1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package utf8 implements functions and constants to support text encoded in
6// UTF-8. It includes functions to translate between runes and UTF-8 byte sequences.
7// See https://en.wikipedia.org/wiki/UTF-8
8package utf8
9
10// The conditions RuneError==unicode.ReplacementChar and
11// MaxRune==unicode.MaxRune are verified in the tests.
12// Defining them locally avoids this package depending on package unicode.
13
14// Numbers fundamental to the encoding.
15const (
16	RuneError = '\uFFFD'     // the "error" Rune or "Unicode replacement character"
17	RuneSelf  = 0x80         // characters below RuneSelf are represented as themselves in a single byte.
18	MaxRune   = '\U0010FFFF' // Maximum valid Unicode code point.
19	UTFMax    = 4            // maximum number of bytes of a UTF-8 encoded Unicode character.
20)
21
22// Code points in the surrogate range are not valid for UTF-8.
23const (
24	surrogateMin = 0xD800
25	surrogateMax = 0xDFFF
26)
27
28const (
29	t1 = 0b00000000
30	tx = 0b10000000
31	t2 = 0b11000000
32	t3 = 0b11100000
33	t4 = 0b11110000
34	t5 = 0b11111000
35
36	maskx = 0b00111111
37	mask2 = 0b00011111
38	mask3 = 0b00001111
39	mask4 = 0b00000111
40
41	rune1Max = 1<<7 - 1
42	rune2Max = 1<<11 - 1
43	rune3Max = 1<<16 - 1
44
45	// The default lowest and highest continuation byte.
46	locb = 0b10000000
47	hicb = 0b10111111
48
49	// These names of these constants are chosen to give nice alignment in the
50	// table below. The first nibble is an index into acceptRanges or F for
51	// special one-byte cases. The second nibble is the Rune length or the
52	// Status for the special one-byte case.
53	xx = 0xF1 // invalid: size 1
54	as = 0xF0 // ASCII: size 1
55	s1 = 0x02 // accept 0, size 2
56	s2 = 0x13 // accept 1, size 3
57	s3 = 0x03 // accept 0, size 3
58	s4 = 0x23 // accept 2, size 3
59	s5 = 0x34 // accept 3, size 4
60	s6 = 0x04 // accept 0, size 4
61	s7 = 0x44 // accept 4, size 4
62)
63
64// first is information about the first byte in a UTF-8 sequence.
65var first = [256]uint8{
66	//   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F
67	as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x00-0x0F
68	as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x10-0x1F
69	as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x20-0x2F
70	as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x30-0x3F
71	as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x40-0x4F
72	as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x50-0x5F
73	as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x60-0x6F
74	as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x70-0x7F
75	//   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F
76	xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x80-0x8F
77	xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x90-0x9F
78	xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xA0-0xAF
79	xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xB0-0xBF
80	xx, xx, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xC0-0xCF
81	s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xD0-0xDF
82	s2, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s4, s3, s3, // 0xE0-0xEF
83	s5, s6, s6, s6, s7, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xF0-0xFF
84}
85
86// acceptRange gives the range of valid values for the second byte in a UTF-8
87// sequence.
88type acceptRange struct {
89	lo uint8 // lowest value for second byte.
90	hi uint8 // highest value for second byte.
91}
92
93// acceptRanges has size 16 to avoid bounds checks in the code that uses it.
94var acceptRanges = [16]acceptRange{
95	0: {locb, hicb},
96	1: {0xA0, hicb},
97	2: {locb, 0x9F},
98	3: {0x90, hicb},
99	4: {locb, 0x8F},
100}
101
102// FullRune reports whether the bytes in p begin with a full UTF-8 encoding of a rune.
103// An invalid encoding is considered a full Rune since it will convert as a width-1 error rune.
104func FullRune(p []byte) bool {
105	n := len(p)
106	if n == 0 {
107		return false
108	}
109	x := first[p[0]]
110	if n >= int(x&7) {
111		return true // ASCII, invalid or valid.
112	}
113	// Must be short or invalid.
114	accept := acceptRanges[x>>4]
115	if n > 1 && (p[1] < accept.lo || accept.hi < p[1]) {
116		return true
117	} else if n > 2 && (p[2] < locb || hicb < p[2]) {
118		return true
119	}
120	return false
121}
122
123// FullRuneInString is like FullRune but its input is a string.
124func FullRuneInString(s string) bool {
125	n := len(s)
126	if n == 0 {
127		return false
128	}
129	x := first[s[0]]
130	if n >= int(x&7) {
131		return true // ASCII, invalid, or valid.
132	}
133	// Must be short or invalid.
134	accept := acceptRanges[x>>4]
135	if n > 1 && (s[1] < accept.lo || accept.hi < s[1]) {
136		return true
137	} else if n > 2 && (s[2] < locb || hicb < s[2]) {
138		return true
139	}
140	return false
141}
142
143// DecodeRune unpacks the first UTF-8 encoding in p and returns the rune and
144// its width in bytes. If p is empty it returns (RuneError, 0). Otherwise, if
145// the encoding is invalid, it returns (RuneError, 1). Both are impossible
146// results for correct, non-empty UTF-8.
147//
148// An encoding is invalid if it is incorrect UTF-8, encodes a rune that is
149// out of range, or is not the shortest possible UTF-8 encoding for the
150// value. No other validation is performed.
151func DecodeRune(p []byte) (r rune, size int) {
152	n := len(p)
153	if n < 1 {
154		return RuneError, 0
155	}
156	p0 := p[0]
157	x := first[p0]
158	if x >= as {
159		// The following code simulates an additional check for x == xx and
160		// handling the ASCII and invalid cases accordingly. This mask-and-or
161		// approach prevents an additional branch.
162		mask := rune(x) << 31 >> 31 // Create 0x0000 or 0xFFFF.
163		return rune(p[0])&^mask | RuneError&mask, 1
164	}
165	sz := int(x & 7)
166	accept := acceptRanges[x>>4]
167	if n < sz {
168		return RuneError, 1
169	}
170	b1 := p[1]
171	if b1 < accept.lo || accept.hi < b1 {
172		return RuneError, 1
173	}
174	if sz <= 2 { // <= instead of == to help the compiler eliminate some bounds checks
175		return rune(p0&mask2)<<6 | rune(b1&maskx), 2
176	}
177	b2 := p[2]
178	if b2 < locb || hicb < b2 {
179		return RuneError, 1
180	}
181	if sz <= 3 {
182		return rune(p0&mask3)<<12 | rune(b1&maskx)<<6 | rune(b2&maskx), 3
183	}
184	b3 := p[3]
185	if b3 < locb || hicb < b3 {
186		return RuneError, 1
187	}
188	return rune(p0&mask4)<<18 | rune(b1&maskx)<<12 | rune(b2&maskx)<<6 | rune(b3&maskx), 4
189}
190
191// DecodeRuneInString is like DecodeRune but its input is a string. If s is
192// empty it returns (RuneError, 0). Otherwise, if the encoding is invalid, it
193// returns (RuneError, 1). Both are impossible results for correct, non-empty
194// UTF-8.
195//
196// An encoding is invalid if it is incorrect UTF-8, encodes a rune that is
197// out of range, or is not the shortest possible UTF-8 encoding for the
198// value. No other validation is performed.
199func DecodeRuneInString(s string) (r rune, size int) {
200	n := len(s)
201	if n < 1 {
202		return RuneError, 0
203	}
204	s0 := s[0]
205	x := first[s0]
206	if x >= as {
207		// The following code simulates an additional check for x == xx and
208		// handling the ASCII and invalid cases accordingly. This mask-and-or
209		// approach prevents an additional branch.
210		mask := rune(x) << 31 >> 31 // Create 0x0000 or 0xFFFF.
211		return rune(s[0])&^mask | RuneError&mask, 1
212	}
213	sz := int(x & 7)
214	accept := acceptRanges[x>>4]
215	if n < sz {
216		return RuneError, 1
217	}
218	s1 := s[1]
219	if s1 < accept.lo || accept.hi < s1 {
220		return RuneError, 1
221	}
222	if sz <= 2 { // <= instead of == to help the compiler eliminate some bounds checks
223		return rune(s0&mask2)<<6 | rune(s1&maskx), 2
224	}
225	s2 := s[2]
226	if s2 < locb || hicb < s2 {
227		return RuneError, 1
228	}
229	if sz <= 3 {
230		return rune(s0&mask3)<<12 | rune(s1&maskx)<<6 | rune(s2&maskx), 3
231	}
232	s3 := s[3]
233	if s3 < locb || hicb < s3 {
234		return RuneError, 1
235	}
236	return rune(s0&mask4)<<18 | rune(s1&maskx)<<12 | rune(s2&maskx)<<6 | rune(s3&maskx), 4
237}
238
239// DecodeLastRune unpacks the last UTF-8 encoding in p and returns the rune and
240// its width in bytes. If p is empty it returns (RuneError, 0). Otherwise, if
241// the encoding is invalid, it returns (RuneError, 1). Both are impossible
242// results for correct, non-empty UTF-8.
243//
244// An encoding is invalid if it is incorrect UTF-8, encodes a rune that is
245// out of range, or is not the shortest possible UTF-8 encoding for the
246// value. No other validation is performed.
247func DecodeLastRune(p []byte) (r rune, size int) {
248	end := len(p)
249	if end == 0 {
250		return RuneError, 0
251	}
252	start := end - 1
253	r = rune(p[start])
254	if r < RuneSelf {
255		return r, 1
256	}
257	// guard against O(n^2) behavior when traversing
258	// backwards through strings with long sequences of
259	// invalid UTF-8.
260	lim := end - UTFMax
261	if lim < 0 {
262		lim = 0
263	}
264	for start--; start >= lim; start-- {
265		if RuneStart(p[start]) {
266			break
267		}
268	}
269	if start < 0 {
270		start = 0
271	}
272	r, size = DecodeRune(p[start:end])
273	if start+size != end {
274		return RuneError, 1
275	}
276	return r, size
277}
278
279// DecodeLastRuneInString is like DecodeLastRune but its input is a string. If
280// s is empty it returns (RuneError, 0). Otherwise, if the encoding is invalid,
281// it returns (RuneError, 1). Both are impossible results for correct,
282// non-empty UTF-8.
283//
284// An encoding is invalid if it is incorrect UTF-8, encodes a rune that is
285// out of range, or is not the shortest possible UTF-8 encoding for the
286// value. No other validation is performed.
287func DecodeLastRuneInString(s string) (r rune, size int) {
288	end := len(s)
289	if end == 0 {
290		return RuneError, 0
291	}
292	start := end - 1
293	r = rune(s[start])
294	if r < RuneSelf {
295		return r, 1
296	}
297	// guard against O(n^2) behavior when traversing
298	// backwards through strings with long sequences of
299	// invalid UTF-8.
300	lim := end - UTFMax
301	if lim < 0 {
302		lim = 0
303	}
304	for start--; start >= lim; start-- {
305		if RuneStart(s[start]) {
306			break
307		}
308	}
309	if start < 0 {
310		start = 0
311	}
312	r, size = DecodeRuneInString(s[start:end])
313	if start+size != end {
314		return RuneError, 1
315	}
316	return r, size
317}
318
319// RuneLen returns the number of bytes required to encode the rune.
320// It returns -1 if the rune is not a valid value to encode in UTF-8.
321func RuneLen(r rune) int {
322	switch {
323	case r < 0:
324		return -1
325	case r <= rune1Max:
326		return 1
327	case r <= rune2Max:
328		return 2
329	case surrogateMin <= r && r <= surrogateMax:
330		return -1
331	case r <= rune3Max:
332		return 3
333	case r <= MaxRune:
334		return 4
335	}
336	return -1
337}
338
339// EncodeRune writes into p (which must be large enough) the UTF-8 encoding of the rune.
340// It returns the number of bytes written.
341func EncodeRune(p []byte, r rune) int {
342	// Negative values are erroneous. Making it unsigned addresses the problem.
343	switch i := uint32(r); {
344	case i <= rune1Max:
345		p[0] = byte(r)
346		return 1
347	case i <= rune2Max:
348		_ = p[1] // eliminate bounds checks
349		p[0] = t2 | byte(r>>6)
350		p[1] = tx | byte(r)&maskx
351		return 2
352	case i > MaxRune, surrogateMin <= i && i <= surrogateMax:
353		r = RuneError
354		fallthrough
355	case i <= rune3Max:
356		_ = p[2] // eliminate bounds checks
357		p[0] = t3 | byte(r>>12)
358		p[1] = tx | byte(r>>6)&maskx
359		p[2] = tx | byte(r)&maskx
360		return 3
361	default:
362		_ = p[3] // eliminate bounds checks
363		p[0] = t4 | byte(r>>18)
364		p[1] = tx | byte(r>>12)&maskx
365		p[2] = tx | byte(r>>6)&maskx
366		p[3] = tx | byte(r)&maskx
367		return 4
368	}
369}
370
371// RuneCount returns the number of runes in p. Erroneous and short
372// encodings are treated as single runes of width 1 byte.
373func RuneCount(p []byte) int {
374	np := len(p)
375	var n int
376	for i := 0; i < np; {
377		n++
378		c := p[i]
379		if c < RuneSelf {
380			// ASCII fast path
381			i++
382			continue
383		}
384		x := first[c]
385		if x == xx {
386			i++ // invalid.
387			continue
388		}
389		size := int(x & 7)
390		if i+size > np {
391			i++ // Short or invalid.
392			continue
393		}
394		accept := acceptRanges[x>>4]
395		if c := p[i+1]; c < accept.lo || accept.hi < c {
396			size = 1
397		} else if size == 2 {
398		} else if c := p[i+2]; c < locb || hicb < c {
399			size = 1
400		} else if size == 3 {
401		} else if c := p[i+3]; c < locb || hicb < c {
402			size = 1
403		}
404		i += size
405	}
406	return n
407}
408
409// RuneCountInString is like RuneCount but its input is a string.
410func RuneCountInString(s string) (n int) {
411	ns := len(s)
412	for i := 0; i < ns; n++ {
413		c := s[i]
414		if c < RuneSelf {
415			// ASCII fast path
416			i++
417			continue
418		}
419		x := first[c]
420		if x == xx {
421			i++ // invalid.
422			continue
423		}
424		size := int(x & 7)
425		if i+size > ns {
426			i++ // Short or invalid.
427			continue
428		}
429		accept := acceptRanges[x>>4]
430		if c := s[i+1]; c < accept.lo || accept.hi < c {
431			size = 1
432		} else if size == 2 {
433		} else if c := s[i+2]; c < locb || hicb < c {
434			size = 1
435		} else if size == 3 {
436		} else if c := s[i+3]; c < locb || hicb < c {
437			size = 1
438		}
439		i += size
440	}
441	return n
442}
443
444// RuneStart reports whether the byte could be the first byte of an encoded,
445// possibly invalid rune. Second and subsequent bytes always have the top two
446// bits set to 10.
447func RuneStart(b byte) bool { return b&0xC0 != 0x80 }
448
449// Valid reports whether p consists entirely of valid UTF-8-encoded runes.
450func Valid(p []byte) bool {
451	n := len(p)
452	for i := 0; i < n; {
453		pi := p[i]
454		if pi < RuneSelf {
455			i++
456			continue
457		}
458		x := first[pi]
459		if x == xx {
460			return false // Illegal starter byte.
461		}
462		size := int(x & 7)
463		if i+size > n {
464			return false // Short or invalid.
465		}
466		accept := acceptRanges[x>>4]
467		if c := p[i+1]; c < accept.lo || accept.hi < c {
468			return false
469		} else if size == 2 {
470		} else if c := p[i+2]; c < locb || hicb < c {
471			return false
472		} else if size == 3 {
473		} else if c := p[i+3]; c < locb || hicb < c {
474			return false
475		}
476		i += size
477	}
478	return true
479}
480
481// ValidString reports whether s consists entirely of valid UTF-8-encoded runes.
482func ValidString(s string) bool {
483	n := len(s)
484	for i := 0; i < n; {
485		si := s[i]
486		if si < RuneSelf {
487			i++
488			continue
489		}
490		x := first[si]
491		if x == xx {
492			return false // Illegal starter byte.
493		}
494		size := int(x & 7)
495		if i+size > n {
496			return false // Short or invalid.
497		}
498		accept := acceptRanges[x>>4]
499		if c := s[i+1]; c < accept.lo || accept.hi < c {
500			return false
501		} else if size == 2 {
502		} else if c := s[i+2]; c < locb || hicb < c {
503			return false
504		} else if size == 3 {
505		} else if c := s[i+3]; c < locb || hicb < c {
506			return false
507		}
508		i += size
509	}
510	return true
511}
512
513// ValidRune reports whether r can be legally encoded as UTF-8.
514// Code points that are out of range or a surrogate half are illegal.
515func ValidRune(r rune) bool {
516	switch {
517	case 0 <= r && r < surrogateMin:
518		return true
519	case surrogateMax < r && r <= MaxRune:
520		return true
521	}
522	return false
523}
524