[1]
1766 	  // set the inexact flag
1767 	  *pfpsf |= INEXACT_EXCEPTION;
1768 	}	// else the result is exact
1769       } else {	// if 3 <= ind - 1 <= 14
1770 	if (fstar.w[1] || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
1771 	  // ten2mk128trunc[ind -1].w[1] is identical to
1772 	  // ten2mk128[ind -1].w[1]
1773 	  // set the inexact flag
1774 	  *pfpsf |= INEXACT_EXCEPTION;
1775 	}	// else the result is exact
1776       }
1777 
1778       res = Cstar;	// the result is positive
1779     } else if (exp == 0) {
1780       // 1 <= q <= 10
1781       // res = +C (exact)
1782       res = C1;	// the result is positive
1783     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
1784       // res = +C * 10^exp (exact)
1785       res = C1 * ten2k64[exp];	// the result is positive
1786     }
1787   }
1788   BID_RETURN (res);
1789 }
1790 
1791 /*****************************************************************************
1792  *  BID64_to_uint64_rninta
1793  ****************************************************************************/
1794 
1795 #if DECIMAL_CALL_BY_REFERENCE
1796 void
1797 bid64_to_uint64_rninta (UINT64 * pres, UINT64 * px
1798 			_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1799 			_EXC_INFO_PARAM) {
1800   UINT64 x = *px;
1801 #else
1802 UINT64
1803 bid64_to_uint64_rninta (UINT64 x
1804 			_EXC_FLAGS_PARAM _EXC_MASKS_PARAM
1805 			_EXC_INFO_PARAM) {
1806 #endif
1807   UINT64 res;
1808   UINT64 x_sign;
1809   UINT64 x_exp;
1810   int exp;			// unbiased exponent
1811   // Note: C1 represents x_significand (UINT64)
1812   BID_UI64DOUBLE tmp1;
1813   unsigned int x_nr_bits;
1814   int q, ind, shift;
1815   UINT64 C1;
1816   UINT128 C;
1817   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
1818   UINT128 P128;
1819 
1820   // check for NaN or Infinity
1821   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
1822     // set invalid flag
1823     *pfpsf |= INVALID_EXCEPTION;
1824     // return Integer Indefinite
1825     res = 0x8000000000000000ull;
1826     BID_RETURN (res);
1827   }
1828   // unpack x
1829   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
1830   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
1831   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
1832     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
1833     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
1834     if (C1 > 9999999999999999ull) {	// non-canonical
1835       x_exp = 0;
1836       C1 = 0;
1837     }
1838   } else {
1839     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
1840     C1 = x & MASK_BINARY_SIG1;
1841   }
1842 
1843   // check for zeros (possibly from non-canonical values)
1844   if (C1 == 0x0ull) {
1845     // x is 0
1846     res = 0x0000000000000000ull;
1847     BID_RETURN (res);
1848   }
1849   // x is not special and is not zero
1850 
1851   // q = nr. of decimal digits in x (1 <= q <= 54)
1852   //  determine first the nr. of bits in x
1853   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
1854     // split the 64-bit value in two 32-bit halves to avoid rounding errors
1855     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
1856       tmp1.d = (double) (C1 >> 32);	// exact conversion
1857       x_nr_bits =
1858 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1859     } else {	// x < 2^32
1860       tmp1.d = (double) C1;	// exact conversion
1861       x_nr_bits =
1862 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1863     }
1864   } else {	// if x < 2^53
1865     tmp1.d = (double) C1;	// exact conversion
1866     x_nr_bits =
1867       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
1868   }
1869   q = nr_digits[x_nr_bits - 1].digits;
1870   if (q == 0) {
1871     q = nr_digits[x_nr_bits - 1].digits1;
1872     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
1873       q++;
1874   }
1875   exp = x_exp - 398;	// unbiased exponent
1876 
1877   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
1878     // set invalid flag
1879     *pfpsf |= INVALID_EXCEPTION;
1880     // return Integer Indefinite
1881     res = 0x8000000000000000ull;
1882     BID_RETURN (res);
1883   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
1884     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
1885     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
1886     // the cases that do not fit are identified here; the ones that fit
1887     // fall through and will be handled with other cases further,
1888     // under '1 <= q + exp <= 20'
1889     if (x_sign) {	// if n < 0 and q + exp = 20 then x is much less than -1/2
1890       // => set invalid flag
1891       *pfpsf |= INVALID_EXCEPTION;
1892       // return Integer Indefinite
1893       res = 0x8000000000000000ull;
1894       BID_RETURN (res);
1895     } else {	// if n > 0 and q + exp = 20
1896       // if n >= 2^64 - 1/2 then n is too large
1897       // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
1898       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
1899       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
1900       // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
1901       if (q == 1) {
1902 	// C * 10^20 >= 0x9fffffffffffffffb
1903 	__mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
1904 	if (C.w[1] > 0x09 ||
1905 	    (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
1906 	  // set invalid flag
1907 	  *pfpsf |= INVALID_EXCEPTION;
1908 	  // return Integer Indefinite
1909 	  res = 0x8000000000000000ull;
1910 	  BID_RETURN (res);
1911 	}
1912 	// else cases that can be rounded to a 64-bit int fall through
1913 	// to '1 <= q + exp <= 20'
1914       } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
1915 	// Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
1916 	// has 21 digits
1917 	__mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
1918 	if (C.w[1] > 0x09 ||
1919 	    (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
1920 	  // set invalid flag
1921 	  *pfpsf |= INVALID_EXCEPTION;
1922 	  // return Integer Indefinite
1923 	  res = 0x8000000000000000ull;
1924 	  BID_RETURN (res);
1925 	}
1926 	// else cases that can be rounded to a 64-bit int fall through
1927 	// to '1 <= q + exp <= 20'
1928       }
1929     }
1930   }
1931   // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
1932   // Note: some of the cases tested for above fall through to this point
1933   if ((q + exp) < 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
1934     // return 0
1935     res = 0x0000000000000000ull;
1936     BID_RETURN (res);
1937   } else if ((q + exp) == 0) {	// n = +/-0.c(0)c(1)...c(q-1)
1938     // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
1939     //   res = 0
1940     // else if x > 0
1941     //   res = +1
1942     // else // if x < 0
1943     //   invalid exc
1944     ind = q - 1;	// 0 <= ind <= 15
1945     if (C1 < midpoint64[ind]) {
1946       res = 0x0000000000000000ull;	// return 0
1947     } else if (!x_sign) {	// n > 0
1948       res = 0x0000000000000001ull;	// return +1
1949     } else {	// if n < 0
1950       res = 0x8000000000000000ull;
1951       *pfpsf |= INVALID_EXCEPTION;
1952       BID_RETURN (res);
1953     }
1954   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
1955     // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
1956     // to nearest to a 64-bit unsigned signed integer
1957     if (x_sign) {	// x <= -1
1958       // set invalid flag
1959       *pfpsf |= INVALID_EXCEPTION;
1960       // return Integer Indefinite
1961       res = 0x8000000000000000ull;
1962       BID_RETURN (res);
1963     }
1964     // 1 <= x < 2^64-1/2 so x can be rounded
1965     // to nearest to a 64-bit unsigned integer
1966     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
1967       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
1968       // chop off ind digits from the lower part of C1
1969       // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
1970       C1 = C1 + midpoint64[ind - 1];
1971       // calculate C* and f*
1972       // C* is actually floor(C*) in this case
1973       // C* and f* need shifting and masking, as shown by
1974       // shiftright128[] and maskhigh128[]
1975       // 1 <= x <= 15
1976       // kx = 10^(-x) = ten2mk64[ind - 1]
1977       // C* = (C1 + 1/2 * 10^x) * 10^(-x)
1978       // the approximation of 10^(-x) was rounded up to 54 bits
1979       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
1980       Cstar = P128.w[1];
1981       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
1982       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
1983       // if (0 < f* < 10^(-x)) then the result is a midpoint
1984       //   if floor(C*) is even then C* = floor(C*) - logical right
1985       //       shift; C* has p decimal digits, correct by Prop. 1)
1986       //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
1987       //       shift; C* has p decimal digits, correct by Pr. 1)
1988       // else
1989       //   C* = floor(C*) (logical right shift; C has p decimal digits,
1990       //       correct by Property 1)
1991       // n = C* * 10^(e+x)
1992 
1993       // shift right C* by Ex-64 = shiftright128[ind]
1994       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
1995       Cstar = Cstar >> shift;
1996 
1997       // if the result was a midpoint it was rounded away from zero
1998       res = Cstar;	// the result is positive
1999     } else if (exp == 0) {
2000       // 1 <= q <= 10
2001       // res = +C (exact)
2002       res = C1;	// the result is positive
2003     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
2004       // res = +C * 10^exp (exact)
2005       res = C1 * ten2k64[exp];	// the result is positive
2006     }
2007   }
2008   BID_RETURN (res);
2009 }
2010 
2011 /*****************************************************************************
2012  *  BID64_to_uint64_xrninta
2013  ****************************************************************************/
2014 
2015 #if DECIMAL_CALL_BY_REFERENCE
2016 void
2017 bid64_to_uint64_xrninta (UINT64 * pres, UINT64 * px
2018 			 _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2019 			 _EXC_INFO_PARAM) {
2020   UINT64 x = *px;
2021 #else
2022 UINT64
2023 bid64_to_uint64_xrninta (UINT64 x
2024 			 _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
2025 			 _EXC_INFO_PARAM) {
2026 #endif
2027   UINT64 res;
2028   UINT64 x_sign;
2029   UINT64 x_exp;
2030   int exp;			// unbiased exponent
2031   // Note: C1 represents x_significand (UINT64)
2032   UINT64 tmp64;
2033   BID_UI64DOUBLE tmp1;
2034   unsigned int x_nr_bits;
2035   int q, ind, shift;
2036   UINT64 C1;
2037   UINT128 C;
2038   UINT64 Cstar;			// C* represents up to 16 decimal digits ~ 54 bits
2039   UINT128 fstar;
2040   UINT128 P128;
2041 
2042   // check for NaN or Infinity
2043   if ((x & MASK_NAN) == MASK_NAN || (x & MASK_INF) == MASK_INF) {
2044     // set invalid flag
2045     *pfpsf |= INVALID_EXCEPTION;
2046     // return Integer Indefinite
2047     res = 0x8000000000000000ull;
2048     BID_RETURN (res);
2049   }
2050   // unpack x
2051   x_sign = x & MASK_SIGN;	// 0 for positive, MASK_SIGN for negative
2052   // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
2053   if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
2054     x_exp = (x & MASK_BINARY_EXPONENT2) >> 51;	// biased
2055     C1 = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
2056     if (C1 > 9999999999999999ull) {	// non-canonical
2057       x_exp = 0;
2058       C1 = 0;
2059     }
2060   } else {
2061     x_exp = (x & MASK_BINARY_EXPONENT1) >> 53;	// biased
2062     C1 = x & MASK_BINARY_SIG1;
2063   }
2064 
2065   // check for zeros (possibly from non-canonical values)
2066   if (C1 == 0x0ull) {
2067     // x is 0
2068     res = 0x0000000000000000ull;
2069     BID_RETURN (res);
2070   }
2071   // x is not special and is not zero
2072 
2073   // q = nr. of decimal digits in x (1 <= q <= 54)
2074   //  determine first the nr. of bits in x
2075   if (C1 >= 0x0020000000000000ull) {	// x >= 2^53
2076     // split the 64-bit value in two 32-bit halves to avoid rounding errors
2077     if (C1 >= 0x0000000100000000ull) {	// x >= 2^32
2078       tmp1.d = (double) (C1 >> 32);	// exact conversion
2079       x_nr_bits =
2080 	33 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2081     } else {	// x < 2^32
2082       tmp1.d = (double) C1;	// exact conversion
2083       x_nr_bits =
2084 	1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2085     }
2086   } else {	// if x < 2^53
2087     tmp1.d = (double) C1;	// exact conversion
2088     x_nr_bits =
2089       1 + ((((unsigned int) (tmp1.ui64 >> 52)) & 0x7ff) - 0x3ff);
2090   }
2091   q = nr_digits[x_nr_bits - 1].digits;
2092   if (q == 0) {
2093     q = nr_digits[x_nr_bits - 1].digits1;
2094     if (C1 >= nr_digits[x_nr_bits - 1].threshold_lo)
2095       q++;
2096   }
2097   exp = x_exp - 398;	// unbiased exponent
2098 
2099   if ((q + exp) > 20) {	// x >= 10^20 ~= 2^66.45... (cannot fit in 64 bits)
2100     // set invalid flag
2101     *pfpsf |= INVALID_EXCEPTION;
2102     // return Integer Indefinite
2103     res = 0x8000000000000000ull;
2104     BID_RETURN (res);
2105   } else if ((q + exp) == 20) {	// x = c(0)c(1)...c(19).c(20)...c(q-1)
2106     // in this case 2^63.11... ~= 10^19 <= x < 10^20 ~= 2^66.43...
2107     // so x rounded to an integer may or may not fit in an unsigned 64-bit int
2108     // the cases that do not fit are identified here; the ones that fit
2109     // fall through and will be handled with other cases further,
2110     // under '1 <= q + exp <= 20'
2111     if (x_sign) {	// if n < 0 and q + exp = 20 then x is much less than -1/2
2112       // => set invalid flag
2113       *pfpsf |= INVALID_EXCEPTION;
2114       // return Integer Indefinite
2115       res = 0x8000000000000000ull;
2116       BID_RETURN (res);
2117     } else {	// if n > 0 and q + exp = 20
2118       // if n >= 2^64 - 1/2 then n is too large
2119       // <=> c(0)c(1)...c(19).c(20)...c(q-1) >= 2^64-1/2
2120       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^20 >= 2^64-1/2
2121       // <=> 0.c(0)c(1)...c(19)c(20)...c(q-1) * 10^21 >= 5*(2^65-1)
2122       // <=> C * 10^(21-q) >= 0x9fffffffffffffffb, 1<=q<=16
2123       if (q == 1) {
2124 	// C * 10^20 >= 0x9fffffffffffffffb
2125 	__mul_128x64_to_128 (C, C1, ten2k128[0]);	// 10^20 * C
2126 	if (C.w[1] > 0x09 ||
2127 	    (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
2128 	  // set invalid flag
2129 	  *pfpsf |= INVALID_EXCEPTION;
2130 	  // return Integer Indefinite
2131 	  res = 0x8000000000000000ull;
2132 	  BID_RETURN (res);
2133 	}
2134 	// else cases that can be rounded to a 64-bit int fall through
2135 	// to '1 <= q + exp <= 20'
2136       } else {	// if (2 <= q <= 16) => 5 <= 21 - q <= 19
2137 	// Note: C * 10^(21-q) has 20 or 21 digits; 0x9fffffffffffffffb
2138 	// has 21 digits
2139 	__mul_64x64_to_128MACH (C, C1, ten2k64[21 - q]);
2140 	if (C.w[1] > 0x09 ||
2141 	    (C.w[1] == 0x09 && C.w[0] >= 0xfffffffffffffffbull)) {
2142 	  // set invalid flag
2143 	  *pfpsf |= INVALID_EXCEPTION;
2144 	  // return Integer Indefinite
2145 	  res = 0x8000000000000000ull;
2146 	  BID_RETURN (res);
2147 	}
2148 	// else cases that can be rounded to a 64-bit int fall through
2149 	// to '1 <= q + exp <= 20'
2150       }
2151     }
2152   }
2153   // n is not too large to be converted to int64 if -1/2 <= n < 2^64 - 1/2
2154   // Note: some of the cases tested for above fall through to this point
2155   if ((q + exp) < 0) {	// n = +/-0.0...c(0)c(1)...c(q-1)
2156     // set inexact flag
2157     *pfpsf |= INEXACT_EXCEPTION;
2158     // return 0
2159     res = 0x0000000000000000ull;
2160     BID_RETURN (res);
2161   } else if ((q + exp) == 0) {	// n = +/-0.c(0)c(1)...c(q-1)
2162     // if 0.c(0)c(1)...c(q-1) < 0.5 <=> c(0)c(1)...c(q-1) < 5 * 10^(q-1)
2163     //   res = 0
2164     // else if x > 0
2165     //   res = +1
2166     // else // if x < 0
2167     //   invalid exc
2168     ind = q - 1;	// 0 <= ind <= 15
2169     if (C1 < midpoint64[ind]) {
2170       res = 0x0000000000000000ull;	// return 0
2171     } else if (!x_sign) {	// n > 0
2172       res = 0x0000000000000001ull;	// return +1
2173     } else {	// if n < 0
2174       res = 0x8000000000000000ull;
2175       *pfpsf |= INVALID_EXCEPTION;
2176       BID_RETURN (res);
2177     }
2178     // set inexact flag
2179     *pfpsf |= INEXACT_EXCEPTION;
2180   } else {	// if (1 <= q + exp <= 20, 1 <= q <= 16, -15 <= exp <= 19)
2181     // x <= -1 or 1 <= x < 2^64-1/2 so if positive x can be rounded
2182     // to nearest to a 64-bit unsigned signed integer
2183     if (x_sign) {	// x <= -1
2184       // set invalid flag
2185       *pfpsf |= INVALID_EXCEPTION;
2186       // return Integer Indefinite
2187       res = 0x8000000000000000ull;
2188       BID_RETURN (res);
2189     }
2190     // 1 <= x < 2^64-1/2 so x can be rounded
2191     // to nearest to a 64-bit unsigned integer
2192     if (exp < 0) {	// 2 <= q <= 16, -15 <= exp <= -1, 1 <= q + exp <= 20
2193       ind = -exp;	// 1 <= ind <= 15; ind is a synonym for 'x'
2194       // chop off ind digits from the lower part of C1
2195       // C1 = C1 + 1/2 * 10^ind where the result C1 fits in 64 bits
2196       C1 = C1 + midpoint64[ind - 1];
2197       // calculate C* and f*
2198       // C* is actually floor(C*) in this case
2199       // C* and f* need shifting and masking, as shown by
2200       // shiftright128[] and maskhigh128[]
2201       // 1 <= x <= 15
2202       // kx = 10^(-x) = ten2mk64[ind - 1]
2203       // C* = (C1 + 1/2 * 10^x) * 10^(-x)
2204       // the approximation of 10^(-x) was rounded up to 54 bits
2205       __mul_64x64_to_128MACH (P128, C1, ten2mk64[ind - 1]);
2206       Cstar = P128.w[1];
2207       fstar.w[1] = P128.w[1] & maskhigh128[ind - 1];
2208       fstar.w[0] = P128.w[0];
2209       // the top Ex bits of 10^(-x) are T* = ten2mk128trunc[ind].w[0], e.g.
2210       // if x=1, T*=ten2mk128trunc[0].w[0]=0x1999999999999999
2211       // if (0 < f* < 10^(-x)) then the result is a midpoint
2212       //   if floor(C*) is even then C* = floor(C*) - logical right
2213       //       shift; C* has p decimal digits, correct by Prop. 1)
2214       //   else if floor(C*) is odd C* = floor(C*)-1 (logical right
2215       //       shift; C* has p decimal digits, correct by Pr. 1)
2216       // else
2217       //   C* = floor(C*) (logical right shift; C has p decimal digits,
2218       //       correct by Property 1)
2219       // n = C* * 10^(e+x)
2220 
2221       // shift right C* by Ex-64 = shiftright128[ind]
2222       shift = shiftright128[ind - 1];	// 0 <= shift <= 39
2223       Cstar = Cstar >> shift;
2224       // determine inexactness of the rounding of C*
2225       // if (0 < f* - 1/2 < 10^(-x)) then
2226       //   the result is exact
2227       // else // if (f* - 1/2 > T*) then
2228       //   the result is inexact
2229       if (ind - 1 <= 2) {	// fstar.w[1] is 0
2230 	if (fstar.w[0] > 0x8000000000000000ull) {
2231 	  // f* > 1/2 and the result may be exact
2232 	  tmp64 = fstar.w[0] - 0x8000000000000000ull;	// f* - 1/2
2233 	  if ((tmp64 > ten2mk128trunc[ind - 1].w[1])) {
2234 	    // ten2mk128trunc[ind -1].w[1] is identical to
2235 	    // ten2mk128[ind -1].w[1]
2236 	    // set the inexact flag
2237 	    *pfpsf |= INEXACT_EXCEPTION;
2238 	  }	// else the result is exact
2239 	} else {	// the result is inexact; f2* <= 1/2
2240 	  // set the inexact flag
2241 	  *pfpsf |= INEXACT_EXCEPTION;
2242 	}
2243       } else {	// if 3 <= ind - 1 <= 14
2244 	if (fstar.w[1] > onehalf128[ind - 1] ||
2245 	    (fstar.w[1] == onehalf128[ind - 1] && fstar.w[0])) {
2246 	  // f2* > 1/2 and the result may be exact
2247 	  // Calculate f2* - 1/2
2248 	  tmp64 = fstar.w[1] - onehalf128[ind - 1];
2249 	  if (tmp64 || fstar.w[0] > ten2mk128trunc[ind - 1].w[1]) {
2250 	    // ten2mk128trunc[ind -1].w[1] is identical to
2251 	    // ten2mk128[ind -1].w[1]
2252 	    // set the inexact flag
2253 	    *pfpsf |= INEXACT_EXCEPTION;
2254 	  }	// else the result is exact
2255 	} else {	// the result is inexact; f2* <= 1/2
2256 	  // set the inexact flag
2257 	  *pfpsf |= INEXACT_EXCEPTION;
2258 	}
2259       }
2260 
2261       // if the result was a midpoint it was rounded away from zero
2262       res = Cstar;	// the result is positive
2263     } else if (exp == 0) {
2264       // 1 <= q <= 10
2265       // res = +C (exact)
2266       res = C1;	// the result is positive
2267     } else {	// if (exp > 0) => 1 <= exp <= 9, 1 <= q < 9, 2 <= q + exp <= 10
2268       // res = +C * 10^exp (exact)
2269       res = C1 * ten2k64[exp];	// the result is positive
2270     }
2271   }
2272   BID_RETURN (res);
2273 }
2274